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GEVREY HYPOELLIPTICITY FOR A CLASS OF OPERATORS

WITH MULTIPLE CHARACTERISTICS

by L. RODINO (Universitd di Torino)

INTRODUCTION.
In this paper we prove a result of Gevrey reqularity for a certain class of
quasi-elliptic operators degenerate on a symplectic manifold; representative

examples in :Ri y are given by
’

(0.1) P=D -r thk B
X y

(0.2) P = (D -r thk) + Axh—le B
X Yy y

2

x'D%) (b -r
1 y X

where h , k are fixed positive integers and Im rj #0 for j =1,2 , say

Im r, <0 and Im r, >0 .

The hypoellipticity of a related class of pseudo differential operators was
discussed in Parenti-Rodino [8]; in particular, for P in (0.1) we have hypo-
ellipticity if and only if one at least of the integers h , k is even, whereas
in (0.2) is hypoelliptic if and only if the parameter X € € avoids a certain

discrete set of eigenvalues. The nature of the arguments in [8] was microlocal,

and this allowed several geometric invariant applications (see Part II in [8]).

P

Here, arguing from a local point of view, we shall limit ourselves to the case of a

"flat" symplectic characteristic manifold and we shall consider only linear partial

differential operators; in this situation we shall be able to prove a result of

Gevrey regularity by combining some a priori estimates in [8] and a method of
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Grushin, Section 5 of [4]. For P in (0.1), (0.2) it will come out that hypo-
ellipticity implies Gevrey hypoellipticity with respect to suitable classes.
Let us note that the above-mentioned argument of Grushin, which we generalize here
in a trivial way, can be microlocalized, as we hope to show in future papers, so
that it applies actually also to the pseudo differential case, for example to the
operators which we obtain in (0.1), (0.2) by fixing k =1 and allowing r, , r

1

A to be analytic pseudo differential operators of order zero (for operators of

2 ’

similar type the analytic hypoellipticity has been proved recently by Tréves [12],
Tartakoff [11], Métivier [7], by means of other methods and under the additional

assumption h =1 ).

1. STATEMENT OF THE RESULT.

Let us first recall some definitions concerning Gevrey classes and quasi-
elliptic operators. Write 2z for the real variable in R” and let
M= (Ml""’Mn) be a fixed n-tuple of positive rational numbers. Let § be an
open subset of R” . We define GM(Q) to be the class of all f € C®(Q) such
that for every K CC Q

M M
IL“I”(ul!) Lan?™,

(1.1) max| D£(z)] < c .

zekK
for all uy = (ul,...,yn) € Zz and with a constant CK depending only on f and
K . When Mj =1 forevery j, j=1,...,n, GM(Q) consists of all analytic

) . M. i @.

functions in § . The G -singular support of a distribution f € Q)
M : . . . M . . .
G -sing supp £ , is defined in this way: X, ¢ G -sing supp £ if and only if there
exists a neighborhood V C § of X such that f € GM(V) . We say that a linear
partial differential operator P with coefficients in GM(Q) is GM-hypoelliptic

in Q if
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GEVREY HYPOELLIPTICITY

(1.2) GM—sing supp Pf = GM-sing supp £ , for every f € fzzﬂ(n) .

Typical examples of GM-hypoelliptic operators are the M-quasi-elliptic operators,

i.e. the linear partial differential operators P = z: CU(Z)D: ’
<g,M> < m
M . H .
c. €G () , such that in z: c (z)" #0 for [ # 0 (Volevich [13]; for
H <u,M> =m H

the constant coefficients see H6rmander [5], Chapter 4, and Pini [9]; see also
Zanghirati [14], where the classes GM(Q) are characterized through the iterations
of such operators).

We shall consider here a class of operators P quasi-elliptic with respect to
a suitable weight M , which degenerate on a flat symplectic submanifold of
Qx ®RY. Fix v , 1<V <n, and split z = (x,y) , X = (x1=zl,...,xv=gﬁ € Ey,

g
n-v
Y = (yy=2, qs--0y =2 ) €ER . Let L

(Ll""'Ln-v) be a given (n-Vv)-tuple
of positive integers with min Lj =1 and let k be a given common multiple of
1

the Lj's . Fix finally two positive integers h and m, and write m = mk .

We define

(1.3) P = Z a . (z)xp%f
(a,B,Y)em oBY *y

where the set of indices ﬁﬁz C zﬁ x 287V x zﬁ is given by

+
(1.4) ggz =

and Bij/k € z+ for all j =1,...,n-v .

(a,B,y) 5 Jo|k + <g,L> <m , hm > |y|k > |a|k + (1+h) <B,L> - m

Consider the n-tuple

(1.5) M= (Ml"°"Mn) , Mj =k for 1 <3j<vVv , Mj = Lj—v for v+1< j < n,

and suppose the coefficients aGBY are in GM(Q) , where now ! is in a neighbor-

hood of the origin in R" . Introduce also the sets of indices
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(1.6) W,
(1.7) mg

Writing % , €& , n for the dual variables of z , x , y , respectively, we assume

(0,B,Y) € ?’Yl,mk = |a|k + (1+h) <B,L> - m% ,

(a,B,Y) € mo , ol + <B,L> =m

(1.8) 0 x"E%® £ 0 for |x| + |z] #0 , if n#o0

a
o a

(oz,B,Y)emo By

Since <y,M> = |a|k + <B,L> with our choice of M and with u = (o,B) , condition

(1.8) implies the (micro) M-quasi-ellipticity of P outside the manifold

{x=0, £=0} , for z in a small neighborhood of the origin in ]Rn ; then in view

of Volevich [13]1 P is GM—hypoelliptic for x #0 .

Consider now the operator with polynomial coefficients in :m:

(1.9) $<n,x,nx> - Y aaBY(omeYnz
(0,B,V)E mo

and assume

(1.10) Kero%n,x,Dx) N (n:) = {0} for all n #0

Condition (1.10), joined with (1.8), guarantees the hypoellipticity of P in a
full neighborhood of the origin (see Parenti-Rodino [8]), and it is also necessary

for the hypoellipticity when the coefficients a are constant (see Taniguchi

aBy
[10]). 1In the case VvV =1 it is possible to translate (1.10) into explicit
conditions on the coefficients aaBY (Mascarello-Rodino [6], Sections 3, 4, 5).

The result which we shall prove here is the following:

Theorem 1.1: Under the preceding hypotheses, and in particular under the

conditions (1.8), (1.10) and the assumption a, € GM(Q) , M as in (1.5), the

By
operator P in (1.3) is GM-hypoelliptic in a neighborhood of the origin.
(k,1)

For example the models of the Introduction are G -hypoelliptic, for any h ,

if and only if they are hypoelliptic. When k =1 , Lj =1 for every j , we
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recapture the result of Grushin [4]. In the case m=2 , k=1 or k=2,
Theorem 1.1 intersects also some well known results about the analytic and Gevrey
reqgularity of the second order operators (see Baouendi-Goulaouic [1], Derridj-Zuily

[2], purand [3] for a general study in this connection).

2. PROOF.

Applying the result of Volevich [13] in the region where x # 0O and observing
that assumptions (1.8), (1.10) are invariant for small translations in the vy
variables, we are reduced to prove the following statement: if f € igzﬂ(v) and
Pf € GM(V) , for M as in (1.5) and for some neighborhood V of the origin in
IJ], VCCQ , then f is in GM(V') , for some other neighborhood V' C V .
Actually, since we know from the results of [8] that P is hypoelliptic at the
origin it will be not restrictive to argue under the additional assumption
£feCTw) .

We shall use the following estimate for Lz—norms: if the hypotheses of Theorem 1.1
are satisfied, there exists a neighborhood U of the origin in R" and a
constant C > 0 such that
(2.1) Z ||xYDaDBu|| < c||pu|| for every u € c®()

. 8etl Y - °
This inequality follows easily from the properties of continuity of the parametrix
of P in [8] (see in particular the proof of Theorem 3.1 in the first part of the
paper). Let us write for p > 0

2.2 B=lz= G er”, x| <o ana ) |y,

By passing to a new system of coordinates we can assume without loss of generality
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U = B2 in (2.1) and, at the same time, f € C°°(V) , PfE€ GM(V) for a neighbor-

hood V of B2 . We shall prove that £ is then in GM(Bl) .

Let us begin with two technical lemmas.
Lemma 2.1: Let p , 01 be given positive constants and let M be the weight in

(1.5). There exists ¢ GC:(Rn) such that supp ¢ C Bp 0’ ¢(z) =1 for

+
1
zEBp , 0L ¢(z) £1 for every zG]Rn and

1

- >
(2.3) max ID:lf(z)| < P SHoM

where cu does not depend on p , p1 ; moreover DZd)(z) =0 for lxl < p];

if |a] # 0.

Lemma 2.2: Let f be in c*(V) and fix KCCV . The following conditions are

equivalent:
(2.4) There exists A > 0 such that for all u€ Z‘_:
M M
max |DM£(z) | gAh"“(u o twn ™.
z 1 n
z€K
(2.5) There exists A > 0 such that for all u € zﬁ
< >
max |Duf(2)| <A@ <qum) MM
z
Z€K
(2.6) For every integer t > 0 write It ={u € zi , <UM> < t ; there
exists A > 0 such that for all t >0
max max |Dlz'lf(z)| 5_At+1 tt .
WET, zEK
(2.7) Let (Jt) be a sequence of finite subsets of zi such that
. . : N
It—tl C Jt C It+t2 , for suitable fixed integers o 2 0 and

for every t > t There exists A > 0 such that for all t > 0

1
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max max Isz(z)| 5_At+1 £t .
uGJt Z€EK
(2.8) For (Jt) as in (2.7), there exists A > 0 such that for all t > 0
max |olell , <™l o
ueJt L™ (K)

The construction of ¢ in Lemma 2.1 is standard (cf. Lemma 1.6 in [14], for
example). As for Lemma 2.2, one gets easily from Stirling's formula that
(2.4)«—(2.5) and (2.5)¢«—(2.6); the equivalence (2.6)«—(2.7) is obvious and
(2.7)«—(2.8) is a consequence of the embedding theorems of Sobolef (the statement
is valid in this case for any n-tuple M of rational positive numbers). 1In the
sequel we shall apply Lemma 2.2 with M as in (1.5) and with the following choice

of the sets Jt

1 2

Jt = Jt V) Jt ’
(2.9) Ji ={u = (0,BR), 2|alk + <B,L> < t and |a|k < (1+h)m} ,

== B, ner and |alk > (1+h)m} ;

t e t-(1+h)m = !
i = = < > <

since now It {p (a,B), |a|k + <B,L> < t} we have It—(1+h)m C Jt C It for
t > (1+h)m and the assumption on Jt in (2.7) is satisfied. Using Lemma 2.2 with

K = B2 and Jt as in (2.9), we obtain from the hypotheses Pf € GM(V) ’

€ GM(V) that for a suitable constant A and for all t > 0

SaBy

(2.10) max [[obee]| <att o,
uEJt L (Bz)

(2.11) max max IDE a 8 (z)| __At+1 tr .
ueI, zeB, aby

Set now for f €C®(V) and 1 <0 <2
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@i leoll = ) P,
(GIBI‘Y)E L (BU)
@13 lleoll, = max lpkeoll
WET

Take p > 0 and p1 > 1 , with 01 + p <2, and let ¢ Dbe defined according to

Lemma 2.1. From the estimate (2.1) we obtain for any u G‘Zi

A

G (keI < flooke2l < cllewoiol -

Then writing

In

(2.15) lle@obe || < [leobeell + |lte 010 e]| + llote,olael

we have for every t >0

(2.16) Meo,lll, <c ISZ); lIo¥pell + lite,o30b¢ || + |lee,0bae]|

. L (32) L (Bp1+p)

The two last terms in the right-hand side of (2.16) will be estimated by means of
the following lemmas; in the statements to represents a large integer, which

will be determined in the proofs.

Lemma 2.3. For every u € Jt , £ 2> to , we have
m

@an leeewbell <c ) o7 leey el
j=1 ’

where the constant C does not depend on p , Py v t .

Lemma 2.4. There exists C > 0 such that for every u € Jt , t > t0 :

t
u j_t!
(2.18) llte,0 3zl <c Z A

L (B ) j=1 (t-3)!

lle.opelll,s
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Applying the lemmas and the hypothesis (2.10), from (2.16) we deduce the inequality

t+1 j
cao el < % oy JZ .oyl
t
e W el |
=1 (e-9)

where the constant C does not depend on p , p1 , t and we assume t 2_t0 .

Let now s be any fixed integer, s Z'to , and define for t 5_s-to

-t—to
(2.20) W, =s £ 2-e+ny /sl

If we set p =1/s , p1 = 2-t/s , from (2.19) we obtain for a new constant C1 :

m t
fe ) !
AT+ .+ A -
§ s, t-3 z: “s,t-3

(2.21) w LcC

It is now easy to prove that there exists a constant B independent of s and

t , B>1, such that

(2.22) w < @28 for t< st
s,t

In fact, (2.22) is trivially satisfied by a suitable B if t s,to , and it can be
proved to be valid in general for a large B arguing by induction and using (2.21)
(c£. [4]1, sSection 5). 1In particular, if we set in (2.22) t = s—to we obtain that

for some constant C2 and for s Z_to

(2.23) ]“f,2-(s-to+1)/s|||s_to < (Czs)s .

From (2.23), from Lemma 2.2, from Stirling's formula and from the obvious estimates

(2.24) max ||pVg]| < gl
z L2(B ) ol

Heg, 1
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we get finally the conclusion f € GM(BI) .

It remains to prove Lemma 2.3 and Lemma 2.4. Of course the definition of Jt in
(2.9) will play an essential role here; we shall use in particular the following
two properties of the sets Jt :

. v — n n
(2.25) if (a+a,B+§) € J, and <B,L> < lo]x + <g,1>

then (a,B+B) €3 " _
t-]alk - <B,L> + <B,L>

H

Y
(2.26) if Jord|k < (1+m)m ,  (o#d,8) €3, and <B,L> < |dk

n
then (a,p+R) €3 .
t-|o|k

Proof of Lemma 2.3. The expression [P,¢]Dgf in (2.17) is a linear combination of

a finite number of terms of the form

Y pH gy pH ' HH
(2.27) x' (0, ¢)D, ",

where (u'+u",Yy)€ 27Z , W #0 , and y = (al,Bl) € Jt . Split u' = (a',B") .,

u" = (a",B") and assume first aq" =0 . If p€EI and if t in the

m+(n-v) k
statement is sufficiently large the norm of the function (2.27) can be easily
estimated by means of the term p_mnlf,p1+p“|t_m in the right-hand side of (2.17).
Therefore we may assume without loss of generality la1|k + <81'L> > m¥(n-v)k ; in
this case we can write (a1,61) in the form (ai+a;,8i+6;) and B' in the form
(85,8%) , with <B),I> < (n-W)k , in such a way that [a;]k + <By.L> = <B"+B),L>.

Regrouping the derivatives in (2.27), we obtain

" a'_‘_al' B||+B" a. B'+Bl
(2.28) oo b 2 lpl! 2y
Y X Y X Yy

where (ai.3i+ﬂé) € Jt—j with j = <B",L> , in view of (2.25). On the other

hand, if we choose B; , B; suitably, then the components of B¥+B; satisfy

258



GEVREY HYPOELLIPTICITY

(2.29) (Bg + B;)q Lq/k €Z_,q=1,...,nv .

Therefore (a'+a;,8;+8",¥)e ﬁoz and, in view of (2.3), the norm of the function in
(2.28) is estimated by the term in the right-hand side of (2.17) at which
j = <B",L> .

If a" # 0 , then in (2.27) DE ¢ =0 for [x] <1, according to Lemma

2.1. Thus in all the estimates one can assume that the power of 7Y in (2.27) is
maximal, i.e. |Y|k = hm , and repeating the preceding arguments we find easily
that for |a1|k + <61,L> sufficiently large the norm of (2.27) is estimated by the

term of (2.17) in which j = |a"|k + <B",L>

Proof of Lemma 2.4. The expression [P,Dz f]l in (2.18) consists of the sum of the

terms

"o o,
Xy x 'y

a" Bn o
(2.30) (Dx Dy aaBY)(DX

where (a'+a"+a"™, B'+8") = (a,,B) =W E I, [a"|k < hm , and (a,B,Y) € m .

1f |o"|k + <B",L> = t, and |a"| k = t, , then their number does not exceed

2

cJt!/ t2!(t—j)! , where 3j = t2 + t3 and c¢ 1is a suitable constant. Then, in

3

view of (2.11), it will be sufficient to check that for j # O

(1+(1'D8+B'f”

alle
(2.31) I (o, x)D " Do 2,

<clligo*olll_y -
Po,+0)

"
The expression Dx xY is nonzero only in the case when each component of <Yy does

not exceed the corresponding component of a"'; hence Yy' = y-a"™€ Z: is well
all’ Y Y 1
defined. Since Dx X is proportional to x , we are reduced to prove that

every triple of multi-indices (o+a',B+B',Y') can be written in the form

(2.32) (a+a',B+B',Y") = (“2'52'Y') + (a3,83,0) ,
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where

(2.33) (az,ﬁzlY') € ?ﬁl and (a3,63) € Jt-j .

Assume first |a'|k > <B,L> ; then we can write o+o' in the form o, +0 , where

273
|a2|k = |a|k + <B,L> (this is possible since <B,L> is a multiple of k ). If we
take 82 =0 and 83 = B+B' , then the relation (2.32) holds and clearly

(az,BZ,Y‘) € ??Z , whereas (a3,83) € J follows from (2.25).

t-j
Assume now |a'[k < <B8,L> and ]a"'|k < <B,L> ; then we can write B+B' in the

form of a sum 62+B3 , where <82,L> = <B,L>- |a™| k and the components of 52

satisfy:
(2.34) (Bz)q Lq/k € Z+ ,q9=1,...,n-v .
Let us take a, =0 , 0O, =0 . Then the identity (2.32) is valid and clearly

2 3
(az,Bz,Y') € QQZ . On the other hand we have in this case |a'+a"w k < (1+h)m ;

then we may apply (2.26) and from (o'+a"',B') € Jt—t we deduce (a3,33) € J
2

Finally, if |a'|k < <B,L> < |a"'| k we set (0,,B,) = (@,00 , (03,B5)

t-j

= (a',B+B') , and the relations (2.32), (2.33) follow easily from the preceding

arguments.
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