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A crossing estimate for the canonical process 
on a Dirichlet space and a tightness resuit 

by Terence J. LYONS and Zheng W E I A N 1 

0. Introduction. 

In this paper we introduce an extension of the Stratonovich Intégral. We 

use this extension to establish an estimate for the number of times a Dirichlet 

Markov process crosses between two subsets in its state space. In turn, this 

enables us to show (under quite gênerai conditions) that the measures on path 

space associated with the Markov processes of a family of équivalent Dirichlet 

forms are tight (in the topology of Meyer). Under the hypothesis that the 

Dirichlet forms arise from uniformly elliptic operators in Divergence form we 

also establish a continuity resuit: if the forms converge in a dominated way 

then the laws of the processes converge. Our method is more gênerai than the 

resuit given here, the resuit stated could also be deduced using p.d.e. methods. 

We also develop the extension of Stratonovich calculus to L 2 vector 

fields - a more systematic account should follow. In this paper we establish a 

maximal estimate, and also the natural resuit that if u is in L 2 and is 

divergence free (in the appropriate sensé for the Dirichlet form) then the 

Stratonovich intégral u * dX is a local martingale. 

Using some spécial linear operator r , Nakao [3] has introduced his 

définition of Stratonovich intégral as an additive functional. His définition 

will be the same as ours if the évolution process has an initial distribution 

which is absolutely continuous with respect to the invariant measure. But our 

*0n leave of absence from Department of Mathematical Statistics East-China 
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définition can be more easily extended to the case where the integrated vector 

fields are time-dependent. 

The usual smoothness restrictions imposed on u when defining 

Stratonovich intégrais arise from the requirement that the intégral shall be a 

semi-martingale. As we shall explain, it seems more natural in this context 

that the intégral should be a regular Dirichlet process and a différence of a 

forward and backward martingale. This is the essential point for it enables one 

to define a good intégration theory for the class of integrands which are 

forward and backward predictable. Of course functions like u(Xj.) have just 

this sort of measurability property. 

1. Martingale with o-finite initial measure. 

Let be a a-finite measure space, ( £t^t€R ^ e a c a c * l a £ family 

of ^r-completed sub a-fields of S . We call a random process X^(w) 

a square-integrable martingale with initial measure fj if there is a séquence 

{ Bn }n=l,2,... S O t h a t ( i ) B n € E 0 ' B

n î n ' / i ( B n ) < °° ' 

(iv) the restriction of X^(w) to B r ) is a square integrable martingale in 

the filtration (B ,SnB ,E.nB ,w(.nB )/u(B )) for every fixed n, v) 
n n t n ̂  n ^ n 

sup | X . I 2 < oo . We call a random process X.(w) a local martingale with 
t Jfl 1 Z 

initial measure JJ if (i) to (iii) hold and (iv 1) then repeat (iv) 

replacing "square integrable" by "local". 

Doob»s inequality extends to thèse generalised square integrable martingales: 

suppose X Q = 0 |JL - a.e. then 

(1.1) f sup|X l2d,i < 4(supf \X\2dfj) < 4 f ( < X , X > . - < X , X> n)d/i 
Jft s<t S s<tJfi Jfi 

Here < X , X > ^ . is the usual bracket (that is the increasing predictable part of 

the Doob Meyer décomposition of X 2 ) . 
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THE CANONICAL PROCESS ON A DIRICHLET SPACE 

Let 3C be a locally compact Hausdorff space with a countable base and m 

be a positive Radon measure on 9C so that Suppfm] = 9C . Let (9e,£) be a 

2 

Dirichlet space relative to L (3C,m) . ¥ is the domain of the Dirichlet 

form C . Dénote by - A the unbounded positive definite self-adjoint operator 

associated with C [2]. 

Suppose there is a Markov process X^. on with continuous paths in 

3C let be the probability measure on G for given X Q = <c . 

Suppose further that A is the générât ing operator of X^ . /in the sensé that 

for every fixed initial distribution m 1 for X Q and ail f € # ( A ) , 

(1-2) < = f < x t : j\f(Xg)ds - f(X 0) 

is a (F^)-local martingale for any o-finite initial measure m' . (Thèse 

restrictions are not too onerous, but they certainly simplify the présentation.) 

f 

When we take m as the initial measure N f c is a square integrable martingale. 

Because A is self adjoint in L2(X,dra) the process 

(1.3) N t = f ( X l - t } " } 0

A f ( X l - s ) d s " f ( X l ) ' 0 < t < 1 

is a G^-square integrable martingale where (G^.) is the natural filtration of 

h-t • 

Remark. Even in the case when X = R d and A = a ^ ^ j - we will not 

i j 

normally impose smoothness conditions on a 1 J and so X^ will not gêneraily be 

a semi-martingale, nor will twice differentiable functions be in the domain 

of A . 

Providing X does not explode in finite time then there is a well known 

relationship between the quadratic variation of the semi-martingale f(X^) and 

the Dirichlet norm of f 

(1.4) | <N f,N f> - < N f , N f > 0 d P
m = |<N f,N f> x - < N

f , N f > 0 d P
m 

= 2C(f,f) . 
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Using this, we can extend the identity 

(1.5) f(Xt) = f(X0) + | N [ + 

to ail f € y by approximation argument as follows. Firstly (1.5) is clearly 

true for f € 2>(A) by considering (1.2) and (1.3) in combinat ion. Secondly, 

if f € y one may always approximate it by f € #(A) so that €(f n-f,f n-f) + 

f f n - f n 
|f n - f|

2dm converges to zéro. Because of (1.4) the martingales N^ , N f c 

2 

clearly converge in L giving an expression (1.5) for as a différence 

of forward and backward martingales. Note that this construction defines 

f —f 
N , N for ail f € y ; it is not clear that they are the unique choices of 

martingales which satisfy (1.5). 

f 

In fact N can be defined for any f which is locally in 9 (the 

Dirichlet form is local because the process has continuous paths [F; p.114]) 

and its définition is pathwise; that is to say that if f = g on some open 

f £ 

set U and r is the first time X t quits U then N and N are equal for 

t < T . 

We wish to get a décomposition of X̂ . itself into a forward and backward 

local martingale like the décomposition at (1.5). We have a change of variable 

formula to exploit. 

Let 3C = R d and g € Cg(R d) . For { f ^ ^ j d « »(A) , we have from 

Ito's formula and (1.2)-(1.3) that 

(1.6) g(f1(xt), f d(x t)) - g(f 1(x 0 >..,f d(x 0)) 

J0 >*i - %L 5 T - t W * . 1 • 

Then another approximation argument allows one to extend this to g € cJ(lRd) and 

f i € 9e . Suppose that Cg(R d) c 9e . We take a séquence of = ( g ^ ) i = 1 d 

and an exhaustion of R n by relatively compact open sets U R C R
d such that 

g* e c î(R d) and g*(x) = x* on U . We know that for a.e. w € 12 , when n 
n 0 n n 

is sufflciently large, X f(w) € U^ (Vt€[0,l]). 
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THE CANONICAL PROCESS ON A DIRICHLET SPACE 

f 
So that from the local nature of the définition of N we obtain 

(1.7) 
. i . i i 
-N X - -f N* -N* 1 2 wt 2K"l Nl-t> 

d i 1 

where x 1 is the ith co-ordinate function on R . Putting N 1 = and 

N = (N*)f_j etc. to simplify notation we see that (1.6) becomes 

d.8) g ( x t ) - g ( x 0 ) = g j ^ ̂ ( x s ) < - g_||_ t -^(x^ml . 
Observe that the intégrais in (1.8) are classical forward and backward Ito 

intégrais and présent no problems of interprétation, We will use this 

expression f^, X^ to express X̂ . as a weak solution to a stochastic 

differential équation in terms of Rrownian motion. 

So far we have considered the case when 9C is Euclidean space R d and 

M = (n,Z,X t >P x) is an m-symmetric diffusion process on R d with Dirichlet 

form € on L2(3C,m) , suppose now that it has C^(R^) as a core. We still 

assume for simplicity that M adraits no killing inside 3C . Then from the 

example 5.2.1 (Fukushima), we know that if € is given by 

(1.9) e(u,v) = (viu)ai^.(v^v)dm , 

where (a^(x)) is measurable and positive definite, then for g € & we have a 

pathwise version of (1.4) : 

(1 .10 ) < N % g > t = l x v i g ( x s ) v v v ( v d s • 

So that if we take N and N as in (1.7), we have 

(1.11) d<N 1,N J>. = a. .(X. )dt , d<N 1 , N 1 > + = a. .(X, J d t . t ij t t IJ 1-t 
Take A(x) = a. .(x) = B'(x)B((xj. where B(x) is a bounded Borel measurable 

matrix-valued function and B'(x) is its transpose. Dénote by B * its 

inverse. Then one may recover N as an Ito intégral of two Brownian motions 

(1.12) N t = J ^ V * . * N t = j ) < X l - s > d W s • 

where 

( 1 . 1 3 ) w t = LB <v • wt = f B ̂ X . .dN . 
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From (1.11), we can easily deduce that 

<W 1,W^>. = 6 . .t , <WX,wV = 6 . .t . 
t. ij t IJ 

So that W is a (F^)~Brownian motion and is a (G^J-Brownian 

motion. We can write (1.7) as 

(1.14) X t - X 0 = if0
 B ( X s ) d W s ~ k^h-s^s * 

2. Crossing estimate for Dirichlet process. 

Tf E, F are disjoint closed subsets of X and X Q is distributed 

iike ni then there is an estimate for the expected number of cross ing X^. 

makes between E and F for t < 1 . This estimate dépends only on £ and 

will be essential to the compactness results we obtain in %3. We first 

establish a lenuna. Let (tt,S,fj) be a measure space. 

LEMMA 2.1. Suppose (M^jlS^) is a square-integrable martingale with o-finite  

initial measure on the filtrat ion E . Let (^n)n=l
 D e a séquence of  

non-negative random variables so that S^ < i ••. . If there is a séquence  

of stopping times < < ... such that 

T2n-1 <- S2n-1 • S 2 n * T 2 n + 1
 ( n = l>*' "•> 

then 

(2.2) [ |M q - M_ \2dfj < 16 f (<M,M> - <M,M> n)d^ . 
Vfi b 2 n *2n-l Jfl 

PROOF. For every fixed n , we consider the martingale M. T - M. T 

r A 1 2 n + l t A 1 2 n - l 

Then 

2n 2n-l 2n 2n-l 2n-l 2n-l 

< 4( sup |M - M | 2 ) 
T 9 f < t < T 9 ' t A T 2 n + l t A T 2 n - l ' 
2n-l 2n+l 

From (1.1.) , 

f |M_ - Hi \2dfj < 16f (<M,M> T <M,M> T ) d f J " 
Jfi ù2n *2n-l Jfi A2n+1 A2n-1 
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Summing over ail n on the both sides of above inequality, we obtain the 

conclusion. 

Now we return to the Dirichlet space (&,€>) relative to L2(9C,m) . Let F 

and G be two disjoint closed sets of 9C . We define 

Q(F,G) = i n f ( C ( U | U ) | u € p f u ( x ) = o if x € F and u(x) = 1 when x € G} . 

We always suppose that the set over which the infimum is taken contains an 

élément. 

Let h, f, g be functions from a linearly ordered set I into R , with 

f < g . The number N(I,h,f,g) of upcrossings of [f,g] by h is defined as 

the supremum of the values of the positive integers k for which there exists 

t 1 ... t Q. in I satisfying h(t.) < f(t .) when j is odd and g(t .) < h(t.) 

when j is even. 

We give now an estimate for number of crossings between F and G of the 

continuous Markov process X^ associated to G . Let q be a function from 3C 

to [0,1] satisfying q(x) = 0 if x € F and q(x) = 1 if x € G . We 

define N(I,X.,F,G) = N(I,/7(X. ) ,0,1) whenever I is a subset of the positive 

real numbers. 

THEOREM 2.2. We have 

f N([0,l],X.,F,G)dP m < 3 4 Q ( F , G ) . 

(Here F is the law of X. started with X Q distributed as m - the  

réversible and stationary measure.) 

PROOF. Set 

= inf{t > 0; X t € F} A 1 , T g = inf{t > T ^ Xfc € G} A 1 , 

T 3 = inf{t > T 2; X t € F} A 1 , ... 

Tj = inf{t > 0; X l t € G} A 1 , T 2 = inf{t > X l t _ € F} A 1 , 

T 3 = inf{t > T 2; € G} A , . . . . 
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Then excepting the first and last intervais one always has that if T^ < T.^+j 

then there is exactly one j such that Tj € ( T ^ T ^ ^ ) • Dénote by J(w) the 

largest j such that rj(X ) - q(T ) = 1 . Then 
l2j l2j-l 

N([0,1],X.,F,G) < > |/7(X )-T)(XT ) | 2 . 

fj=l V2j l2j-l 

Now we suppose / 7 = f € S f , b y ( 1 . 5 ) . 

(2.3) N([0,1],X.,F,G) < ( ) \nî - Nf | 2

 + V | N ! - BÎ | 2 . 

*-j = l J2j '2J-1 fj=l 2j J2j-1 

It is easily deduced from (1.4) that 

U. |NÏ - | 2dP i n < 2C(f f) . 

j=l A2j A2j~l 
Now the only thing that remains is to estimate the second term of (2.3). Dénote 

S 2 = ( 1 - T 2 J - 1 } i S 3 " ( 1 T 2 j - 2 } ' *'' ' 

then 

Ï2n-1 <- S2n-1 > S 2 n <- ï 2 „ + i < n " Ï.2.....2J) . 

We apply now lemma (2.1) to the second terni of (2.3) and deduce from (1.4) the 

conclusion. 

3. Some Tightness Results for Laws of Canonical Processe?s Associated to  
Dirichlet Forms. 

This section has two main results. The first (Theorem 3.2) exploits the 

crossing estimate of %2 to obtain a tightness criteria for the measures on path 

space associated with uniform1y équivalent Dirichlet forms - this tightness 

criteria is expressed in terms of the Meyer topology on path space rather than 

the more usual Skorohod topology. Although this is a weaker topology than the 

usual one it seems peculiarly well adapted to the problem at hand. The methods 

would easily extend to simple infinité dimensional problems. 
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The second theorem (3.4) is concerned with convergence. Suppose the forms 

converge and the processes converge then we give hypothèses which guarantee that 

the process associated with the limiting form is the limiting process. It is 

clear that a tightness resuit is not very useful without a theorem like this 

one. 

Dénote by D[0,1] the space of ail cadlag functions defined on 

[0,1] taking values in X . P.A. Meyer introduced a tightness criterion for 

probability measures on D[0,1] in a topology which is weaker than Skorohod's 

one. Our method for proving tightness is the same as that utilized in [4]. 

Let 9C„ = 9C U A be the one-point compactification of 9C . When 9C is 
A 

already compact, A is regarded as an isolated point. For any subset A c X , 

A U A is endowed with the relative topology as a subspace of 9C„ . 
A 

Let A be the Lebesgue measure on [0,1] . Let w(t) be a X^ valued 
A 

Borel function on [0,1] . By définition, the pseudo-path of w is a 

probability law on [0,1] x 9C : the image measure of A under the mapping . 
A 

t •+ (t,w(t)) . We dénote by V the mapping which associated to a path w its 

pseudo-path: V identifies two paths if and only if they are equal X a.e. . 

In particular, * is 1-1 on D , and provides us with an imbedding of D 

into the compact space T of ail probability laws on the compact space [0,1] x 

X^ . Meyer gave the name of pseudo-path topology to the induced topology 

on D . Dénote by D^[0,1] the space of ail cadlag functions defined on [0,1] 

taking values in 3C . 
A 

Let Jt be the set of ail pairs of relatively compact open sets (E,F) 

with disjoint closures in X . Let r be a finite subdivision on [0,1] r : 0 = t n < t, < ... t = 1 . 
0 1 n 

We define for \A € T a positive integer N E F(yw) by the following condition: 

EF 
N (fj) > k if and only if there exist éléments of r denoted as follows 

0 < t. < t . , < t . < t < t . < t . , < l 
L l Xl X 2 X 2 \ Lk 

257 



T. J. LYONS, Z. WEIAN 

such that u charges (i.e. gives strictly positive measure to) each one of the 

open sets in [0,1] 

(t. ,t.,) x E , (t. ,t. ) x F , (tt. , t. ) x E , ... . 

The sets [u : N E F(/^) > k} = {u : N 8 * (u) > k - 1} are open in T , so that 

N**F is a l.s.c. function, and the same is true for the function 

= sup . 
T T 

We now formulate the analogous theorem to that in [4], Let (^n»^n) ^ e a 

séquence of Dirichlet spaces relative to L2(3C,i_n) . We dénote by P the 

probability measure on D[0,1] induced by the Markov process associated to 

with an initial probability measure (not necessarily be equal to m n ) . 

THEOREM 3.1 Let be absolutely continuous with respect to m^ and 

sup du /dm < » . If for every pair 

(E,F) € * , 

(3.1) s u p n c ( E ' F ) ( e N ) < oo . , 

then there exists a subsequence n 1 of n such that (P n ) which 

converges weakly on D f0,l] to a law P . ______,_________________ _| ___________ 
€ n " * n ' 

PR00F. There exists a subsequence (P ) which converges weakly on T to 

some law P on T . We are going to prove that P is carried by D J0,1] . 
A 

From the Theorem 2 of [1], it is sufficient to prove that 

(3.1-) V(F,G) e X , N F G < o» a.s. [P] . 

But (3.1 1) is just a corollary to theorem 2.2 and (3.1). 

Now we suppose that SC = , and the Dirichlet forais are generated by 

(3.2) C n(f.g) = | R d(vf(x)) tA n(x)(vg(x))dB. n , Vf, g € cJ(R d) 

where A^(x) is a bounded positive-définite matrix on R In this case, 

C^(R^) is a common core for ail C 
0 n 
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We have corollary to Theorem 3.1. 

THEOREM 3.2. Let m n be a séquence of Radon measure and let £ r be a séquence  

of Dirichlet forms générâted by (3.2). Suppose that there is a Radon measure , 

such that for ail f € C Q ( R
d ) 

(3.3) J df(x)m n(dx) — > J df(x)m(dx) , 
R R 

and suppose that A n(x) are uniformly bounded. Then we may choose a  

subsequence n 1 of the n and an exhaustion of R d by increasing bounded open 

sets 0. such that for ail bounded continuous functions g on D ̂  (with the 
j — A  

pseudo-path topology) we have the following that if we abbreviate the 

measure P . starting with Xn distributed like m , I as P1! then 

n- 0 n — j 
1 J 

(3.4) 

for some finite measure Q. on D . ——~———————— j 

Now we consider questions of continuity and suppose that there is a positive 

définite matrix A(x) (bounded above and away from zéro) such that 

(3.5) A n(x) • A(x) , Vx € R d . 

Applying 3.2, it is easy to obtain limit processes for subsequences A n § ; 

it is not clear at ail that the limit law is independent of the subsequence and 

corresponds to the law one obtains by générâting the Markov process associâted 

to A . 

We will discuss the behaviour of the processes corresponding to the limit 

laws P on D^[0,1] . 

Suppose by fixing a subsequence that the measures Pj converge to some 

measure . Let the probability measure on path space arising from the 

Dirichlet process associated to A and started on <K with law m ^ be 

denoted by P^ . We will outline a proof that the resolvant of P^ converges 

to that of Pj . In turn this implies that the semi-groups converge in the 

strong operator topology and thus the finite dimensional distributions of 
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the converge to those of P. (in the usual weak* toplogy). Because the 

ô «J 
pk converge to Q. in the topology of Meyer we also know that for Lebesgue 
ô J 

almost ail finite séquences 0 < t^ < t^ < ... < t R < 1 the finite dimensional 

distributions of P^ converge to those of Q. . Because ail the measures are 
J J 

supported on D .[0,1] this allows us to identify the limit P. as Q. . 

A J J 
Suppose nijt(dx) = q^(x)dx and m(dx) = q(x)dx are the respective 

(k) 
measures determining a séquence of L 2 spaces and A (x) are a séquence of 

(k) 

positive definite matrix valued functions such that is monotone 
(k) 

increasing (or decreasing) to qA . And such that both q^ and A are 

uniformly bounded (in x and k) above and below (as functions and as forms) 

by strictly positive constants. Formally the self adjoint operator associated 

to thé form 

V f'*> = + L ^rf *S} ah« % M d x 

R 1 J 

and Hilbert space L 2(q,dx) is 

L ( k ) = i_ a kW 
q k âïï^k ij ax • 

(k) (k) 
If is the résolvent operator of L on L 2(q^dx) then because we may 

view L 2(qdx) as the same space as L 2(q^dx) but with an équivalent norm we 

(k) 
will also think of R^ as an operator on L 2(qdx) . Under the above 

(k) 

hypothèses for ail f € L 2(qdx) one has R^ f -> R^f in L 2 norm. We do not 

prove this fully here as our proof is a little awkward. To give the idea we 

mention the cases (i) where the form C is kept fixed so «l^A^ = <lA but the 

Hilbert space norm is changing, and (ii) where q^ is kept fixed but the forms 

vary. 

The case (ii) is completely standard operator theory (see p.459 of Kato or 

pp.117, 118 E.B. Davies). To treat case (i) it seems we need to exploit the 

(k) 
fact that the forms are Dirichlet. In this case the operators L are 
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just -~— qA-~— , we may relaie the résolvent of ïS^ to the process, X 

q i j 

connected with 6, L 2(qdx) , (through the Feynman-Kae formula) we have an 

explicit formula for H f : 

. f> , f* V V . q, (X. ) 

(njf)(x) = E x(j of (x t)e-
Aj 0 - ^ o r r ^ JyLyit) . 

At least for f € Cg(R d) the ahove intégrais are well defined. The uniform 

W 
estimâtes on —QTT ^ r o m a D O V e a n c* below allows the convergence to be deduced 

s 
from an application of the dominated convergence theorem observing that one can 

k 1 

dominate the intégral for R f by that for —R If I for small e . An 

application of the closed graph theorem complètes this case ofthe argument. 

Return to our earlier considérations about the convergence of 

to . Let f,g be a pair of functions in C o ( R
d ) with the support of 

f in 0. . Then one has 
]«< PJ , t f>1c d x 

in the "note added in proof" of Meyer and Zheng [4] this converges to 

Q . F 

E J(g(X 0)f(X r)) = JgP tf gdx 

for ail g € L 2(q dx) supported on (K and for ail j . 

Define R^f by 

R f = | e A t P . f dt . 
J 0

 _ t 

Now {R*f}, converges in L 0(m)-norm to R f . But from (3.12) and the 

définition of R^f , we know that R^ is the weak limit of R^ . Thus, from 

the uniqueness of weak limit, we deduce that R^f = R^f a.e.[m] . So that 

P^f = P f a.e.[m] amd P f converge weakly to P^f . Moreover, since P^ is 

symmetric, 

(3.20) IRd<
PÏf>2dm = JRd(

Ptf)2dmk + JRd(^)( k̂>^ 

= j Rd « ? t

f d \ + I/p^)2(«-vdx 
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k q k and as is a contraction and 1 — — is bounded and converges to zéro 

pointwise one has in the limit as k goes to infinity 

FP 2 tfdm JRd(ptf)'d- • 

So that we have weak convergence and convergence of the norms; thus the P^f 

converge in Lg-norm to P^f . 

Now we approach our target. To prove that the finite dimensional 

distributions converge. We take the sub-sequence P appearing in theorem 3.2; 

we will show that for any given bounded measurable functions f^, and 

almost every 0 = s r . < s , < . . . < s < 1 0 1 n 
(3.22) 

E J [ f n ( X )...f (X ) 0 s» n s 0 n 
= fl n f nP (f-P (...f -P f )dm . 0 . 0 s~ 1 s.-s- n-1 s -s 4 n J j 0 1 0 n n-1 

From lemma 5 of Meyer and Zheng [4], almost ail finite dimensional distributions 

of {P \ converge. Thus to prove (3.22) it is sufficient to show that 

I„ f„P K(f,P K (...f ,P K f )dm 0 . 0 s_ 1 s,-s. n-1 s -s , n n, J j 0 1 0 n n-1 k 
k -> oo 

(3.23) 

fl„ f„P (f.P (...f ,P f )dm . 0 . 0 1 s«-s_ v n-1 s -s 4 n' J j 0 1 0 n n-1 
But (3.23) follows from a repeated use of the following 

(3.24) PROPOSITION. Let tgj {}j c = 1 ^ € ^ ( m ) such that g^ converge to g^ 

in L^(m)-norm. Then 

(p v W 2 d J B k 
k - », 0 

and thus 
nk k -> «> | R d «iM-*1 • 
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PROOF f y p t V w 2 d m * 2 L ( p

t

g » ~ p t k g ~ ) 2 d m + 2Ld< ptV p

t

k*k ) 2 d*k 

+ V p t V p t V 
s(q-qk)dx 

and ail the right hand terras go to zéro as K tends to «o . 

Also 

*l pt | Rd
 glPtgwJro 

<- { R d g i p t \ l V ^ d x + JRd
 gl p t k g k d m - lRd 

which tends to zéro. 

Now we estahlish a theorem. 

Let € , £ be determined by the A^t A and m^ = P^dx , m = qdx as in 

(3.2). Suppose there is a number c € (0,«>) such that 

c > q A > q l 4 A 1 < 1 > — 
n TÎ+1 n+1 c 

in the sensé of forms and <l nA n converges to qA . Assume also that 

c > q^ > ~ for ail n and q^ converges to q pointwise and let 

m (dx) ~ q (x)dx etc. 
n n ' 

Fix a positive function p € C Q ( R ^ ) . Let X N be the process associated 

to ( C m ) started with law p(x)m (dx) and be its local martingale part. 

THEOREM 3 . 3 . The pairs ( X 1 1 , ! * 1 1 ) converge jointly in distribuion to ( X , N ) in  

the topology of Meyer. 

PROOF. From Theorem 3.1 and ( 3 . 2 2 ) , we know the convergence in distribution of 

X N to X . Without losing gêneraiity, we may suppose that 

| ^ ~ J d p * n = ^ ^ n o r c*er to make the laws probability measures. Then, 

from Skorohod's theorem, we can suppose that X N and X are processes on the 
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same probability space (fi,£,P) such that for a.e. fixed w € n , Xn(u>) 

converges in measure to X.(w) for Lebesgue measure on [ 0 , 1 ] (see "note added 

in proof" (Meyer and Zheng)). 

k 1 d 
For every u € $(£) , there exists a séquence of u e C Q ( R ) such that 

Cj(u-u^,u-u^) • 0 because C Q ( R ^ ) is a core. 

k n k 
Clearly u (X̂ .) converges in probability to u (X^) as n goes to <» 

for t € H c R where H is a set of full Lebesgue measure. Because 

C^(u-u^,u-u^) > c E(|u(x n) - u^(X^)| 2) independent of n it follows that 

u(X^) also converges in probability to u ( ^ t )
 a s n goes to <» . 

Take f € C ~ ( R D ) . Let G n and (G ) be resolvents associated to £ 
0 a a n 

and C respectively and u = G^f, u n = G^f . Then from ((5.2.22), Fukushima), 

u ( X T ) - u ( X Q ) = J Q ( U ( X s ) - f ( X g))dx + , 

u n(X*) - u n ( X n ) = } o(u
n(X n) - f(X n))dx + ( N ^ ) U . 

Since G^ converge in L 2(m)-norm to G^f and since C Q ( R
d ) is 

"uniformly" dense in the set of ail bounded functions which belong to 

L 0(m) n (n L (m )) , 2 ' n x v n' 

sup | f (u n(X n)-f(X n))ds - f (u(X )-f(X ))ds| SU* 0 in L 2 . 
t€[0,l] Jo S S h S S 

So that (NV) converge in measure to N. . Since G^(C c(R )) is dense in 

©(C 1 1) and R^(Cg(R d)) is dense in $(£) , we deduce that (N?)^ converge in 

•f1 H 

measure to N for ail f € C Q(R ) . 

Now, we repeat the procédure from (1.6) to ( 1 . 7 ) , and deduce that 

converge in Lebesgue measure to N. , that is our conclusion of the theorem. 

4 . Stratonovich Intégration. 

In ( 1 . 8 ) , we obtained an Ito formula for Dirichlet process. It suggests 

to us a définition of Stratonovich intégration for this kind of process. 
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Consider again the case where 9C is Euclidean space R and M = (tf.E.X^.P^ 

2 

is an m-symmetric diffusion process on 3C whose Dirichlet form £ on L (9C;m) 

possesses C Q ( R ^ ) as its core. We assume for simplicity that M admits no 

killing or explosion inside 3C . Suppose also that 3C is given by (1.9). 

Now let be a séquence of bounded open sets such that and 

suppose v(x) = (v X(x)) is a vector field (without any smoothness condition!) 

so that 
(4.1) v 1(x)a. J(x)v

J(x)I^ n(x)dm < <» , vn . 

Then it is easy to verify that if we dénote 

(4.2) T = infCt.X^U } and T = inf{t,X, . é U } , 
n t ' t nJ 1 ' 1-t nJ ' 

we will have 

(4.3) 

T n 
^ E [ J ( v i ( X s ) ) M < N i , N i > s ] < oo , 

(4.4) 
T 

^ E [ J o

n ( v i ( X 1 _ s ) ) M < N
i , , N i > g ] < » . 

Because T

n >
T

n increase to infinity we can define Stratonovich intégral of 

v(X^) with respect to X (and implicitly the usual Riemannian metric) as 

follows: 

(4.5) f v(X )*dX 
J0

 S S S J o v i ( x

s

) d N i £1 l-t o < t < i 

Thus, (1.8) becomes 

(4.6) g(x t) - g(x Q) = }*vg(x s)*dx g . 

Note that to simplify matters we have restricted ourselves to 9C = R d ; if 

we let as be a smooth manifold and let v transform as a 1-form then the 
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définition of v(X ) * dX is intrinsic to the manifold. In particular we 

have defined a meaningful stochastic intégral of any L 2 1-form against the 

Brownian motion on a manifold. The price one pays for the extension from smooth 

to L 2 forms is that the intégral is not a semi-martingale but one of thèse 

forward and backward martingale processes. 

We discuss now the convergence in distribution of stochastic intégrais and 

partially extend theorem 3.3. 

Suppose Q is a measure on R d such that Q(R d) < «° and 

Q(B) < m(B) (VB € S(R d)) . 

LEM4A 4.1. Under the hypothesis of theorem 3.3. if v is a smooth vector field 

of compact support xi dN 1 1' 1 

S 
under the law 

C Q 
converges in 

distribution to IIS under the law p e,Q (in the topology of Meyer). 

PROOF. Because of the compact support of v the martingales 

us (X») 0 J n > 1 

S 
for n e 1, ...» are uniformly bounded in L 2 and so from 

Theorem 4 of [ ] Meyer and Zheng, their laws are tight. Thus, to prove the 

lemma it is sufficient to show that the finite dimensional distributions of 

ÏÏS s dN"' 1) 
S t€H 

converge to those of ÏÏS where H is a 

set of full Lebesgue measure. 

Let T - {tg < t j < ... < tj_ = t} be a partition of [0,1] and suppose 

T c H . Let s be in [0,t] and define 

X T = X,. if t. < s < t.^< 
s t . j j+1 

and define X n , r in a similar way. Then 

E ( (4J 0

[ v l ( Xs )
 ~ v l < X

s

) ] d N s ) 2 ) 

ft . 

= 2 E ( ^ J o(v
1(X^)-v 1(X s))(v

J(X^)-v J(X s))a i J(X s)ds) 

( 4 . 7 ) 
" ° E ( v l ( X s ' ~ v l ( X

s

/ / 2 d S / f o r s o m e c > 0 * 
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Of course we have a similar estimate replacing X with X n in the above. The 

constant c may be chosen to be indépendant of n because of our hypothèses. 

Since v 1 are smooth we have 

E([v i(x^)-v i(X s)]
î) = E Q v 1 ^ )-v i(X g)]

2) < (s-tj^CCvSv 1) 

3 

and this is of order -j-̂-r where |r| = max|tj +^ - t j | . Thus we have uniform 

convergence of 4.7 to zéro independent of which X ^ we apply the estimate to 

r 0 
as |r| -> 0 . Suppose that g is a bounded and continuous function on R 

some T Q . Let s^, s^ € H be any fixed séquence. We wish to prove that 

lim E(g(("Sfr 

n-.0 ^0 
v ^ x W ' 1 ) ? . ) ) 

s s r-l 
Vcx ) 

s s r-l 

Because of our uniform approximation it suffices to prove this with X r , n 

substituted for X n . But in this case the problem reduces to one concerning 

only the convergence of N 1 1' 1 to N 1 at the times {t.} U {s.} . This was the 

situation dealt with in theorem 3.3. 

THEOREM 4.2. Under the hypothesis of theorem 3.3, if v(x) is a vector field 

which satisfies (4.4) approximated by smooth fields v^ of compact support such  

that 

J2^ (v 1(x)-v^(x))a i J(x)(v
J(x)-v^(x))q(x)dx 0 . 

Then > v X(X )*dX n , : L 

4Jo s 

converge in distribution (in the Topology of Meyer) to 

S f v X(X )*dXX given that X, X n ail start with distribution Q . 

PROOF. Let g be a continuous function on D[0 , 1 ] , and let f € 
CJ(R

d) • We 

consider the processes Let h : R -» R by (h/x) ± = « 
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if |x.| < c = ± c if ±c S x . Then 

1 f 1 

E[tf(X n

fN
, l

fN 1_ hc(x[|)ds)] 
(4.10) 

1 r1 

- n^.E[g(x,N,N 1_ )f(ij^ ^h C(X g)ds)] 

because the above functions on path space are continuous for the topology of 

Meyer. However 

E f f ^ f 1 h C ( X n ) d s ) - f ( h C ( X n ) ) ) 2 ] - 5 ^ o , uniformly in n . 

Choosing c so that [~c,c] contains the support of f we obtain 

(4.11) E[g(X n,N n,N^_)f(x 1)] -JZZ+RMm.H^mxj] . 

On the other hand, if = h^(x)m(dx) where 0 < h^ f 1 a.e. [m] and 

h, € C*(R d) , then 

M a x | E e n , Q k ( g ( X n , N n , N ^ _ )P(X t) - E ^ g ^ N 1 1 , ^ )P(X 1) | 0 . 
n 

So that from (4.11), 

E

e n ' m [ g ( X n , N n , N n _ )f(X A)] E e' m[g(X,N,N 1_ )f(Xj)] . 

Dénote Q 1 = f(x)m(dx) , then the time-reversed processes x" ^ under the laws 

P converge. From the définition of Stratonovich intégration (4.5), 

applying lemma 4.1 to 2jovi(Xg)dN* and ^ ^ C X ^ ) ^ • we obtain the 

conclusion of this theorem for each v^ € C Q ( R ) , then let k •+ » , we obtain 

the theorem in the gênerai case. 

5. Vector field and supermartingale. 

Now, let v be a vector field satisfying the hypothesis of theorem 4.2. 

Suppose U is an open set of R D such that for ail non-negative function h € 

cj(u) , 

(5.1) ,vh(x)A(x)v(x)q(x)dx > 0 , where A(x) - (a. .(x)) . 
J R A 1 J 
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We will prove that such a field intégrâtes to a local supermartingale for X 

until its first exit from U . 

Let 

n,v. 

• 

h(X») . rv(x^) • lit' X n ) v 1 ( X n ) d N n ' 1 

S S s 

i(X^)v 1(x")dFP , : i 

(5.2) 

- i> v.h(X n)a I 1.(X n)v 1(X )ds . 

So formaily H is the Ito intégral of h against v * d X g . 

We can easily verify that 

(5.3) | R d | H ^ V k " H ^ V | 2 m(dx) -!£-=• 0 

where v^ are the approximating smooth fields. 

Let Q be the measure in lemma 4.1. Since 

E e n ' Q [ J o l 5 U

V J h ( X " ) a i J ( X s ) v i ( X " ) | 2 d S ] 

are uniformly bounded with respect to n , if a m ^ are continuous, then from 

lemma 4 of (Zheng [1]), we know 

v.h(X n)a n.(X n)v i(X n)ds 

converges in distribution to 

G v.h(X )a. .(X )v X(X )ds as n tends to «> . 
j j s' i j v s' s' 

So that we obtain 

LEMMA 5.1 Under the hypothesis of theorem 3.3 the following convergence holds  

in sensé of distribution 

(5.4) 
lX VJ h ( Xs ) aij ( Xs) v i ( Xs> d s

 — fôjV(V ^ V ^ V * • 

To consider separately the convergence of every term of the right of equality 

(5.2), we get 
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LEMMA 5.2. Under the hypothesis of theorem 3.3, the following convergence holds  

in sensé of distribution: 

(5.5) £ h ( # • [v<x^dx°] - H = * | o h ( x s ) . [v(xs),dxs] . 

PROOF. By theorem 4.2 and lemma 5.1, we obtain (5.5). 

Now we establish a theorem. Let m = q(x)dx . 

THEOREM 5.3. Let Dirichlet forro C be generated by 

6(u,v) = | d^. jv iu(x)a i J(x)v jv(x)q(x)dx , u, v € C*(R d) , 

where a.. and q are Borel functions satisfying 

(5.6) 0 < — < .w.a. .(x)w. < C < o» v unit vectors w = (w.) , 
c /ij i ij j J 

and 

(5.7) 0 < - < q(x) < C < o o , V x e R and some fixed c > 1 . 

Suppose v is a vector field satisfying (5.1), then f v(X ) .dX is a JQ s'* s 

supermartingale in the random open set B = {(w,t); X^(w) € U} . 

PROOF. It is well known that in the case when a. . and q are smooth, the 

conclusion is true. We can approximate a ^ and q by a séquence of ( aij) 

and (q n) such that q n(a Rj) t q ( a ^ ) and that ( a"j) a n < * a r e simple 

functions. But for every simple function ( a^j) a n < * ^ > w e c a n a l w a v s 

approximate them by ( a"j m) (q"'™) such that q n , m ( a ? j m ) i q n(a?j^ and 

such that they are given by 

, n,m N V ,n.m,k T , n,m V n.m.k T 

where j 1 1' 1"' is constant positive definite matrix, q11'111' is constant and 

B, are open sets. 

Dénote n —1 — 1 
v^ = ( a y ) ^ a i j ^ % q v ' t n e n w e c a n e a s i l y s e e t n a ^ 

h € c*(U) , 

(5.10) j dvh(x)A
n(x)v n(x)q n(x)dx > 0 , where A n(x) = (a°j(x)) • 

Without losing generality, we can suppose that U is bounded; then v^ 
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converge to v in L^-norm uniformly with respect to ail and m . If 

f\ (xVdx11 J0
 n s * s is a supermartingale in random open sets B n = {(w,t); X^(w) € U} 

by lemma 5.2, we have the convergence relation (5.5) for ail h € C C(U) . Since 

the processes appeared on the left side of (5.5) are supermartingales, so are 

those appearing on the right. Thus, 
f ' s * s is a supermartingale in B . 

Thus, we have reduced the problem to the smooth case by repeating the above 

approximation procédure and convergence argument. Since the theorem is true in 

smooth case, we obtain the conclusion. 

REMARK. Readers could find some properties of supermartingale in random open 

sets in (Zheng [2]). 
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