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FAMILIES OF CURVES OF GENUS TWO 

FAMILIES OF CURVES DF GENUS TWO 

Kenji UENO 

§ • - - INTRODUCTION . 
Let TT : X -• D be a proper surjective holomorphic map of a 2-dimensional 

complex manifold to a disk D = {t | |t| < e} . Assume that : 
( 1 ) IT is smooth at every point on n (D - {o}) , 
(2) for every point t € D - {o} , = TT (t) is a non-singular curve of genus 

genus 2 . 
In view of the theory of an exceptional curve of the first kind we can also assume 
that 

(3) the surface X does not contain exceptional curves of the first kind. 

By a (singular) fibre X q of TT : X -» D over the origin, we shall mean a divisor 
on X defined by rr = 0 . X is written in the form 

o 
N 

n 
i=1 

n. C. , n. > 0 
1 1 1 

where C. is an irreducible curve over X 1 

These (singular) fibres are classified complex analytically by three invariants 
"Picard-Lefschetz transformation", "modulus point", "degree" associated to each 
family TT : X - D . ( [ 6 ] , [ ? ] , [ 8 ] ) . 

In my talk I pointed out that the notion of a "stable curve" ( [ 2 ] ) played an 
important role in our theory. 
Here I will discuss the relationship between singular and stable curves. 

§ 1 . - PICARD-LEFSCHETZ TRANSFORMATIONS . 

To any family TT : X D we can associate a Picard-Lef schetz transformation. 
The following proposition is a special case of a theorem due to Clemens ([l]). 

PROPOSITION 1 . -
Assume that the family TT : X -» D satisfies (l) (2) and 
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(3 1) the divisor X Q = n i c i has normal crossings. 
Let M be a Picard-Lefschetz transformation of TT : X -» D and let n be the 
least common multiple of the integers n^, n̂ ,, ..., n^ . Then M n is a unipotent 
matrix. 

Remark . - Applying a finite numbers of successive blowing-ups at points over the 
origin, the condition ( 3 1) will be satisfied. This process does not change the 
Picard-Lefschetz transformation. 

This proposition implies that if a singular fibre over the origin has the form 
N 

1 = c i 
with normal crossings (i.e. is a reduced curve with ordinary double 

points), the Picard-Lefschetz transformation is unipotent. 

PROPOSITION 2 . -
Let TT : X -* D be a family of curves of genus two which satisfies the condi­
tions (l), ( 2 ) , ( 3 ) . Let n be the natural number appearing in the above 
proposition. 
Suppose f : E = {s | |s| 2 

<e"} D is a ramified covering over D defined 
^ , n s > t = s , by 

and X is a minimal non-singular model of the fibre product X x E . Then, 
D we have 

(i) the fibre of X over the origin of E is a reduced curve with ordinary 
double points (i.e. the fibre has the form } with normal crossings.) 
(ii) the cyclic group G of order n of automorphisms of E generated 

g : s i — > exp (2 II v-1 /n / s 

can be lifted to a group G of analytic automorphisms of X , 
(iii) the minimal non-singular model X D of the quotient space X/G -» D 
is complex analytically isomorphic to TT : X D . 

In view of Proposition 1 the Picard-Lefschetz transformation of the above family 
TT : X -• E is unipotent. This proposition implies that the study of families redu­
ces to the study of families whose fibre over the origin is a reduced curve with 
ordinary double points. By a numerical calculation we find that all possible types 
of singular fibres, which are reduced curves with ordinary double points, are as 
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follows. ( [ 4 ] , [ 8 ] ) (*) . In the following configurations almost all curves are 
non-singular rational curves. 

[Type] Modulus point 
Monodromy Numerical type (Ogg) Configuration 

(0 0 - -0 - 0-0-] (l O O O v 
0 1 0 0 \ 
0 0 1 0 ) 
0 0 0 1 / 

[o] 
regular curve of genus 2 

C W " ] 

(m > 0) 

c °0 

1 0 0 o> 
0 1 0 0 
0 0 1 0 
, 0 0 0 1-

[ 1 3 ] 

A [m-1J A 
elliptic 

[ l n - ^ 
(n > 0) 

' 1 0 0 0 
0 1 0 n 
0 0 1 0 
,0 0 0 1 

n = 1 

Co] elliptic 
z *'** n > 1 

[13 

C 
(n-0) elliptic 

(*) [Note du rapporteur] : The notations of [Type] as [IQ_O_QL [ig-Ig-m} etc.. 
used in the following table are the classifying notations for fibres in pen­
cils of curves of genus two, which are already used in previous works of the 
author ( [ 5 ] , [ 6 ] , [ 7 ] ) . 
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[Type] 
Modulus 

point 
Monodromy Numerical 

type (Ogg) 
Configuration 

(I - I 0 d 0 4 4 ( n > D) 
(m > 0) 

z o 0 8 

(1 0 • 0\ 

0 1 0 n \ 
0 G 1 • J 
G O O \S 

n = 1 
[13] 

n > 1 
[14] 

A (m - 1) A 

elliptic 

(m - 1) B 

A elliptic 

(n-ÎT 

( (I q n > 5 0 58 LP O D 0) 
fp > 0) 

c :) 

f\ 0 p 0\ 
0 1 O n J 
0 0 1 0 J 

Vo 0 0 1/ 

n = P = 
[o] 

n=1, p > 1 
and vice 
versa 

[1] 

n > 1, p > 1 
[2] 

C 

D 
P-1 

n-1 p-1 
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[Type] 
Modulus 

point 

Monodromy Numerical 
type (Ogg) 

Configuration 

[I -I -m] 
n p 

(n > O) 

fp > o) 

[m > 0) 

(* °) 

/ 1 0 p 0 

/ 0 1 0 n \ 

I 0 0 1 Ü J 
^0 0 0 V 

n = p = 1 

[13] 

n=1, p>1 
and vice 
versa 

[14] 

A (m - 1) A 

A ( m - D 

( P - 1 ¡ 

n > 1, p > 1 

[39] B 
(m - 1) 

( n - D 

B 

ÍP-ir 

^n-p-q^ 

(n > 01 
f p > 0 
(q > O) 

C ") 
\ 00 0 0 / 

'1 0 p+q - q ^ 

0 1 -q n+q 

O D 1 0 

\Q 0 0 1/ 

n=p=q=1 

[34] 

n=p=1 

[35] 

otherwise 

[40] 

( q - 1 ) 

B (n - 1) 

( p -1 ) 

(q - 1) 

B 
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We adopt, as in Ogg [8] , the following symbol for a component T of 
singular fibres. 

2 
Symbol Genus T T ' K 

A 1 - 1 1 
B 0 - 3 1 
C 1 - 2 2 
D 0 - 4 2 
none 0 - 2 0 

§ 2 . - STABLE CURVES . 
First we recall the definition of a family of stable curves in our 

situation. 

DEFINITION . - The fibre space TT : X -» D is called a family of stable curves over 
D if the following conditions are satisfied : 

(a) X is a 2-dimensional "normal complex space" . 
(b) TT is proper, surjective and flat and every fibre is a reduced connected 

curve. 
(c) X^ = TT (t) has only ordinary double points. 
(d) If C is a non-singular rational component of X̂_ , then C meets 

X̂_ - C in at least three points. 
(e) dirn^ H 1(X t, O x ) = 2 . 

For our study it is enough to consider the case when TT : X D satisfies the 
conditions (a) ~ (e) and TT is smooth at every point of T T ^ f D - {o}). In 
this case the fibre over the origin (we shall call it a stable curve of genus two) 
is one of the curves of type 1 ^ , I Q - I Q - 1, 1 ^ ^ , ^ - I Q - 1, 1 ^ ^ , 
I. - I. - 1, I, , . . ' 1-1-1 
On the other hand, in the above definition, X is only assumed to be a normal 
complex space. What is the relationship between minimal non-singular models of 
families of stable curves and families whose fibres over the origin are reduced 
curves with ordinary double points ? 
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Let TT : X D be a family of stable curves such that IT is smooth at every 
point over TT (D - {o}). 
Then, all singularities of X are isolated and are contained in the fibre over 
the origin. One can prove that these singularities are rational double points of 
type A m for some natural number m ( [ 2 ] , [?]). An isolated singularity is 
called a rational double point of type A if the singular point is analytically 
isomorphic to the singular point of the surface in C defined by the equation 

x y - tm+ 1 = 0. 
The minimal resolution of this singularity is well known and it is easy to show 
that the fibre over the origin of the minimal non-singular model TT : X D is 
one of the configurations that has appeared in the table. Hence the Picard-
Lefschetz transformation of TT : X D (= the Picard-Lefschetz transformation of 
TT : X -** D ) is unipotent. 

Conversely, let TT : X -> D be a family of curves of genus 2 which satisfies the 
conditions (1) ( 2 ) , ( 3 ) . Assume that the fibre over the origin is one of the 
configurations that has appeared in the table, (i.e. the fibre over the origin 
is a reduced curve with ordinary double points.) Then, the surface X contains 
a certain chain of non-singular rational curves XX....XX the intersection 
matrix of these curves has the form 

- 2 1 
1 - 2 1 

1 - 2 

- 2 1 
1 - 2 

and, hence, this matrix is negative definite. 

Therefore, by the theorem of Grauert, these curves can be contracted to one point 
and at that point the new surface is normal ( [ 3 ] ) . Moreover, the singular point is 
a rational double point of type A . In this way, from the family TT : X -> D , we 
can construct the family TT : X -» D which does not contain chains of non-singular 
rational curves .... s><*s • Moreover it is not difficult to show that the 
family TT : X -* D satisfies all the conditions (a) ~ (e) . Hence TT : X -» D is 
a family of stable curves. We remark that a chain XX... XX is contracted to a 

m 
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rational double point of type A. In this way there is a one to one correspon­
dance between families rr : X -* D whose fibre over the origin is a reduced curve  
with ordinary double points and families of stable curves TT : X -» D plus their  
types of singularities. Therefore, by proposition 2 , all families can be 
constructed from families of stable curves. Moreover, we can prove the converse of 
proposition 1 ([6], [7]). 

PROPOSITION 3 . -
Let IT : X -» D be a family which satisfies conditions (l), (2), (3) . Then, 
the following are equivalent. 

(i) The fibre over the origin is a reduced curve with ordinary double points. 
(ii) The Picard-Lefschetz transformation is unipotent. 

§ 3 . - EXAMPLES OF FAMILIES OF STABLE CURVES . 

We set T t m 

T(t) = ( I } , I m ^ ) > 0 , Im(T 2) > 0 , m > 0 
t T 2 

We choose a positive number e such that Im T"(t) is positive definite for all t such 
such that |t| < e . We set D = {t | |t| < e} . 
For each element v = (v^, v^, v^, v^J 6 7L , let g^ denote an analytic 
automorphism of D x (C2 defined by 

g v : (t, (u v u2)) . > (t, [uv u2) + v ( 0 1 ) } . 

Then, G = {g } . is an abelian group isomorphic to 7L^ and a properly 

discontinuous group of analytic automorphisms of U x (C 
The quotient space B is a complex manifold and the natural projection D x (E -»D 
induces a holomorphic surjective map p : B -• D . Each fibre of p : B -» D is an 
abelian variety and p is smooth at every point. For any point (t, (u^, u^} OxIC , 
we denote the corresponding point of B by (t, u^, u^) 

Let X be a subvariety of B defined by the equation 
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©Ht), u r u2) 
= Z2 n1, n2 EZ 2 e ( i f n 1 + i ,n ̂ i ) T( t)C j ) + [n1+4, n 2 + i ) ( ̂  J ) ) 

= 0 

where e( ) = e^ 1"^ ^ . The function (t, u) is usually called the theta function 
of the first order of characteristic (1, 1, 1, 1) . The mapping p : B D is a 
non-singular curve of genus two for 0 ̂  t € D . The fibre over the origin is two 
elliptic curves which intersect transversally at one point, (i.e. I - I - 1 ). 
Hence, n : X -» D is a family of stable curves. If m = 1 , the surface X is 
non-singular and the fibre space rr : X D is imbedded into a topologically 
trivial fibre space, p : B -» D . It is not known if the fibre space T T 1 : X 1 -* D 1 

(D1 = D - {O}, X 1 = n (D')) is topologically trivial or not. 

If m ̂  2 the surface X has only one singular point (0, [•, •]) . This singular 
point is a rational double point of type A . ([?]) • 
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