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ANALYTIC SOLUTIONS OF HEAT EQUATIONS 

TRACES OF ANALYTIC SOLUTIONS OF THE HEAT 
EQUATION 

by N. Aronszajn. 
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ARONSZAJN 

§1. Definition of traces, their basic properties and identification with  
functions, distributions, and analytic functionals. 

In what follows the complete version of the talk at the Colloquium 
is given. Notation, terminology, and results stated in the preliminary 
notes (which will be refered to by P. N. ) will be used. However, we will 
slightly change one notation. It will be convenient to write the spaces 
(W(D), GV and GV R as GV(D), GV, and GV R . The preceding notation 
will be reserved for the corresponding spaces of traces which are the 
main topic of our talk. 

Consider a space GV(D), a point t €dD and a function u(x, t) € GV(D). 
If this function is regular for t = t̂  the section u(x, t̂ ) restricted to 
x € IRn will be called the trace of u at t̂ . Such traces will be called 
regular traces; they are entire functions on IRn of Laplacian order 2 
and finite type. 

By formula 2, P.N. Ch. Ill, §1 such a regular trace determines 
uniquely the corresponding solution u(x, t). 

In the general case when u(x, t) is not regular at we will consider 
at first the trace of u at as an abstract object in one-one correspondence 
with the function u € QU(D) . The set of all these objects will be called the 
trace-space corresponding to D and € dD and denoted by GV(D;t^). The 

>~ 0 
one-one correspondence between GU{D) and G%{D; t ) allows one to transfer 

~ 0 
the topological vector space structure from GV(D) on GV(D;t ) making 
the space of traces a Montel space. 
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ANALYTIC SOLUTIONS OF HEAT EQUATIONS 

If f € GV(D;t°) we will denote by f(x, t) the corresponding function 
^ ^ ^ ~ 1 

in GV(D). We will be mostly concerned with the space GV = GV^ = GV((C+), 
and sometimes with GV_ = GV(B_, (R)) and their corresponding trace-spaces at 
t = 0 which will be denoted briefly by GY = GV^ and GUR respectively. For 
brevity's sake we will call the elements of GY "traces11 and those of G Y R 

"R-traces". 
If R < R' ̂  co we will identify the trace f €GY R | with the trace 

g € GY R such that g(x, t) is a restriction of f(x, t). In this way we have 
clearly 

(1) G^ R I c.G*R . 

We will see a little later that GY D, is dense and non-closed in № 
xv. x\ 

Our next task is to identify the spaces GY R with topological duals 
of suitable proper functional spaces. To this effect we use the spaces 
V introduced in P.N. , Ch. Ill, §3, which we will now denote by V . 
We recall that V is the class of all finite linear combinations of functions 
of the form Dr E(x-£, t + T| for different values of the parameters 

n 2 y"v"' 
Q € <C , and T € B (R) . Since these functions belong to and are all 
regular at t = 0 the class of the corresponding traces which we will 
denote by V is composed of regular traces which are functions of R 

n k x € IR , finite linear combinations of functions of the form Dr E(X-£,T). 

Every v(x) € V determines uniquely the function v(x, t) € V . By this 
correspondence we transfer the topology of V_ on V and using Theorem V of 

R 
P.N., Ch. Ill, §3, we get 

THEOREM I, The trace-space GV R is identified with the topological  
dual of V R, GV R = Vĵ  . For every f € the corresponding f (x, t) is given 
bv 
(2) f(z,t) = < f, E(x-z,t) > • 
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For any u € G V R and v € V R the scalar product can be written in the form 

(3) < u,v > = § u(x,t!Mx-t')dx 

for sufficiently small positive t!. 

This theorem allows us to identify a large class of familiar objects 
ax2 

with traces. Since every function v(x) € V R multiplied by e belongs 
to the class S of L. Schwartz for sufficiently small positive o> we obtain 
immediately: 

-ax2 

THEOREM II. Every distribution T such that e T € S1 for 
every or > 0 is a trace. The scalar product with any v € V R is given by 

2 2 
< T,v> = e" a x Tfe"* v(x)) = T(v(x)) 

for sufficiently small positive a (depending on v). The function 
T(z,t) € GY R is given by 

2 2 
T(z,t) = e~ a x T(e a x E(x-z,t)) = T(E(x-z,t)). 

Corollary III. Functions in the class $ of L. Schwartz, distributions  
with compact support and tempered distributions are traces. 

THEOREM IV. (Density Theorem. ) 
a) The regular R-traces are dense in 6Y R; 
b) The linear combinations of functions of the form E(x-£, T) 

for £ € <Cn, T € B^(R) are dense in GY^ ; 
c) Polynomials are dense in » 
d) The class $ of L. Schwartz is dense in GY„ . —————— _H 

Proof, a) For R = oo with any function u (x, t) €GV the function 
u (x, t) = u(x, t+c) is also in GY for e > 0 . Its trace is u = u(x, e) . It 
is a regular trace and obviously u u for € ̂ 0 in the topology of GY. 
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/ i , o \ 
For 0 < R < 00 the isomorphism J&l _1_ 1 ) (see P.N. , Ch. HI, §1 and 

\ ZR ' y 
§ 3).transforms GY onto GY . Using this isomorphism we prove our 

R 
statement for all R's. 

b) It suffices to show that for regular u € GY the corresponding 
R 

solution u(z,t) is uniformly approximable on compacts in z and t by 
linear combinations of functions of the form E(z-£, t + T). Since 

2 2 
u(z,t) is regular for t € B R (R) U (0) for certain p > 0, for any compact 
K C B*(R) we can find p 1 > 0 and Rf > 0 so that KCB Z

D ((R')CB 2, D I!R1CBJ(R)U B2(0). 
XV xv p "rxv xv p 

Since the function u(z,t-p f) c GY R l + we can apply formula (1) of Theorem ELI 
of P.N., Ch. Ill, §3, with u(z, t) replaced by u(z,t-p!), 0 by 0, t° by pf , 
R by R' +p' . Noticing that now the circle B(R* +p', p\ 0) = B^, (Rf fp1), 
from the formula (1) we see that u(z,t-p') can be approximated uniformly 
for t G K + p' and z in any compact of <Cn by a linear combination of 
functions E(z-x, t-p') for finite number of values of x which proves our 
assertion. 

c) Using Proposition 2 of P. N., Ch. Ill, §2, and Theorem IV of 
P. N. , Ch. Ill, §3 we prove immediately statement ch 

d) In view of c)it is enough to show that if p(x) is any polynomial 
and Cp(x) € & with cp(x) = 1 in a neighborhood of 0 then cp(x/\)p(x) for 
1 < X / oo converges in the topology of traces to p(x) but this is clear if 
one writes by the formula of Theorem EE 

(cp(x/\)p(x))~(z,t) x J cp(x/X)p(x)E(z-Xj t)dx . 
1R 

which for oo converges uniformly on compacts in z and t to 
p(z,t) = J p(x)E(z-x, t)dx. 

R n 
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THEOREM V. All analytic functionals on <En are traces. 

Proof. Since all functions v(x) € V are entire functions on TRn, 
hence also on <Cn, for any analytic functional we can consider the scalar 
product < F, v >. It is immediately seen that this scalar product is 
continuous in v in the topology of V. Furthermore < F, v > cannot vanish 
identically on V since by Theorem IV b) and c) V is dense in M(<Ln). This 
identifies F with an element of QU. The corresponding F[z,t) = < F,E(z-x, t) >. 
Furthermore, being identified with traces, the analytic functionals are 
automatically identified with R-traces. 

We can ask ourselves which functions u(x) defined on lRn can be 
identified as traces. The elementary case is the case when the convolution 
u(z,t) = u(x) * E(x, t) is valid for all z € <Cn and t € clj. in the ordinary 
sense i. e., with Lebesgue integration. One sees immediately that for 

-ax2 

this it is necessary and sufficient that u(x)e" be integrable for all 
-a 2 

a > 0. u(x) will be an R-trace if and only if u(x)e is integrable for 
. 1 

a > 2R • 
However, we know already a large class of functions, namely the 

regular R-traces for which the convolution is valid not in the ordinary 
sense,since the integral has to be taken in general as the symbolic integral. 
To include both cases we will make the following definition: 

Definition. A function u(x) defined on IRn will be identified as a 
trace if and only if u(x) is locally integrable and the 

u(z, t) = j; u(x) E(z-x, t)dx 

exists and the uniformity conditions (see P.N., Ch. I, §5) are satisfied with 
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respect to the parameters z € <Cn
f t € Ĉ .. Replacing <£,\ by BR(R) 

we obtain the definition of functions identifiable with R-traces. 
It is obvious that u(z,t) is the corresponding solution of the heat 

equation. It is easy to prove also that in this case the scalar product 
< u, v > for any v € V is given by ̂  u(x)v(x)dx. The condition of existence 
of the symbolic integral is a very special kind of condition on the behavior 
of the function u(x) at co which is not in general connected with the 
behavior of | u(x) |. 

For a function f(x) defined on IRn which is a trace or R-trace, the 
corresponding solution f (x, t) has f(x) as initial values in the usual sense 
as described in 

THEOREM VI. If f(x) defined on IRn is_a R-trace, 0 < R ̂  co, then 
for every x^ € IRn for which lim p ~ n \ | f(x)-f(x̂ ) | dx = 0, hence for almost   p =0 J ~ 

0 n B l l ( x 0 ) 

all x € TRn we have ^ 
(4) f(x,°,t)— f(x°) for t^O. 

Proof. By definition of the symbolic integral (in elementary case, 
see P.N., Ch. I, §5) ^ ^ 

f(x°,t) = jjf(x)E(x°-x,t)dx = J u^r^M^x^r) ^ e 4 t dr. 
x 
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By the classical argument of Fatou-type theorems we obtain then (4). 

~ Remark. The existence for a solution f(x, t) € GY„ of the limit ——————— xv 
f(x̂ ) in (4) for almost all x^ € IRn does not assure in general that f(x) 
is the trace corresponding to f(x, t) (see next section, Theorem I). 

§ 2. Noncompatibility of G V with Y(<En) and . 
In the preceding section we established an identification of a class 

of entire functions with traces (the regular traces) and of a class of 
distributions with traces. Each time we have an identification of a 
subspace of one topological vector space with a subspace of another the 
question arises whether this identification is compatible with the topologies 
of the two spaces. 

Let A^ and be linear subspaces of the topological vector spaces 
A and B respectively, and let J be the identification mapping of A^ onto 
B-̂ , i.e. a linear 1-1-mapping of A^ onto B^ . This identification is said 
to be compatible with the topologies of A and B if J considered as operator 
from A into B is closable with a closable inverse. A necessary and 
sufficient condition for this is that if the nets (or sequences) {â  } and {Jâ  } 
converge in their respective spaces A and B and if one of these nets 
converges to zero then the other does also. 

The importance of compatibility lies in two facts: 
1? We can extend the identification canonically to the closure of J 

which is then also an identification mapping. 
2? By considering the graph of -J, G(-J), which is a closed subspace 

of the direct topological sum A + B we can consider the topological 
quotient space (A + B)/G(-J) in which the elements x € A and y € B are 
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identified with (x, 0) + G(-J) and ( 0 , y ) + G(-J) respec t ive ly . In this way 

(A + B ) / G ( - J ) b e c o m e s A + B (not a d i rec t sum) with A and B continuously 

embedded in A + B. Thus, a compatible identification leads to a c o m m o n 

enlargement of A and B to a topological space A + B where the identi

fication is the natural one. 

In mos t cases of identification the compatibil i ty is t r ivial ly true. 

As an interesting example of non-compabi l i ty consider the c lass 

7/1 of all measurable functions on IR* and the c lass &1 of all distributions 

on TR}. The c lass L>] c 7ft is identified with a subspace of $ f and the loc 

sequence of functions N X N ( x )» where X n is the charac ter i s t ic function of 

( - l / 2 n , l / 2 n ) , converges to ze ro in the intr insic topology of % and converges 

to the Dirac measure 6^ in . Hence the identification is not comapt ib le . 

THEOREM I. The identifications between GU and M<Cn) and a lso 

between GU and are not compat ible . 

P roof . We use an idea suggested to us by F. T r e v e s . We cons ider 

the function h(t) = e * 0 ^ ^ . One proves without much difficulty that for 

every 0 , with 0 < Q < TT/2, and every e > 0 there exists a function C g ^(t) > 0 

defined in the angle | A r g t | = Q and independent of p such that 

(1) | h ( p ) ( t ) | ^ C e > 0 ( t ) e P ( 2 p ) ! , p = 0 , 1 . 2 

Fur thermore for fixed c and G 

(2) C e 0(t)-*O when t — 0 in the angle | A r g t | ^ 6 . 

It is immedia te ly seen that the function 

oo . . 2p 
(3) u (z , t ) = E h ^ t ) ^ . 

belongs to G.U in one space-var iab le z . 
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If | z | < ^ and | A r g t | ^ 0 , we have, accord ing to (1), 

| u ( z , t) I ^ 2 C Q ( t ) which tends to z e r o with t accord ing to ( 2 ) . If 

fol lows that U ( Z , T ) as entire functions of z converge to z e r o in Y(<C*) 

for T ~ * 0 in any angle. H o w e v e r , U ( Z , T ) is a regular t race cor responding 

to the solution u ( z , t + T) and in GY it converges to the t race u / 0 

cor responding to the solution u ( z , t ) . H e n c e , incompatibi l i ty . 

S i n c e the functions U ( Z , T ) are a lso distributions and they converge to 

0 in J '̂, our theorem is Completely proved . 

R e m a r k 1. A s a counterpart to the somewhat negative resul t of 

T h e o r e m I it should be not iced that it is easy to prove that the identification 

of the spaces S ' and Y ! ( < C n ) , with a subspace of t races is compat ible 

with the usual topology of these spaces s ince the identification mapping is 

a continuous mapping of &, S ' and Y ' ( C n ) into G Y . 

§ 3 . S o m e e lementary operat ions on t r a c e s . 

W e wil l use the transformations defined in P . N . C h . I l l , §1, to 

establish certain e lementary operat ions on t r a c e s . 

a) T h e t ransformation G(a + T ) is a topolog ica l au tomorphism 

of G Y j ^ » hence t ransferred to G Y ^ it b e c o m e s an automorphism of Gf t^ . 

It doesn ' t change the var iable t in G Y „ and co r r e sponds to a change of 
XV 

var iables in C n obtained by an orthogonal t ransformation T fol lowed by 

a translation a. S i n c e the t races are attached to I R n the s i g n i f i c a n c e of 

this t ransformation can only be given via the cor responding solution of 

the heat equation. H o w e v e r , if the t race is regular , i . e . is an entire 

function u(x) = u(x, 0) , the s ignif icance can be d i rec t ly pictured by 
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consider ing the function u(a + Tx) res t r ic ted to x 6 TRn . 

Remark 1. There is an interesting interpretation of the transformation 

G(a) for any complex vec to r a_. Since TRn is cons idered as a vec to r space 

it has a fixed or igin 0. The translation with a real vec to r a_ shifts the 

origin to the point a , I£ however , a is a complex v e c t o r , then IR n is 

shifted to a parallel hyperplane in (£ n with or igin at a. We can then 

cons ider the original t race u as determining an "analyt ic" function defined 

on <Cn with values in G Y D , the value for a = 0 being u i tself and for any 
R 

complex a € C n the value is obtained f rom u by the transformation G(a). 

This interpretation is somet imes useful. 

Remark 2. G(a) t ransforms a regular t race into a regular t r ace . 

In general , however , even if u is a ve ry regular function the t ransform of 

u by G(a) is not a function for a_ complex . 

b) The transformation & ( T ) is a topologica l i s o m o r p h i s m of GY(D) 

onto G V ( D - T ) . Not ice that for 0 < T < 2R, B ^ ( R ) - T => B 2 _ ^ ^ 2 ) ( R - ( T / 2 ) ) . 

We can then accept as t ransform &.(T)U, for u(x, t) € G V , the res t r ic t ion 

of the actual t ransform to B

R _ ( T / 2 ) ( R - ( T / 2 ) ) « With t l u s convention 

$ ( T ) ( 0 < T < 2R) b e c o m e s a continuous i somorph i sm of GY.^ into G V ^ (T/Z) 

and by transfer <S(T) is a continuous i s o m o r p h i s m of G V ^ into GY.^ fz) 

(for a < T < 2R) and of GY into GY (for T > 0 ) . It is c lear that for an 

R- t r ace u ( B ( T ) U = u(x, T ) . 

c) We wil l use the transformations C(c) only for real c / 0 . They 

t ransform C Y ^ i somorph ica l ly onto ^^yc2 • 

d) The transformations fiff' 5 ) . . . , , . . x , . 
\ y , o / wil l be used espec ia l ly , in the following 

two cases (see P . N . , Ch. Ill , §1). 
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1? *>( ^ ' X ^ 2 ) • If q>€*> the Four ie r t ransform 

Cp(x) = J cp(5) e " i ^ x ^ d ? belongs to S and a d i rec t computation shows that 

IR n 

nm 

^ ( 2 п ) ^ е 4 s ( 0 , Vi)-

Z - ( 2 т У 2 - x 2 / 4 t ~ / x 1 \ 

< 0 i /2^ ^ 

2i > o ^ being a topologica l automorphism of Q9/ and A being 

dense in GV the mapping cp - " 9 extends by continuity to the whole of 

GV and we obtain thus the Four ie r t ransform u~* 11 t ransforming the 

whole of G.U onto i tself by the formula 

(1) Л, t , (2ттГ - x 2 / 4 t ~ / x 1 > 

4 -̂1 
The inverse Four ie r t ransform u is given by 

-nm . „ / 2 0 / 

( l ' ) f t ( * t )= (2n) e A ^ . ; V J u = ^ > * • 4 F / -

Remark 3. Formula (1) for the Four ie r t ransform leads to an 

interesting (but somewhat vague) interpretation if we res t r ic t t to be 

posi t ive and introduce the notion of traces at +00. We could say that 

n 

for a function u € G.U the t race at 0 on the real hyperplane IR is 

t ransformed by the Four ie r t ransform into the t race of u at +00 on 

the purely imaginary hyperplane i IR n . 
2? ^ \ 4 a ' 1 ) * If <P ^ ^ » then e a x cp € A and a d i rec t computation 

2 
ax ~* 

shows that (e cp) is given by 

( e« x V(x , t )=aU, ; 
= f l - 4 a t ) " n / 2 o l - 4 « t a ( x _J \ 

<A * a l ) e * V l-4at 9 T^4at > 

a = BIT"" FR with R and R! positive, ^ oof then ' ^ ) is 
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a topological i somorph i sm of G Y ^ onto QV^ , Since & is dnese in 

GY_ as wel l as G Y o l we can extend by continuity the multiplication 

a x 2 a x 2 

by e to the whole of Q Y ^ and thus the multiplication by e x is 

an i s o m o r p h i s m of G Y „ onto G V D l given by 

2 a x 

( 2 ) ( • « u ) ~ ( x . t ) =*(_l; o)- u = ( 1 . 4 a t ) - ^ . i - 4 - t ; (^_ f 

ax?" ~ ^ 

Remark 4. It is actually the formulas for (e cp) and cp with 

cp € A which lead to the establishment of the whole group of t ransformations 
f Oi (3 V Qf]X^ 

\ y ' 6 / ^ 6 c o u ^ cons ider multiplication by e with arbi t rary 

complex a but this would necessi ta te the considerat ion of m o r e general 

t r a c e - s p a c e s GY(D;t^) . 
Remark 5. If a = < 0 , i . e . R < R 1 then using the identification 

c^x2 

of R e t r a c e s with R- t r aces we obtain that multiplication by e t ransforms 
GY , into i tself continuously. 

R 

e) : £ ( b ) . Again we take c p € $ , multiply it by e ^ x ^ f and by 

e lementary computation obtain an express ion for (e^bx^cp) which then 

by continuity, is extended to all t r aces . We define thus multiplication by 

e ( b x ) a ^ R - t r a c e s . It is given by 
2 

(3) ( e ( b x ) u f (x , t ) = £(b)u = e ( b x ) + b ^ ( x + 2tb, t) . 

The multiplication by e ^ b x ' is a topologica l automorphism of each 

auR. 

Remark 6. The formula for (e^bx^cp) is the one which led to the 

establishment of the group of t ransformations C(b). 

We give now a list of formulas connecting the Four ie r t ransform 

with other transformations introduced in this sec t ion . Many of them are 

s imi lar to the usual formulas for Four ie r t ransforms of functions. The 

p r o o f s are omitted s ince they consis t in s imple application of preceeding 
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formulas given in this sect ion. 

In all formulas u € GU. 

(4 ) IT1 * ( 2 n ) " n C ( - l ) u , 

(5) (G(u)u)A= e i ( a x ) u for any a £ <Cn, 

(5») ( e ( b x ) u f = G(ib)u for any b € <Cn , 
2 

(6) (B(T)ur=e" T x u for T > 0, 
2 

(6») ( e " T x u r = © ( T ) u for T > 0, 

(7) (C(c)ur ; = L c ( l / c ) u for real c / 0 . 

I c | n 

§ 4 . Convolutable t races and multipliable t r aces . 

If we take two functions cp and 0 in$ then cp(z,t) = ̂ cp(x) E ( z - x , t)dx, 

Hj){z, t) = J} ^ (x ) E ( z - x , t)dx where the symbo l i c integrals are actually 

ordinary in tegrals . By the convolution proper t ies of E(x , t) it is then 

c lear that (cp * </>)~(z, t' + t l ! ) = (cp(x, t f ) * ^ ( x , t M ) ) ( z ) . Here the convolution 

on the right side is again given by the ordinary integral ̂  cp(x, t!)4)(z-x, t , ! )dx . 

I R N 

We can transfer this proper ty to general t races to define convolutable t races 

namely: 

Definition. Two t races u, v are convolutable if for eve ry posi t ive t1 

and t" the convolution (taken with symbo l i c integrals) 

u (x , t ' ) * v (x , t " ) ) (x ) = y u(x, t ' ) v ( z - x , t")dx 

exists relat ive to the three parameters z , t ' f t n , 

THEOREM I. If the t races u and v are convolutable then the  

expres s ion J? u(x, t ' ) v ( z - x , t f t )dx = w ^ z ^ t ' y t " ) is a function w ( z t t ! + t") 

and a*(z,t) € GU* 
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Proof . By the propert ies of u and v to be analytic solutions of the 

heat equation, the function w ^ ( z , t f , t " ) is an analytic solution of the heat 
a 

equation in variables z and t", i . e . ^ w ^ = ĝ p* w l ' B y t b e c o m m u t a t i v i t y 

of the convolution (see P . N . , Ch. I, §5) we can also wri te 

W j f z . t ' . t 1 1 ) = y v(x , t n ) u ( z - x , t ' )dx . Hence ^ w ^ = | p w ^ # The equation 

^-pi w j = J p » w i * o r analytic functions w^(z,t' ,t") means that w^ depends only 

on the sum t1 + t M , Hence we can wri te v/^(z$Vttu) - w ( z , t f + t n ) and 

obviously w ( z , t ) is an : analytic solution of the heat equation. 

In view of T h e o r e m I we can define: 

Definition 2. If u and v are convolutable t races then the t race w 

corresponding to the solution w ( z , t) defined in T h e o r e m I wil l be cal led 

the convolution of u and v and denoted by w = u # v. 

Our definition gives immediate ly the following theorem: 

THEOREM II. If u, v are convolutable t races then 

(1) u * v = v * u 

(2) For any complex vec to r b , e ^ b x ^ u and e^ b x ^v are also convolutable 

and ( e ( b x ) u ) * ( e ( b x ) v ) = < H u * v ) . 

(3 ) Fo r any two complex vec to r s a' and a" , G(a ! )u is convolutable  

with G(ai*)v and (G(a')u) * (G(a")v) = G(a r + a")(u * v ) . 

(4) Fo r posi t ive T ' and T 1 1 , ® ^ 1 ) and ( B ( T " ) V are convolutable and 

( £ ( T ' ) U ) * № ( T " ) V ) = $ ( T ' + T " ) ( U * v ) . 

Since for cp and 0 belonging to $ we have 

/s. A A 

(cp * = Cp if) 

we wil l use the Four ie r t ransform to define multipliability of t r aces . 

Definition 3. If for two t races u, v their inverse Four ie r t ransforms 
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u~* and v~* are convolutable then we wil l say that u, v are multipliable 

and we will put 

uv = (<W * '0~1)A . 

Comparing the formulas ( 4 ) - ( 7 ) of the preceding sect ion with T h e o r e m EC 

we obtain immediate ly : 

THEOREM III. If the t races u and v are multipliable then 

1. uv = vu 

o (b 'x) (b M x) 
2. e v u and e x 'v are multipliable for any complex vec to r s b 1 

j -Lii A , (b 'x) w (b"x) . (b» + b»')x and b " and (e v 'u)(ev ' v ) = e x ' uv. 

3? G(a)u and G(a)v are multipliable for a~y complex vec to r a_ and 

(G(a)u)(G(a)v) = G(a)uv . 
2 ? 

O - T F X - T M X 

4. For any posit ive T 1 and T " , e u and e v are multipliable 
, , - T ' X 2 . . - T " X 2 . - ( T 1 + T " ) X 2 

and (e u) (e v) = e uv . 

R e m a r k , ! . If u and v are functions in & t parts 1?, 2? and 4 ? are 

obvious s ince for such functions the multiplication as defined by us co inc ides 

with the usual mult ipl icat ion. Par t 3° is a lso obvious in the case of a real 

vec to r a. s ince then G(a) is the change of var iables x by translation by the 

vec to r a. However , for m o r e general functions identified with t races the 

statements in T h e o r e m III are not obvious s ince we don Tt know if, in general , 

the mult ipl icat ion as defined by us co r re sponds to the usual multiplication of 

functions. M o r e p r e c i s e l y , the following p rob lem is open. 

P r o b l e m . If u and v are functions identified with t races and if their 

product uv (as functions) is a lso identified with a t r ace , is it true that 

the two functions are multipliable by our Definition 3 and that their product 

by Definition 3 is identical to their product as functions? 

In the next sec t ion we wil l give a few instances where the answer to this 

p rob l em is aff irmative. 
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§5. Convolutors and mult ipl iers . 

Definition 1. A t race f which convolutes with every t race u € GU 

is cal led a convolutor . A trace g which is multipliable with every 

u € (3/ is cal led a mult ipl ier . 

Obviously the mult ipl iers are Four ie r t ransforms of convolutors and 

v ice ve r sa . 

T h e o r e m I. If f is a convolutor then the operator f # u t ransforms  

continuously GU into GU. If g is a mult ipl ier then gu is a continuous  

operator of GU into GU. 

Proof . It is enough to prove the first statement s ince the second 

follows by Four ie r t ransform. 

Let f be a convolutor . Denote for N = 1, 2, . . . by the 

charac ter i s t ic function for B ^ O J c : <Cn. Consider then the opera tors 

F N e ' C d e f i n e d f o r u ^ 0.U by 

( F N j € u) (z , t ) = J ?^c , e + ~ ) x N ( x ) u ( z - x , t ) d x . 

l R n ^ ~ 

It is obvious that F M t ransforms GU~*GU continuously. Fo r e fixed 

it is c lear a l so that 
^lim 7 ( ^ , e + ^ ) x N ( x ) u (z -x , t)dx = 

^ f ( x , e ) u ( z - x , t ) d x = (f * u )~ (z t t + e) = ((<B(e)f)* u f ( z . t ) . 

By transfer and by uniform boundedness theorem extended to Freche t spaces the 

convolution operator'33(e)f = l im F M is a continuous opera tor GU-+GU. This , howevei 
N=oo i N ' e 

is sufficient to show the continuity of the convolution operator f. 

Consider now a convolutor f and the cor responding F(x, t^) , t ° € <E+ , 
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For any u(x, t) € GY, consider 

ji u(x, t ') T ( - x , t ° - t ' )dx = ( f* u f ( 0 , t ° ) for 0 < R e t ' < R e t ° . 

This is obviously a continuous linear functional on GY. 

0 1 n **" / v > ' 
P ropos i t ion 1. If f is a convolutor then for every t € <C£ , (03(tu)f) € G Y ' . 

Propos i t ion 2. If for a t race i ((£(t0)f)~€G YM for every t°€ dj. then f is a convolutor . 

In fact, by T h e o r e m V I ' o f P . N . , Ch, III, §3 , T f x . t 0 - ^ ) is convolutable 

with any u(x, t ') for 0 < Re t» < Re t° and s ince this is true for every t° € <L+, f 

is convolutable with every u € GY. 

THEOREM II. In order that f be a convolutor it is n e c e s s a r y and 

sufficient that for each t^€ <C+ ,f (x, t^) be a t race cor responding to a 
0 ^ 

solution f ( x , t + t ) € GY 1 . 

By transfer we obtain immediate ly : 

THEOREM 11' . The dual GY 1 of_ GY is c o m p o s e d of all regular 

~ 0 

t races which are sect ions f ( x , t ) of convolutors f. 

Using T h e o r e m II of §4 we obtain: 

THEOREM III. If f is a convolutor then 

I? e ^ b x ^ f is a convolutor for every b € (C n , 

2? C(a)f is a convolutor for any a € C n , 

3? (B(T)f is a convolutor for every T > 0. 

For mul t ip l iers we obtain (see Th. Il l , §4): 

THEOREM III 1 . If g is a mult ipl ier then 

1? e ^ X ^ g is a mult ipl ier for any b € <Cn, 
2? G(a)g is a mult ipl ier for any a € £ n 

2 
3. e g is a mult ipl ier for any T > 0. 
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Examples of convolutors and mul t ip l iers . 

Every analytic functional is a convolutor ; every entire function 

of exponential o rder one is a mult ipl ier . The second part follows f rom 

the first by Four ie r t ransform. On the other hand, the first part results 

f rom the identification of an analytic functional F as a t race of the 

solution 

F ( z , t ) » < F(x) , E ( z - x ) , t > 

and the sca lar product is given by an integral ove r a compac t set in x 

(see P . N . , Ch. I, § 4 , (1)). 

It fol lows that all distributions with compact support, in part icular , 

functions in $ are convolu tors . 

For all these convolutors we can wri te the convolution in much 

s impler fo rm than in Definition 2. If F is an analytic functional then 

(1) ( F * u ) ~ ( z , t ) = < F(x) , u ( z r x , t ) > . 

In part icular , for a derivative of the Dirac measu re , D 6^ which is a 

distribution with compac t support we have 

( D k 6 Q * u f ( x , t ) = D ^ u ( x , t ) . 

The Four ie r t ransform of D ^ ^ i s the monomia l i M x | ^ ; hence all 

polynomials are mul t ip l ie rs . 

Baouendi 's theorem (see P . N . , Ch. Ill , §3 , Th. VII) leads to the 

following statement: 

THEOREM IV. (Baouendi). a) f is a convolutor if and only if for 

e V e r v T > 0 there exist non-negative constants A , B , C and M , A > B , 
' , ; T T T T T T 
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M J x | 4 B J x 2 | - A R e x 2  

such that | f ( X , T ) 1 ^ C T e T 

b) g is a mult ipl ier if and only if g is an entire function such that 

for each e > 0 there exists non-negative constants A , B , C and M ,  w e e e — e 

M |x| + B | x 2 | - A R e x 2  

A e ~ B e " e ' with the property that | g ( x ) | * C e e e 

Remark 1. It is c lear by virtue of this theorem that each mult ipl ier 

is a function identifiable with a t race in e lementary case (see §1). If u(x) 

is any function identifiable as a t race then by definition of mult ipl iers 

gu is wel l -def ined as a t race but we don f t know if the function g(x)u(x) 

is always identifiable as a t race . However , if we know that g(x)u(x) is 

identifiable as a t race then we wil l p rove in the next theorem that the t race 

cor responding to the function g(x)u(x) is actually g u . This theorem 

wil l so lve in a spec ia l case the p rob lem stated in the preceding sec t ion . 

THEOREM V. If g(x) is a mult ipl ier and the functions u(x) and 

g(x)u(x) are identifiable as t races then the t race cor responding to g(x)u(x) 

is actually gu. 

P roo f . Consider Xj^ » N = 1, 2, . . . , the charac te r i s t ic function of 

B ^ ( 0 ) c IR n

 a n d let cp £ $ be non-negative with ^ cp(x)dx = 1. Then the 

function v ^ £ ( x ) =(uXj^) * ^(f-))^ ^ • ^ n e lementary computation 

shows then that ( g ( x ) u N CM)* = ( 2 n ) " n / g * g . The function V N j 6 ( x ) 

and v ^ f x ) = uXj^ are identifiable as t races in e lementary c a s e s . Hence 

it is c lear that in t race topology l i m v M

 = V M - S i n c e t n e mult ipl ier g 
e =0 AN, e IN 

as opera tor is continuous on GY, it fol lows that l im g v ^ g = g v N , g ( x ) v N £ ( x ) 

and g ( x ) v ^ ( x ) are functions identifiable by t races in ordinary c a s e . Hence 

the l imit of t r aces cor responding to the first function, as e ~* 0, is the t race 
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corresponding to the second. Thus gv^ corresponds to the function 
gfxjv̂ fx). Finally, since g(x)u(x) is identifiable with a trace, that 
means that 

S g(x)u(x)E(z-x,t)dx = (guf(z,t) 

exists. Hence it is equal to, in particular 
uu 

jj g(x)u(x)E(z-x,t)dx = JR 1 1" 1 J g(R0)u(Re)E(a-R0,t)d0 dR 
0 0 n-1 

by the same procedure one sees immediately that 

(gvNf(z,t) = J R N _ 1 J g{R9)u(Re)E(Z-R0, t)d© dR . 
0 n-1 

Since similar expansions Can be written for u(z,t) and v̂ (z,t) it is clear 
that the trace u corresponding to u(x) is the trace limit of . The 
trace corresponding to g(x)u(x) is the trace limit of gu^ . Finally by 
continuity of the multiplier-operator g we have that the trace corresponding 
to g(x)u(x) is actually gu . 

Corollary V1. If g is a multiplier and u(x) is a function identifiable 
as a trace in elementary case then g(x)u(x) is also a trace in elementary 
case and is equal to the trace gu. 

Remark 2. Except for functions, the largest class of distributions 
-ax2 

which we identified with traces are the distributions T such that e T € S1 

for every a > 0. This identification is elementary (i.e. does not use 
symbolic integrals). By procedures essentially similar but somehow simpler 
than the ones in the proof of Theorem V, it can be shown that if g is a 
multiplier the trace gT is identifiable with the distribution g(x)T. 
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Remark 3. A very convenient method applied, in paticular, in partial 

differential equations is the method of local izat ion based on mult i 

plication of functions and distributions by a function cp(x) € &. This method 

cannot be applied in all generality when dealing with t races s ince functions 

in $ are not mul t ip l iers . However , a kind of "a lmost 1 1 local iza t ion may 

perhaps be useful based on the fact that a function f(x) entire of exponential 
2 

—T x 

o rde r 1 when multiplied by e , T > 0, b e c o m e s a convolutor (that is 

checked easi ly by using Baouendi ! s c r i t e r ion) . It fol lows by Four i e r 

t ransform that if cp € or m o r e general ly , if cp is an analytic functional 

then for eve ry T > 0 , cp(x, T ) is a mult ipl ier . For any t race u, cp(x, T ) U 

is wel l defined and without being of compact support it has heur is t ica l ly a 

v e r y rapid dec rea se at oo . 

§6. Developments in Hermite polynomials . 

If u is an a rb i t rary trace, formula 2 of P . N . , Ch. Ill , §3 , Th. IV 

suggests the development: 

O " , 5 , I U ^ A ' " H * ^ ) 

for any t > 0 . The A ^ ' s can be determined by the formula (3) of the 

above mentioned theorem 

(2) A R = ^ u ( 0 , t ° ) . 

In o rde r to know in which sense equality in formula (1) is val id, we 

cons ider each t e rm in the development as a t race (which we may , s ince 

each polynomial is not only a t race but a mul t ip l ie r ) . By Propos i t ion 2 

of P . N . , Ch. Ill , §3 , we have . 
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л « ° > 1 к | / Ч ( ^ ) ) ••'•^""'^(•¡ré) 
S i n c e (again by the above-ment ioned Th. I V ) we have the development 

û ( z , t ) = Б S A k ( t ° - t ) N / 2 H k ( - ) 
p=0 к =p k K 4 zJt^-t ' 

the convergence of the ser ies being uniform on compacts in z and t , 

the last se r ies converges in the topology of GU, hence the se r ies (1) 

converges to u in the topology of GU. We obtain thus 

THEOREM I. For every t > 0, the se r i e s in (1) with coefficients  

given by (2) converges in the topology of GV to u. 

The interest of this theorem lies in the fact that it al lows us to approxi 

mate canonical ly any t race u by polynomia ls , namely the partial sums 

N 
£ of the se r i e s in (1). 

p=0 

§7. Applicat ion to invers ion of convolu tors . 

It is eas i ly proved that the convolutors fo rm a commutat ive algebra if the 

convolution is taken as the mul t ip l ica t ion-opera tor . This algebra has a unit which is 

the Dirac measure at 0, 6^ . It can be proved that in this algebra the 

inverse exists only in v e r y few exceptional cases such as f = 6^ = Q{a.)6^ . 

However , we may ask for the exis tence of f* * € GU such that 

(1) f * f*"1 = f*"1 * f = 6Q . 

Such f* ^ is in general not unique. We will cal l f* ^ a quas i - inverse of 

f. If f = L A, D 5 n with A. constants, f is a differential operator with 
|k|SN k 0 k 

constant coeff icients and - is then a cor responding elementary solution. 

Since f ~* is in general not a convolutor we cannot solve an equation 

of the fo rm f * v = u by v = ^ *u; this wil l give a solution if and only if 

* is convolutable with u . 
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Baouendi proved the solvabil i ty of the equations f * v = u for 

large c l a s se s of convolutors f and t races u . What we propose to do 

here is to use the preceding developments to give a s imple construct ion of 

* -1 

f which seems to be valid in quite general cases and may be 

developped further to cove r even m o r e general c a s e s . 

Consider a convolutor f and its Four ie r t ransform g = f\ g is a 

mult ipl ier and by Baouendi 's character izat ion it is an entire function 

g(x) of an exponential o rder at mos t 2. If we denote by h the Four i e r t ransform 

of the looked- fo r quas i - inverse of f, we must have the equality gh = 1 

in the sense of t r a c e s . Heuris t ical ly then h should be the function l / g 

of x . This function, however , is not in general a t race for two reasons : 

1? It may not be loca l ly integrable because of the null manifolds of 
g ( x ) . 

2? Its behavior at infinity may not be consistent with our definition of 

functions identifiable as t races (see definition at the end of §1). 

However , there may exist complex v e c t o r s a € <Cn such that the 

function —\—r- res t r ic ted to x € TRn is identifiable as a t r ace . This g(x + a) 

is the case in which our construct ion would be valid. By putting 

h = l / g ( x + a) we see that as a function h (x) satisfies g(x + a)h (x) = 1. a a a 

Since g(x + a) is a mult ipl ier and 1 is a function identifiable with a t race 

(in e lementary case ) we get by Th. V of § 5 that the t race cor responding to 

g(x + a) which is G(a)g satisfies (G(a)g)h a = 1. Applying Th. Ill , 3° of § 4 

with the t ransformation G(-a ) , we obtain that 

(G(-a)G(a)g)(G(-a)h a ) = G ( - a ) l 

i . e . g (G(-a )h a ) = 1 and the inverse Four ie r t ransform of G ( - a ) h a g ives us the 

des i r ed f* . 
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Examples . 

I ) Consider one space variable z and let f be the analytic functional 

expressed by e ' ^ ^ ^ 6 ^ . Its Four ier t ransform is g(x) = e x . Since its 

r e c i p r o c a l is e X which is identifiable with a t race (in e lementary case) 

we have that ( e ~ x ) ^ ~ * = e ' ^ / ^ ^ ó ^ is a quas i - inverse which is actually 

an inverse (it is a convolutor ) . 

I I ) Consider now for one space variable f = sin( j - D ) 6Q . Now g(x) = s i n x 

and the function —-— is not identifiable as a t race . However , if we take 
sin x 

any non-rea l vec to r a € C , —:—? ¡—c is identifiable with a t r ace , again 
' sm(x + a) & 

in e lementary ca se . Hence, this t race t ransformed by G(-a) and by inverse 

Four ie r t ransform will give us the des i red quas i - inverse . However , this 

qua s i - inver se is not an inverse s ince it is not a convolutor and depending 

on the vec tor a we may get severa l such quas i - inver ses . 

n k 
I I I ) Consider now z € <C and take f = £ A, D 6~ with constant 

| k | S N k ° 
coefficients A ^ , i . e . a differential operator with constant coef f ic ien ts . 

A Ik! i k 
Then g(x) = f = L A, i1 ' x • If the polynomial g(x) has no multiple 

|k| - N K 

null-manifolds in <Cn, there wil l exist vec to r s a 6 C n such that on the 

hyperplane a + I R N the null-manifolds of g(x) are s imple and of d imension 

at m o s t n -2 . F o r such a vec to r the function ^ ^ ^ is loca l ly integrable 

for x € I R N and its behavior at infinity allows one to prove that it is 

identifiable with a t race in elementary ca se . Hence again ^G(-a) g ( x ^ a ^ ) * 

gives us the des i red quas i - inverse which is an e lementary solution for 

the differential opera tor . 

As i l lustration let us take the case of two space var iables with f = - A Ó Q , 

2 2 

g(x) = x 1 + x^ . Then l / g ( x ) is not loca l ly integrable around the or ig in . 

However , if we take the vec to r a =(ia^ ,0) with â  f 0, â  real , then 
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2 2 2 g(x + a) = (xj + ia^) + x^ . The nul l -space of this polynomial on IR is 

the couple of single points x^ ;= 0, x^ = ± and the function l / g ( x + a) 

is a t r a c e . Taking (pt " a ) g ( x * + a ) ) ^ w e 0 ^ t a i n a n e lementary solution 

for the Laplacian. However , it wil l be a different e lementary solution 

for â  > 0 and for â  < 0. 

§ 8 . General opera tors and differential opera tors on the t race space GY. 

Most of the applications of t races to differential opera tors w e r e 

investigated by M . S. Baouendi and the reader wil l find them in the text 

of his l ec ture . We will l imit ourse lves here to some general 

developments which wil l not be found in Baouendi 1 s text. We wil l start by 

a general setting. 

Let A be a l inear operator in GY defined on some subspace B of 

GY. Since the mapping u~*u(x, t) for any fixed t€ (C+ is the continuous 

i s o m o r p h i s m ©(t) whose i n v e r s e can be denoted by <B(-t) r for any regular 

t race v € (B(t)(B) we can define the opera tor 

(1) A t v =(B(t) A(B(-t)v. 

Obviously 

( l f ) If v =(B(t)u then A t v = ( A u f ( x , t ) . 

It fol lows that a solution u € GY of the equation Au = v , v € GY is obtainable 

by solving the equation A^u^ = v^ for t€ (C .̂ where v^ is the regular t race 

(B(t)v and u t is a regular t race u^(x) satisfying the equation. 

A x u t ( x ) =lt u t ( x ) • 

Hence the general p rob lem of solvabil i ty of the equation Au = v in t r aces 

reduces to a p rob lem where the given data and the requi red solutions are regular 

t r a c e s , hence entire functions in x. In the case of differential opera tors 
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A with polynomial coefficients,, A t turns out to be a lso a differential 

operator with polynomial coefficients of specia l type and for the solution 

of the equation for u^ the Cauchy-Kowalewski type theorems can be 

applied. This was one of the main tools used by Baouendi to prove that 

certain standard differential operators A for which the equation 

Au = v is not in general solvable in distributions (or hyperfunctions) 

are solvable in t r aces . 

For specia l opera tors A we can give A t in a m o r e concre te 

fo rm than (1). To simplify we wil l r es t r i c t our opera tors A m o r e than 

s t r ic t ly needed and we wil l assume that 

(2) Au = g(f * u) 

where f is a convolutor and g is a mul t ip l ier . H e n c e , A: GY~**GY. 

Before we continue we wil l give a proposi t ion which belongs to the general 

theory of convolutions and follows immedia te ly f rom the definition of 

convolutabili ty. 

Propos i t ion 1. If u and v are convolutable then so is u and v(x , t) for any  

fixed t€<cjj_, where v(x , t) is cons idered as the regular t race (B(t)v. Fur thermore 

(3) ( u * v f (x , t ) = ( u * <B(t)v)(x). 

Using Four ie r t ransforms and Propos i t ion 1 we can wri te 

(An)*'1 =frX* ( f * u ^ - 1 

(f * u)~(x, t) = (f * CB(t)u)(x) 
n/2 2 

(f * u )^ - U (x , t )= ( 2 T l ) " / ? e " X / 4 t ( ( £ • (B(l/4t)u)(x/-2ti)), 
( 2 t ) ' -n/2 2 

É-1*(f* u/* V ( x , t ) = ^ U f ^ e " X / 4 t ( ( f * <B(l/4t)u)(x/2ti))] 
( 2 t ) n ' * 

To this formula we apply the Four ie r t ransform. To apply it conveniently 

we change in the formula the var iables x into y and obtain after a few 
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cancellat ions 

( A u f (x, t) = e " x 2 / 4 t X ( y ) * [ e - ^ f f * <B(t)u)(2tiy))] } (x /Z t i ) . 

It follows that 

(4) A t v ( x ) = e " X / 4 t ^ " 1 ( y ) * [ e - t y 2 ( ( f „ v ) ( 2 t i y ) ) ] } ( x / 2 t i ) . 

A further s implif icat ion happens when the mult ipl ier g is a polynomial . 

It is enough to check it in case when g(x) = x | ^ , t = (k^ , • • • »^n)» when 

^ - l = i 1^ I D " ^ . It is immediate ly seen that 

2 2 
i - | - < V [ e - t y w ( y ) ] = e - t y G ^ w ( y ) 

where G' is a differential operator in y with coeff icients which are 
y 

-Ml I 
polynomials in y and t with principal part i 1 'D and if the coeff icients of 
G' are developed in monomia ls in y , y | m , then each of these monomia l s 

^ I ml wil l have for coeff ic ient a polynomial in t d ivis ible by t' . Hence 

when we rep lace the variable y by x/2ti we obtain an operator 

again with polynomial coeff icients in x and t whose principal part wi l l 

\l I I 
be (2t)' ' D and we obtain the formula x x 

(5) A t v ( x ) = G ^ ( ( f * v ) ( x ) ) , for Au = x | ^ ( f * u ) . 

If in addition, f = D 6^ then x 0 

(6) A v(x) = G ^ D ^ v(x) for Au = x f1 u. 

In conc lus ion , for a differential opera tor with polynomial coeff ic ients 

(7) A = E P k ( x ) D k 

|k| = m 
we cons ider the o rde r of . Hence , we can wri te 

p k ( x , = , ,5 p k , t x i " -
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We obtain for the operator (7) the formula: 

(8) A v(x) = E E p G ^ D * v(x) 
1 |k|*m |t|^mk

 k f* X X 

The maximum possible order of this operator is N = max(|k| + m, ) # 

k K 

This maximum possible order will be achieved unless there are cancellations 
among the relevant coefficients p^ ̂  and if it is achieved the principal 
part of A^ is given by 
(9) L E P k . (21)1*1 D* + i 1. 

|k|£m |i| =N-|k| M x ' 
In this case the coefficients of principal part are independent of x and this is 
a basic property of the operator A^ which allowed Baouendi to attain his 
results. 

Remark 1. It should be noticed that for differential operators with 
polynomial coefficients, Baouendi constructs the operator A^ by another 
method (vide the text of his lecture). 

Remark 2. A very plausible conjecture suggested by the results of 
Baouendi is that we have always solvability for the equation Au = v for a 
differential operator A with polynomial coefficients if the expression (9) 
doesn't vanish identically, i. e. there are no linear homogeneous relations 
between the relevant coefficients p^ ̂  . The solvability, however, would 
be available only in R-traces if R is the largest radius of a circle B2(R) 

JR. 

which does not contain a common zero of the coefficients in the differential 
operator (9)(the coefficients being polynomials in t). 

It is interesting to notice that by Hormander's results, for solvability 
in distributions some relations between the coefficients are necessary, hence, 
as a general rule, there is no solvability in distributions. In contradistinction, if 
U Here pK£ =0 if |!| > m k . 
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the above mentioned conjecture is valid,as a rule, except when certain relations 

hold, there is solvabil i ty in t r aces . 

Remark 3. When the hypothesis of the conjecture of the preceding 

remark does not hold, there are counter -examples showing that there 

might be no solvabil i ty in t r aces . The s imples t such example was suggested 

by R. D. Moyer and is the following: We take two space var iables x^ and x^ 

and cons ider the operator A = x 9 § — - x l S — . One checks immedia te ly that 
u> 0 1 O X ^ 

A t = A , hence, there cannot be general solvabil i ty for the equation (A^u) (x, t) = 

v(x, t) s ince it would require that v (0 , t) = 0 . 

§9» Final remarks and p rob l ems . 

The development of the theory of t races started quite recent ly and 

therefore there are plenty of bas ic p rob lems which ar ise naturally in 

connection with this theory which were not settled as yet. Without a doubt 

there are many of these p rob lems which could be easi ly solved but the 

solution has not been found yet because of lack of t ime. There are a lso 

s o m e which s e e m to be rather difficult. One such was stated at the end 

of §4 . In the present sect ion we wil l give a few remarks concerning 

p rob lems which are connected with further developments of the theory 

and its appl icat ions. 

Remark 1. Symbol ic Integrals . The symbo l i c integrals f o r m 

an essential tool in the development of the theory of t r aces . For instance, 

in defining the sca la r product between GY and GU* contained in GY or 

in the definition of convolutabili ty and in severa l other ins tances . It i s , 

however , to be not iced that the symbo l i c integral is constructed spec i f ica l ly 

for the purpose of studying analytic solutions of the heat equation ^ = Au . 
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It is quite evident that by a linear change of variables x we could develop 

a comple te ly s imi lar and parallel theory pertaining to the equation | ~ aA^u 

where A^ is any homogeneous ell iptic differential operator of second 

o rde r with constant coeff ic ients . However , for the application to such 

an equation we would need to introduce the symbol i c integrals in a changed 

fo rm, essential ly by replacing the mean values over spheres ( compare 

N. P . , Ch. I, §5) by mean values over cor responding e l l ipso ids . 

Another aspect of the S-integrals is the nature of the uniformity 

conditions which are rather res t r i c t ive . One may ask if there are no 

weaker conditions which would still assure the bas ic proper t ies of the 

S-integrals which w e r e used in our preceding developments . The weakening 

of uniformity conditions would lead to a l a rger c lass of convolutable t r a c e s . 

However , a heuris t ic argument to show that our definition is the right one 

l ies in the fact that Baouendi who introduces the convolutors without the 

symbo l i c integrals** obtains the same c lass of t races as we do . 

Remark 2. Quasi- inversion of convolu tors . In §7 we developped a 

method for constructing effectively a quas i - inverse f* "* for a convolutor f. 

It required that the mult ipl ier g(x) = f have the proper ty that for some c o m 

plex vec to r a, the function > \ — r be identifiable with a t r ace . The method, 
g(x + a) 

however , could be applied a lso if for some a € <Cn, , * • — r is a distribution 
g(x + a) 

identifiable with a t race in e lementary case (the same sor t of argument as 

in §7 , by using r emark 2 of § 5 instead of T h e o r e m V ) . 

** It is done by cons ider ing the operator u * cp with u a t race and cp 

(which is an e lementary convolut ion) . Thus u is cal led a convolutor if 

this operator defined on ficGV is continuous in the topology of GY, hence 

extendable by continuity to the whole of GY. 
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A s imple example where this idea can be applied would be the case of 

I B 

àx" + ^ where A is a differential operator with constant coeff icients in 
1 n 

all the var iables excluding x n . We wish to find the quas i - inverse 

of f * f. We note that (f * f ) A = g 2 ( x ) , g(x) = ? = ( X r + A) where A is a 

polynomial independent of x . If for some a € <Cn, the function , — r  7 n » g(x + a) 

is a t race in e lementary case then ~ * = ^ 7—~—r- which is a 
Z, , . o x g(x + a) 

g (x + a) n & x ' 
distribution identifiable with a t race in e lementary c a s e . We don't know 

how large is the c lass of differential opera tors with constant coeff icients to which this 

p rocedure would apply. 

Remark 3. Differential opera tors with general coef f ic ien ts . In § 8 we 

cons idered mos t ly differential opera tors with polynomial coef f ic ien ts . What 

about m o r e general coeff ic ients? Let us wri te in general 

A = £ a k D x ' a k € G V ' 
I k| = m 

By T h e o r e m I, § 6 each a .̂ is developable into a canonical s e r i e s of 

Hermite po lynomia l s , hence E i ^ i s developable into a canonical s e r i e s of 

differential opera tors with constant coeff icients and we can thus apply 

formulas 4 and 5 f rom § 8 to obtain (at least formal ly) the operator A^ 

in fo rm of a dfiferential operator of infinite o rde r .with polynomial coef f ic ien ts . 

It turns out, the re fore , that to study differential opera tors with arbi t rary 

coeff ic ients in the theory of t races you have to cons ider differential p rob lems 

of infinite o rde r with polynomial coeff icients in entire functions of Laplacian 

o rde r Z and finite type. 

Remark 4 . The non-solvabi l i ty c a s e . Assuming that the conjecture 

of Remark Z , § 8 , holds we know that the non-solvabi l i ty for differential 

opera tors with polynomial coeff icients happens only when certain relat ions 
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between the coefficients of the operator hold. By a suitable linear change 

of variables x, however , we can obtain a new operator where the relation 

will not hold anymore so that there wil l be solvabil i ty in t r a c e s . However , 

if we go back by inverse transformations of the var iables to the original 

operator we wil l rea l ize that the solution,instead of being a t race relative to 

the heat equation, b e c o m e s a A-^-trace relat ive to the corresponding equation 

= A ^ u . It is c l ea r , therefore , that we could expect general solvabil i ty 

for all opera tors A in question if we could fo rm spaces of " s u p e r - t r a c e s " 

which wi l l be sums of t races relative to different opera tors A^ # 

Let us see , in case of two opera tors A^ and A^ > what is involvedin this idea. 

If we construct the t race-spaces G Y ^ and G Y ^ we not ice that & 

belongs to both and is dense in both. This determines an identification 

mapping J between & as part of G Y ^ and $ as part of G Y ^ . We 

assume that this mapping is c losable in topologies of the two spaces . ** 

We p r o c e e d then as desc r ibed at the beginning of §2 and obtain the space 

( G Y ( 1 ) + G Y ( 2 ) ) / G ( - J ) as the sum of the spaces G Y ( 1 ) + G Y ( 2 ) . This 

p rocedure can be extended to any number of opera tors A^ . It is eas i ly 

shown that for every posi t ive integer m there exists a posi t ive integer N m 

and opera tors Aj , j=l , 2, . . . , N m such that for every differential operator 

of o rder = m with polynomial coefficients of o rder ^ m the equation Au = v is 

solvable in for every v € H G Y ( j ) . We can als o choos e an infinite s equence of 

opera tors A. so that for every differential opera tor with polynomial coeff ic ients , 
J 0 0 (i) °° (i) the equation is solvable when v G H GY J and with solution u € l^GY J . 

Remark 5. Uniqueness of solutions The equations Au = v we w e r e 

consider ing before cannot have unique solutions s ince there exist n o n - z e r o solutions 

It is not proved as yet that this assumption ho lds . 
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of the homogeneous equations. In order to have uniqueness we have in the 

usual theory to impose on the solutions certain boundary condit ions, 

i . e . , conditions at infinity. We cannot d i rec t ly define conditions at 

infinity for t races u. We may do it by imposing on each sect ion u(x, t) 

boundary conditions in the var iables x, the conditions depending poss ib ly 

on t so as to assure the uniqueness of the solution. 

There is no c lear way of trying to use t races on a bounded domain 

in TRn for two reasons: 1? As mentioned in Remark 3, §5 , we cannot 

use for general t races the method of local iza t ion. 2? If we cons ide red 

t races of solutions in the space GSV6(E x <L+) where E is a domain in 

TRn and E is the harmonici ty ce l l of E , (see N. P . , Ch. II, §1, Th.III , and Ch III, § 1), 

we would notice that a lmost all the tools which we used in investigating the t r a ce s , 

in part icular , the t ransformations (a) —(£) of P . N . , Ch. Il l , §1 wi l l not 
~ i 

w o r k here s ince they wil l not p rese rve , in general , the domain E X . 

The re fo re , it is a comple te ly open question how to use t r aces in 

the treatment of boundary value p rob lems on bounded domains whe re , in 

the usual theor ies , the m o s t natural uniqueness theorems o c c u r . 
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