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ON THE ANALYTICITY OF SOLUTIONS 

OF PARTIAL DIFFERENTIAL EQUATIONS AND SYSTEMS 

O.A. OLEINIK 

The problem of the analyticity of solutions of partial differentials-
equations is one of the oldest in the theory of partial differential equations. This 
problem is connected with the 19 th HILBERT problem [1]. It is well-known that all 
solutions of linear elliptic equations and systems with analytic coefficients are 
analytic functions (see [2], [3] and a survey in [1]). If a system has constant 
coefficients and all solutions of this system are analytic functions, then the 
system is elliptic [3]. It is of great interest to find non elliptic classes of 
differential equations and systems which have only analytical solutions and to des­
cribe classes which do not have such a property. Some results in this direction are 
given in the papers [3]-[8]# 

We offer here an approach for the study of the problem of the analyticity 
of solutions of differential equations and systems. We prove here some a priori 
estimates in a complex domain for solutions of partial differential equations and 
systems which have only analytical solutions. Using these estimates we can find clas­
ses of partial differential equations and systems which have non analytic solutions. 
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ANALYTICITY 

Let Q be a bounded domain in R m +^ , x = (x^, x^) 

DEFINITION 1.-

A function u(x) defined in Q is called a function of the class A ( Q ) if 

for any subdomain G with G c Q there exists a constant 6(G) > 0 such that the 

function u(x) can be extended analytically with respect to all variables x as a 

function u(x + iy x + iy ) in a domain Q ? 4 " ^ {x cz G , -6(G)< y < 6.(G) o c m m o u 

j s o,1, , m} and also u is bounded in Q 2 ^ 4 " 2 . 

We denote by v(u) an analytical extension of u in the domain Q 2 ^ + 2

# 

6 

DEFINITION 2 . -

A function u(x) defined in Q is called a function of the class A . ( Q ) , 
«3 

if for any subdomain G with G C Q there exists a constant 6(G) such that the 

function u(x) can be extended analytically with respect to the variable x. as 

a function u(x , , x. + iy., x ) in a domain : 

Q * + 2 = {x cz G , - 6 ( G ) < y < 6 ( G ) } 

and also u and - ~ — , k j , are bounded, in Q ^ + 2 ; j = 0,1,...,m . 
*k 6 

We denote by V. (u) an analytical extension of u in the domain Q ^ + 2 . 
0 6 

If all components of a vector-function u =(u^ , ,u^) belong to a linear space 

N 
B , then we say that w £ B 

DEFINITION 3.-

A linear system of partial differential equations with analytic coefficients 

( l ) L(u) = f in Q , u ^ , . . . . , ^ ) , f =(f t, , f ) 

is called analytical in Q , if, for any of its weak soluticn u € © ( Q) the 
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condition f £ A(Q) implies u£ A(Q). 

DEFINITION 4 . -

System (1) is called analytical with respect to the variable x. in Q , 
«3 

if for any of its weak solution u (Q) , the condition f £ A.(Q) implies 

u € A.(Q) . J 

THEOREM 1, 
Let be a BANACH space consisting of weak solution u GCOD^Q))^ 
of the system 

(2) L(u) = 0 in Q 

with the norm llull-gjj also the convergence of a sequence in the 
norm BN(Q) implies its convergence iJifflio) . If system (2) 
is analytical in Q , then for any subdomain G with G c Q there 
exists a constant 6(G) > 0 such that for any solution u 6 B^(o) °^ 
system (2) the following estimate is valid : 

(3) sup |v(u)|N< C ||u|| „ , 
* 6 

N where |v(u)| ^ i J v U ^ I , C= const. 

If system (2) is analytical in Q with respect to x. , then for 
— *J any subdomain G with G c Q there exists a constant 6(G) > 0 such 

that for any solution u £ BN(Q) of system (2) the following esti­
mate is valid : 

(4) 3u?21 V.(u)| < C 2 I |U| | B N ; 
Q6 

where 
l y u ) i TcSi l y v l ' c 2 = C o n s t -

PROOF. -
We prove first the estimate (3). Let G be a fixed subdomain with G c; Q. 

¥e set : 

\,R = {u 5 u £ BN(Q) , BUJJ |v(u)| R } 
Y 
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ANALYTICITY 

where R = 1,2,.... J ~= 1,2,... 

Since system (2) is analytical, it means that any u £ B ^ ( Q ) belongs at least 

to one of the sets M We show that M _ are closed in B ^ ( Q ) . 

Let {uj be a sequence, u n £ M R for n=1,2,... and ll^-ujl^^-j 0 f ° r . We 
shall prove that u 0 £ , Since are uniformly bounded in 

+ , there exists a subsequence of {u }which uniformly converges at any compact 
Y n 

2m+P " 2m+P set K c Q towards an analytic vector-function u in Q . 
Y Y 

2m+2 
The uniform convergence at any compact set K c Q ^ of the bounded 

sequence in Q 2 1 1 1 + 2 implies its convergence i n o D ' C G ) . It means that u = u in y 0 

G and therefore u can be extended analytically in Q ^ m + 2 with the estimate o Y 

|v(u )\< R . It implies that u £ M . Since B ^ ( Q ) is a Banach space and 
1 0 1 o Y>" 

BN(Q) = Uy,R My,R 

according to BAIRE!s category theorem [9] - (if B is a complete, it is the second 

category) - there exists positive constants e, 6, R Q and a vector-function 

u*(x) £ M_ such that if u(x) £ B N ( Q ) and 6,RQ 

(5) ll^-u*!!^ N< e , 

then u(x) £ M c . That means : 6,RQ 

(6) sug |v(u)| s<R o . 

Let u be any element of B ^ ( Q ) , Then for 

u * + u 

1 W I B N 

the inequality (5) is satisfied and therefore according to (6) : 

(7) sup |v(u*) V(u)| ̂  R . 
Q2m +2 | | U | | B N 

6 

It follows from (7) that : 
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l V ( u ) l < 2 Ro ' e" 1 | MBN =C1I|U11BN 

The proof is complete. The inequality (4) can be proved similarly. In this case, 

the uniform convergence of a subsequence of u at a compact K cz Q m +^ follows 
n Y 

from the analyticity u with respect to x. + iy. in Q m +^ and from the bounded-
n J O Y 

m+2 
« dun , Z F 3 » i11 case Q .In this case, ness of u and their derivatives » 11 9 * ' 0 9 v n ox 1 

i 
we set : 

M

Y ,R
 = { U 5 U £ B ( q ) ' S U P + ^ á |-3^V-.(u)|] < R } . 

Remark : 

Theorem 1 is walid for any BANACH space B(Q) such that : 

Bc=<0F(Q) and B c A(Q) or BcA.(fl) . 

The following theorem is a consequence of theorem 1, 

THEOREM 2 

Suppose that in Q there exists a family of solutions u £ iX)1 (Q) 
p 

of system (2) of the form : 
(8) u (x) = eipXJv (x) , p € R1 , p > 1 ; 

P P 
such that u for any p \\ can be analytically extended with 

P 
m+2 

respect to x. in a domain Q e for some fixed domain G with 
G C Q , where 6. does riot depend on p , but JV (v ) |, |—^ V.(v )|, 

m+P ' P ^ Z *^ P 

^ j , are bounded in Q by a constant which can depend on p . 
61 

Suppose that there exists a BANACH space B (Q) defined in theorem 

1, such that 
(9) " U

P V
N < e x p ( c 3 p i i ) 

where the constants ^ and > 0 do not depend on p and ̂  < 1. 

Let there exist a sequence of points x(p) £ Ĝ  such that for the 

points 
Zp,h = ( x o ( p ) ' > x o ( p ) + ^ x m ( p ) ) ' 

-6, X hv< 0 , of Q
mt 2 , the inequality 

1 0̂  
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ANALYTICITY 

do) i W v ^ 1 > e x p ( - v + 0 ) 

is fulfilled, where > 0 ans a<1 do not depend on p and h . 
Then system (2) is not analytical with respect to in Q # 

In order to prove theorem 2 > we show that for solutions u the estimate 
P 

(4) is not valid for the large p because of (9) and (10). 

Example : 

As an example of the application of theorems 1 and 2 , let us prove that the 

B0UENDI-G0UU0UIC equation [6] 
Utt + *%y + Uzz - 0 

is not analytical with respect to t and y # 

It is easy to see that equation (11) has the family of solutions : 

u (x) = exp [ipy - p — + p 7 (a-t) ] 

which do not satisfy the inequality (4) with respect to variables y ând t 

for the large p , if ||u|| = sup |uj# One can prove, using similar methods 
B Q 

than those of [3] and [10] that all solutions of (11) are analytical with respect 

to z . 

In what follows, we shall prove a more general theorem for equations of 

any order, which includes equation (it). 

As a second example of the application of theorem 2> we consider a system 

with constant coefficient 
N 

(12) L(u)=f or ̂  a kV. = f k , M , N . 

where ak^(©) = Z a k ^ ^ ) a is a differential operator of the order 

with constant coefficients ; © a = @ a o # # # <g)am fty j = _ ± ^ _ ^ 
H ° " " 

We set r=sup , 
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where %, is any substitution of the form : 

(1 ».... » N ̂  

V — V 
We suppose that the order of the polynomial p(̂ ) = det||ak (̂̂ )|| is equal 

to r . For such system of differential equations, it is proved [11] that there 

exists two systems of the integers (s , ,ŝ ) and (t̂ , t̂ ) such that 

for any k,j = 1, N : 

(13) \ + 

N 

(H) k|, (\ +\) = r 

Let a° = I f . 

It is evident that : det l|a£j(5) II = P°(̂ ) 

where P°(g) is the principal part of the polynomial p(̂ ) , 

If P°(s) /= 0 for any I € R m + 1 with \l\ /= 0 , then the system (12) 

is called elliptic in the sense of DOUGHS-NIRENBERG [12] . 

If 7kj = \ f o r 0=1 N and p°(̂ ) j( 0 for 5 / 0, then the 

system (12) is elliptic in the sense of PETROVSKY [3] . 

It is proved that such elliptic systems are analytical in any domain 

a<=Rm + 1 , [3l[ 13]. 

THEOREM 3.-
If the equation P°(̂ ) =0 has a real solution 

I = U 0 . " " » * J \ h 0 , 
then system (12) is not analytical with respect to x. 9 

3 
proof. -

The system (12) for f = 0 has a family of solutions of the form : 
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u (x) = exp { ip(£, x) + i \ (p) (n,x)} Rp 

\(p) = pq E c p 5 1 , 
3=0 J 

c. = constant, p,q are positive integers, p < q , T) is a vector of Rm+^ , 

(S>TI) is a scalar product in Rm+<' . 

It is easy to see that the function u satisfy the conditions of theorem 2 
P 

if Uu|| = sup|u| for the BANACH space B . 
B fl 

In the case = ̂ \ > a similar theorem was proved by I, PETROVSKT [3], 

Let us consider now a system of first order partial differential equations 

with analytic coefficients of the form : 
v m v 

(15) L(u) = — g ~ + E A.(x) + B(x) u = 0 . 
0 0=1 j 

where A. > B are matrixes of the order NxN . Let us denote : 
0 

X=(XQ,X i ,xm) = (XQ,X«), y«(yo>y , ,ym)=(y0,y
l) 

THEOREM 4»-
Let be a neighbourhood of the origin in the space R1314^ = 

= (x̂ ,x̂ , ,Xm^' Ŝ -PPos© -that an analytical function <p(x,yf) with 

respect to x1 + iy 1 , is defined in a domain 

Q^ t) = {x,y« : (xQ,x«) G Qt, |y'| < y } > Y = o*.>0 
Suppose that for some k>0 

Q2k+1 ôs 
r̂rrClm 9(0,0)) /= 0, (lm9(0,0)) = 0 for 0<s<2k+1 , 

ôyf + 1 dys 

Im <p(x,o) < Im 9(0,0) in ; 

the matrix 

(16) A(xo>X.+1y., gradx?) = E-^- + j|A.-^- , 

(e is the unit matrix), satisfies the following condition : 

For any analytical with respect to x^iy1 function v(x,y») in Q (Q̂  ) 

the quadratic form : 

(17 K(v,v) = (i|pv,v)#xo 

i s nonnegative in Q (û ) ; here (c|>,f) is a scalar product 

in the complex space CT , matrix A is the complex-conjugate 

matrix for A . Then the system (15) is non analytical with respect 
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to x. in any neighbourhood Q of the origin such that Q C Q CZ CL 0 2 » for some # 

In order to prove this theorem, we prove the existence of the family of 

solutions of system (15) of the form 

u (x) = e~lpj) (x ,x« ,y») P P 0 

where au^lVpt * C^p2^1*^ . Then it can he proved that for these solutions, the 

inequality (4) is not fulfilled, if ||u|| = sup|u| . 
B Q 

COROLLARIES. 

Let us derive some corollaries of theorem 4 # 

COROLLARY 1.-
Consider the case of a first order equation : 

(18) 4 ^ ak(x)u. + c(x)u = 0 
Suppose that Im aO (x)x does not change the sign in a neighbourhood 0 
of the origin of space R 2 m + 1 (x,y1 ). Then according to theorem 4, the 
equation (is) is not analytical with respect to x. , in this case, 
we can take : 

9 = x . + 1 y a . 
For the MIZOHATA equation [4] 

(19) \ + itSux = 0 
it means that, if s is odd, then equation (19) has non analytic 
solutions with respect to x. 

In paper [4], it is proved that if s is even, then all solutions of equa­

tion (19) are analytic functions. 

COROLLARY.2.-
The system (15) is not analytical with respect to x. , if the 

«3 
matrix A. is diagonalizable by a unitary transformation and for its 
eigenvalues \̂  , K=1,...., N , Im \_»X

Q preserves the sign in the 
neighbourhood of the origin of the space (x,y*) and this sign is the 
same for all k=1, ,N. 
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It is easy to see that on this case, the condition (17) is fulfilled 
with the function g> = x. + iy. . 

We consider now some applications of the theorem 1 and 2 to higher order 

equations and, in particular, to second order equations. 

We set : 

t = (x , ' V 0 ' ° ^ , y = , 0 , X k+r 

x ,0, ,0), 

2 = ( o ' ° ' V i 'XJ' 

Then any point x £ Rm+^ can he represented in the form x=t+y+z . 

We denote respectively : 

5' = ( V h'° o ) ' - ( o . . . . . ^ ..0...0), 

5" =(0 o.iM ^ . - C © t ^ M)z ,), = 

0 m 
THEOREM 5,-

Suppose that the symbols of the differential operators with analytic 
coefficients A(t,y,z, «£>t, <^) f B(t,y,z, <g>t, ^ ) , c(t,y,z, g ) ^ 
are given for : 

|y| K » |z| ̂  K and for all t ; K is a constant. 
Suppose that for some t > 0 , any real number p > 1 , and for some 
Mt > M2 , any and £" (0 , £k+1>0, ,0) with =1 
we have in the domain {|y|<K , |zJ<K , -°° < t < 00 } 

(20) A(p"Tt,y,z,pT

?»,p^) = p
 HU(t,y,z^»4») = pMla(t,^) . 

(22) B(p"Ttj,z,pV,r) = p M 2 B ( t , y , z , = p^b(t,£«) . 
and , for some 5 ^0 and any complex number y : 

Clt,y,zfYg») = Y
h * 

where h > [M̂  - Mg] + 1, [s] is the entire part of S. 
If there exists a function v(t) £ o^(Rk) such that v(t) f 0 and 
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for some \ = constant £ the function v(t) as a distribution of 

§) %(R k + 1) satisfies the equation : 

(22) a(t, ® t)v + \b(t, é)t)v = 0 , 

then the equation 

L(u) = Au + C Bu = f 

is not analytical with respect to variable in any domain : 

Q = {x : |t| N< H i # |y| 4^ . )z| 4 , K =ct. < K. 

PROOF ; 

We consider the solution of equation (23) in the form : 

u U) = exp {ipx^ + ipii(z,çf" } v(pTt) 

M-i - M 2 

where p, = • < 1 

and use the BANACH space with the norm : 
I 1 U 1 IB(Q) - ^ M ^ ) • 

It is easy to see that for u (x) , the estimate (4) is not valid. 
P 

Thus the theorem is proved. 

We can indicate indicate conditions when the solution v(t) of equation 

(22) with the necessary properties exists. 

Suppose that the operators a(t,@̂ _) and b(t, ̂ )^) define in the space 

s(Rn), (see [14]), the norms 

Hft(u) = [au,u,] , H^u) = [bu,u] 

where 

[f,<l>] = k + 1

 f * d t • 

We denote by H & and the closure of the space s(R n) with respect 

to the norm Ha(u) and B̂ Cu) correspondingly . If the operators a and b are 

formally self adjoint and if every bounded set in H & is compact in , then 
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for some \ = constant, there exists a weak solution of the equation (22) such 

that v(t) £ H and v(t) é 0 . 
a ' 

THEOREM 6,-

suppose that the operators A>B,C, satisfy the conditions of 

theorem 5 and the spaces H and H, have the above mentionned 
k a D 

properties, H c ̂ ( R ) , Then equation (23) is. not analytical 
a 2 

with respect to x^ ̂  in any neighbourhood of the origin. 

Thus we see that the existence of the eigenfunction of the equation (22) 

implies the existence of a class of equations (23) that are not analytical, 

Conservely, if equations (23) are analytical, we can make a statement about the 

spectrum of equation (22). 

We do not state here such theorem about spectrums. Thus we have interes­

ting relation between the spectral theory of differential operators and the problem 

of the analyticity . 

The next theorem follows from theorem 6, 

THEOREM 7." 
Let , Pn( ® ) , P,(@J be homogeneous elliptic diffe-

\ t d y 3 
rential operators with constant coefficients of the order 2p . 

The equation 

(24) Pn(^t)u + |t|
2S P 2(© y)u + |t|

2dP3(0z) u = s 

where s and d are integers, s, d>0 , is analytical.in a neigh­

bourhood of the origin of the space R m + 1 , if and only if s=d# 

PROOF. -

It is proved in [7], using the MORREY-NIRENBERG method [13] , that 

equation (24) for s=d is analytical. If s / d, the equation (24) is not 

analytical with repect to x ^ in the case d< s and with respect to x^ ̂  
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in the case d > s , according to theorem 6 . 

In the paper [6] in other way,it is proved that for p=l , s=1 , d=0 

equation (24) is not analytical. 

The equation (22) for the case (24) has the form : 

^ ( © ^ V + |t| 2\ +.\|t|2dv =q . 

It is of interest to study the equation of the form (24) with lower order 

terms. 

We consider the second order equation with real analytic coefficients 

in the neighbourhood Q of the origin in the space R131*1^ (y,x̂ ....... ,x ) = (y,z) 
1 m 

(25) L(u) = ak5(x)u + a(x) u + bk(x)u + b(x)u + c(xju = f(x,y) 

where 

a ^ U ) ^ » 0o\l\2 , a(x) = |x|2S a(x) , a*(x) > 0 , 

C 0 = constant > 0 9 s in an integer ; 

We can prove, using the extension of the solution in the complex domain, 

that equation (25) is analytical. 

In the paper [7], this is proved by the method cf [13] under condition : 

|b( x;| < c^xl 3 - 1 

Some above mentiormed results are contained in the papers [15]»[16] . 
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