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ELLIPTIC OPERATORS, DISCRETE GROUPS AND 

VON NEUMANN ALGEBRAS * 

by 

M.F. ATIYAH 

§ 1 - Introduction. 

The global theory of elliptic equations on compact manifolds is 
very well established. In particular one has finite-dimensionality for 
the spaces of solutions and an explicit topological formula for the 
index [1] . For non-compact manifolds, on the other hand, the situation 
is much more difficult and there are few general results. The essential 
difficulties are : 

(i) one has to decide which growth conditions to impose at 
infinity, 

(ii) the spaces of solutions are usually infinite-dimensional. 
In practice the most useful condition to impose under (i) is square 
integrability with respect to some natural inner product : the spaces 
of solutions are then Hilbert spaces. In view of (ii) one would not 
expect a meaningful index formula. Nevertheless, and this constitutes 

The results in this paper are essentially part of a larger investi­
gation carried out in collaboration with I.M.. Singer (see § ( 6 r l ) ) . 
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our main result, for a large class of problems it is possible to derive 
ah index formula based on the dimension theory of von Neumann algebras 
- in which Hilbert spaces have a real-valued dimension. 

The class of problems to which our theory applies are those in 
which there is a discrete group r acting freely on our non-compact 
manifold X, having a compact quotient X = X/T, and commuting with 
our elliptic differential operator D. In other words our operator D 
is the lift to the covering space X of an elliptic differential ope­
rator D on the compact manifold X. To form our Hilbert spaces on 
X we use any T-invariant smooth positive measure dy, i.e. the lift 

of a smooth positive measure dy on X. The bounded operators on"'" 
2 ~ 

L (X) which commute with the action of r form a von Neumann algebra 

Q and this has a natural trace function denoted by trace^ . In parti­

cular if P e (2 is an orthogonal projection onto a subspace H, so 

that H is a T-module, one defines 
dim r H = tracep P 

which is a real number d with 0 ^ d ^ °°. Applying this to the 
spaces B(D) and J* (D*) of L2-solutions of Dcj> = 0 , D % = 0 we 
get a finite real-valued index 

index r D = dim r#(D) - dim r H(D*) . 

Our main result is then 
(1.1) indeXp D = index D . 

In other words, for the T-periodic operator D, the T-index of 
2 . . . 

L -solutions is the same as the ordinary index of T-periodic solutions. 

Combined with the explicit formula of QQ for index D, (1.1) gives 

a corresponding formula for indexp D. 

^ For brevity we omit here any reference to vector bundles. These 
omissions will be rectified in the detailed text. 
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When T is finite of order | r | , so that X is also compact, we 

have dim r = J-JTJ dim, so that (1.1) reduces to 

(1.2) index D = | r | index D, 

which is a well-known consequence of the index formula of \Y] . In fact 

(1.2) can be proved quite easily, independently of the final formula 

of |_l] , and our proof of (1.1) will be a straightforward generaliza­

tion of this direct proof. 

Before proceeding further it is perhaps desirable to describe the 

T-dimensions, used in (1.1), more explicitly. If {<f>n) is an ortho-

normal base for the Hilbert space &(D) we put 

f(x) = I U (x)| 2 

n 
00 

This series converges and the function f is C and r-invariant, 

hence is the lift of a function f on X. Then 

(1.3) dim r W(D)- = ̂  f(x) dy 
X 

and similarly for D . Clearly if T is finite then 

dimtf(D) = C ~ f(x)dy = \T\[ f(x)dy = |r| dim r H(D) 
J X Jx 

as stated above. This shows that (1.3) gives a natural "normalized 
dimension". 

Formula (1.1) embodies an existence theorem, namely if one knows 
that index D > 0 (a topological criterion in view of £l] ) then 

index D > 0 and hence W(D) % 0 ; in other words there exist non-zero 
2 . 

L -solutions of the equation D<f) = 0. Notice that, at this stage, von 

Neumann algebras and normalized dimensions have disappeared from the 

scene : they appear only in the proof. This existence theorem is quite 

easy to apply. For example, if X is the upper half plane and D is 

the 9-operator on (0,1)-forms, we can choose X to be any compact 
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Riemann surface of genus g £ 2. Then index D = g-1 > 0 and so we 
2 

deduce the existence of non-zero holomorphic L forms on X. Of course 
this fact is well-known and of great interest since this gives a Hilbert 
space representation of G = SL(2,R), belonging to the discrete series. 
Note however that our proof applies directly to the universal covering 
of the Riemann surface X (of genus 2) without using its identifi­
cation to the upper-half plane, i.e. without using the Riemann mapping 
theorem. 

The essence of the above example is that the operator D not only 
commutes with the discrete group T (the fundamental group of X) but 
with the transitive Lie group G. The space #(D) is then a G-module 
and not only a r-module. Much more generally one can consider G-inva-
riant elliptic operators D on a homogeneous space X = G/K. When G 
is semi-simple and K is a maximal compact subgroup, so that X is 
the symmetric space, there are suitable operators D to which (1.1) 
applies and shows that W(D) ^ 0. Thus our theory can be used as an 
analytical starting point for the investigation of the discrete series 
representations of G. This will be taken up in a subsequent paper 
where it will be shown in particular that our T-dimensions are closely 
related to the "formal degrees" of the discrete series. An interesting 
feature in all these cases is that, because T is highly non-commuta­
tive, the von Neumann algebra a is actually a factor (of type 11^) 
so that the dimension function is unique Up to a scalar. 

We proceed now to explain the method of proof of (1.1) and, as a 
preliminary, we shall show how to compute index D (on the compact 
manifold X) in terms of any parametrix Q. By definition of a parame-
trix we have 
(1.4) QD = 1 - S Q DQ = 1 - S 1 
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where S Q , S ^ are operators with C°° kernel. A special case is that 

of the Green's operator G which satisfies 

(1.5) GD = 1 - Hp , DG = 1 - H 1 

where H Q ^ H ^ are the projections onto W ( D ) and W(D ) respectively. 

From (1.4) we deduce 

H Q = S 0 H Q , H L = H 1 S 1 , D S Q = S L D . 

Using these formulae we now compute traces using the fact that S Q , S ^ 

and DSQ have C°° kernel, hence are of trace class, and that G, DG 

and GD are bounded : 

trace DS QG = trace GDSg = trace S QGD = trace S Q - trace H Q 

trace S^DG = trace DGS^ = trace - trace . 

Since DSpG = S 1DG we deduce 

(1.6) index D = trace H Q - trace H^ = trace S Q - trace S^ . 

The advantage of (1.6) is that the parametrix Q, and hence the 

S^, can be constructed locally out of the operator D, whereas the 

H^ depend globally on D. In particular we can always construct Q 

so that it is almost local, i.e. so that its Schwartz kernel has sup­

port close to the diagonal. The same will then be true of the S^. 

Suppose now that X + X is a finite covering, then the almost local 

property of Q,SQ,S^ means that they have natural liftings to almost 

local operators on X and equation (1.4) implies 

(1.7) QD = 1 - S Q DQ = 1 - S 1 . 

Hence, applying (1.6) to D we have 

(1.8) index D = trace S Q - trace . 
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But S^(x,x) is by construction the lift to X of S^(x,x), hence 

(1.9) trace S. = S.(x,x) dy = k \ S.(x,x) dy = k trace S. 

1 J x i ^ X 1 1 

where k is the degree of the covering X + X. From (1.6) and (1.8) 

we deduce 

index D = k index D 

which proves (1.2). 

For an infinite covering with group T we proceed in exactly the 

same way as far as (1.7). The main difference is that (1.8) has to be 

replaced by 

(1.10) indexp D = tracep S Q - tracep 

and (1.9) by 

(1.11) trace ? S. = \ S.(x,x) dy = trace S. . 

The proof of (1.10) is formally similar to that of (1.6) with tracep 

replacing trace throughout. A technical difficulty however is that the 

Green's operator G need not be bounded (e.g. X = R, D = ~ , V = Z ) , 

so that more care is needed in the use of the commutation formula 

trace^ AB = tracep BA. 

The detailed contents of the paper are as follows· In § 2 we review 

the basic properties of the kernel function associated to a general 

elliptic operator. This generalizes the classical theory of the Bergman 

kernel. In § 3 we introduce the discrete group T into the picture and 

we prove that, for an elliptic operator D commuting with T, the mini­

mal and maximal domains coincide : this means there is no ambiguity 

about its adjoint D . We then give the precise formulation of our 

main theorem. In § ^ we introduce the von Neumann algebra ¿7 of T-

invariant operators and the trace function tracep. We establish the 
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basic properties of trace^ and then use these in §5 to prove (1.1) 
on the lines indicated above. Note that our treatment in § 4 and § 5 
is elementary and self-contained : knowledge of von Neumann algebras 
is not assumed. We conclude in § 6 with some further observations and 
open problems. 

I am indebted to L. Hormander and J. Duistermaat for help with a 
number of the analytical questions. 

§ 2 - The kernel function. 

In this section we shall review some essentially well-known material 
which extends the classical results of S. Bergman on the kernel func­
tion. The proofs rely heavily on the kernel theorems of L. Schwartz. 

Let X be a smooth paracompact manifold with a smooth measure dy 
and let E,F be two complex vector bundles on X with hermitian inner 

products (all structures being smooth). We can then form the Hilbert 
2 2 

spaces L (X,E) and L (X,F) of square-integrable sections, the inner 

product on sections being given by 
<u,v> = \ (u,v) dy 

J X 
where (u,v) is the function obtained by taking the inner product in 
each fibre. 

Suppose now that D : C°°(X,E) + C°°(X,F) is a tf° elliptic diffe­
rential operator of order m. We denote by #(D) the space of all 
2 

L -solutions of the equation Du = 0. Since D is elliptic every 

weak solution is actually C°° so that 
»(D) c C°° (X,E) f) L2(X,E)« 

o 
If Uj is a sequence in M(D) converging to u in L (X,E) then 
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DUj -*· Du weakly (i.e. as distributions) hence Du = 0 and so 
2 

u e #(D) : thus W(D) is a closed subspace of L (X,E). 
Let P denote the orthogonal projection onto tt(D). Since P is 

2 
a continuous operator on L it is certainly continuous as an opera­

tor £ £ 1 and so has a distributional kernel p(x>y) in the sense 

of Schwartz. Since P acts on sections of E , p(x,y) e Hom(E ,E ) = 
y x 

= E e E T so that p is a distributional section of the bundle x y 
Hom(E^,E2) on X x X, where E ^ = T T ^ E , TT^ being the projection 

00 

X x X X onto the appropriate factor. In fact p is a C section 

because it satisfies an elliptic differential equation. To see this 

we note first that DP = 0 (by definition) and so D xp(x,y) = 0. 

Taking adjoints and using the fact that P = P we get another 

equation 

D xp(x,y) = 0 , 

where D = hDh" 1 and h : C°°(X,E) + C°°(X,EF) is the antilinear iso­

morphism defined by the metric on E. Combining the two equations we 

see that p(x,y) satisfies the differential equation 

(2.1) (D x*D x + D^*D y) p(x,y) = 0 

which is clearly elliptic. 

If {d> (x)> is an orthonormal base of Ji (D) we consider the n J 

series 
00 

(2.2) I d> (x) 5 (y) 
n = l n n 

where ^ n
 = ^ ^ n S ^ v e s the corresponding orthonormal base of 

M (D) c C°°(X,EF ) . If we put 
N 

P (x,y) = E A (x) S (y) 
N n = l 

then P^ is a C°° kernel and it defines a corresponding projection 
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2 
operator (of finite rank) on L . The sequence P^ converges to 

2 
P in the strong operator topology, that is PJSJ(4)) P(<t>) in L for 

2 
any $ e L . In particular Pĵ (<f>) "** P(4>) in for any $ z & 
which means that P M -* P weakly in SI (3 9Jfr ? ) . But on bounded sets N J y 5 x 
(and hence for convergent sequences) the weak and strong topologies on 

«£(£y,^x') c o i n c i d e < C F I [ 2 » (^.3)J), so that P N -* P strongly in 

£ ( ^ y , ^ χ
, ) . But the Schwartz kernel theorem [8 ; Prop.2 5] asserts that 

we have a topological isomorphism 
X(VV> s 

the former having the strong topology. Thus p^ p as distributions 

on X x X. 

Now it is clear that p^ also satisfies the elliptic equation 

(2.1) and we have the following general lemma : 

LEMMA (2.3) If a sequence f o f solutions of an elliptic equation  

converges to f in £} then f j -> f in C°°. 

Proof : In any relatively compact set we have [7 ; Theorem 23j 

f̂  = D^gj, f = D^g with gj •> g a uniformly convergent sequence of 

continuous functions, hence fj f in the local Sobolev space 

[6, ( 2 . 6 ) J . But the space of solutions of the given elliptic equation 
• loc 
is a closed subspace of the Frechet space H g for every s. It is 

therefore a Frechet space and, by the closed-graph theorem, the induced 

topology is independent of s. Thus f. + f in all H l o c and hence, 
J s 

oo by the Sobolev lemma, in C . 
Summarizing these results we have : 

PROPOSITION ( 2 . 4 ) The kernel p(x,y) of the projection P onto the 
2 00 

space B(D) of L solutions of the elliptic equation Du = 0 is_ C . 
Moreover, if <b (x) is an orthonormal base of H(D) and $ = hd>  n Tn T n 
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the corresponding base of W(D), we have 
oo 

p(x,y) = z <M*) ^ ( y ) 
n = l n n 

the sequence converginr uniformly on compact sets of X x X, together  

with all its derivatives. 

If we put x = y, then p.(x,x) e HomCE^jE^) and we can therefore 

take its trace to obtain a function. Proposition (2.4) implies that 
? 

(2.5) tr p(x,x) = I U ( x ) | · 
n = l n 

§ 3 - The index theorem. 

We continue with the situation of § 2 but it will be convenient 
to modify the notation, replacing X by X etc. Suppose now that V 
is a discrete group of automorphisms of the whole structure, that is 

T acts smoothly on X 3E,F preserving the measure dy on X, the 
inner products on E,F and commuting with D. We assume further that 

(i) r acts freely so that X/T = X is again a smooth manifold 
and E/T = E, T/T = F are vector bundles on X, 

(ii) X is compact. 
We denote by D the operator C°°(X,E) •+ C°°(X,F) induced by D. 

Conversely if D is an elliptic operator on a compact manifold X 
and if X X is a Galois covering with group r we can lift every­
thing to X and we shall recover the above situation. 

It will sometimes be convenient to introduce a fundamental domain 
U of T. We recall that this means an open set of X, disjoint from 
all its translates by r and such that X - U y(U) has measure zero. 

To construct such a U is a simple matter. Let be a finite open 

covering of X by small balls, so that we have a continuous section s^ 

of X + X over V., and put W. = V. - IJ V. 0 V.. Then U = Us.(W.) l i i j < : L ] 1 
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is a fundamental domain. Note that the characteristic function x of 
U satisfies Z Y (x ) = 1 almost everywhere. When dealing with diffe-

yzY 
rential operators it is preferable to have a smooth partition of unity 

oo 

relative to r , namely a non-negative C function a on X with 

compact support and such that Z y(a) = 1 : note that at any x e X 

only finitely many of the functions y(cr) are non-zero, so that the 

summation is essentially finite. To construct such a a we take a C°° 

partition of unity {<|K} on X with supp C|K c V^, lift C|K to a 

function <JK on X using the section s^ and put a = EC(K. 

The fact that the operator D commutes with V has strong impli-
. . . 2 

cations for its domain of definition as an operator on L . For any differential operator A, defined in the first instance on C°° , we ^ ' comp' 
2 -

can consider its closure A as an operator on L . The domain of A 
2 

consists of u e L for which there exists a convergent sequence 
2 

Uj + u and Au^ + Au in L : this domain is usually called the 
minimal domain of A. The maximal domain of A is the space of all 

2 2 u e L such that Au e L (as a distribution). If B denotes the 

formal adjoint of A, i.e. the differential operator with domain 
Ccomp s u c n t n a t <Au,v> = <u,Bv), we see that the maximal domain of 
B is just the domain of the Hilbert space adjoint A = A . The mini­
mal domain is of course contained in the maximal domain. For the ope­
rator D we have the converse : 

PROPOSITION (3.1) The minimal and maximal domains of the operator D 

coincide. 

2 ~ ~ 2 ~ ~ Proof : Given u e L (X,E) with Du e L (X,F) we must produce a 
00 ~ ~ 2 ~ ~ sequence u. e C (X,E) such that u. •> u in L (X,E) and ^ j comp 3 

~ ~ o ~ ~ 

DUj •> Du in L (X, F) . We shall carry this out in two stages, first 

by regularization and then by cutting down the support. For the first 

stage we shall use a parametrix Q for D obtained by lifting an 
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almost local pseudo-differential parametrix Q for D as explained 

in §1. Then 

(3.2) QD = 1 - S Q , DQ = 1 - S 1 

with having a C°° kernel and Q, SQ and all bounded opera-
2 OO ~ ~ 

tors on L . Now choose a sequence v. e C (X,F) converging in 
j comp ° 

2 ~ ~> 00 " ~ L to v = Du, then u). = rw- £ C (X,E) since Q is pseudo-' j x j comp x ^ 
differential and almost local. Applying (3.2) we find 

·*• Q Du = u - S Qu 

Do)j = Vj - S^Vj -> v - Ŝ v 

2 ~ . . . 
the convergence being in L . Thus u - S^u is in the minimal domain 
of D, and so we are reduced to showing that OJ = SQ u is in this 
minimal domain. But Sg has a C° kernel supported near the diagonal, 

00 2 
hence GO e C f) L . This completes the first stage in the proof and 

oo 

we come now to the second stage. Here we shall use a C function a 
on X with E y(a) = 1 as explained above. Since X is paracom-

yeT 
pact, T is countable so let c T be the first N elements and 

00 2 put a.T = £ y(a). Then aXT e C and oXTu> OJ in L . We will * N r N comp N N - 2 show that <j>̂  = D(a^u)) converges to Doo in L , which will 
show that a) is in the minimal domain of D and will complete the 

proof. Since De>a is an operator of order m with compact support 
2 

and since D is elliptic of order m, we have an inequality for L 

norms 

||D(og)|| « c { | | x s | | + | | x D g | | } 
where C is a constant depending on D and a, the section g is in 

00 00 

C (X,E) and x e C Q O m p is equal to one in a neighbourhood of supp a. 
— \ 

Taking g = Y (oo) , and using the fact that every y e T commutes 
with D and is unitary, we get 

54 



ELLIPTIC OPERATORS 

||D(Y(a)u>) ll2 = ||D(aY _ 1(u)) ||2 

.< C{|| X Y _ 1 ( a ) ) | | 2 + || X D Y - 1 ( U ) ||2 } 
* c{ | | Y(X)C O|| 2 + || Y ( X ) D U|| 2 } . 

Hence „ „ ~ „ 
iiDu - <ur < c z en Y(X)(oir + I I Y ( X ) D u i r } 

« CM ̂  ~ ( | w | 2 + | Da> | 2 ) dp 
X N 

where M = sup E | y ( x ) | (which is finite) and X M = U supp y ( x ) . 

But given any compact K c X there are only a finite number of Y e T 
such that K O Y(supp x) i 0 , so that for sufficiently large N , 

2 

K n Xj| = 0. Since CJ and Du) belong to L this implies that 
^ ( | o)| 2 + |DOJ| 2 ) < e for N > N Q  

X N 
~ 2 ~ 2 

and hence || Deo - <f)jj| < CMe for large N. Thus <|>N -*· Du) in L as 
required. 

a 2 

Remark If X = R , D = l + A where A is the Laplacian - E-

Proposition (3.1) amounts to the fact that C is dense in the 
comp 

2 
Sobolev space H . Thus if we introduce generalized Sobolev spaces 
on X they will have the usual properties with respect to r-invariant 
elliptic operators. 

With these technicalities out of the way we return to the kernel 
2 

function studied in §2. Thus we consider the space H(D) of L -
solutions of the equation Du = 0 , the orthogonal projection P onto 

2 ~ ~ 
this subspace of L (X,E) and its Schwartz kernel p(x,y). As proved 

^ . 00 ~ 

in §2 p is C . Since T commutes with D and preserves inner 
products it acts on M(D) and commutes with P. Hence 

p(yx, yy) = p(x,y) for all y e T . 
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In particular, putting x = y, we see that p(x,x) is a r-invariant 
section of Hom(E,E) and so is the lift of a section p(x) of 
Hom(E,E) on X. 

00 

Taking its trace pomtwise we get a C function and we shall define 
the r-dimension of U(D) by 
(3.3) dim tt(D) = [ tr p(x) dy . 

J X 

Note that, by (2.U), tr p(x) can be computed in terms of an ortho-
normal base {<b (x)} of M(D) by 

n 

(3.4) tr p(x) = Z |<J>n(x)|2 

n 

where x e X is any point lying over x e X. Thus (3.3) can be refor­

mulated as 

(3.5) dim r M(D) = [ Z | <f> (x) | 2 dy 
1 J U n n 

where U is a fundamental domain for T. Alternatively, using a C°° 
function a with Z y(a) = 1 as before, we have 

(3.6) dim f «(D) = \~ a(x)p(x,x) dy . 
J X 

For the moment (3.3), and its equivalent forms (3.5) or (3.6), should 
be regarded as an ad hoc definition. In §4 we shall reinterpret this 
in terms of von Neumann algebras as explained briefly in §1. 

If D is the adjoint of D, D its lift to X, we now define 

(3.7) index p D = dim f H(D) - dim r »(D*). 

Our main result can now be formulated : 
THEOREM (3.8) index r D = index D, or more explicitly 

[ Z |<f) (x) | 2 dy -\ Z | * n ( x ) | 2 dy = index D 
J U n J U n n 
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where {d> } and {ip } are orthonormal bases for the L solutions  Tn n 
of Du = 0, D*v = 0 respectively 9 and U is a fundamental domain  
for the action of T on X. 

§ 4 - The von Neumann algebra. 

We continue with the situation of §3 in which V is a discrete 

group acting freely on the manifold X with X = X/T compact. Then 
2 ~ 

T acts unitarily on L (X) and we consider the algebra G of all 
2 " 

bounded operators on L (X) w.hich commute with T. It is weakly clo­
sed and self-adjoint which makes it a von Neumann algebra. Its struc­
ture becomes clear if we use a fundamental domain U to make the 
identification 
(4.1) L 2(X) = L 2 ( D ® L 2(U) = L 2 ( D 9 L 2(X). 

2 ~" 
The action of T on L (X) corresponds by (4.1) to the left regular 

2 2 representation of T on L (D extended by the identity on L (X). The 
2 

commutant of the left regular representation on L (T) is well-known 
to be (the von Neumann algebra generated by) the right regular repre­
sentation [5; p. 282]. Hence (cf. [5 ; p. 24]) the commutant CI of T 

2 ~~ 
acting on L (X) is given by 
(4.2) a = ft« B 

2 
where ft is the algebra generated by right translations on L (D 

2 
and b denotes all bounded operators on L (X). 

For the algebra ft there is a well-known trace defined on the 

generators by 

trace fty = 0 y i 1 
= 1 y = 1 . 
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For the algebra IS we have the usual trace of Hilbert space theory 
(defined on operators of trace class). These two traces then define 
a trace on the tensor product algebra & . 

Instead of proceeding as above we shall give a direct self-contai­
ned treatment which does not appeal to the general theory of von Neumann 
algebras. This will have the added advantage of clarifying the "trace-
class" operators of the algebra c7, and will be better adapted to the 
C°° framework. We assume as known the usual theory of Hilbert-Schmidt 

and trace-class operators in Hilbert space. 
2 ~ 

Any bounded operator A on L (X) has a Schwartz kernel A(x,y) 
which is a distribution on the product X x X. Clearly A € Q if and 
only if its kernel is r-invariant, i.e. 

A(yx, yy) - A(x,y) for all y e V. 

When this is satisfied we may view this kernel as a distribution on 
. X x X the quotient — ^ — . 

We recall that, in the algebra of all bounded operators, an opera-
2 

tor is said to be Hilbert-Schmidt if it has an L -kernel. For the 
algebra O we therefore make the following definition : 
Definition (4.3) A z (7 is_ r-Hilbert Schmidt if its kernel is in 
2 X x X 2 L ( r ). The T-HS norm of A is then taken to be the L -norm of 

its kernel. 
An alternative definition, easily seen to be equivalent to (4.3), 

is 

Definition (4.3)' A e O is r-Hilbert-Schmidt if <j)A is Hilbert- 

Schmidt for all bounded measurable functions <f) on X with compact  

support. 
The symmetry of (4.3) in the two factors of X shows that 
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(4.4) A is r-Hilbert-Schmidt A* is r-Hilbert-Schmidt. 

On the other hand, using (4.3)' and the fact that the usual Hilbert-

Schmidt operators form an ideal in the algebra of all bounded operators, 

we see that 

(4.5) A is T-Hilbert- Schmidt and B e ¿7 =^ AB is T-Hilbert-

Schmidt. 

Taking adjoints and using (4.4) it follows that, in (4.5) we also have 

BA is r-Hilbert-Schmidt, so that the r-Hilbert-Schmidt operators form 

a 2-sided *-ideal of (2 . 

In analogy with the usual theory we now make the following 

definition : 

Definition (4.6) A zd is of r-trace class if A = T ^ with 

T i z CI being r-Hilbert-Schmidt. 

From the properties of r-Hilbert-Schmidt operators it follows that 

the operators of r-trace class also form a 2-sided *-ideal of O . 

Moreover if A is of r-trace class then, for any pair <J),iJ; of bounded 

measurable functions on X with compact support, we have 

<J>Aip = (cf)̂ ) (T^) 

the product of two Hilbert-Schmidt operators. Thus 

(4.7) A of r-trace class and <j>,t|; bounded measurable functions 

with compact support =^ <j>Ai|j is of trace class. 

For positive operators we also have the converse 

LEMMA (4.8) Let A z C be a positive self-adjoint operator, then 

the following are equivalent 

i) A is of r-trace class 

ii) (J>AiJj is of trace class for all & 9ih z C°° (X)  comp 
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iii) A 1 / 2 is r-Hilbert-Schmidt. 

Proof : i) =^ ii) is just (4.7). The implication iii) i) is 
. . 1/2 1/2 trivial since A = A A . The only point to note is that 

1/2 1/2 A e a =^ A e a (i.e. A commutes with all y e T ), and this 
1/2 

follows for example from the Cauchy integral representation for A 
It remains to prove ii) =^ iii). Take = <j), then 
<|>A<j) = (<|)A1/2) (<j)A1/2)* being of trace class implies that <j)A1/2 is 
Hilbert-Schmidt and so, by (4.3)', A 1 / 2 is r-Hilbert-Schmidt. 

We shall now use (4.7) to introduce the r-trace in d . This depends 
on the following lemma : 
LEMMA (4.9) If A is of V-trace class and <J>, <J)T ,,i|;T are bounded  
measurable functions with compact support on X such that 

Z y(<W) = Z y(<|>V> = 1 
yeT yeT 

then trace (j>Ai(/ = trace <j)TAi/>! . 

Proof : Since <p, <pf have compact support there is a finite subset S 
of T such that 

Supp Y(c(>f) n Supp (j> * 0 y and Y " 1 e S . 

Hence Z y ^ V H = Z y (<f>1 * 1 ) (f) = (j> 
yeS yeT 

and Z Y ^ H 1 = Z y(c|>il>)<f>1 = <f>1 . 
yeS yeT 

Therefore 
trace <J>Â  = trace Z y ($ 1 ' ) <f)Ai(; = Z trace y ($ 1i|/1 ) 4>Ai(i 

yeS yeS 

= Z trace y(<J>1 )(JuJjAy(ip 1 ) (using trace ST = trace TS for 
yeS S of trace class and T bounded) 

= Z trace y""1 (M)cj>1 Aif;1 , since y(A) = A 
yeS 
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= trace E y 1 ( M ) <|>1 A* 1 

yeS 

= trace E Y~̂ ((J>t|/)$ ' Aip 1 = trace <(>1 Alp T . 

In view of this lemma we can now make the following definition : 

Definition (4.10) If A e ¿7 is of r-trace class we put 

tracep A = trace 4>Ai|; 

for any pair <j) ,\|; of bounded measurable functions with compact support  

such that E Y(CJIJ/) = 1 . 

Admissible pairs <|>,i|/ can be obtained either by 

i) $ = \\) = characteristic function of a fundamental domain U 

for T acting on X 

or ii) $9\\) C°° functions on X with compact support such that 

E y(<(>) = 1 , and - 1 on supp <f> . 
YeT 

Using (i) we shall derive a formula for tracep involving an ortho-

2 
normal base {e^} for L (U). Since the elements {ye^} form an 

2 " 
orthonormal base of L (X), and since 

ipY Cei) = 0 for y i 1 

\b e . = e . 
Y 1 1 

( ij; being the characteristic function of U) , we have 

tracepA = trace = E (i^A^ye^, ye^> 

( 4 . 1 1 ) = E < A e i , e i > 

Applying this in particular to A = T*T, where T is r-Hilbert-

Schmidt, we get 
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||T|| r H S = Trace r T*T = Z <?*Te±9e±> = Z ||^.|| 2 

i i 

= I | <Te i 5 Ye.> | 2 = E | ( e . , ! ^ . > | 2 

= Z | <y e i 5T*e.>| (since yT = T and yy* = 1) 

(4.12) = Z H T^e ̂  H 2 = Trace r TT* = llT*llrHS ' 
From this it is now a standard elementary argument to deduce 

PROPOSITION (4.13) If A e G and S e G is of r-trace class then 
tracep AS = tracep SA 
For completeness we recall the details. First let S be positive 

1/2 
self-adjoint of T-trace class and A e a unitary. Then T = AS 
is r-Hilbert-Schmidt and so (4.12) gives 
(4.14) trace p ASA" 1 = t r a c e f ( A S 1 7 2 ) ( A S 1 7 2 ) * = tracep(AS 1 7 2)*(AS 1 7 2 ) 

= tracep S . 

Now the positive elements span (over €) the whole ideal of r-trace 

class. To see this let A = A* be of T-trace class. Then P + the 

spectral projection corresponding to X >, 0 is in 7̂ (use the Cauchy 

integral formula), hence A + = AP + is of T-trace class and is positive. 

Hence A = A + - A_, with A_ = A(l - P + ) , is in the span over R of 

the positive elements of T-trace class. The result over C follows by 

using the decomposition : B = 1/2(B + B*) + i ( B T B ) . Hence (4.14) 

holds for all S of r-trace class. Replacing S by SA then gives 

(4.13) for unitary A. It remains to note that the unitary elements 

span G . To check this it is enough to consider a self-adjoint element 

A in G with ||A|| < 1. Then U = A + i(l - A 2 ) 1 7 2 is unitary 

in G and A = 1/2 (U + U*) . 
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Formula (4.11) also leads to the following important continuity 

property of tracep : 

PROPOSITION (4.15) Let S e ¿7 be of r-trace class and let A. e <7 be 

a sequence of operators converging strongly to A s Û (i.e. A_.f + Af 

2 ~ 
for every f e L (X)) . Then 

tracep SA.. •> tracep SA * 

Proof : Since S is of r-trace class we have S = T^T 2 where T^ is 

T -Hilbert-Schmidt. Hence, by (4.11), 

Tracep SA. = Z<SA.e i,e i> = E (T^A. e^ ,T^e^ > . 

For a fixed i and j 0 0 each term in this series converges to 

<T 2Ae^ ,T * e .j_ > = <SAe^,e^>, so it remains to show uniformity in j. 

Now the fact that Aj converges strongly to A implies in particular 

that we have a uniform bound < C J a n d s o (using (4.12)) 

HVjUpHs = I I A ^ T ^ | i r H S < C||T* n r H S . 

Hence 

{ * ι < ν ^ τ ι * * ί > ι } 2 « { ¡ I I V ^ Í ' I 2 } ^ i i T î e i H 2 } 

« C H T* ||rHS ε Ν 

where 0 as N + <» (independently of j ) , giving the desired 

uniform convergence. 
We come now to operators in G with C°° kernel. For these we 

have : 

PROPOSITION (4.16) Let A e a have a C°° kernel A(x 5y) and  
assume either 
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i) A is positive self-adjoint 
X x X 

or ii) A has a kernel with compact support on - — * 
Then A is of r-trace class and 

trace r A = ^ A(x) du 
X 

where A(x) is the C°° function on X defined by the r-invariant  

function A(x,x) on X. 

Proof : (i) For any <p9\p e C^ o mp (X) the operator <j>Ai// has a kernel 
00 in C (X x X ) , hence is of trace class, and so by (4.9), A is of comp ' J 

r-trace class. Taking <|),̂  such = 1 and = 1 on supp <j> we 
have 

tracep - ̂  <j>(x)A(x,x) dp = ^ A(x) dy. 
X X 

ii)Let B be a T-invariant elliptic differential operator of order k > 2-
(e.g. a suitable power of a Laplace-type operator). As in §1 we then 
construct a pseudo-differential parametrix Q which is almost local 

X x X 
(hence has a kernel which is compactly supported on — - — ) and of 
order -k . Thus 

QB = 1 - T 

with T having a C°° kernel compactly supported on X * * . Multi­

plying by A we get 
A = TA + QBA* 

Now A,T,BA are certainly r-Hilbert-Schmidt so that AT is of r-

trace class. Also, since Q is of order -k and k > j the kernel 
o 

of Q is locally in L . Since this kernel has compact support on 
X x X 2 
— p — it is in L of this space, so that Q is also T-Hilbert-

Schmidt. Hence Q(BA) is of T-trace class and hence A is of T-

trace class. Tracep A is then computed as in case (i). 
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2 ~ 
So far in this section we have only considered the space L (X) 

l ~ 

of scalar-valued functions on X. For our applications this needs to 
2 ~ ~ 2 

be generalized to L (X,E) the L -sections of a vector bundle E 

over X, induced from a bundle E over X = X/T. Again V acts on 

L (X,E) and the commuting algebra c7(E) is a von Neumann algebra. In 

fact, from the measure theory point of view every bundle on X is 

o ~ ~ 9 ~ M 

trivial so that L (X,E) = L (X) · End C , the action of T being 

trivial on End C^. Hence (7(E) = G « End and all the results of 

this section extend immediately to the algebra ¿7(E) with only minor 

modifications. Thus in (4.16) the function A(x) must now be replaced 

by the function on X induced by the T-invariant function tr A(x,x) 

on X, where tr is the usual matrix trace taken in End E~. 

§ 5 - Proof of the index theorem. 

With the technical apparatus of §4 we are now in a position to 

prove our main result, Theorem (3.8), on the lines indicated in §1. 

We recall that we have to deal with an elliptic differential 

operator 

D : C°°(X,E) •+ C°°(X,F) 

which is T-invariant. In §2 we saw that the projection operator HQ 

onto the space W(D) of L -solutions of Du = 0 had a C -kernel. 

Since HQ is clearly T-invariant and positive we can apply lemma (4.16 )(i) 

to deduce that it is of r-trace class, and that its r-trace is gi­

ven by the appropriate integral formula over X. This identifies 

tracep Hg with dimpW(D) as originally defined in §3. Similar re­

marks apply to the adjoint operator D *. Thus Theorem (3.8) asserts 

tracep HQ - tracep H^ = index D 
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where is projection onto J i ( D * ) , and D is the operator on 
X = x / r . 

We now introduce an almost local parametrix Q for D , by lifting 

up a corresponding parametrix Q for D . Thus we have the equations 

Q D = 1 - S Q , DQ = 1 - S 1 

(5.1) 
Q D = 1 - S Q , DQ = 1 - S 1 

where the S. are almost local and with C°° kernels, and the S. 
their lift to X. As explained in §1 we then have the index formula 
on X : 

index D = trace SQ - trace 

00 

Now the operators have C kernels which are compactly supported 
o n X x X (because they are almost local) and so, by Lemma (4.16) (ii) 5 

they are of r-trace class and 

tracep = trace 

(both being given by the same integral over X). Hence to prove 
Theorem (3.8) it will suffice to show that 

(5.2) tracep H^ - tracep H^ = tracep SQ - tracep . 

From (5.1) we deduce H Q = S Q H 0 and H 1 = H ^ . Putting 

(5.3) 3!i = (1 - H i) S i(l - H i) 

2 
and using (4.13), together with H^ = H^, we see that (5.2) can be 

rewritten as 
(5.4) trace p T Q = tracep T 1 . 

On the other hand composing (5.1) with D gives 
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Bs0 = s\B 
which, using (5.1) again, implies 

(5.5) DTQ = T 1D . 

~-l 
If D were a bounded invertible operator we could apply D to 

(5.5) and then the basic property (4.13) of trace^ would yield (5.4). 

Since neither D nor its inverse (on JKD *)**") is bounded we proceed 

as follows. 

The self-adjoint operator D*D has a unique positive square root A 
2 

and we can then decompose D (as an L -operator with domain as in 

§3) in the form D = UA, where U is a partial isometry with 
(5.6) U*U = 1 - HQ UU* = 1 - H 1 . 

Because this decomposition of D is unique the operators U and A 

must commute with T, and so therefore will the spectral projections 

of A. 

Putting 

(5.7) T 2 = U^T 1U = U * ( 1 - H 1 ) S 1 ( 1 - H 1 ) U = (l-H^l^S^UCi-H^ 

and using (4.13) we get 

(5.8) trace r T 2 = trace r T 9 

while (5.5) gives 

(5.9) AT Q = T 2A . 

Now let P^ be the spectral projection of A corresponding to the 

closed interval En' 1 1! a n c^ P11^ 

T n = P T nP , T 0 = P T 0P , On n 0 n ' 2n n 2 n ' 
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A = P A P + (1 - P ) . n n n n 

Composing (5.9) on both sides with P N , and recalling that P r commu­

tes with A , we get 

(5.10) A^ T„ = T 9 N A^ . 
n On 2n n 

Now A N is, by construction, bounded and invertible, hence (5.10) 

can be written 

( 5' n ) VonC = T2n · 
Since all operators in this equation are T-invariant we can take 

trace p and use (4.13) to deduce 

(5.12) trace p T Q N = trace r T 2 R . 

Since (for i = 0,2) 

trace p T. = trace p P (T.P ) = trace rT.P 2 = trace P T.P T i n T n i n T i n T i n 

and since P^ converges strongly to (1 - H^) as n 0 0 , we can 

apply the continuity property (4.15) of trace p to obtain 

(5.13) lim trace p T. = trace r T.(l - H n ) . 
r in I 1 U 

n->°° 

Because of the formulae (5.3) and (5.7) for T Q,T 2 we have 

T i(l - H Q) = T i (for i = 0,2). Hence (5.3) together with (5.12) gives 

trace p T Q = trace r T 2 

which, combined with (5.8), leads to the desired equality 
trace p T Q = trace p 

and completes the proof of Theorem (3.8). 
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§ 6 - Further remarks. 

We shall now discuss a number of generalizations, applications and 

open questions. 

(6.1) von Neumann bundles. 

~ TT 2 2 
In our covering situation X •> X we can view L (X) as L (X,V), 

where V is the vector bundle over X whose fibre at x is the 

2 - 1 -1 Hilbert space L (TT (X)). Since TT (X) is a copy of T and is acted 

on by T, we see that V is a bundle of /©-modules where ¡5 is the 

2 
von Neumann algebra generated in L (D by the action of T. Similar 

2 " 2 -1 
remarks hold for L (X,E), V now being L (TT (x),E x). Moreover our 

elliptic operator D can be viewed as acting on the sections of V 

(with values in sections of a similar bundle W ) . In fact V,W are 

flat bundles and D is the natural extension of D. 

We see therefore that the situation we have been studying is a spe­

cial case of an elliptic operator acting on the sections of a bundle 

of lb-modules, where lb is a von Neumann algebra with a finite trace. 

One can formulate a general index theorem in this context using the 

K-theory of von Neumann algebras developed by Breuer Q H J . Moreover 

it seems clear that a K-theory proof can be given by reducing to the 

usual index theorem. This much has been known to the author and 

I.M. Singer for some time, but the absence of any natural examples 

deterred us from working out a detailed proof. The case of infinite 

coverings now provides a very interesting class of examples and so a 

presentation of the general case might justify the effort. However, 

before embarking on it in full generality, it seemed worthwhile to 

give a self-contained account for the case of coverings. The present 

treatment should be viewed therefore in this larger context. 
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(6.2) Heat equation methods. 

With a little more work it is possible to apply the heat equation 

methods of |j3j to the infinite covering situation. The main point is 

to show that the kernel e(t,x,y) of the fundamental solution of 
a 2 

—7y + D D on X decays sufficiently fast as the distance p(x,y) -+ °°. 
3 t 3 2 

One can then construct the corresponding kernel e(t,x,y) for — + D*D 
3t^ 

on X by summing over T. For the asymptotic expansion as t 0 all 

terms in this sum arising from elements y £ 1 are exponentially small. 

Thus e and e have the same asymptotic expansions and this leads to 

Theorem ( 3 . 8 ) . This approach is very close to the Selberg trace formula 

when X is a homogeneous space. Finally one can hope to apply the heat 

equation method to the more general von Neumann bundle situation des­

cribed in ( 6 . 1 ) . 
( 6 . 3 ) Non-Galois coverings. 

If X -* X is a non-Galois covering, i.e. corresponding to a non-
normal subgroup of TT^(X), Theorem (3. 8 ) no longer applies. However 
we may ask whether the weaker assertion 

index D > 0 =^ M(D) i 0 

still holds. Probably this is false in general but counterexamples are 

not easy to construct. 

(6. 4 ) Betti numbers of coverings. 

On a compact Riemannian manifold X the Euler characteristic E(X) 

is equal to the index of the operator D = d + d* : ftev ftodd, where 

d is the exterior derivative on forms, d* its adjoint and 

Qev = 0 ft2(^, ftodd = ^ ft2c*+1 are the spaces of even and odd degree 

forms. Applying Theorem (3 . 8 ) tells us that 

index r D = index D = E ( X ) . 
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Now, using (3.1), the null spaces W(D) and W(D^) can also be iden-

2 

tified with the spaces of L -harmonic forms of even and odd degree 

respectively. Moreover, using (3.1) again one can show that the space 

H H(X) of L -harmonic q-forms on X is naturally isomorphic to the 

L2-cohomology group W Q ( X ) , where this is defined as X ^ / ^ q 

8 
Z q = {L 2 q-forms u with du = 0} 

# q = {L 2 q-forms u such that u = dv, for some 

L 2 (q-l)-form v} . 

2 

Although the L norms depend on the choice of metric the topology of 

the Hilbert spaces does not, and so W Q ( X ) is essentially independent 

of the metric. Hence 

dim r H
Q ( X ) = dim rtf

Q(X) = B Q ( X ) 

is independent of the choice of metric. It is a real-valued Betti 

number of X (relative to D and 

I (-l)q B Q ( X ) = E ( X ) 

q 

is an integer. 

Note that Poincaré duality holds (for oriented X ) i.e. 

B Q ( X ) = Bp~ Q(X) where n = dim X and, if nEO mod 4, we also have the 

signature formula 

Sign r (X) = Sign (X) 

where Sign (X) = £ 2 N ( X ) - £ 2 N ( X ) , and ft denote the T-dimensions 
1 + 

of the eigenspaces of * . If X has no compact component then 

Bp(X) = Bp(X) = 0 since a constant function cannot 

2 

be in L unless it is zero. For example if X is a compact Riemann 

surface of genus g £ 2 and T = TT^CX), X the upper half-plane, then 

only Bp(X) t 0 and so we must have 

Bp(X) = 2g - 2 . 
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These real Betti numbers appear to deserve further study. Some 

natural questions are : 

2 

(i) Triangulate X and compute the simplicial L cohomology 

of X for the lifted triangulation (using cocycles/closure of coboun-

daries). Are these groups T-isomorphic to our Jiq(X) ? ^ 

(ii) If the answer to (i) is yes, are the B q(X) homotopy 

invariants of X ? 

(iii) A priori the numbers B q(X) are real. Give examples 

where they are not integral and even perhaps irrational. 
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