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ALMOST HOMOGENEOUS SPACES 
by 

Ernst A. Run 

1. Introduction 

Homogeneous spaces serve as models in the study of general riemannian mani­
folds. It is natural to start with manifolds whose local structure does not differ 
much from that of one of the models. For a general account of this point of view we 
refer to Cheeger and Ebin [2] , Buser and Karcher [l] , and, for a very brief survey 
of recent results, to Hirzebruch [ 4 ] . The purpose of this paper is first to intro­
duce the notion of almost homogeneous space, and second to give a new proof of the 
theorem of Gromov [3] and Ruh [9] on almost flat manifolds. 

Let M = G/K be a homogeneous space and 03 : TG •> (J the Maurer-Cartan form 
of the Lie group G . In order to compare a general manifold M with M i t is 
natural to assume that M , exactly as M , is the base space of a principal 
K-bundle P ->• M . The role of 03 in the model will be played by a Cartan connection 
03 : TP -*• cj . M will be called almost homogeneous, see Definition 3 of section 2, if 
the curvature 0, = d03+[03,03] is suitably small. The motivation is the Maurer-Cartan 
equation 0. = O . 

There are several advantages in working with Cartan connections instead of 
connections in the usual sense. One is that Cartan connections make i t easy to treat 
a large number of comparison theorems simultaneously, see [7] . Another advantage is 
that, because the definition of curvature is relative to a model space i t can be 
changed without a change in the connection form. This gives us a better chance for 
constructing a connection with vanishing curvature, often the main task of a proof. 
In view of a result of Kobayashi [5] , the restriction to Cartan connections is not 
unduly severe. [5, Th 2 ] , at least for weakly reductive homogeneous spaces as 
models, shows how to convert a given connection into a Cartan connection. 

Whenever the model space has non-trivial deformations, the notion of Cartan 
connections is extremly useful. 
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2. Definitions and results 

Let G denote a Lie group with Lie algebra oj , K C G a subgroup, and 
P ->• M a principal bundle with structure group K . In addition, assume that the 
dimensions of G and P coincide. 

Definition 1. A oj-valued 1-form 00 : TP •+ $J is called a Cartan connection 
form of type (G,K) if the following assertions hold. 

(i) 03 (A*) = A for all A £. ̂ k, , where ^ is the Lie algebra of K and A* is 
the fundamental vector field on P defined by the action of expt A . 

(ii) R̂oo = ad (a )̂03 for all a € K , where is the action (from the right) 
of a on P . 

(iii) 0)(X) = 0 for X € TP implies X = O . 

Definition 2. Let 03 denote a Cartan connection (form). The 2-form 
Q = doa+[o3,oj] on P is called the Cartan curvature (form) of 0) . Here, the value 
of [00,03] on a pair of tangent vectors (X,Y) is equal to [03 (X) ,03 (Y) ] and [ , ] 
is the Lie bracket of . 

If M = G/K is a homogeneous space, then the Maurer-Cartan form 03 is a 
Cartan connection of type (G,K) with vanishing curvature. {9, = O is the Maurer-
Cartan equation.) The following converse is well known: If the Cartan curvature of 
a Cartan connection 03 on P vanishes, then 03 defines a locally homogeneous 
structure on M = P/K . This is the motivation for the next definition. 

Let eg denote a Lie algebra with scalar product < , > normalized such that 
the Lie bracket [ , ] : <3j x #j -+ Oj has operator norm bounded by 1 . By assertion 
(iii) of Definition 1, 00 defines a riemannian metric on P . Let d denote the 
diameter of P . 

Definition 3 . A compact manifold M is called e-almost homogeneous of type 
(G,K) if M is the base space of a principal K-bundle P with Cartan connection 
form 03 of type (G,K) whose Cartan curvature Q satisfies 

II ft II d < £ , 

where d is the diameter of P and || || is the L -̂norm. 
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This definition was inspired by Gromov's definition of almost flat manifolds. 
The first step of the proof in [9] shows that M C-almost flat implies M 
£' -almost homogeneous of type (]Rn,e) with e' = c(n)e"L//2 , c (n) a constant de­
pending on the dimension n of M only, and e the identity in the abelian 
group IR 

The main question now is whether for a suitably small e a given e-almost 
homogeneous structure can be deformed into a locally homogeneous one. This question 
has been settled in a number of cases. The easiest cases to deal with are manifolds 
modelled on riemannian symmetric spaces of compact type. Here is a somewhat more 
general result: 

Theorem 1. Let G denote a compact semi-simple Lie group, and K C G a_ 
closed subgroup. There exists £ > 0 such that any e-almost homogeneous space of  
type (G,K) is diffeomorphic to a locally homogeneous space of type (G,K) . 

This theorem is an immediate consequence of the theorems of [ 7 ] . As one 
expects in this case, i t is not necessary to scale with the diameter. The corre­
sponding result holds, with some exceptions, if G is semi-simple and non-compact 
and K is a maximal compact subgroup, compare [8] . It is unknown whether scaling is 
necessary in this case. In the above theorems the type of the resulting homogeneous 
space is known a priori. The next theorem, where G = nRn and K consists of the 
identity alone, treats a more delicate problem. 

Theorem 2. There exists £ = e(n) > O such that any £-almost homogeneous  
space of type (]Rn,e) is diffeomorphic to a locally homogeneous space of type 
(N,e) with N nilpotent. 

In view of the fact, proved in [9, step l ] , that e-flat implies e1-almost 
homogeneous of type (nRn,e) , Theorem 2 implies the well known theorem of Gromov 

3] on almost flat manifolds in the stronger version proved in [9 ] . The purpose of 
the above formulation is to suggest that both Theorem 1 and Theorem 2 may be special 
cases of a more general result. It is not known what the obstruction is for the de­
formation of an almost homogeneous structure to a locally homogeneous one. Surpris­
ingly, no counter example seems to be known if we don't insist in fixing the type 
of the resulting locally homogeneous space. 

287 



E. A. RUH 

3. Proof of Theorem 2 

For the proof i t is convenient to generalize the concept of Cartan connection. 
Instead of assuming that the connection form 00 is Lie algebra valued we only 
assume that its values lie in a vector space endowed with a skew symmetric product 
[ , ] : VX V -> V , i.e. , [ , ] need not satisfy the Jacobi identity. Except for 
this change, the definition of the generalized Cartan curvature is the same as Defi­
nition 2. It is important to note that vanishing generalized Cartan curvature im­
plies the Jacobi identity of the skew product [ , ] .To prove this let X and Y 
be vector fields on P with 00 (X) and 00 (Y) constant. 
ft(X,Y) = X0)(Y) - Y00 (X) - 00 ([X,Y]) + [oo (X) ,00 (Y)"J , and since Xoo(Y) = Yoo(X) =0 , 
9, = O implies that oo is an isomorphism of the Lie algebra of constant vector 
fields with the vector space V endowed with the skew product [ , ] . Therefore, 
any generalized flat Cartan connection is a flat Cartan connection in the strict 
sense. 

For convenience we will normalize the diameter d of P to d = 1 . In order 
not to obscure the main lines of the proof, we assume a bound not only on ft but 
also on some of its derivatives. The assumption 

(1) II fill, _ < A -
z ,q 

where || || denotes the Sobolev norm, see definition (10) , involving up to Z, q 
second derivatives measured in L̂  and q large enough to imply the Sobolev in­
equality 

(2) ||n||lf„ < c||n||2fq 

is convenient. This can be achieved for any A > O by smoothing with an appropriate 
kernel while choosing e of Theorem 2 sufficiently small. 

The proof consists of constructing a sequence of generalized Cartan con­
nections converging to a flat Cartan connection. As is well known, a flat Cartan 
connection defines a locally homogeneous structure on the base manifold M . First 
some preparations. 

Let oo : TP -> 3RU denote a generalized Cartan connection and 
[ , ] : IRn x ]Rn -> 3Rn a skew product. By Definition 2, assertion (iii) , 00 is non-
degenerate and defines a riemannian metric on P . Let {x_̂ } denote the basis of 
orthonormal vector fields mapped by oo onto the standard basis {e_̂ } . Let 
3J* = 31 (X. , . . . ,X ) denote the coordinate functions of the p-form 3 = ^ B" .̂ • 
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We define 
P 

(3) d'3(XQ X ) = I (-1)DX 3(XQ X X ) , 
j=o 
n 

(4) <5'3(x9,...,x ) = I X.3(X. ,X9,...,X ) , and 
Z p i i z p 

(5) A,3(X1,...,X?) = A 3^ , 
_A2 

where A is the Laplace operator on functions (A = —— on 3R ) . In addition, we 

will need the average 3 of a differential form 3 = 5! £lej_ defined by 

<6) e(xi V = £ f i . . . P ' 

where 3 ^ is the average of the corresponding coordinate function over the 
manifold P . 

In the following iteration scheme the vector fields will change in 
each step. Let O)1 , [ , ] 1 , and 9,'L denote connection form, skew product and 
curvature form of the i*"*1 step. We define 

(7) 03° = 03 , 

with 03 the Cartan connection form of Theorem 2, 

(8) [ , J1 = d03i , 

the average of the exterior form do}1 according to (6) , and 

(9) 03L+1 = 031 + 6'3 , 

where 3 is the unique solution of A'3 = with 3 = 0 . (By definition, Q,1' 
has average zero.) 

To establish convergence to a flat Cartan connection we need the following 
lemmas. First we define the Sobolev norm. Let exp;T^P —»• P denote the exponential 
map. 

(10) || 3 |! = sup (/ I | ^ - 3 ^ (exp(y))|qdy)1/q , 
xt P,i,j1< j2.. . j y =o ЭxЦ Jl***Jp 

where B is a ball of radius 1 and center O € T P , and , in standard 
dX 

multi index notation, is a derivative of order |y| . 
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Lemma 1 . For || [ , ]""" || and || Î 1 || sufficiently small, there exists c1 
z, q 1 "2,q 

such that 
( ID IUi+1-w\q < "Mkt, 

Proof. || [ I^W and || ^1 || sufficiently small, the Ricci curvature of 
the metric of P induced by a)x has norm smaller than 4(n-1) / and an estimate 
of Li and Yau [6J on the first eigenvalue of the Laplace operator yields an estimate 
for the inverse in of the Laplacian on functions which are perpendicular to 
constants. By (8) the components of Sw!1 are perpendicular to constants and we can 
apply this estimate to obtain || B ||Q ^ < c II ^ llQ 2 * An interi°r regularity estimate 
for the Laplacian implies 

(12) Н И , „ < I I " 1 Н о „ 

and Lemma 1 is proved. 

Lemma 2. Let || [ , + || ^ ||2 ^ < 1 . There exists such that 

to) l l a - n | l l f q < o2(| | [ , I 1 ! ! + \ \ ^ \ \ 2 i q ) \ \ ^ \ \ 2 i q • 

Proof. Define (f)̂ . by [x_.,Xk] = £ ^j^g ' where [Xj'X]J is the vector 
field bracket of the vector fields mapped under GO1 to e_. and ê . of the 
standard basis in ]Rn . Let <J> f denote the average of §s over P . By (8),  jk . 
{cj)̂ } is the coordinate expression of [ , ] . The Jacobi equation for the vector 
fields X.,X ,X0 implies 3 K 36 

(14) Х,ф£. + Х>Ф̂  + Х.ф* = - 1«Ф*„Ф* + Ф,,Ф" + Ф* Ф?> -

Note that (j)^ - (j)̂ ^ is the coordinate expression for Q and, because Xĵ k̂  = °' 
the left hand side of 114) is the coordinate expression for d'Q. . Substitute 
(f) = (<j>-(|>) + (j) into (14) and note that except for the term 

(15) \(фа• ф u + фа ф ° + ф° ф u ) 
¿'Vis f̂cVks MkyW 

the right hand side of (14) satisfies inequality (13) . Because (15) by definition 
is constant, i t suffices to estimate the global scalar product of terms of the form 
Xf , where X is one of the vector fields {x_.} and f is a function on Py with 
the constant 1 . Let 0 denote the volume form. We have 

J(xf)a = Jx(fa) - Jf div xa = - Jf div xa = - /(f-f~)div xa . 
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Now, div X , for X = X • , can be estimated in terms of || [ , ] 11| + || ft1 || , and J Z, q 
the substitution f = (f)̂  yields Lemma 2. 

Lemma 3. For || [ , ] 1|| and || || sufficiently small, there exists 
z, q 

c such that 
(16) l l « i + 1 ! ! 2 , q < = 3 d l [ - i V l l o ^ l l o 1 ! ! , , , 

Proof. Let L denote half the right hand side of (16) . First we claim 

(17) l l ^ i + 1 U 2 , q < l l < f c > i + 1 - [ , }%rq < «M-e + L . 

The first inequality holds because exchanging the average d e c = [ , ]̂~+̂  in 
the definition of for [,]"*" can only increase the norm. To obtain the 
second inequality we utilize (12) and compute the differences d-d1 and 
A' - (d'S'+S'd1) respectively. A routine computation shows that (12) implies 

(18) II A'S'd'all < L o,q 

The reason for the gain of one derivative in this inequality is that d'd1 and 
5'5' are operators of order one only. To finish the proof we observe that the 
scalar product of the coordinates of S'd'ft with the constant 1 is bounded by L . 
The argument is the same as in the proof of Lemma 2. On the other hand, as shown in 
the proof of Lemma 1, the inverse of A1 on the space of forms with average zero 
is bounded. Therefore, (17) and (18) together with an interior regularity estimate 
for the Laplacian prove Lemma 3. 

In the conclusion of the proof of Theorem 2 we proceed as if the norms would 
not depend on the iteration step. The following estimates show that a suitable 
curvature bound A in (1) implies that the change is small and can be disregarded. 

Let M < 1 denote a bound which is small in the sense of Lemmas 1 and 3. The 
next goal is to prove that a suitable choice of A implies 

(19) || [ , n i + | |^ | |2 < min(M, - A, 

for all i €. 3N . Let k € IN be such that (19) holds for all i < k . Lemmas 1 and 
3 imply 

(20) | | ^ k | L < d/2)kA , || 0)k-0)°|l < 2cA , z, q z, q 1 

and because of (8), 
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(2D || [ , ]k | |+ l l « k H 2 # q < 4ctA . 

Therefore, a suitable choice of A implies that (19) holds for i = k and by in­
duction for all i € 3N . 

Lemma 1 grants the existence of lim oo , (20) shows that the limit is non-
degenerate, and again by (20), is a Cartan connection with vanishing curvature. This 
proves that the manifold of Theorem 2 is locally homogeneous of type (G,e) . To 
show that G is nilpotent we appeal, as in [9, p. 13] , to a theorem of Zassenhaus 
and Kazdan-Margulis. 
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