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ANALYTIC SOLUTIONS OF HEAT EQUATIONS

TRACES OF ANALYTIC SOLUTIONS OF THE HEAT
EQUATION

by N. Aronszajn.
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§1. Definition of traces, their basic properties and identification with

functions, distributions, and analytic functionals.

In what follows the complete version of the talk at the Colloquium
is given. Notation, terminology, and results stated in the preliminary
notes (which will be refered to by P, N, ) will be used. However, we will
slightly change one notation. It will be convenient to write the spaces

~S ~ ~
G¥(D), G¥ and GJL’R as Q¥(D), G¥, and G,NR . The preceding notation
will be reserved for the corresponding spaces of traces which are the
main topic of our talk.

Consider a space G.’Z/(D), a point t0 €3D and a function u(x,t) € &;:’(D).
If this function is regular for t = to the section :(x, to) restricted to
x € R™ will be called the traceof u at to. Such traces will be called
regular traces; they are entire functions on R" of Laplacian order 2
and finite type.

By formula 2, P.N, Ch, III, §1 such a regular trace fetermines
uniquely the corresponding solution Ux, t).

In the general case when TJ(x, t) is not regular at tO we will consider
at first the trace of u at to as an abstract object in one-one correspondence
with the function u € GA?.{/(D) . The set of all these objects will be called the
trace-space corresponding to D and to € 3D and denoted by GN(D;to). The
one-one correspondence between &’(D) and GMD; to) allows one to transfer
the topological vector space structure from &(D) on GN(D;to) making

the space of traces a Montel space.
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If f€ GK/(D;tO) we will denote by ;(x,t) the corresponding function
~7 ~ ~ L d l
in G¥(D). We will be mostly concerned with the space G¥ = GﬁVm = GJI((B+),
~ ~s

and sometimes with GNR = GN(B; (R)) and their corresponding trace-spaces at
t = 0 which will be denoted briefly by G¥ = G.?loo and G.%/R respectively., For
brevity's sake we will call the elements of G¥ 'traces'' and those of G.?lR
"R-traces'.

If R<R'=o we will identify the trace f €GAL, with the trace

g€ GNR such that é(x,t) is a restriction of ?(x, t). In this way we have

clearly
(1) Q¥ g, SO .

We will see a little later that G.;'VR, is dense and non-closed in G)'VR.

Our next task is to identify the spaces G.NR with topological duals

of suitable proper functional spaces. To this effect we use the spaces

VR introduced in P,N., Ch, III, §3, which we will now denote by VR .

~
We recall that VR is the class of all finite linear combinations of functions

of the form DX
C,7

S
ce (En, and TE B;‘{(R) . Since these functions belong to GA(R and are all

E(x-C, t + 1) for different values of the parameters

regular at t = 0 the class of the corresponding traces which we will

denote by V_ is composed of regular traces which are functions of

R

x € ]Rn, finite linear combinations of functions of the form DZ( r E(x-C,T).
?

Every v(x) € VR determines uniquely the function :,(x, t) € v By this

R"®
correspondence we transfer the topology of VR on VR and using Theorem V of

P.N., Ch, III, §3, we get

THEOREM I, The trace-space GK/R is identified with the topological

dual of VR’ GJVR = V'R . For every f€ V'R the corresponding f(x,t) is given

by

(2) Tz, 1) = <f, E(x-z,t) >+

- 37 -
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For any u € G.)VR and v € VR the scalar product can be written in the form

(3) <uyv>= §E(x, t1) Yx-t') dx

for sufficiently small positive t',

This theorem allows us to identify a large class of familiar objects
with traces. Since every function v(x) € VR multiplied by e belongs
to the class 8 of L, Schwartz for sufficiently small positive @, we obtain
immediately:

aXx

2
THEOREM II, Every distribution T such that e TES fir

every a > 0 is a trace. The scalar product with any v € VR is given by

2 2
<T,v>= e ™ T(e™ v(x)) = T(v(x))

for sufficiently small positive a (depending on v). The function

~ ~
T(z,t) € GNR is given by

ax
e

. 2
T(z,t) = e % T E(x-z,t)) = T(E(x-z,t)).

Corollary III, Functions in the class # of L, Schwartz, distributions

with compact support and tempered distributions are traces.

THEOREM IV. (Density Theorem.)

a) The regular R-traces are dense in G?{R;

b) The linear combinations of functions of the form E(x-§{, T)

f_oi L€ Cn, TE Bi(R) are dense in GﬁVR;

c) Polynomials are dense in Q¥

d) The class # of L. Schwartz is dense in GNR .

- ~
Proof. a) For R = co with any function u(x,t) €G¥ the function

~ ~ ~ ~
“c(x't) = u(x,t+e) is alsoin G¥ for ¢ > 0. Its trace is a, = u(x, €) . It

is a regular trace and obviously u"u for € M0 in the topology of G¥.

- 38 -
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1 ’
For 0 <R < oo the isomorphism 8 1

~ A~ 2R’

§3)transforms GX onto GA(R . Using this isomorphism we prove our

0
1> (see P,N,, Ch, II, §1 and

statement for all R's,

b) It suffices to show that for regular u € G,K(R the corresponding
solution ;(z,t) is uniformly approximable on compacts in z and t by
linear combinations of functions of the form E(z-{, t + 7). Since
U(z,t) is regular for t € B;'((R) U B; (0) for certain p > 0, for any compact
Kc Bg(R) we can find p' > 0 and R' > 0 sothat KC BZR,(R')CB:.+R,(R')C Bé(R)U BpZ(O)-
Since the function rx(z,t-p < é\i/R’ +p! we can apply formula (1) of Theorem III
of P.N., Ch. IO, §3, with u(z,t) replaced by :z(z,t-p'), 6 by 0, tO by p',
R by R'+p' . Noticing that now the circle B(R'+p', p', 0) = BIZ(' (R'+p'"),
from the formula (1) we see that a(z,t-p') can be approximated uniformly
for t € K+p' and z in any compact of c” by a linear combination of
functions E(z-x, t-p') for finite number of values of x which proves our
assertion.

c) Using Proposition 2 of P.N., Ch. IlI, §2, and Theorem IV of
P. N., Ch. III, §3 we prove immediately statement c),

d) In view of c)it is enough to show that if p(x) is any polynomial
and @(x) € 8 with @(x) =1 in a neighborhood of 0 then olx/\)p(x) for
1<\ ” o converges in the topology of traces to p(x) but this is clear if
one writes by the formula of Theorem II

(@(x/N)p(x)) " (24 t) = y o(x/\)p(x) E(z-x, t)dx .

IRn

which for A/ © converges uniformly on compacts in z and t to

;’(Z:t) = S p(x) E(z=-x, t)dx .

Rﬂ
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THEOREM V, All analytic functionals on C" are traces.

Proof. Since all functions v(x) € V are entire functions on IRn,
hence also on C", for any analytic functional we can consider the scalar
product < F,v >, Itis immediately seen that this scalar product is
continuous in v in the topology of V. Furthermore < F,v > cannot vanish
identically on V since by Theorem IV b) and c) V is dense in #(C™). This
jdentifies F with an element of G¥ The corresponding f’(z,t) =< F,E(z-x,t) >.
Furthermore, being identified with traces, the analytic functionals are

automatically identified with R-traces.

We can ask ourselves which functions u(x) defined on R" can be
identified as traces. The elementary case is the case when the convolution
;(z, t) = u(x) * E(x,t) is valid for all z € €™ and t € Ck_ in the ordinary
sense i. e., with Lebesgue integration. One sees immediately that for
this it is necessary and sufficient that u(x)e-ax be integrable for all
a > 0. u(x) will be an R-trace if and only if u(x)e-ax is integrable for
a> k.

However, we know already a large class of functions, namely the
regular R-traces for which the convolution is valid not in the ordinary
sense,since the integral has to be taken in general as the symbolic integral.
To include both cases we will make the following definition:

Definition. A function u(x) defined on IR™ will be identified as a

trace if and only if u(x) is locally integrable and the
u(z, t) = 5;‘ u(x) E(z-x, t)dx

exists and the uniformity conditions (see P.N., Ch., I, §5) are satisfied with
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respect to the parameters z € (Dn, t € (D_l*_. Replacing (D}I. by Bi(R)
we obtain the definition of functions identifiable with R-traces.

It is obvious that ;(z, t) is the corresponding solution of the heat
equation. It is easy to prove also that in this case the scalar product
<u,v> for any v€ V is given by §u(x)v(x)dx. The condition of existence
of the symbolic integral is a very special kind of condition on the behavior

of the function u(x) at oo which is not in general connected with the

behavior of |u(x)

For a function f(x) defined on R"™ which is a trace or R-trace, the
corresponding solution f(x,t) has f(x) as initial values in the usual sense
as described in

THEOREM VI. If f(x) defined on R" is a R-trace, D < R = oo, then

for every x!’) € R" for which linbp _nS\ [f(x)-f(xo) |dx = 0, hence for almost
EELNAALS | _—r =

0. n B"(x")
all x € IR we have p

(4) Hx o t)= £(x0) for tNO,

Proof. By definition of the symbolic integral (in elementary case,

see P.N., Ch. I, §5) . _rZ
-0 0 n-1 0 1 4t
f(x ,t) = §f(x)E(x -x, t)dx =S‘w r M,(x,r) e dr.
b ) n f (4nt);72
X
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By the classical argument of Fatou-type theorems we obtain then (4).

~ ~y
Remark., The existence for a solution f(x,t) € G,NR of the limit
f(xo) in (4) for almost all xo € R™ does not assure in general that f(x)

is the trace corresponding to ?(x,t) (see next section, Theorem I),

§2. Noncompatibility of G¥ with ¥(C™) and &',

In the preceding section we established an identification of a class
of entire functions with traces (the regular traces) and of a class of
distributions with traces. Each time we have an identification of a
subspace of one topological vector space with a subspace of another the
question arises whether this identification is compatible with the topologies
of the two spaces.

Let A1 and Bl be linear subspaces of the topological vector spaces
A and B respectively, and let J be the identification mapping of A1 onto
Bl’ i.e. a linear l-l-mapping of A1 onto B1 . This identification is said
to be compatible with the topologies of A and B if J considered as operator
from A into B is clesable with a closable inverse. A necessary and
sufficient condition for this is that if the nets (or sequences) {aa] and {Jaa}
converge in their respective spaces A and B and if one of these nets
converges to zero then the other does also.

The importance of compatibility lies in two facts:
1° We can extend the identification canonically to the closure of J
which is then also an identification mapping.

2°

By considering the graph of -J, G(-J), which is a closed subspace
of the direct topological sum A + B we can consider the topological

quotient space (A -:- B)/G(-'f) in which the elements x € A and y € B are
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identified with (x, 0) + G(-J) and (0,y) + G(-J) respectively. In this way
(A + B)/G(-T) becomes A + B (not a direct sum) with A and B continuously
embedded in A + B, Thus, a compatible identification leads to a common
enlargement of A and B to a topological space A + B where the identi-
fication is the natural one.

In most cases of identification the compatibility is trivially true.

As an interesting example of non-compability consider the class

M of all measurable functions on ll'R1 and the class 8' of all distributions

1

1
on IR, The class L10

< M is identified with a subspace of 8' and the
sequence of functions nxn (x), where Xn is the characteristic function of
(-1/2n, 1/2n), converges to zero in the intrinsic topology of M and converges

to the Dirac measure 60 in 8' ., Hence the identification is not comaptible.

THEOREM 1. The identifications between G¥ and M(Iln) and also

between G¥ and 8' are not compatible.

Proof. We use an idea suggested to us by F, Treves. We consider
the function h(t) = elogt/t. One proves without much difficulty that for
every 6, with 0 <90 <m/2, and every €2 0 there exists a function C€ e(t)>0
’

defined in the angle |Argt| = 6 and independent of p such that
M Py = ¢, gwePizpr, p=o,Lz,... .

Furthermore for fixed € and 6

(2) Ce e(t)—*O when t— 0 in the angle IArgt| =6.
) At 1n the ang'e
It is immediately seen that the function
o) 2p
> = (P)yy 2
(3) u(z,t) = p2=0 h'*t(t) 2o

lad
belongs to G¥ in one space-variable z .
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If |z| < TZIW and |Argt| =6, we have, according to (1),
|:1 (z,t)] = 2C€’9(t) which tends to zero with t according to (2). If
follows that a(z,T) as entire functions of z converge to zero in N(Cl)
for 70 in any angle. However, a(z.'r) is a regular trace corresponding
to the solution rx(z,t + T) and in G¥ it converges to the trace u £ 0
corresponding to the solution E(z,t). Hence, incompatibility.

Since the functions u(z,T) are also distributions and they converge to

0 in 8', our theorem is completely proved.

Remark 1. As a counterpart to the somewhat negative result of
Theorem I it should be noticed that it is easy to prove that the identification
of the spaces 8§, 8' and K/'(Cn), with a subspace of traces is compatible
with the usual topology of these spaces since the identification mapping is

a continuous mapping of 8, §' and N'(Cn) into G¥.

§3. Some elementary operations on traces.

We will use the transformations defined in P, N, Ch, III, §1, to

establish certain elementary operations on traces.

a) The transformation G(a + T) is a topological automorphism

o 4
of G¥ hence transferred to G,?(R it becomes an automorphism of GK’R.

R ~
It doesn't change the variablet in G,NR and corresponds to a change of
variables in Cn obtained by an orthogonal transformation T followed by
a translation a. Since the traces are attached to R" the significance of
this transformation can only be given via the corresponding solution of

the heat equation. However, if the trace is regular, i.e., is an entire

function u(x) = ;(x, 0), the significance can be directly pictured by
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considering the function u(a + Tx) restricted to x € Rr",

Remark 1. There is an interesting interpretation of the transformation
G(a) for any complex vector a. Since R" is considered as a vector space
it has a fixed origin 0. The translation with a real vector a shifts the
origin to the point a . If, however, a is a complex vector, then R" is
shifted to a parallel hyperplane in C" with origin at a. We can then
consider the original trace u as determining an "analytic" function defined

on C" with values in G¥ the value for a = 0 being u itself and for any

R’
complex a € C" the value is obtained from u by the transformation G(a).
This interpretation is sometimes useful.

Remark 2. G(a) transforms a regular trace into a regular trace.
In general, however, even if u is a very regular function the transform of

u by G(a) is not a function for a complex.

~
b) The transformation 3(T) is a topological isomorphism of G¥ (D)

oA . 2 2
- < < - -
onto G¥ (D-T). Notice that for 0 <7 < 2R, BR(R) T2 BR-(T/Z)(R (t/2)).
~ ~ ~
We can then accept as transform B,(T)u, for u(x,t) € G?{R, the restriction
of the actual transform to B;-(T/Z)(R'(T/Z))' With this convention
(& ~
0< < . . . .
&) ( T < 2R) becomes a continuous isomorphism of G.NR into G'NR-(T/Z)
® . . . . .
and by transfer (1) is a continuous isomorphism of GK’R into Gk/R-(T/Z)
(for 0 <71 < 2R) and of G¥ into G¥ (for T > 0), It is clear that for an
R-trace u ®(T)u = ﬁ(x,'r).
c) We will use the transformations C{c) only for real c # 0, They

transform CNR isomorphically onto CK/R/CZ .

. a, [3)
d) The transformations B( Y , 6/ will be used especially.in the following

two cases (see P,N., Ch, III, §1).
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i/2\
12 39( Zoi ’ 162 . If €8 the Fourier transform
. -i(gx)
o(x) = w(E)e dg€ belongs to 8 and a direct computation shows that
RM

nti

Foe + ol ()5 dpo g L),

(2t)
£(21 z 162) being a topological automorphism of GJV and 8 being
dense in G¥ the mapping ¢ —'cp extends by continuity to the whole of
G¥ and we obtain thus the Fourier transform u-’G transforming the

whole of G¥ onto itself by the formula

- V22, .
(1) Clx, 1) = B o~ /4tu(2:‘1 , 4—i).
(2t) ~
The inverse Fourier transform 0! is given by

-nm
- T 0(8, 1 3 e
(1) (xt) =(2m) 2i, O WZ 2ti ¢

Remark 3. Formula (1) for the Fourier transform leads to an
interesting (but somewhat vague) interpretation if we restrict t to be
positive and introduce the notion of traces at +oco., We could say that
for a function u € (;;( the trace at 0 on the real hyperplane R" is

transformed by the Fourier transform into the trace of U at +o0 on
the purely imaginary hyperplane iRr" .
o 1 , 0 ax®: . .
2. 8 4o 1) If p€ &, thene =~ @€ 8 and a direct computation
- ’
ax® -~
shows that (e" = @) 1is given by
2
ax” .\~ _ 1, 0)
(e o ) =8( g, vs
-n/2 el- 4at e ( LS t )
= (1-4at) ® \ Tt ’ T2t

If o = 'BTIKT' "BITR with R and R' positive, = oo, then 9(_}*“ : ?) is
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~v ~
a topological isomorphism of GK/R onto G.NR, Since & is dnese in

G.»‘VR as well as G.K(R. we can extend by continuity the multiplication

2
by ™ to the whole of Q¥ and thus the multiplication by * is
an isomorphism of G%{R onto G.NR, given by 2
2 2
ax” \~ - 1, 0~ _ -nf2 Tdat ~ ( x t
(2) (e”" u) (x.t)—ﬁ(_‘m' 1)u = (1-4at) e u \Tgmi e 23t )

2 - ~
Remark 4, It is actually the formulas for (eax ) and ) with
[efarx = y ? P

@ € 8 which lead to the establishment of the whole group of transformations

[as B
S\Y , 0
complex a but this would necessitate the consideration of more general

). We could consider multiplication by e®®  with arbitrary

trace-spaces G;’V(D;to).

Remark 5. If a = Bil" -'8}1_1 < 0, i.e. R <R!' then using the identification
2
of R'-traces with R-traces we obtain that multiplication by e®™  transforms

GIVR, into itself continuously.

e): €(b). Again we take @ €8, multiply it by e(bx)
b ~
(Bx)g)

, and by
elementary computation obtain an expression for (e which then
by continuity, is extended to all traces. We define thus multiplication by

e(bx) for all R-traces. Itis given by

~ ~ 2.
(3) (ePX)0)"(x, 1) = e(bya = PX) F P 4 2w, 1)
I . (bx) . . .
The multiplication by e is a topological automorphism of each
GNR .

(bx)¢)~ is the one which led to the

Remark 6. The formula for (e
establishment of the group of transformations €(b).

We give now a list of formulas connecting the Fourier transform
with other transformations introduced in this section. Many of them are
similar to the usual formulas for Fourier transforms of functions. The

proofs are omitted since they consist in simple application of preceeding

- 47 -
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formulas given in this section,

In all formulas uE€G¥.

(4) 47! = (2m Pe(-18,

(5) @(auf= @8 for any a € €7,

(5" (e!P¥)a)* =g (ib)& for any b€ €7,

(6) (Blr)ufe ™% for >0,

(6) (e upairy for T3>0,

(7) € (c)uf™ = —L c(1/cfd for real cf0.

n
C

§4. Convolutable traces and multipliable traces.

If we take two functions @ andy in®8 then E)(z, t) = §q)(x) E(z-x, t)dx,
-:L(z, t) = § Y(x) E(z-x, t)Jdx where the symbolic integrals are actually
ordinary integrals. By the convolution properties of E(x,t) it is then
clear that (o * ¥)"(z,t' +t") = (‘&)(x, t') ;L(x, t'"))(z) . Here the convolution
on the right side is again given by the ordinary integral 55(x, t');j)(z-x, t")dx.

n

R
We can transfer this property to general traces to define convolutable traces

namely:
Definition. Two traces u,v are convolutable if for every positive t'

and t'' the convolution (taken with symbolic integrals)
ulx, t') % vix, t")(x) = § ulx, ')V (z-x, t")dx

exists relative to the three parameters z, t', t" .

THEOREM 1. If the traces u and v are convolutable then the

expression ‘g‘\;(x,t');(z-x, t'")dx = ;vl(z, t',t") is a function ‘;v(z,t' + t')

and w(z,t) € G¥.

- 48 -
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Proof. By the properties of u and v to be analytic solutions of the
heat equation, the function Wl(z' t',t") is an analytic solution of the heat
equation in variables z and t", i.e. Az‘;l = %,wl . By the commutativity
of the convolution (see P.N,, Ch. I, §5) we can-also write
\;l(z. t',t") = §:/(x, t")ﬁ(z-x,t')dx . Hence Az&l = g_t' \;11 . The equation
g—{,, \;/l = g_t" \;'1 for analytic functions \;’Il(Z,t',t") means that \;1 depends only

on the sum t' + t'", Hence we can write \Tvl(z, t',t") = w(z,t' + t") and

obviously w(z,t) is an: analytic solution of the heat equation,

In view of Theorem I we can define:
Definition 2. If u and v are convolutable traces then the trace w
corresponding to the solution w~(z, t) defined in Theorem I will be called

the convolution of u and v and denoted by w = u % v.

Our definition gives immediately the following theorem:

THEOREM II. If u,v are convolutable traces then

(1) u#v =v#*u

(bx) (bx)

(2) For any complex vector b,e v are also convolutable

(bx)u) % (e(bx)v) - ébx)(

u and e

and (e u*v),

(3) For any two complex vectors a' and a', G(a')u is convolutable

with G(a®v and (G(a')u) * (G(a")v) = G(a' + a™)(u * v).

(4) For positive T' and 7", ®(1') and ®(1")v are convolutable and

B(r")u) * (B(T")v) =B(1' + 7")(u * v).
Since for @ and Y belonging to 8 we have

A AA
(o * )" =0y
we will use the Fourier transform to define multipliability of traces.

Definition 3. If for two traces u,v their inverse Fourier transforms

- 49 -
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'\\1-1 and '\\r-l are convolutable then we will say that u, v are multipliable

and we will put
uv = ({}'1 * 0‘1)’\ .

Comparing the formulas (4)-(7) of the preceding section with Theorem I
we obtain immediately:

THEOREM III, If the traces u and v are multipliable then

o
1) uv = vu

o (b'x)

2. (b"x)v

u and e
(b"x)v) = e(b' + b")xuv.

are multipliable for any complex vectors b’

e

and b'" and (e

3?9 G(a)u and G(a)v are multipliable for a..y complex vector a and

(G(a)u)(G(a)v) = G(a)uv .
) a2
4? For any positive T' and 1", e TX 4 and e T'%
2 2
and(e"'r|x u) (e-'r"x

v are multipliable

2
(! "
v) = e (T'+7")x av

Remark.l, If u and v are functions in 8, parts 1?, 2.o and 4? are
obvious since for such functions the multiplication as defined by us coincides
with the usual multiplication. Part 3° is also obvious in the case of a real
vector a since then G(a) is the change of variables x by translation by the
vector a. However, for more general functions identified with traces the
statements in Theorem III are not obvious since we don't know if, in general,
the multiplication as defined by us corresponds to the usual multiplication of
functions. More precisely, the following problem is open,

Problem. If u and v are functions identified with traces and if their
product uv (as functions) is also identified with a trace, is it true that
the two functions are multipliable by our Definition 3 and that their product
by Definition 3 is identical to their product as functions?

In the next section we will give a few instances where the answer to this

problem is affirmative.
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§5. Convolutors and multipliers.

Definition 1. A trace f which convolutes with every trace u € G¥
is called a convolutor. A trace g which is multipliable with every

u € & is called a multiplier.

Obviously the multipliers are Fourier transforms of convolutors and
vice versa.

Theorem I. If f is a convolutor then the operator f # u transforms

continuously G# into G¥. If g is a multiplier then gu is a continuous

operator of G¥ inte GX.

Proof. It is enough to prove the first statement since the second
follows by Fourier transform.

Let £ be a convolutor . Denote for N =1,2,... by XN the
characteristic function for Blin(o)c ¢n. Consider then the operators

~ ~
FN ¢? € >0, defined for W € Q¥ by

~ ~ 1 ~
(FN,G u)(z,t) = § fé{, e+ N—) XN(x) u(z-x, t)dx .
Rr" ~
It is obvious that FN e transforms G¥ Q¥ continuously. For ¢ fixed
3

it is clear also that

. ~ 1 ~
lim f(x,e + = ) Xpap(x) u(z-x, t)dx =
N=oo ( N) N ’

g?(x,e)ﬁ(z-x.ﬂdx = (fx u)(z,t +6 = ((B(c) D) u)(z,t) .

By transfer and by uniform boundedness theorem extended to Frechet spaces the

convolution operatorfﬂ(e)f:lllim FN, ecisa continuous operator G¥—~G#%. This, howeve1
=00 ’

is sufficient to show the continuity of the convolution operator f.

Consider now a convolutor f and the corresponding T(x,to), tOE (E,l*, .
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~ ~~
For any u(x,t) € G¥, consider

§:(x,t') Tlox, t’-t')dx = (f% u) (0,t") for 0< Ret'<Ret?.

~
This is obviously a continuous linear functional on G¥.

Proposition 1. If f is a convolutor then for every tOE (L'i. (@(to)f)n'GG’.\?:('.

Proposition 2. Ifforatrace f ((E(to)f)~GG;'k(" for every tOG G’.1+ then f is a convolutor,

In fact, by Theorem VI'of P,N., Ch, II, §3, Tix, to-t') is convolutable
with any G(x,t’) for 0 < Ret' <Re t0 and since this is true for every tn € C}*.. f
is convolutable with every u € G¥.

THEOREM II. In order that f be a convolutor it is necessaryv and

sufficient that for each t0€ (D}‘_ ,?(x, to) be a trace corresponding to a

~ 0 ~ns
solution f(x,t +t )€ Q¥"'.

By transfer we obtain immediately:

THEOREM II'. The dual Q&' of G¥ is composed of all regular

traces which are sections 'f'(x, to) of convolutors f.

Using Theorem II of §4 we obtain:

THEOREM III. If f is a convolutor then

12 e(bx)f is a convolutor for every b€ c?,

20 C(a)f is a convolutor for any a€ c”,

32 ®(T)¥ is a convolutor for every T>0.

For multipliers we obtain (see Th, III, §4)

THEOREM IIl'. If g is a multiplier then
o e(bx)

g is a multiplier for any b € c”,

G(a)g is a multiplier for any a € c”
2

30 77X g is a multiplier for any T > 0.
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Examples of convolutors and multipliers.

Every analytic functional is a convolutor; every entire function
of exponential order one is a multiplier, The second part follows from
the first by Fourier transform, On the other hand, the first part results
from the identification of an analytic functional F as a trace of the

solution
F(z,t) = < F(x), E(z-x),t>

and the scalar product is given by an integral over a compact set in x
(see P.N., Ch. I, §4, (1)).

It follows that all distributions with compact support, in particular,
functions in & are convolutors.

For all these convolutors we can write the convolution in much

simpler form than in Definition 2. If F is an analytic functional then
(1) (Fx u) (z,t) =< F(x), ulzrx,t) >.

In particular, for a derivative of the Dirac measure, Dkéo which is a

distribution with compact support{ we have

(D6 % w™(x, 1) = D‘;G(x,t).

The Fourier transform of Dkéo is the monomial iIkl x|k; hence all
polynomials are multipliers.

Baouendi's theorem (see P.N,, Ch. III, §3, Th. VII) leads to the
following statement:

THEOREM IV, (Baouendi). a) f is a convolutor if and only if for

every T> 0 there exist non-negative constants A’r ’ B'r’ CT and MT, AT > BT ,
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2 2
MT|x|+BT|x | - A Rex

such that |f(x,7)| = C

b) g is a multiplier if and only if g is an entire function such that

for each € > 0 there exists non-negative constants Ae . BP ’ Ce and Me ’

Me|x|+B€|x2| -A_Rex?
A_z B -c, with the property that  |g(x)| = C_e €

Remark l. It is clear by virtue of this theorem that each multiplier
is a function identifiable with a trace in elementary case (see §1). If u(x)
is any function identifiable as a trace then by definition of multipliers
gu is well-defined as a trace but we don't know if the function g(x)u(x)
is always identifiable as a trace. However, if we know that g(x)u(x) is
identifiable as a trace then we will prove in the next theorem that the trace
corresponding to the function g(x)u(x) is actually gu. This theorem

will solve in a special case the problem stated in the preceding section.

THEOREM V. If g(x) is a multiplier and the functions u(x) and

g(x)u(x) are identifiable as traces then the trace corresponding to g(x)u(x)

is actually gu.

Proof. Consider XN s N=1,2,..., the characteristic function of

B;(O) c R™ and let @ € 8 be non-negative with S‘ @(x)dx = 1. Then the
an
function YN, e(x) -—(uxN) #* ( ! cp( ) € 8. An elementary computation

shows then that (g(x)u (x)) = (Zn)-n/zg * VN ¢ » The function v c(x)

and VN(x) =uXy are 1dent1f1able as traces in elementary cases. Hence

it is clear that in trace topology lirém VN.e =V Since the multiplier g

,€ N°
as operator is continuous on G¥, it follows that élfn BYN, e " 8N’ g(x)vN e( x)
and g(x)vN(x) are functions identifiable by traces in ordinary case. Hence

the limit of traces corresponding to the first function, as ¢ — 0, is the trace
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corresponding to the second. Thus gv.. corresponds to the function

N
g(x)vN(x). Finally, since g(x)u(x) is identifiable with a trace, that

means that

§ g(x)u(x) E(z-x, t)dx = (gu)~(z, t)
exists, Hence it is equal to, in particular

[e0]
§g(x)u(x)E(z-x,t)dx =5R“'1 S g(RO)u(RO)E(z-R6, t)d6| dR

0 0 n-1
51

by the same procedure one sees immediately that

(gvpg) (2 t) =S rN-! Sﬂ 2(RO)u(RO)E(z-RH, t)d6 |dR .

0 n-1
Sl

Since similar expansions ¢an be written for ?x'(z, t) and VIN(z,t) it is clear
that the trace u corresponding to u(x) is the trace limit of VN The

trace corresponding to g(x)u(x) is the trace limit of guy - Finally by
continuity of the multiplier-operator g we have that the trace corresponding

to g(x)u(x) is actually gu.

Corollary V!, If g is a multiplier and u(x) is a function identifiable
as a trace in elementary case then g(x)u(x) is also a trace in elementary

case and is equal to the trace gu.

Remark 2. Except for functions, the largest class of distributions
which we identified with traces are the distributions T such that e ** T € g!
for every a > 0. This identification is elementary (i.e. does not use
symbolic integrals). By procedures essentially similar but somehow simpler
than the ones inthe proof of Theorem V, it can be shown that if g is a

multiplier the trace gT is identifiable with the distribution g(x)T.
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Remark 3. A very convenient method applied, in paticular, in partial
differential equations is the method of localization based on multi-
plication of functions and distributions by a function ¢{(x) € 8, This method
cannot be applied in all generality when dealing with traces since functions
in 8 are not multipliers. However, a kind of "almost'" localization may
perhaps be useful based on the fact that a function f(x) entire of exponential

“Tx , T >0, becomes a convolutor (that is

order 1 when multiplied by e
checked easily by using Baouendi's criterion). It follows by Fourier
transform that if ¢ € 8, or more generally, if ¢ is an analytic functional
then for every T > 0, 5(x, T) is a multiplier. For any trace u, $(x,1’)u

is well defined and without being of compact support it has heuristically a

very rapid decrease at oo.

§6. Developments in Hermite polynomials.

If u is an arbitrary trace formula 2 of P,N., Ch, III, §3, Th., IV
suggests the development:
(1) u= I T A

for any tO > 0. The Ak's can be determined by the formula (3) of the

above mentioned theorem
(2) A, =

In order to know in which sense equality in formula (1) is valid, we
consider each term in the development as a trace (which we may, since
each polynomial is not only a trace but a multiplier). By Proposition 2

of P,N., Ch, III, §3, we have.
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(Ak(to)lk[/z Hy (2:/;0 » (z,t) = Ak(to't)k/zﬁk <2~«/’t%j }

Since (again by the above-mentioned Th, IV) we have the development

~ (o 0]
u(z,t) = 2 I Ak(to-t)lkl/?‘x-Ik (__z )
p=0 [k|=p 2t 0ot

the convergence of the series being uniform on compacts in z and t,
~v
the last series converges in the topology of G#%, hence the series (1)

converges to u in the topology of G¥. We obtain thus

THEOREM I. For every to > 0, the series in (1) with coefficients

Ay given by (2) converges in the topology of G¥ to u.

The interest of this theorem lies in the fact that it allows us to approxi-

mate canonically any trace u by polynomials, namely the partial sums
N
Z of the series in (1).

p=0

§7. Application to inversion of convolutors.

It is easily proved that the convolutors form a commutative algebra if the
convolutionis taken as the multiplication-operator. This algebrahas a unitwhichis
the Dirac measure at 0, 60 . It can be proved that in this algebra the
inverse exists only in very few exceptional cases such as f = 6a = G(a)60 .

However, we may ask for the existence of £ -1 € GX such that

(1) f*f’(d:i*'l*f:cﬁo.

Such 7! is in general not unique. We will call ol quasi-inverse of
f. ff= X A Dk6 with A, constants, f is a differential operator with
[k[zsN~ k0 k
constant coefficients and f = is then a corresponding elementary solution.
Since ff -1 is in general not a convolutor we cannot solve an equation

of the form f% v =u by v = £ -lu; this will give a solution if and only if

i*-l is convolutable with u .
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Baouendi proved the solvability of the equations f% v = u for
large classes of convolutors f and traces u. What we propose to do
here is to use the preceding developments to give a simple construction of
£* -1 which seems to be valid in quite general cases and may be
developped further to cover even more general cases.

Consider a convolutor f and its Fourier transform g = ? g is a
multiplier and by Baouendi's characterization it is an entire function
g(x) of anexponential order atmost 2. If we denoteby h the Fourier transform
of the looked-for quasi-inverse of f, we must have the equality gh =1
in the sense of traces. Heuristically then h should be the function 1/g
of x. This function, however, is not in general a trace for two reasons:

12 1t may not be locally integrable because of the null manifolds of
g(x).

22 Its behavior at infinity may not be consistent with our definition of
functions identifiable as traces (see definition at the end of §1).

However, there may exist complex vectors a € €™ such that the
function a#-)- restricted to x € IR" is identifiable as a trace. This
is the case in which our construction would be valid. By putting
ha =1/g(x + a) we see that as a function ha(x) satisfies g(x + a)ha(x) =1,
Since g(x + a) is a multiplier and 1 is a function identifiable with a trace
(in elementary case) we get by Th., V of §5 that the trace corresponding to
g(x + a) which is G(a)g satisfies (G(a)g)ha =1. Applying Th. IlI, 3° of §4

with the transformation G(-a), we obtain that
(G(-a)G(a)g)(G(-a)h ) =G (-a)l

i.e. g(G(-a)ha) =1 and theinverse Fourier transform of G(-a)ha gives us the

desired 1*-1 .
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Examples.

I) Consider one space variable z and let f be the analytic functional
expressed by e(l/i)Déo . Its Fourier transformis g(x) = e¥. Since its
reciprocal is e ™ which is identifiable with a trace (in elementary case)
we have that (e=¥A"1 = e'(l/i)Déo is a quasi-inverse which is actually
an inverse (it is a convolutor).

II) Consider now for one space variable f = sin( 1—1 D)60 . Now g(x)=sinx
and the function ;—1-:?; is not identifiable as a trace. However, if we take
any non-real vector a € (Cl s m is identifiable with a trace, again
in elementary case. Hence, this trace transformed by G(-a) and by inverse
Fourier transform will give us the desired quasi-inverse. However, this
quasi-inverse is not an inverse since it is not a convolutor and depending
on the vector a we may get several such quasi-inverses.

III) Consider now z € C™ andtake f= £ A Dk60 with constant

k=N K
coefficients Ak’ i.e. a differential operator with constant coefficients,
N
Then g(x)=f= Z Aki|kl x{k. If the polynomial g(x) bas no multiple

=N

null-manifoids in (Dn, there will exist vectors a € C” such that on the

hyperplane a + R" the null-manifolds of g(x) are simple and of dimension

x+a

for x € R" and its behavior at infinity allows one to prove that it is

at most n-2. For such a vector the function E(l—_y is locally integrable

identifiable with a trace in elementary case. Hence again (G(-a)ﬁ;)l\-l
gives us the desired quasi-inverse which is an elementary solution for
the differential operator.

As illustration let us take the case of two space variables with f = -Aéo ,
g(x) = xl2 + xg . Then 1/g(x) is not locally integrable around the origin,

However, if we take the vector a=('1al ,0) with a; f 0, 3 real, then

- 59 -
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glx +a) = (x1 + ial)2 + xg . The null-space of this polynomial on ]RZ is
the couple of single points x = 0, x, = t a, and the function 1/g(x + a)

. . 1 A-1 . .
is a trace., Taking (G(-a)m) we obtain an elementary solution
for the Laplacian., However, it will be a different elementary solution
for a; > 0 and for a; < 0.

§8. General operators and differential operators on the trace space G¥.

Most of the applications of traces to differential operators were
investigated by M, S. Baouendi and the reader will find them in the text
of his lecture. We will limit ourselves here to some general
developments which will not be found in Baouendi's text. We will start by
a general setting.

Let A be a linear operator in G¥ defined on some subspace B of
G¥. Since the mapping u—u(x,t) for any fixed t€ Gi is the continuous
isomorphism ®(t) whose inverse can be dennted by ®(-t), for any regular

trace v € ®(t)(B) we can define the operator
(1) Ay = ®B(t) AGB(-t)v.
Obviously

(1) If v=8(thu then Av =(Au) (x,t).

It follows that a solution u € G¥ of the equation Au =v, v € G¥ is obtainable

by solving the equation At u =v for t€ (I:_l‘_ where vy is the regular trace

t

®(t)v and u, is a regular trace ut(x) satisfying the equation.
A u (x) = o u, (x)
Xt 3t Tt
Hence the general problem of solvability of the equation Au = v in traces

reduces to a problem where the given data and the required solutions are regular

traces, hence entire functions in x. In the case of differential operators

- 60 -
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A with polynomial coefficients, At turns out to be also a differential
operator with polynomial coefficients of special type and for the solution

of the equation for u_ the Cauchy-Kowalewski type theorems can be

t
applied. This was one of the main tools used by Baouendi to prove that
certain standard differential operators A for which the equation
Au = v is not in general solvable in distributions (or hyperfunctions)
are solvable in traces.

For special operators A we can give A; in a more concrete

form than (1). To simplify we will restrict our operators A more than
strictly needed and we will assume that

(2) Au = g(f % u)

where f is a convolutor and g is a multiplier. Hence, A:G¥ —~G¥.
Before we continue we will give a proposition which belongs to the general
theory of convolutions and follows immediately from the definition of

convolutability.

Proposition 1. If u and v are convolutable then so is u and ¥(x,t) for any

fixed t€ (B},_, where ;(x, t) is considered as the regular trace ®(t)v. Furthermore

(3) (ux v)7(x,t) = (u* B(t)v)(x).

Using Fourier transforms and Proposition 1 we can write

(Au)'\.1 =2 s (£4 uN?
(£% u) (x,t) = (% B(t)u)(x)

. 2
(£ uM~(,0)= ((;ZT;)WE— X7 (g4 B1/a00)(x/2t0)),
t

.. e 2
Bt w0, 1) = ‘(Zz%zg‘l*[e /4 (5 4 @(1/400) (xf210))]

t)"
To this formula we apply the Fourier transform. To apply it conveniently

we change in the formula the variables x into y and obtain after a few

- 61 -
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cancellations

2
(A" (x, 1) =X /4B Uy x [e=(£ % B(t)u)(2tiy))]) (x/280).

It follows that
2
(4) Avix) = e™ /4t@_1(y)*[e'tyz((f*v)(Ztiy))]}(x/Zti).

A further simplification happens when the multiplier g is a polynomial.
It is enough to check it in case when g(x) = x|{‘, 4= (Ll. oo ,Ln), when

§'1=i-|£|D£. It is immediately seen that
2 2
i “'D’;[e'tyw(y)l =™V Glwly)

where C}'y is a differential operator in y with coefficients which are
-4
polynomials in y and t with principal part i I ]Di and if the coefficients of

Cr'Y are developed in monomials in vy, y|m, then each of these monomials

will have for coefficient a polynomial in t divisible by tlm‘ Hence

(¢)
X
again with polynomial coefficients in x and t whose principal part will

when we replace the variable y by x/2ti we obtain an operator G

be (Zt)ILIDﬁ'{ and we obtain the formula
(5) Avix) = Gg’)((f*v)(x)), for Au = x|Y(fx w).
. ces k
If in addition, f = D_6_. then
x 0
- )k _ k

(6) Atv(x) = Gx Dx v(x) for Au = xIL Dx u,

In conclusion, for a differential operator with polynomial coefficients

k
(7) A= %Y P (x)D
K =m <X

we consider the order my of Pk‘ Hence, we can write
p, ,x|*
=m k, 4

P(x)= Z
k
Rl=m,
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We obtain for the operator (7) the formula:
(8) Avix) =

k| =m }|=m,
The maximum possible order of this operator is N = mix( |k| +m,).

This maximum possible order will be achiéved unless there are cancellations
among the relevant coefficients 293 and if it is achiéved the principal

t]
part of At is given by

k+4
x .

(9) , 2ot 1

z T op
|k|=m e =N-[K] ™

In this case the coefficients of principal part are independent of x and this is
a basic property of the operator At which allowed Baouendi to attain his
results.

Remark 1, It should be noticed that for differential operators with
polynomial coefficients, Baouendi constructs the operator At by another

method (vide the text of his lecture).

Remark 2. A very plausible conjecture suggested by the results of
Baouendi is that we have always solvability for the equation Au =v for a
differential operator A with polynomial coefficients if the expression (9)
doesn't vanish identically, i.e, there are no linear homogeneous relations
between the relevant coefficients Py, g * The solvability, however, would
be available only in R-traces if R is the largest radius of a circle B;(R)
which does not contain a common zero of the coefficients in the differential

operator (9)(the coefficients being polynomials in t),

It is interesting to notice that by Hormander's results, for solvability
in distributions some relations between the coefficients are necessary, hence,

as a general rule, there is no solvability in distributions. In contradistinction, if

L. Here ka:Oif |l|>mk.
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the above mentioned conjecture is valid,as a rule, except when certain relations
hold, there is solvability in traces.

Remark 3, When the hypothesis of the conjecture of the preceding
remark does not hold, there are counter-examples showing that there
might be no solvability in traces. The simplest such example was suggested
by R. D. Moyer and is the following: We take two space variables X and X,
and consider the operator A = ng—xl -xl%z . One checks immediately that

At=A, hence, there cannot be general solvability for the equation (AtG)~(x,t) =

;(x,t) since it would require that '\‘1'(0, t) =0.

§9. Final remarks and problems.

The development of the theory of traces started quite recently and
therefore there are plenty of basic problems which arise naturally in
connection with this theory which were not settled as yet. Without a doubt
there are many of these problems which could be easily solved but the
solution has not been found yet because of lack of time. There are also
some which seem to be rather difficult. One such was stated at the end
of §4. In the present section we will give a few remarks concerning
problems which are connected with further developments of the theory
and its applications.

Remark 1. Symbolic Integrals. The symbolic integrals form

an essential tool in the development of the theory of traces. For instance,
in defining the scalar product between Q& and Q&' contained in G¥ or

in the definition of convolutability and in several other instances. It is,
however, to be noticed that the symbolic integral is constructed specifically

for the purpose of studying analytic solutions of the heat equation %1- = Au.
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It is quite evident that by a linear change of variables x we could develop

a completely similar and parallel theory pertaining to the equation %‘1 =:Al u
where Al is any homogeneous elliptic differential operator of second

order with constant coefficients. However, for the application to such

an equation we would need to introduce the symbolic integrals in a changed
form, essentially by replacing the mean values over spheres (compare
N.P., Ch. I, §5) by mean values over corresponding ellipsoids.

Another aspect of the S-integrals is the nature of the uniformity
conditions which are rather restrictive. One may ask if there are no
weaker conditions which would still assure the basic properties of the
S-integrals which were used in our preceding developments. The weakening
of uniformity conditions would lead to a larger class of convolutable traces.
However, a heuristic argument to show that our definition is the right one
lies in the fact that Baouendi who introduces the convolutors without the
symbolic integralsl' obtains the same class of traces as we do.

Remark 2. Quasi-inversion of convolutors. In §7 we developped a

method for constructing effectively a quasi-inverse f* -1 for a convolutor f.
A
It required that the multiplier g(x) = f have the property that for some com-
. 1 . s e .
plex vector a, the function =Ty be identifiable with a trace. The method,
. : n 1 . . . .
however, could be applied also if for some a € €, FETE) is a distribution

identifiable with a trace in elementary case (the same sort of argument as

in §7 , Dby using remark 2 of §5 instead of Theorem V).

It is done by considering the operator u* ¢ with u a trace and ¢ €8
(which is an elementary convolution), Thus u is called a convolutor if
this operator defined on 8 CG¥ is continuous in the topology of G#, hence

extendable by continuity to the whole of G¥.



ARONSZAJIN

A simple example where this idea can be applied would be the case of

f=.} g—x- +A where A is a differential operator with constant coefficients in
n

all the variables excluding x,. We wish to find the quasi-inverse
A
of f% f. Wenote that (f* " = g°(x), g(x) =T = (x_+A) where A is a
co1 s n . 1
polynomial independent of X . If for some a € €, the function FeTE)
is a trace in elementary case then SR -_'_la which is a

gz(x +a) 5;; 8lx )

distribution identifiable with a trace in elementary case, We don't know

how largeis the class of differential operators with constant coefficients to which this
procedure would apply.

Remark 3. Differential operators with general coefficients. In §8 we

considered mostly differential operators with polynomial coefficients. What

aboutmore general coefficients? Let us write in general

k
A=|k|2§maka » akEGN.

By Theorem I, §6 each ay is developable into a canonical series of
Hermite polynomials, hence g;(lis developable into a canonical series of
differential operators with constant coefficients and we can thus apply
formulas 4 and 5 from §8 to obtain (at least formally) the operator At
in form of a dfiferential operator of infinite order,with polynomial coefficients,
It turns out, therefore, that to study differential operators with arbitrary
coefficients in the theory of traces you have to consider differential problems

of infinite order with polynomial coefficients in entire functions of Liaplacian

order 2 and finite type.

Remark 4, The non-solvability case. Assuming that the conjecture

of Remark 2, §6, holds we know that the non-solvability for differential

operators with polynomial coefficients happens only when certain relations
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between the coefficients of the operator hold. By a suitable linear change
of variables x, however, we can obtain a new operator where the relation
will not hold anymore so that there will be solvability in traces. However,
if we go back by inverse transformations of the variables to the original
operator we will realize that the solution,instead of being a trace relative to
the heat equation, becomes a A;-trace relative to the corresponding equation
gTu = Alu . It is clear, therefore, that we could expect general solvability
for all operators A in question if we could form spaces of ''super-traces"
which will be sums of traces relative to different operators Aj .

Let us see, in case of two operators Al and Az, what is involvedin this idea.
If we construct the trace-spaces G,?l(l) and GN(Z) we notice that 8
belongs to both and is dense in both. This determines an identification
mapping J between 8 as part of GN(I) and ® as part of GN(Z). We
assume that this mapping is closable in topologies of the two spaces.
We proceed then as described at the beginning of §2 and obtain the space
(G?J(l) -'}-GN(Z))/G(-T) as the sum of the spaces G.ﬂ((l) +G?I(2). This
procedure can be extended to any number of operators Aj . It is easily
shown that for every positive integer m there exists a positive integer Nm
and operators Aj 2=, 2,000, Nm such that for every differential operator
of order =m with polynomial coefficients of order = m the equation Au =v is
solvable in £aald) for every v€ naxli). We canalso choose an infinite sequence of
operators Aj so that for every differential operator with polynomial coefficients,

o0 . [00] .
the equation is solvable when v € fl‘i GA((J) and with solution u € Zf'G.N(J).

Remark 5. Uniqueness of solutions The equations Au = v we were

considering before cannot have unique solutions since there exist non-zero solutions

It is not proved as yet that this assumption holds.
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of the homogeneous equations. In order to have uniqueness we have in the

usual theory to impose on the solutions certain boundary conditions,

i, e,, conditions at infinity, We cannot directly define conditions at

infinity for traces u. We may do it by imposing on each section U(x, t)

boundary conditions in the variables x, the conditions depending possibly

on t so as to assure the uniqueness of the solution.
There is no clear way of trying to use traces on a bounded domain

in IRn for two reasons: 1? As mentioned in Remark 3, §5, we cannot

use for general traces the method of localization. 20 If we considered

traces of solutions in the space G.SNC(E X (B}F) where E is a domain in

R" and ]5 is the harmonicity cell of E, (see N,P., Ch. II, §1, Th.III, and Ch III, §1),

we would notice that almost all the tools which we used in investigating the traces,

in particular, the transformations (a) —(€) of P.N., Ch, III, §1 will not

work here since they will not preserve,in general, the domain E X Gl.li. .
Therefore, it is a completely open question how to use traces in

the treatment of boundary value problems on bounded domains where, in

the usual theories, the most natural uniqueness theorems occur.



