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THE SPECIAL REPRESENTATION THEOREM FOR MULTI­
DIMENSIONAL GROUP ACTIONS 

A. B. Katok 

I. Introduction 
A new approach to the study of measure-preserving transformations and flows 

based on the notion of Kakutani equivalence or monotone equivalence has been 
developed during the last three years independently by Feldmann, Ornstein, Weiss 
and Rudolph and by Satayev and myself Ccf. [i] - [6]). A survey of these works 
was given in the talk of Don Ornstein. The main purpose of my talk is to 
establish several basic notions and results as the first step in the direction of 
the multi-dimensional generalization of this approach i.e. the extension of 
"the monotone ergodic theory" from actions of TL and IR up to measure-preserving 
actions of the groups and IR where m is an arbitrary positive integer. 
This extension is far from trivial and I am going to discuss some of the 
difficulties below. I have no recipes as to how all of these difficulties can be 
overcome. Even the formulation of the main criterion of equivalence in the 
positive-çntropy case is vague because in the one-dimensional case it includes 
the notion of the LB-process which is based on the existence of the "past" in 
the group Z and this notion of the past has no canonical multi-dimensional 
generalization. 

Indeed, there exists one special case of the LB-property, namely the property 
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of standardness CLB + zero-entropy, cf [2] , [3] , [4] ] which allows several 
natural generalizations. One of them is based on the consideration of the natural 
partial order in the group Zm . The corresponding notion of equivalence for 
Zm-actions was defined in ([2], definition 2.3 ). Here we are going to prepare 
some basic definitions and results for the study of a slightly more general 
notion of equivalence which is based only on the integrability of an appropriated 
cocycle instead of non-negativeness which would arise in considerations based 
on the partial ordering. I hope that this approach admits a further generali­
zation io actions of more general groups. 

Studies in "the monotone ergodic theory" depend on constructions of an 
induced and special (integral) automorphism and a special flow over an automorphism 
(several different terms are used for naming the last mentioned notion: an 
integral flow, a flow under a function etc.). Indeed, up to the present time 
appropriate multidimensional generalizations of these notions have not been 
Known. We begin to do away with this lack i.e. we define "special actions" of 
the groups and IR . Then we prove the multidimensional generalization of 
the well Known theorem of Ambrose and KaKutani and indicate another appli­
cation of our machinery. In the next worK we are going to define the generali­
zation of KaKutani equivalence and the property of standardness and discuss the 
prospects and difficulties of the theory. 

II, Definition of special actions 
The construction of a special flow over an automorphism provides a method of 

definition of a flow i.e. a measure-preserving action of the group |R by the 
given automorphism i.e. an action of the group Z and some additional data 
namely a positive integrable function. Let us recall this construction. 

Let (X,y) be a Lebesgue space, T : X X an automorphism of X i.e. a 
measurable one-to-one measure-preserving transformation and f an integrable 
positive function on X . Then we can construct a new Lebesgue space X_p 6X x IR 
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REPRESENTATION OF MULTI-DIMENSIONAL GROUP ACTIONS 

X f = {Cx,s3, xeX, 0 £ s ·< fCx)} 
with a normalized measure induced from the space X x (R and define a flow 
f f 
T = {Tj. } on X_p in the following way: the point of Xf moves with the unit 
speed along the "vertical" segment and then "jumps" immediately from the 
point (x,fCx)3 into the point CTx,0) . Certainly,this construction is 
specifically one-dimensional but we can interpret it in such a way that allows 
natural generalization. 

Let us consider the cylinder X x IR with the natural product measure 
y x A , where X is a Lebesgue measure on IR , and define the automorphism 
? of this space with infinite measure in the following way 

f(x,s) = CTx,s + ffx)) 
This automorphism is a principal IR -extension of the given automorphism T , 

i.e. a transformation of X x IR which covers T and maps each fiber into 
another fiber by a group translation. The "vertical" flow {1^} acts 
according to the formula 

TtCx,s] = Cx,t+s) 
and commutes with T . Thus we can formally project this flow into the factor 

A 
space of T-orbits. Since we assume that f is positive there exists a natural 
fundamental domain for the cyclic group generated by f j namely the set X 
described above. Action of {T̂ } on this fundamental domain coincides with the 

-1 
special flow constructed over T . The inversion of time is of no importance 

-1 
because we could start with T instead of T . 

Two IR -extensions of the given automorphism T 
T m(x,s) - CTx,s+f(x)) 
TC2)Cx,s) - [Tx,a+g(x)] 

are metrically isomorphic if there exists a measurable function h such that 
fCx) = gCx) + h(Tx) - hCx) (1) 

The isomorphism is given by the following map S : 
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S(x,s) = Cx,s + hCx)] 
which commutes with the vertical flow so that the factor-flows generated by f 
and g are also isomorphic. If for given f and g equality (1] holds for 
some h we will call the functions f and g (R-co homo logo us. 

We can consider an (R-extension of T generated by an arbitrary integrable 
[not necessary positive] function f . Ornstein, Kocergin and Weiss [see [5], 
[7] ] proved that every integrable function with non-zero integral is (R-coho-
mologous with a function of constant sign, so that the factor-flow generated by 
such a function is metrically isomorphic to the special flow over T or T 

If / fdy = 0 then the partition of the space X x IR into trajectories 
X 

of t is nonmeasurable so that we have to consider the measurable hull of this 
partition and the corresponding factor-space. In this case there are two 
possibilities : either f is [R-co homo logo us with 0 and consequently the 
factor-space is isomorphic to IR or the factor-space does not admit a 
good structure of a measure space compatible with the vertical flow. In both 
cases a good finite measure in the factor-space invariant under the factor-flow 
does not exist. 

Now we are prepared to generalize the notion of a special flow. In the most 
general situation we should deal with a locally compact topological group G , 
a discrete subgroup HcG such that the homogenous space G/H has finite 
volume and a given left action S = {S } of H by automorphisms of a 

n heH 
Lebesgue space CX,y] . Then we should consider some principal G -extension 
S of S and project the "vertical" right action of G on X x G into the 
space of S -orbits. Some conditions on a G -extension are necessary to provide 
good properties of the factor-space and a sufficiently close connection between 
the given action S and the produced factor-action of the vertical action. 

But we are not going to discuss the general situation in detail and we 
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restrict ourselves to the following two cases : G = H = 2 m and G = (Rm, H = 2 m . 
The former case corresponds to the multidimensional generalization of the notions 
of an induced automorphism, special automorphism and their combination [cf.[2l, 
5 2 ] , the latter corresponds to the generalization of the notion of a special 
flow. Most of the arguments concerning the latter [continuous] case hold true 
automatically for the first one so that we shall deal with the continuous 
situation and note all the points where some special explanations for the dis­
crete case will be necessary. 

Let T = {T } be an action of Z m on a Lebesgue space by measure-
n n € * m 

preserving transformations. Consider a principal (R -extension T of the action 
T acting on the direct product X x (Rm . Such an extension has the following 
form : TnCx.s) =(Tx,s + h [x]] [2] n 
where x€X, neZ ,se(R . The group property of T implies the following 
equation 

h [x] = h Cx) + h [T x] 
n1 2 n1 2 1 

_ _m for every n^,n2 eZ 
We shall call the function n

n^x^ t n e cocycle generating the given lRm -
extension T of the action T . 

As in the one-dimensional case we can consider the "vertical" action of IRm : 
TtCx,a) = [x,s+t] , t 6 R m 

and since this action commutes with T we can formally project it into the 
A 

space of T -orbits. 
m A 

In general partition of X x (R into T -orbits may be nonmeasurable and 
so we should consider the measurable hull of this partition and the correspon­
ding factor-space and factor-action. We are going to establish that the following 
condition U) which generalizes the condition of existence and non-vanishing 
of integral / fdy in the one-dimensional case provides simultaneously good x 
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A 
properties of the space of T -orbits and a sufficiently close connection between 
the given action on X and the produced factor-action. Let us fix the standard 
basis in 2™ and JRm : {e±}± = 1,.. ,,m , where e i = C0...1...0] i-th place. Further, let £ = [ £ £ ] be an arbitrary basis in £ m . Form an m x m 1 m 
matrix 

,h Cxh 
V x ] = : 

h Cx) 

CJ) . Vector-functions h (x),i = 1...m and scalar functions det FLCx] 
where £ is an arbitrary basis in Z m are absolutely integrable and vectors 
h. = /h CxDdy are linearly independent over R . 

X 8 i 

Theorem 1. 
Let T be a measurable, measure-preserving, ergodic, free mod 0 action of 

the group £ m on a Lebesgue space CX,y) . Suppose that T is a principal IR -
extension of T generated by the cocycle h which satisfies the condition (J). 
Then the following construction gives the finite Lebesgue measure y in the 
space of T-orbits invariant under the vertical action . Let AcXx.|R be a 
measurable set invariant under T . Denote the standard unit cell in IK ; 

{(t .....tj € Rm, Q±t±<m1, i=1,...,m} 
by A and choose measurably for every orbit y € A, a point Cx^t^] £ y . 
Decompose t = s + T where s c A , T e £ m and define the function f. on Y Y Y Y Y A 
X x A : fA(x,t) = card {y € A : x̂  - x, ŝ  = t} . Then 

yCA) = / fA(x,t)d(yxA) XxA A 

where X is the standard Lebesgue measure on A . Measure y does not depend 
on the choice of points (x ,t ) . 

Y Y 
The main part of the proof of this theorem is the following proposition. 
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REPRESENTATION OF MULTI-DIMENSIONAL GROUP ACTIONS 

Proposition 1. 
If the conditions of theorem 1 hold then there exists a measurable set 

BCXx(R with the following properties. 
1. For a.e. X€X the set B f\C{x} * R™) is bounded. 
2. /XCBAC{X} x Rm])dy < » 

X 
3. Almost every trajectory of T intersects B . 

Proof of the proposition. 
Fix the point x eX , denote the convex hull of vectors C-hn(x)), where n 

belongs to the set of all vertices of the cube A , i.e. all 0-1-vectors by 
K and let B = C{x} x K ] . Obviously, B is a measurable subset of 

X m X * X X X x IR , so the proposition follows from the next two lemmas. 

Lemma 1. Almost every trajectory of T intersects the set B . 
Lemma 2. /xCKldy < °° . 

X 

Proof of lemma 1. 
Choose a triangulation 0 of the space |Rm with the following properties. 
1. The vertexes of © are precisely the points of the integer lattice 

/ c f f . 

2. & is invariant under integer translations. 
3. © is a subdivision of the standard integer decomposition: {A + n,nsZ} 

Using this triangulation we can extend an arbitrary given map <f> : 2 m -> lRm 

A ni m A 

in a unique way up to the map <fr : IR •> (R defining <f> as a linear map on 
each simplex of © . 

Let L : Z m + R m denote the linear operator which is defined by its action 
on the basic vectors ê^ : Lei = . Condition (J] implies that det L / 0 . 
The individual ergodic theorem is true for the cocycle h so that by the 
ergodicity of T for a.e. x€X the following is true 
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||h (х) - Ln|| 
lim - - =0 (3] 
I N I + - ||n|| 

where the norm is Euclidean. 
Now fix x 6 X for which C3) holds and prove that for every s* R m T-orbit 

of the point (x,s) intersects the set В . Since 

T n«x}X ( K T x - h n t x » = { T n x } x K T x n n 
it is enough to prove that sets 

К- у - h Cx). nfz" 

cover the whole space (Rm . 
For this purpose consider the map ф х : l m |Rm defined by Фх^п) = -hnCx] 

and extend it using the triangulation © up to the map ф х : (Rm tRm . 
Obviously, for every n e Z™ the image $̂ CA+n) coincides with the set 
K_ - h Cx] so the proof would be over if we show that ф is a surlective T x n ^ Yx d 

n 
map. But this follows from the individual ergodic theorem and standard homotopy 
arguments. For denote = {teR m :||t|| < r} for r > 0 . Fix an arbitrary 
R > • and choose R. such that ||ф (t)|| > R for every t with ||t|| = R. m-1 X *x C t ] and the map ф : Ъ0^ S m defined by ф (t3 = | | x ^ | | has non-zero degree. 
This is possible by C3] and det L ̂  0 . Then % CDD ]Э D D so that ф is a 

x к 

surjective map. Lemma 1 is proved. 

Proof of lemma 2. 
Denote a restriction of the triangulation <3> to the unit cube Д by & Q 

and list the simplexes of this triangulation: oA,...,o^ . Further, fix a 
vertex p i for every simplex i = l...k, denote a i - p i by a i and 
let be the vertexes of the simplex o± different from the origin. 
Obviously 

k K x = U Ф x<a±) x i = 1 X 1 

124 
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and 
XC*>.» -XC*\ x)(a±)) . 

Pi 
But 

XC$T f .(a.)] = 1 det Hri CT Cx)) 
T p . ( x ] 1 m! 5 Pi 

where = » so that the lemraa follows from condition CU , 
Now we can conclude the proof of theorem 1. It is easy to see from the 

m ^ 
individual ergodic theorem that the partition of X x IR into T-orbits is 
measurable. 

Proposition 1 implies that we can choose for every trajectory y£A a 
point (x ,t ) in the set B described above. In this case for every measurable 
set A , invariant under T , the function f̂ Cx,s) is a.e. finite and yCA) 
is also finite. 

Moreover, the definition of u does not depend on the choice of Cx ,t ). 
Y Y 

For we can realize the transition from one such choice to another one by a 
finite or countable sequence of steps of the folbwing Kind: for each trajectory 
Y belonging to a subset A'cA we change points Cx t ) to 

Y Y 
T Cx ,t J = (T x ,t + h Cx )) 
n y y n y y n y 

Furthermore we can decompose the set A' into subsets Â  for which xy = x 
and this decomposition is evidently measurable. If we consider the unit cell 
A c (Rm as a m-dimensional torus then for every x«X the transformation from 
an old s^ to a new s^ will be a shift on this torus so that the conditional 
measures on these elements will be preserved. The factor-measure is also pre­
served because this measure is just y and a transformation in base is just T n 

which preserves the measure y . 
If we fix the choice of points Cx̂ ,t̂ ] for ever orbit y e X x IRm then 

A 
the produced measure y is obviously non-negative and a-additive. Since we 
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have proved the independence of this measure of the particular choice of [x ,t 3 
Y Y 

the proof of theorem 1 is over. 

Definition. 
Suppose I is a measure preserving ergodic free action of the group 2^ 

on a Lebesgue space CX,y) , T is a principal (R -extension of T generated 
by a cocycle h , which satisfies condition (II . Then we shall call the factor-in yy action of the vertical action of the group J? on the Lebesgue space of T -
orbits with the invariant measure y described in theorem 1 the special action 
over T generated by the cocycle h . 

Remark. 
All considerations of this section can be transfered with appropriate 

modifications and simplifications to the case of the special action of 
i.e. a factor-action of the vertical 2™ -action generated by some principal 
Z m -extension of the given measure-preserving ergodic free action of the group 
/ " . 

III. The special representation theorem. 
Now we have established the notion of the special action and we could 

formulate the generalization of the Ambrose-Kakutani theorem by saying that 
every free ergodic action of the group IRm is metrically isomorphic to some 
special action over some ergodic action T of the group 3 - But we want 
to refine this statement by bringing some additional properties of a cocycle. 

*) The general version of the Ambrose-Kakutani theorem deals with an arbi­
trary flow without fixed points. Similarly we could include more general cases 
in our considerations, for example arbitrary free actions, but this generali­
zation demands some additional space and is not very essential. 
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Definition. 
Cocycle h is called r-Lipschitz where r > 1 is a real number if for 

every n € Z , X G X 

-1 llhn(x)ll . r < — n — n — < r 
- 11" 11 ' 

Of course, if the cocycle h is r-Lipschitz for some r then n
n^x^ 

is a bounded function for every n€ Z m and h satisfies condition CI) . 
Now we are completely ready to formulate the multidimensional version of 

the theorem about special representation. 

Theorem 2. 
Let S = {S.} be a measurable measure-preserving ergodic free action 

of the group (R on a Lebesgue space CX,y) and e > 0 an arbitrary small 
number. Then there exists an ergodic action of the group Z™ T = {T } 

n n e Z M 

and C1 + e] -Lipschitz cocycle h such that S is metrically isomorphic to the 
special action over T generated by the cocycle h . 

The first part of the proof is the following proposition of some indepen­
dent interest. It is close to some results of Feldman and Noore mentioned in 
Feldman's talk and also to Rudolph's impressive result about the existence 
of a measurable partition whose elements are rectangles on orbits of a given 
action of the group !Rm . 

Proposition 2, 
Suppose S is an ergodic free action of the group (Rm , r̂  -> °° is an in­

creasing sequence of positive numbers. Then there exists a decreasing sequence 
of measurable sections Â  3 A 2 ZD ... for the action S and a sequence of 
measurable partitions £^ such that for every n = 1, 2, ... almost every 
element of E,^ contains exactly one point x e An and has the following form: 

cx = { S t x ' t e r n C x ] } ' 
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where r
n^x^ i s a convex subset of ipm which contains Euclidean ball of radius 

r̂  with the center at the origin. 

Proof of the proposition. 
We begin with the simplified version of the proposition where only one 

number r > 0 is fixed and consequently only one section A and partition £ 
have to be produced. 

Represent the action S as a continuous group of homeomorphisms of a compact 
metric space F with Borel invariant measure v . Without loss of generality 
we can suppose that v(A) > 0 for every open nonempty subset A c F , Denote 
the r-ball with the center at the point x in the given metric of F by 
BCx,r) and the Euclidean r-ball on the S-orbit of the point x by BsCx,r] . 
Fix an arbitrary point xeF and e > 0 and choose 6 > 0 so small that 

BsClOr,x)0 B(6,x) = BgCe,x)0 B(6 ,x) 
Further there exists x > 0 so that for every y£B(3t,x) 

Bs(5r,y) H B(6,x) = B^e.yJOB^.x) 
Then y 1*y2 € BC*,x) , 

Bs(2r,yi)n BsC2r,y2) * # 
imply that 

y 26 B s C2e.y1) . 
Thus an equivalence relation on the set B(3C,x) occurs : namely y ~ y if 

1 2 
Bs(2r,yyj) fl Bs(2r, y2) ̂  0 . This equivalence relation generates in a natural way 
the measurable partition of B[9f,x) and we can choose a measurable section A 
of this partition, i.e. a set AcB(9e,x) which contains exactly one point 
from each element of the partition. 

Sets BsCr,x), x£ A form a measurable partition of some part of the space X . 
This fact follows from the defintion of the equivalence relation and from the 
measurability of the section A . Now we want to "blow up" every set BsCr,x3 
within its orbit and get a partition of the whole space X . 
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Let us fix an orbit y of the action S and examine the intersection 
Y f) A . This intersection is a discrete set in the inner topology of the orbit. 
Break the orbit y into the Dirichlet regions of points of the set y f) A . 
In other words construct for each point xeyflA the set 

D

x = { y£ y» I | y - x l I - I | y _ z l I f°r A 1 1 ^ € YAA} 

where || . || is the Euclidean norm in the orbit y . The regions D̂  are 
convex subsets of y . 

It follows from the ergodicity of the action S that for almost every 
orbit y all sets D are bounded. Partition of X into the sets D (x e A) x x 
is the required partition. 

We can define on every measurable section A for the given ergodic action 
S of the group (Rm the natural class of equivalent measures induced from the 
space X . Namely, fix a sufficiently small number e > 0 , call subset CCA 
measurable if the set (J B^Ce^) is y-measurable and suppose xeC 

v CO = y C (J Bc(e,x)) e xeC S 

Evidently, the property of C to be measurable or have measure zero does not 
depend on the choice of e. We can and should construct our partition by a 
slightly more general way, namely replace the whole section A by its subset A' 
of positive measure and then do with this smaller section i.e. blow up the balls 
B^Cr,x), xeA' to the Dirichlet regions described ahove. We are going to use 
this generalization in the proof of the general version of proposition 2 . 

Recall that we deal with the topological situation so we can introduce 
the following definition. The point xeA , where A is a measurable section 
of the given R m -action S with the Borel invariant measure y is called 
essential for the section A if for every 6 > 0 an intersection AflBC6,x) 
has positive measure on A in the sense described above. 

Now we proceed to the proof of the general case of the proposition by 
induction. Suppose that the sets Â ,...,A are already constructed with the 

129 



A.B. KATOK 

help of the generalized version of our procedure and denote the corresponding 
points "x" and numbers by x i and ^ i = 1...n . Then choose an essential 
point x

n + i ^ ^ n and fulfill all our considerations where the number + ̂  
is chosen so small that B[ae „,x JcBtae ,x ) . 

n+1 n+1 n n 
Such a choice of ^ +^ provides that classes of equivalent points in 

B(*n + ,j,x )̂ are just the intersections of such classes constructed at the 
previous step [i.e. in B[&^,x^)) with the ball Btx^+^ ' x

n + >|) · Hence we can 
choose the set /\^f] B[#n+yj >x

n+^ ) as a new section · Non-triviality of the intersection is provided by the choice of the point x A [recall that x „ p y M n+1 n+1 
is an essential point for the section A ) . Proposition 2 is proved. 

Remarks. 
1. In the one-dimensional case, the assertion of theorem 2 immediately 

follows from proposition 2. For, choose r > + 2 and consider the corres­
ponding section A and measurable partition E, . Each element c of this 
partition is a sufficiently long segment of some trajectory of the given flow, 
i.e. there exists such a point x c-A and number t[c) > r that 

c — c = {S.x } 0 < t < tCc) . t c — t [c] Denote -pr-r-n by s[c) and consider the new measurable section [t [ c) J 
[t(c)]-1 B = U U S. f .x ctE, k>0 

with the corresponding first return map which we shall denote by T . 
Obviously for every x £ B there exists c€ £ such that T̂  = s

s ( c ) x . 
1 

Since 1 <_ s[c) <_ 1 + < 1 + e we have constructed the special 
[ t(c) ] 

representation for the flow {Ŝ } with the function whose value lies between 
1 and 1 + e . 

2. The discrete version of proposition 2 also holds with the corresponding 
changes in the formulation: a convex subset of Z m is an intersection of a 
convex set FC |Rm and Z m which is embedded into (Rm as a standard integer 
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lattice. An easy consequence of this discrete version of the proposition is 
a new proof of the multi-dimensional generalization of the so-called Rochlin 
lemma about uniform approximation. We shall give this new proof in section IV 
below and now we get down to the proof of theorem 2. 

The second essential step of the proof of this theorem is an extension of 
very "thin" sections Â  up to more regular sections B n . 

Intersection of such a section with a typical orbit consists of very large 
"good" pieces. Each of such pieces is a slightly distorted piece of the lattice. 
The following proposition provides the existence and convergence of such sections. 

Proposition 3. 
There exists such a sequence r -> «> that for every x 6 A , where A is 

n n n 
a set from the assertion of proposition 2 there exists a map 

*n,x : r n ( x ) 

with the following properties. 
1. (j)̂  x depend on x by a measurable way. 
2. The Lipschitz constant of the map <j>n x - id does not exceed 

- | c i - - L ) . 
2 2n 

3. For every ter Cx) I I <f> Ct) -til < m.2n 

n 1 1 Tn,x 11 

4. Denote the set {S, , ,.,x} by B and fix the x<A k*r Mflz™ *n,xli° n n 
measure v = v A on every of the set B . Then 1 J n 

100 
vCB .AB ) < — n+1 n 2n 

The next simple geometrical lemma is used at the proof of this proposition 
as well as in the concluding part of the proof of theorem 2 and in the con­
siderations of section IV. 
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Lemma 3, 
Let rC(Rm be a bounded convex set which contains an Euclidean ball of 

radius R j c r is an r-neighbourhood of the boundary Qr of r . Then the 
following inequality between m-dimensional volumes v (r) and v ( r ) holds & ^ J m m r 

v ( r ) < — • v (D 
m r R m 

Proof of the lemma. 
It is enough to prove the lemma for convex polyhedra because the case of 

a general convex set is treated by the polyhedral approximation and limiting 
process. So suppose that T is a convex polyhedron which contains an Euclidean 
R-ball with the center in the point x . Denote the (m-1]-dimensional faces 
of r by F,j,...,F^ and the cone with the vertex x and base by . 
Cones KA ... form a subdivision of the polyhedron r . The height of each 
cone K i is greater than R so that 

vCK,) >^r v m ,(FJ . m i — mi m-1 i 
The summing of these inequalities for i = 1,...,K gives 

K K 
v ( D = Z vCK') >_ ~r E v (F.) = v m AdT) m . . m l ml. I m! m-1 i=1 1=1 

On the other hand it follows from convexity of the set that 
v (r ) < r v m (*D m r — m-1 

so that 
f n , . m!r , vmCr ) < —s~ v CD m r R m 

Lemma is proved. 

Proof of proposition 3. 
n u J_U s. ^ 400.4R. Cm+1 ]! ,. , We choose the sequence r such that r > . We proceed ^ n n e 

the proof by induction. The base of the induction process is trivial because we 
can choose a. sufficiently large number r. and define <(>. as an identical 

\ i $ x 
embedding of the set Î Cx) into (Rm . Now let us suppose that tne maps 
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ф. for i = 1 ... n, xeA. are already constructed and denote for x6A Yi,x i y n 
and г > 0 through Г' Cx) the difference between Г Cx) and the r-neigh-n,r n ь 

bourhood of its boundary. Condition 3 implies that for every г > 0 
Ф п vCr» Cx)) С Г' 9 П Cx) . n,x n,r n,r-m.2N 

Now fix a point x + A and consider the element c"*'' of the partition 
£ , which contains this point. List all points ye A such that С П ПС П +^ ¥ 0 п i п у х 

Each of these points has the form 
y = Stty] x 

Let us divide the set Г .(x) into the sets 
n+1 
K y = Г п + 1Сх)П СГМу) + tCy)) 

and let 
Ky - Гп + 1 ( Х ] П ( Г " 100.2".ш (V J + t ^ ] )   

We begin with the definition of the map Фп+>| x
 o n the sets KV , namely 

let for t€ K' У 
W x ( t ) = t t C y ] J + фп,у C t" t C y ] ] C 4 ) 

where [t] denote the entire part of the vector t eR m . 
Obviously, on each set condition 2 holds. Condition 3 also holds 

because 
H*n +1 ,x C t ) _ t H = l l*n,y C t _ t Cy ) : i - ""^У» + [tCy]] -

- t(y]|| i s u p s e r [у)||Фп<уСв) - a|| • ||[t(y]] - t[y)|| <_ 

<_ m . 2 n + V4TT < m . 2 n + 1 (5) 

Let 
I" = U „ К' 

y:Cn П С П + 1 4 0 У 

у x 
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If t^t^T' , but t̂  and t 2 lie in different sets , then the dis-
, , , , . , 100.2n.m , tance between t. and t_ exceed and 1 2 e 

H*n.1.x(V " *1 " [ * n +1 , x [ V " V I I ± 2 " + 2 - m 

so that the Lipschitz constant of the map <j> - id on the set r' H H yn+1,x 
e 1 does not exceed (1 - — ] . 
2 2n 

Now we should define the map d> on the remaining part of the set r f 
K yn + 1,x B H n Cx] 

with a very small increase of the Lipschitz constant of the difference 
+ 1 x"*̂  anc^ without any increase of the C° norm of this difference. In the 

case of a scalar function such a prolongation Ceven without any increase of the 
Lipschitz constant] is provided by a fairly general and simple construction 
of Banach Csee, for example, [10] , chapter 5, $5, Lemma 3 ] . However, I do 
not Know any such general construction in the case of a vector function. So 
it is necessary to use some more special machinery. 

Let dCt] denote a Euclidean distance from the point t£ K to the subset 
y 

K/ and let sCt] denote the unique point of , such that the distance 
between t and sCt] is equal to dCt] . Now we can define the map $ n +^ x 

on each set K , namely 
y y 

*n + 1,x [ t ] = t + C m a x C 0' 1 ~ 1 0.2n. m dCt]]].C [tCy]] • 4>n-yCsCt] - tCy))) C6] 
Let X = Arx fln— - Obviously cj> Ct] = t if dCt] > X~1 , i.e. if the point 10.2n.m y yn,x — 

-1 -1 
t lies outside the X -neighbourhood of the set . But dCt] > 2.X 
for every point 

t c-acr Cy] + tCy]] n J J 

so that the map $ n +^ x coincides with the identity in some neighbourhood of 
the common boundary of every two sets . Thus formula C6] gives the continuous 
map defined on the whole set r

n^ x5 and it is enough to ensure conditions 2 
and 3 within each set independently. 
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Condition 3 is obviously true because by virtue of (5) and С6) 

m a X H*n+1 x C t ] " *И " m a X M*n+1 x C t ) " *И 
t€K ' UK9 

У У 
Let us verify condition 2. Fix a number г : • < r < \ and consider the 

surface S = {t б К , dCt) = r} r,y 1 y' s 

It follows from the convexity of the set К/ and from formula С6) that 
the Lipschitz constant of the map <ь . -id restricted on this surface does 
not exceed the corresponding constant for ф п +^ x "" id restricted on the surface 
Ъ К1 . The last-mentioned constant does not exceed — ) by virtue of C4) . У 2 2n 
Further, the Lipschitz constant in the orthogonal direction to the surface 
S does not exceed X < — s o that the Lipschitz constant of ^ , - id r,y 2n+2 K n+1,x 
on the set К is less than or equal to ~C1 - ^ • ) . 

У 2 2n+1 
We omit details concerning the measurability of our construction because 

the construction is given by explicit formulae. 
It remains to verify condition 4. Let us use the following notation 

В' = 
n x e A n +1 у : C % C " + 1 * 0 к * к' л * { 5 Ф сюУ> 

From the definition of ф п + у ] x Csee formula С4)] it follows that В' С В п П В п + 1 . 

Let us estimate the measure of sets В \ B' and В .\B' . Lemma 3 and the 
n n n+1 n 

choice of rn imply that 

,„ f л f ,.» 100.2n.m.m! , , ., 1 r , >. 
V m ( r n ( y ) N r 100.2n.m ^ 1 —17F " W ^ 3 3 17^2 ' W ^ 1 

n, n 2 e 
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The conditional measure on each element Ĉ  is proportional to the image of 
the Euclidean volume in rnCy) . Consequently conditional measure of the set 

V y ( r n C y ^ r ' 100.2n.m)  
1 

is less than ——- . Further the number of integer points in this difference 2 is almost proportional to its volume and consequently 
Card {(BnV n * n > y Cr n Cy»} <_-±^ Card {Bp ^ ( r p Cy fl} (7) 

Similarly 
Card { t B n + 1 N B ; ) 0 * n + 1 > x CtCy) • y y ) ) } L - ^ L - Card {B„ + 1 A ^ t y y ) ) } C8) 

1 Now suppose that e < -=· and consider the measure v on the sets B and £ n 
Bn+yj and conditional measures induced by this measure on a fixed element C 
of the partition C n +^ · These measures are uniform i.e. proportional to the 
number of elements in the intersections C 0B and CflB . so that inequali-

n n+1 H 

ties (7) and C8) provide that condition 4 holds. 

Conclusion of the proof of theorem 2. 
So we have constructed the sequence of sections B^ . Now we are going to show 

that this sequence converges to the section B which admits a natural action of 
group Z m . This fact allows us to represent the given lRm-action S as a 
special action oVer this action of Em on the Lebesgue space CB,v) . 

00 oo 
Denote the set U f] B. by B . From condition 4 of proposition 3 it 

n=1 i=n X 

follows that 1 v(B A B ) < E vCB . „A B .) < , n — i_Q n+i+1 n+i — 2n-1 For every point y€B and every sufficiently large n there exists x
n ^ A

n 

and K € r Cx ) such that n n n 
y = % (K) xn 

Now fix an element K € Z m . From the definition of the maps <J>n x it follows 

136 



REPRESENTATION OF MULTI-DIMENSIONAL GROUP ACTIONS 

that for a.e. y€B K +k € r Cx ) for all sufficiently large n , and the 
n n n 

difference 
<b CK +k) - cj> CK ) Yn,x n Yn,x n n n 

does not depend on n . Denote this difference by h Cy) . Obviously 
K 

SL f v y€B . Moreover h, is a cocycle i.e. for every k,, k n ê Z m 

ĥ Cy) y K y 1 2 

V 2

( y ) = \ t y 5 + V \ ^ y ] 

So we can define an action T = {J^} of lm on the set B which preserves 

the measure v , namely for y € B , n e / suppose 

T y = S. . .y 
n* V y ] 

From condition 2 of proposition 3 we have 

-1 MhKCy)|| 
(1+e) £—|jjq-|— <_ 1+e C9) 

Now it is easy to prove that the given !Rm -action S is metrically iso­

morphic to the special action over T generated by the cocycle -h which is 

C1 + e)-Lipschitz by C9\) . For consider the space B x IRm with the IRm-extension 

T of the action T generated by this cocycle : 

T Cy,t) = CTy,t-h Cy)) n y y n y 

and define the map R : B x £Rm •> X by 

RCy,t) = sty€ X 

Suppose that RCy^t^ = RCy^t^, i.e. y1 = S t y 2 or S t _t Y>, = Y 2 • 

But it means that for some k € £ m 

y 2 = T k V l . i.e. t r t 2 - h k( y i) . 

Conversely if 

Cy,t) € B x (Rm, K€/ m 

then 

R(Tky.t - hk(y)) - S t_ h k ( y ](T ky) - Sty - RCy.t) 
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So the preimage R Cx) of an arbitrary point x e X is precisely one orbit 
/\ 

of T and consequently the map R establishes the one-to-one correspondence 
A 

between the space of T-orbits with the factor-action generated by the vertical 
action and the space X with the action S . The correspondence between the 
invariant measure is almost obvious so that we omit details. Theorem 2 is proved. 

IV. Rochlin lemma 

We mentioned in the previous section about the new and simple proof of 
Rochlin Cor Halmos-Rochlin or Kakutani-Rochlin) uniform approximation lemma for 
2 m-actions. The result itself is not new; it is known even for more general 
groups and under more general assumptions Csee for example) but our 
proof is quite simple and demonstrates use of our methods. Now let us pass on 
precise formulations. 

Rochlin lemma. 
Let T = { T ^ be a measurable, measure-preserving free action of the 

group Z m on a Lebesgue space CX,p),k = Ck^ ... km)€ Z m an arbitrary vector, 
n. = U = U . . . £ ) : SL. e Z , 0 < £. < k., i = 1 ... m} a rectangle in Z m , 

K i m I —~ I I 

e > • an arbitrary small number. Then there exists a measurable set E C X 
such that sets T^E , I € are pair wise disjoint and 

liC (J T E) > 1 - e 
* t I Tk 

Proof. 

We deduce this lemma from the simplified version of proposition 2 for Z m-

actions. Notice that ergodicity is of no importance at the proof of this propo­

sition. For we use only the fact that every trajectory of the action T inter­

sects the set A i.e. that A is a global measurable section for T . But it 

is easy to provide this property in the following way: begin with the local 

section as in the proof of proposition 2, then consider the minimal invariant 
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set containing the set A , construct the local section for the invariant 
set X \ , define the set F 2 by a similar way and so on. 

Introduce several notations. For a fixed vector К = Ck„ ...,k ) € Zm 

1 m 
denote by 7Z™ the sublattice I™ =U = )е / Л . =t. k., t .€l91 = 1.. .m>, 

к к I m 1 1 1 1 and K. the partition of j m into the sets П + £ , I ь Z™ . k к к 10Qm.ml I I КI I , i a p . , . _ 
Fix the number r > — a n d apply the simplified version of propo­

sition 2. For every x 6A consider all elements of partition К which are 
к 

contained in the set Г(х). Obviously the union of all such elements covers the 
difference between the set ГСх) and (m.||k||) -neighbourhood of its boundary 
so that by lemma 3 the conditional measure of the set {T̂ } , (where k belongs 
to this difference) on the element of the partition £ exceeds 

_ mlm.l|k[1 > _ j__ 
r ' 100 

Suppose E = U U {Тлх> xGA JUZ™ , П. + £СГ(х) к к 
The measurability of this set follows from proposition 2. Estimation of condi­
tional measures which we have done above provides that 

£ e n , * 

At last by definition 

" V ^ n . К. / k-
implies that 

T E O T E = 0 
1 K2 

Lemma is proved. 
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