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COMMUTATIVE AND RELATED METRICS 
T.J.Willmore 

1. INTRODUCTION 
The idea of a commutative metric of a Riemannian manifold 

first appeared in the paper by Roberts and Ursell C R U 3 i n i960. 
These authors were concerned with the problem of random walks on the 
sphere and with the possibility of generalising their problem to more 
general Riemannian manifolds. They restricted their attention to a 
special type of random walk in which the probability arising from two 
consecutive steps is independent of the order in which the steps are 
taken. Such Riemannian metrics were called commutative. 

This paper was primarily concerned with the propagation of waves 
arising in seismology, and although, with hindsight, it is seen to 
contain ideas subsequently discovered independently and developed by 
Allamigeon, the non-invariant treatment makes it difficult to under­
stand what is really going on. Nevertheless,they showed that a 
necessary condition for a commutative metric is that its curvature 
tensor should satisfy an infinite sequence of conditions. These 
conditions were re-obtained in a subsequent paper by H.S. Ruse |_RE~| 
in a more invariant manner. 

These conditions had already appeared in work on harmonic spaces 
by Copson and Ruse QRUJ in 1940, and later by Lichnerowicz QLZlJ in 
1944, as a subset of the conditions for a Riemannian space to be 
harmonic. More precisely, the conditions for harmonicity appear 
naturally as an infinite sequence of conditions which must be satisfied 
by the curvature tensor and its covariant derivatives. The necessary 
conditions for a commutative space appeared as the second, fourth, 
sixth, ... conditions for a harmonic space. Now it can be proved, 
e.g. Vanhecke (1981) QVEJ that in a harmonic space, the first, third, 
fifth, ... conditions imply the second, fourth, sixth, so that 
these necessary conditions for a commutative space are automatically 
satisfied. Thus commutative spaces appear as a natural generalization 
of harmonic spaces, and include them as particular cases. 

Round about the same time as the paper by Ruse on commutative 
spaces, there appeared in the Journal of Differential Geometry in 1969 
a paper by D'Atri and Nickerson on 'Divergence-Preserving Geometric 
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Symmetry" L D N D • I t t u r n s o u t that the condition that they were 

imposing on Riemannian metrics was that the local geodesic symmetry 

about each point should be volume preserving except possibly for sign. 

When the metric is analytic a necessary and sufficient condition for 

this to hold is that the infinite set of necessary conditions for a 

commutative space should be satisfied. For convenience, we shall 

call a D'Atri space one which is characterized by this infinite set of 

conditions. Thus a commutative space is a D'Atri space, but whether 

a D'Atri space is a commutative space remains an open question. 

2. THE SEQUENCE OF CURVATURE CONDITIONS 

It is shown, for example, in the book by Ruse, Walker and 

Willmore QRWWJ , 1961, that a Riemannian metric is harmonic at m if 

and only if the volume function 9m(p), when expressed in terms of 

normal coordinates centred at m, is a radial function. A Riemannian 

manifold is harmonic if its metric is harmonic at each point m. Using 

the method developed by A. Gray in 1973 £GRJ we can obtain the 

expansion 

(2.1) e = 1 - ì p.jdrOx.x. - A. (v. P j k) (m)x i X jx k 

_1_ 
24 

3 2 1 2 
" 5 Vij pk* + 3 pij pk* " Ï5 RiajbRka£b ( m ) x i x j x k X * 

1 
120 " I Vijk p£h + l ( V i p j k ) p £ h ~ ! ( Vi Rjakb ) R*ahb (m) 

x x i X j x k x £ x h + a l j k A h g(m)x ix jx kx £x hx g + ... 

where 

(2.2) aijk£hg 
1 

720 7 Vijk*phg + 3 ( V Ì j V p h g + 2 ( Vi pjk ) ( V£ phg ] 

8 2 5 
" 7 ( Vij Rka*b ) Rhagb " 9 pij pk£ phg 

" if ( Vi ̂ akb 5 ( V£ Rhagb ) " 63 Riajb Rkb£c Rhcga 

2 
+ 3 pi j Rka£b Rhagb 

and we have used the summation convention for repeated indices. 

If we write 

(2.3) x 1 = t V 
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where t 1 are components of the unit tangent vector at m to the unique 

geodesic joining m to p, and substitute in the expansion for 6, by 

requiring 6 to be a radial function we imply that 0 must not involve 

t1. Remembering the condition 

(2.4) g. .t 1^ = 1, 

it follows on consideration of the quadratic term in the x's that 

(2.5) p. . = k,g. . , 

for some constant k x. This is the first condition for a harmonic 

space. However, when this condition is satisfied, the coefficient 

of the cubic term in the x's is identically zero. Thus the second 

condition arising from cubic terms is automatically satisfied. On 

consideration of the quartic term in the x's and use of the first 

condition we get 

(2.6) . .G* . aijk*hg = k3 . & o . 9ijÇfk*
ghg 

for some constant k^, where the notation denotes cyclic summation of 

indices i,j,k,&. This is the fourth condition. Again the fifth 

condition arising from the quintic terms in x is satisfied 

automatically because of the preceding conditions. 

The sixth condition is 

(2.7) . . G * . aijk*hg = k3 . & o . 9ijÇfk*ghg 
i,D,k,£,h,g J y i,3/k,£,h,g J * 

where k 3 is a constant. 

Again the seventh condition is automatically satisfied because 

of the preceding conditions. That this is true in general, is the 

result obtained by Vanhecke |_ VE ] referred to in the previous 

paragraph. 

The problem of classifying harmonic metrics which satisfy the 

corresponding infinite set of conditions remains unsolved. The only 

known harmonic spaces apart from flat spaces are the locally 

symmetric spaces of rank one, and many of us believe the validity of 

the conjecture, originally made by Lichnerowicz, that these are the 

only ones. 
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Equation (2.5) shows that harmonic spaces of dimension 2 are 
necessarily of constant curvature. The same equation shows that 
harmonic spaces are Einstein spaces, and it is well-known that every 
3-dimensional Einstein space is of constant curvature. In 
dimension 4 the matter is more complicated. It is known (see, for 
example, QRWWJ) that every 4-dimensional harmonic space with 
positive definite metric is locally symmetric. Moreover, it was 
proved by Lichnerowicz (see QRWW]] ) that an n-dimensional harmonic 
space with metric of signature (1, n-1) is necessarily of constant 
curvature, so this applies in particular when n = 4. However 
examples of 4-dimensional harmonic metrics are known of signature 
(2,2) which are not locally symmetric. For n ^ 5, the conjecture 
that every harmonic space with positive definite metric remains 
completely open. 

Another question which arises naturally is whether supporting 
a harmonic metric imposes any local conditions on the manifold. 
For n ̂  4 with positive definite metrics and for all n-dimensional 
metrics of signature (1, n-1), harmonic spaces are locally symmetric 
and therefore the manifolds admit a real analytic structure. My 
guess is that this is the case for all harmonic spaces; but the 
problem remains unsolved to this day. 

3. GEODESIC SYMMETRIES 
Let m be a fixed point; and consider the geodesic symmetry 

p i—*• p1 where pl lies on the unique geodesic joining p to m, equi­
distant from m but lying on the opposite side from p. This is 
sometimes called in the literature the "flip" map. It will be 
recalled that the space is locally symmetric in the sense of 
E. Cartan if the flip map is a local isometry for each point m. An 
equivalent condition is that the curvature tensor has zero covariant 
derivative. In a recent paper by Carpenter, Gray and Willmore 
QCGW"| 1982, a complete classification was obtained of symmetric 
spaces which satisfied the first k non-trivial conditions for a 
harmonic space. An interesting result contained therein is that 
the exceptional Lie group E g satisfies what we have previously called 
conditions one to six inclusive but not condition seven. 
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Instead of requiring the flip map to be an isometry, we may 
weaken the requirement that the map is merely volume preserving. 
Since the flip map is represented in normal coordinates by the map 
x^ —> ~ xi* it follows that the flip map is volume preserving if and 
only if the coefficients of odd powers of x's in the expansion of 9 
are all zero. This is precisely the infinite set of conditions for 
a D'Atri space. Clearly symmetric spaces are D'Atri spaces. That 
the converse is not true is shown by the following counterexample. 
It is well-known that the so-called Heisenberg group of real 3x3 
matrices of the form 

1 
0 
0 

x 
1 
0 

y 
z 
1 

can be given the left-invariant metric. 

(3.1) ds 2 = dx 2 + dz 2 + (dy - zdx)2 . 

Direct calculation shows that this is a D'Atri metric but it is not 
that of a symmetric space. 

4, HOMOGENEOUS METRICS AND NATURALLY REDUCTIVE SPACES 

A metric on a manifold M is called Riemannian homogeneous if 
there exists a group G of isometries acting transitively on M, Then 
M is diffeomorphic to the coset space G/H where H is the isotropy 
group of some point in M. Let Vt be the Lie algebras of G and H, 
and let = Ir^ + p be an adh invariant splitting, i.e. L^/P] C p. 
In particular if H is compact, then such a splitting always exists. 
The subset p can then be identified with the tangent space of G/H at 
the coset (H). A homogeneous space is called naturally reductive if 
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Qx,-]p : p ^ p is skew-symmetric for all x € p. The following 
theorem due to D'Atri and Ziller (jDZJ, 1979, states, in our termin­
ology, that a naturally reductive Riemannian homogeneous metric is a 
D'Atri space. Until quite recently it was thought that the converse 
was probably true. Certainly the metric (3.1) of the Heisenberg 
group is naturally reductive. However, in a forthcoming paper to 
appear in the Bulletin of the London Mathematical Society QKKQ , 
Aroldo Kaplan has given a 6-dimensional example of a D'Atri space for 
which the metric is not naturally reductive. It appears that the 
restriction "naturally reductive" is algebraic rather than geometrical 
in nature. 

In a pre-print sent to me by W. Ziller £ZRJ , he classifies the 
homogeneous Einstein metrics on compact symmetric spaces of rank 1. 
In particular he shows that S 1 5 with a suitable radius can be con­
sidered as a geodesic sphere at a point in the 16-dimensional Cayley 
plane. This sphere may be considered as the Riemannian homogeneous 
space Spin(9)/Spin(7). With the naturally induced metric such a 
spacfe is not naturally reductive. It seems very likely that this 
will also be a D'Atri space. So the problem of classifying D'Atri 
spaces is still wide open. 

5. MEAN VALUE THEOREMS 
In an early paper, QWE^ , 1950, I prove that harmonic Riemannian 

spaces are completely characterized by the mean value property 

(5.1) Mm ( r' f ) = f ( m ) 

which must hold for harmonic functions f. Here the left hand side 
is defined by 

(5.2) Mm(r,f) = 
expm(Sn~1(r)) 

f * dr V(expm(Sn"1(r))) , 

where expm is the exponential map which maps a small neighbourhood of 
the origin in M m onto a neighbourhood of m € M, and *dr is the volume 
element of exp m(S n ^(r)). Here expm(Sn~^(r)) is the set of points of 
distance r from m, and V(exp (S " (r))) is its volume. 

m 
In a joint paper by Alfred Gray and myself [GW] , 1982 , 
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we obtained a formula for Mm(r,f) for a smooth function f in an arbit­
rary Riemannian manifold. More specifically we obtained the relation 

(5.3) Mm(r,f) = 

00 I 
k=0 

r 
2 

2k 1 
kir(hn + k) Am

k Cfe](m) 

00 
k=0 

r 
2 

2k 1 
k! r(*n + k) m [ e ] (m) 

where (A k f) = (Lkf) and L k is a globally defined differential m m m 
operator of degree 2k on M given by 

(5.4) Lkf = 1 
1.3 . . . (2k - 1) 

n 
i / • • • / 1]ç=i 

2k 
V . . . . f + . . . 
^-l1! 1k 1k 
2k 

... + V . f }. 
1 *- ' k k " ' ' 1 

6. COMMUTATIVE METRICS 
An alternative way of defining a mean value over a geodesic is to 

use the formula 

(6.1) Mm(r,f) = 
expTn(Sn"1(r)) m 

f * dr V(Sn-X(r)) . 

Here we are averaging over what is effectively the sphere of 
directions in the tangent plane M m. Suppose we are given two values 
of r, namely rx and r 2. From a given function f we can define a new 
function denoted by f„ where 

L l 
(6.2) f r x

( m ) = \ ( r i ' f ) -

From f r we define a new function denoted by (fr ) where l l L2 

(6.3) (fr1)r2 = (fr2)r1 

We seek the condition that 

(6.4) (fr ) r = (fr ) r 

1 2 2 1 
holds for all smooth functions f and for all sufficiently small real 
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numbers r x, r 2. It turns out that the above condition is equivalent 
to 

(6.5) Lk(L£f) = L*(Lkf), 
for all integers k and £. This is equivalent to the definition of a 
commutative space adopted by Roberts and Ursell in their original 
paper, and we take equation (6.5) as our definition of a commutative 
Riemannian metric. 

We know that a commutative metric is a D'Atri metric, see, for 
example, QRU~| • An interesting question is to discuss whether the 
converse is true. Since an isometry is a very special case of a 
volume preserving transformation (modulo sign), it is trivial that all 
symmetric spaces have D'Atri metrics. We now prove that all 
symmetric spaces have commutative metrics. This follows immediately 
from the following theorem first proved by Lichnerowicz[LZ2]in 1963. 
Theorem 6.1 In a compact symmetric space the algebra of invariant  
differential operators is commutative. 

The proof by Lichnerowicz is known but not well-known, so we 
sketch it below. Let Dl, D 2 be arbitrary invariant differential 
operators in a symmetric space. Let S be a symmetry associated with 
the space, and let D*,D* be operators defined by 

(6.6) D * = SD.S - 1 , i = 1,2. 
Lichnerowicz proves that Dx*, D2* are dual to the operators Dl , D 2. 

Then we have * * 
D D 
1 2 

= (SD^"1 ) (SD2S~M 
= S(D D I S " 1 

= (D XD 2)* 
=D*2D*1 , 

and this clearly implies that 
D! D2 = D2 D1 

k J? 
Since L , L are invariant differential operators, it follows 

that all compact symmetric spaces have commutative metrics. 
We also have 

Theorem 6.2 Let (Mi ) , (M2,g2) be two Riemannian manifolds with  
commutative metrics. Then (Mx x M 2 , gx xg 2) has a commutative metric. 
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The proof is immediate. However, the theorem is interesting 

because it is known |~RWWj that the corresponding property is not 

enjoyed by manifolds with (positive definite) harmonic metrics, 

unless each manifold is flat. 
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