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1.Introduction. Synopsis 

The solution of the Nonlinear Partial Differential Equation Pro- 
plems arising from Physics and Continuum Mechanics has always been an 
important source of challenging problems for both pure and applied 
mathematicians. Since the second world war the numerical solution of 
these problems has motivated the design of computers oriented to scien­
tific applications. Despite the impressing progresses of these compu­
ting machines (measured in terms of speed, memory, programming faci­
lities, reliability, size, cost,...) the advanced applied problems to 
De solved numerically have always required to work very close to 
the limit of the possibilities of these computers (and in fact beyond). 
This situation has motivated an important effort for developping ef­
ficient numerical methods for solving the above applied problems. In 
this direction, an important concept is the concept of decomposition, 
the general principle of decomposition methods being to split the 
original problem in problems of smaller size and/or easier to solve, 
and then coordinate the local results. The coordination can be done 
via a least squares fitting (see Sees. 1 and 2) , or by Lagrange mul-
tipliers (see Sees. 4 and 5). Domain decomposition methods (such as 
the Schwarz alternating method), or Alternating Direction methods 
founded on operator splitting provide other examples of decomposition 
methods. For very complicated problems, we may have to use combina­
tions of the above methods. 
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The main goal of this paper is to describe the numerical treat­
ment of large highly nonlinear two or three dimensional boundary value 
problems (originating from Nonlinear Mechanics), by quadratic minimiza­
tion techniques. These techniques have been applied to the solution of 
problems of practical interest and their principles are discussed in 
[6] and [7] . In all the different situations where these techniques 
have been applied, the methodology remains the same and is organized 
as follows : 
(i) Derive a variational formulation of the original boundary value 

problem, and approximate it by Galerkin methods ; 
(ii)Transform this variational formulation into a quadratic minimiza­

tion problem (least squares methods) or into a sequence of quadra­
tic minimization problems (augmented lagrangian decomposition) ; 

(iii)Solve each quadratic minimization problem by either a direct me­
thod or a conjugate gradient algorithm with preconditioning, the 
preconditioning matrix being sparse, positive definite, and fixed 
once and for all in the iterative process. 

In this paper we will illustrate the above methodology by the nu­
merical treatment of two classes of nonlinear problems : Firstly, the 
description of least squares solution methods and their application to 
the solution of the unsteady Navier-Stokes equations for incompressi- 
le viscous fluids, secondly the description of augmented lagrangian 
decomposition techniques and their applications to the solution of 
equilibrium problems in finite elasticity. 

2. Least squares solution of a nonlinear model problem 
In order to introduce the techniques which lead to the solution 

of nonlinear boundary value problems by least squares and conjugate 
gradient methods, we shall consider, first, the solution of a simple 
nonlinear Dirichlet problem. In section 3, these methods will then be 
applied to the solution of the unsteady Navier-Stokes equations for 
incompressible viscous fluids. 

2.1. Formulation of the model problem 
Let Çl c ]RN be a bounded domain with a smooth boundary r = dQ ; 

let T be a nonlinear operator from V = Ĥ (fi) to V* = H 1(fi) , V* being 
the topological dual space of V. Standard notations are used for 
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Sobolev spaces (cf. C19J) ; in particular, (ft) denotes the space of 
those real valued functions defined over ft, square-integrable, with squa­
re integrable first order derivatives and zero trace on r . 

The nonlinear Dirichlet model problem is then 

(2.1) 
Find u £ Hq(̂ ) such that 

-Au-T(u) = 0 in H"1(ft) . 

We observe that u e Ĥ (ft) implies that the trace of u on r vanishes ; 
(2.1) is therefore a Dirichlet problem. We do not discuss here the 
existence and uniqueness properties of the solution of (2.1) since we 
do not want to be very specific about operator T. 

2.2. H"1 least squares formulation of the model problem (2.1) 
Many least squares formulation of the above model problem can be 

proposed. Among them, a natural one, based on the norm which appears 
naturally in (2.1), consists to say that the solutions of (2.1) cancel 
the norm of Au+T(u) in H 1(ft) , and therefore minimize this norm over 
H¿(ft) The least squares formulation of (2.1) is then 

(2.2) Min 
V eEUÇl) 

Il Av + T(v) || -1 ' 

where the H (ft)-norm, || . || _ ,̂ is defined by duality, i.e. 

|| f || -1 = sup 
V eH f̂t) 

<f,v> , 

llvl H¿(ft) = 1 

where <.,.> denotes the duality pairing between H (ft) and (ft) , 
such that 

<f,v> fv dx Vf e IT (ft) , Vv e H* (fì) . 
ft 

Since the Laplace operator A is an isometry between Ĥ (ft) and H 1(ft) 
we can reformulate (2.2) as follows : 
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(2.3) Min 
v euhn) 

Il A 1 (Av + T(v) ) || 2 
Hjjj (fi) 

Taking into account the definition of the Hq(fi)-norm we introduce the 
function 5(v) , defined from v by 

(2.4) AC = Av + T(v) in H (fi), Ç e HI(fi) , 

with £ = ? (v) . Thus £( = £(v)) is obtained from v, via the solution 
of a linear Dirichlet problem whose variational formulation (equiva­
lent to (2.4)) is given by 

(2.5) Ç e Ĥ (fi) , 
fi 
V£.Vw dx = 

fi 
Vv.Vw dx-<T(v),w> Vw e H (̂fi). 

Using £(v) the minimization problem (2.2) can be written also as 
follows : 

(2.6) Min 
V £ H (fi) 

] 
2 

fi 
IVÇ(v)|2dx} 

with 5(v) solution of (2.4), (2.5). Using (2.6) we have obtained a  
minimization formulation of the initial problem (2.1) ; combining (2.6) 
to the conjugate gradient algorithm described in Sec. 2.3, below, the 
solution of (2.1) will be reduced to that of a sequence of linear pro­
blems associated to the Laplace operator A . 
We observe that (2.6) has the structure of an optimal control problem 
(see [20] ) where v is the control vector, £ the state vector, (2.5) 
the state equation, and where the functional J : Ĥ (fi) •> IR defined 
by 

J(v) 1 
2 fi 

IV£(v)\Zdx 

is the cost function. 

2.3. Conjugate gradient solution of the least squares problem (2.6) . 
Problem (2.6) is a minimization problem. For its solution we 

shall use a conjugate gradient algorithm. Due to its good performances, 
(cf. [22 3, [23j) , we have selected the Polak-Ribiere version of the con­
jugate gradient method, that is : 
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Step 0 : Initialization 

(2.7) u° £ H*(ft) given, 

compute then g° e (ft) as the solution of 

(2.8) -Ag°=J'(u°) in H_1(ft), 

and set 

(2.9) z° = g° . • 

m, j- ^ * . n n n , , n+1 n+1 n+1 . Then for n > 0, assuming u , g , z known, compute u , g , z by 

Step 1 : Descent 

/ -> i n, \ n+1 n , n (2.10) u = u - x z . n ' 

where Xn is the solution of the one-dimensional minimization problem 

(2.11) 
À e IR , n 

J(un- Xnz
n) < J(un~ ÀZn) VA e JR . 

Step 2 : Construction of the new descent direction  
Define g n + 1 e H*(ft) by 

(2.12) -Agn+1 = J '(u n + 1) in H"1(ft), 
and set 

(2.13) y n = | V gn- f l.V(gn+1-gn)dx/ j |V gn | 2dx , 
ft 

/ o i /i n n+1 n+1 . n m 

(2.14) z = g + y ^ z . • 
Go back to Step 1 with n = n+1. 

The two non trivial steps of algorithm (2.7)-(2.14) are : 
(i) The solution of the single variable minimization problem (2.11) ; 

the corresponding line search can be achieved by dichotomy or 
Fibonacci methods. Observe that each evaluation of J(v) for a given 
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argument v requires the solution of the linear Poisson problem 
(2.4), (2.5) to obtain the corresponding £ . 

(ii)The calculation of g n + 1 from u n + 1 which requires the solution of 
two linear Poisson problems, namely (2.4), (2.5) with v = u n + 1 , 
and (2.12) . 

Let us detail the calculation of g n + 1 . By construction of J we 
have 

<J ' (v) ,w> A$ 
fi 

(v).Vn(v,w)dx Vw e Hj!j(fì), 

with n(v,w) (=n) solution of 

n e Hq(fi) , A n = Aw + T'(v).w in H (fi) . 

After elimination of n we obtain 

<J'(v) ,w> = 
fi 
VUv).Vwdx-<T' (v) .w,Uv)> Vv,w £H:(Q) . 

Thus problem (2.12) reduces to the following linear variational 
(Poisson) problem 

(2.15) 
Find g n + 1 e (fi) such that Vw e H*(fi) , we have 

fi 
Vgn+1.Vwdx = 

fi 
vç n + 1 .Vwdx-<T"(un+1).w,Çn+1>, 

where Ç n + 1 is the solution of (2.4), (2.5) corresponding to v = u n + 1 . 

Remark 2.1. : As stopping criterion for the conjugate gradient algori-
th (2.7)-(2.l4) we shall use 

J(un) < e or ||gn|| HÌ(fi] 
< E 

where e is a reasonably small positive number. 

Remark 2.2. : It is clear from the above observations that an efficient  
Poisson solver is the basic tool for solving the model problem (2.1) 
by our conjugate gradient algorithm. Any size limitation for this al­
gorithm will come from a limitation on the Poisson solver. 

Remark 2.3. : The above methodology (possibly combined to arc length 
continuation methods ; cf. [8] ) extends easily to the solution of 
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many other nonlinear boundary value problems : Von Karman equations  
for thin clamped plates (cf. [24] ) , transonic flow problems (cf. [8], 
[ ]), etc... The choice of (2.1) as a model problem was only made for 
clarity reasons. In the next section we shall apply this methodology 
to the solution of the nonlinear elliptic system 

au - vAu + (u.V)u = f in ft , 
with u a vector valued function, defined a.e. on ft , with values in N 
IR . Such a nonlinear system is closely related to the solution of the 
time dependent Navier-Stokes equations by alternating direction methods. 

3. Application to the solution of the Navier-Stokes equations for in­
compressible viscous fluids. 

3.1. Formulation of the time dependent Navier-Stokes equations for  
incompressible viscous fluids. 
Let us consider a newtonian incompressible viscous fluid ; if ft 

and F denote the region of the flow (ft c 1RN, N=2 or 3 in practice) 
and its boundary, respectively, then this flow is governed by the 
Navier-Stokes equations which relate velocity and pressure inside the 
fluid to the external sources of motion (initial velocity, motion of 
the boundary, external forces, etc...) ; these equations are given by 

(3.1) 
du 
3t vAu + (u.V)u + Vp = f in Çl , 

V.u = 0 in fi (incompressibility condition). 

Above, u = ^ u j _ ^ - 1 denotes the flow velocity, p the hydrostatic pres­
sure , v the viscosity of the fluid, f the density of external forces. 
Moreover (u.V)u is a symbolic notation for the skewsymmetric quadratic 
vector term corresponding to the convection in equation (3.1), i.e. 

N 3u. N (u.V)u = I {u 
J=l j J 1 = 1 

To fully characterize the flow, initial and boundary conditions have 
to be imposed on u. In the case of the airfoil A of Figure 3.1, we 
typically have 
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(3.2) u(x,t) = 0 on 3A (adherence condition on the airfoil), 

(3.3) u(x,t) =uoo(t) at infinity, 

(3.4) u(x,0) = u (x) (initial condition). 

u 
-s, O O ЭА 

Figure 3.1. 
N 

For a flow in a bounded region ft of 3R , we may replace the boundary 
conditions (3.2), (3.3) by 
(3.5) u(x,t) = g(x,t) on r . 

where due to the incompressibility condition V.u = 0, the given func­
tion g must satisfy 

| g.n dT = 0 (n : unit vector normal to D . 
r 

In the above equations the main difficulties are 
(i) The nonlinear term (u.V)u in (3.1) ; 
(ii)The incompressibility condition V.u = 0. 

Using convenient alternating direction methods for the time dis­
cretization of the Navier-Stokes equations, we shall be able to decou­
ple these difficulties ; problem (3.1), (3.5), (3.4) will reduce then 
to a sequence of 
(a) Incompressible linear problems, 
(b) Compressible nonlinear problems to be solved by the least squares-

conjugate gradient methods of Sec. 2, that is via the solution of 
a sequence of strongly elliptic linear problems. 

All the resulting linear problems will be associated (via a sui­
table space discretization) to fixed matrices. Ad hoc algorithms can 
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then be deviced for their numerical solution, even for large size pro­
blems. At this stage multigrid methods (cf. [15]) or domain decomposi­
tion methods (cf. [ 5 ])(or a combination of both) become very attrac­
tive . 

3.2. Time discretization by alternating direction methods. 
For simplicity, we suppose from now on that 9, is bounded. Let 

At > 0 be a time discretization step. The alternating direction method 
that is found to be the most convenient computationaly, to discreti-
ze (3.1), (3.5), (3.4) is described just below : 

(3.6) Let u° = uQ ; 

then for n > 0, and starting from u11, we solve successively 
n+1/4 n 

~ ~~ o v A n+l/4^n n+1/4 
—Km "3 ~ + ! p 

(3.7) / = ? n + 1 / 4 + 1 A ? n " (un-?)un in fi , 
n n+1/4 n . n V .u / =0 in 0,, 
n+1/4 n+1/4 u = g on r , 
n+3/4_ n+1/4 

~ L t ' / 2 * Aun+3^4 + (u n + 3 / 4 .V)u n + 3 / 4 = 
( 3 - 8 ) \ fn+3/4- Vp n + 3/ 4 + f Au n + 1/ 4 in , 

n+3/4 n+3/4 
u = g on r , n+1 n+3/4 u -u 

n v . n+1, n n+1 -2 Au + Vp 
At/4 q\ ^ .n+1 i v . n+3/4 , n+3/4 n N n+3/4 . n (3.9) j f + -j Au / - (u ' .V)u / in 0, , 

V.un+1 = 0 in fi , 
n+1 n+1 

u = g on r 
The notation f-1 (x) and g-1 (x) denote f(x,jAt) and g(x,jAt), respective­
ly ; u-1 (x) is an approximation for u(x,jAt). 
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Remark 3.1. : Due to the symmetrization process that it involves, 
2 

scheme (3.7)-(3.9) has a truncation error of 0(|At| ). Although the 
linear step (3.7) and (3.9) are identical, suppressing one of them 
would not be adviseable : it would increase the truncation error with 
no real gain on the computational time, which is mainly devoted to the 
nonlinear step (3.8). 
Remark 3.2. : The decomposition of the operator - vAu between the 
right and left hand sides of equations (3.7), (3.8), (3.9) was done in 
order to involve the same linear operators in each step ; this strate­
gy results in quite substantial computer core memory savings. 
Remark 3.3. : We have introduced the alternating direction decomposi­
tion of (3.1) for the continuous problems, since their formalism is 
simpler. But, of course, the same decomposition would apply to any 
Galerkin approximation of the Navier-Stokes equations, obtained by 
finite element methods, for example (see [7, Chapter 7]) ; actually 
the combination of the above alternating direction methods with spec­
tral methods of approximation is under test at the moment (the cor­
responding results will be published elsewhere). 

Remark 3.4. : Related operator splitting methods for the Navier-Stokes 
equations are discussed in [1 ]. 

3.3. Least squares conjugate gradient solution of the nonlinear sub-
problems (3.8). 
At each full step of the alternating direction method (3.7)-(3.9) 

we have to solve a nonlinear elliptic problem of the following type 

(3.10) 
au - vAu + (u.V)u = f in ft , 

u = g on F. 

Once the Laplace operator of Sec. 2 has been replaced by the operator 
al - vA, applying to (3.10) the least squares methodology of Sec. 2 

yields the following minimization problem 

(3.11) Min 
Y£ Vg 

J(v) , 
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where 

(3.12) J(v) = 1 
2 ft 

(a|y(v) \z+ v|Vy(v) \ *} dx, 

and where y(v) (=y) is the only solution of 

(3.13) 
y e V i o 

ay - vAy = av - vAv + (v.V)v - f in V* ; 

the space V and the set V are defined by o g J 

VQ= (H^ft)), Vg= {v|v €(HX(ft))N, v = g on D 

respectively, and Vq is the topological dual space of VQ. 
Thus, the solution of subproblems (3.8), in the alternating di­

rection time discretization of the Navier-Stokes equations, reduces to 
the solution of the minimization problem (3.11) ; such a minimization 
can be achieved by conjugate gradient methods and particularly by a 
Polak-Ribière algorithm, like in Sec. 2. Compared to algorithm (2.7)-
(2.14) , - A will have to be replaced by al-vA ; in particular we 
should replace the calculation of g n + in (2.12) by 

(3.14) 

Find ç n+1 e V such that Vw £ V we have o ^ o 

ft 
{agn+1.w + vVgn+1.Vw} dx = 

ft 
r n+1 lay .w 

+ vVy .Vw} dx + 
Jft 

c n+1 t „x n+1, n+1 , n+1 „x -.j 
iy .(w.V)u + y . (u .V)w}dx 

where n+1 , n+lN  y = y (u ) . 
Each iteration of the conjugate gradient algorithm applied to the solu­
tion of (3.11) finally requires the solution of four linear systems as­
sociated to the operator al-vA , that is 
(i) One for computing y n + 1 (= y(un+ )) through (3.13)f 

(ii) One for computing g n + 1 through (3.14), 
(iii) Two to obtain the coefficients of the quartic polynomial 

x -> J (u11- Àwn) . 

In practice, the solution of the one-dimensional line search problem 
can be done very efficiently since it is equivalent to finding the 
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roots of a single variable cubic polynomial whose coefficients are 
known. The solution of each system associated to al-vA corresponds to 
the solution of N independent scalar Dirichlet problems associated to 
the same operator. The conjugate gradient algorithm appears then to 
be very efficient in this situation : usually three iterations suffice 

4 6 
to reduce the cost function by a factor of 10 to 10 . Therefore the 
whole solution of problem (3.8) by the techniques discussed in the pre­
sent section is not costly, nor for its implementation, neither for its 
computational running time. 
3.4. Solution of the guasi-Stokes problems (3.7) and (3.9). 

These linear equations, which appear at each full step of the 
alternating direction method (3.7)-(3.9), involve two unknowns (velo­
city and pressure) and are of the following type : 

(3.15) 
au - vAu + Vp = f in ft. 

V.u = 0 in ft , u = g on r . 

Many existing solvers can be used for this problem (once a suitable 
space approximation has been done) : they can be direct methods such 
as Gaussian elimination (via an LU factorization) , Cholesky factoriza­
tion if (3.15) is approximated by a Galerkin method in which the basis  
functions are also divergence free (exactly or approximately), proper­
ty which allows the elimination of p in (3.15) and yields a finite di­
mensional linear system whose matrix is symmetric and positive defini­
te (see [16] for more details). One can think also to other methods for 
solving (3.15) such as augmented lagrangian methods (closely related to 
the methods discussed in Sees. 4 and 5) ; decomposition methods inclu­
ding the solution of a boundary integral problem, related to the trace 
of p on T,can also be used (see, e.g. [7/ Chapter 7]) leading to quite 
efficient Stokes solvers. Actually we can solve (3.15) (or its discre­
te variants) by a conjugate gradient algorithm quite easy to implement 
since it reduces the solution of (3.15) to a sequence of scalar Dirich­
let problems for al-vA ; let detail this algorithm (we still suppose 

N 
that ft is bounded in M ). 

2 
We introduce first the space h c l (ft) by 

(3.16) h = {q|q e l2(ft) , 
ft q(x)dx = 0} 
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and then $ : H •+ H by 

(3.17) 
au - vAu = - Va in fi , ~q „q ^ 

uq = 0 on F , 

(3.18) jgq = V.u Vq e H 

It is easy to check that <£ is an automorphism from H onto itself, 
which is symmetric and H-elliptic (this last property meaning the 
existence of 3 > 0 such that 

I (Jiq)q dx > ¡3 || q|| % Vq e H) . 
fi L2(fi) 

We introduce now u e V as the solution of 
ô g 

(3.19) 
au - vAu = f in fi, ~o -o ~ ' 

•u = g on r 

Back to (3.17) we consider the unique pair {u,p} solution of (3.17) 
such that p e H ; we have then 

(3.20) 
a(u-uQ)- vA(u-uq) + Vp = 0 

u - u =0 on r , 

implying, from (3.15), (3.16) that 

4p = V.(u-uQ) , 

which reduces, since V.u = 0 to 
(3.21) </£p = -V.u . 

From the properties of i/fc it is tempting to solve (3.21) (and there­
fore (3.17)) by a conjugate gradient algorithm ; we first consider the 
abstract form of such an algorithm 

Step 0 : Initialization 

(3.22) p° e H is given arbitrarily (p° = 0 for example) 
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(3.23) g° = Jtp° + V.uq, 
(3.24) w° = g° . • 
Then for n > 0, with p n, gn, wn known, we obtain p n + 1 , g n + 1 , w n + 1 as 
follows : 
Step 1 : Descent ~  e— n„n,|2̂  

L" (fi) I g u 2 
( 3 * 2 5 ) pn = - a n n̂  

(<«w ,w ) L2 (fi) 
, _ _ x n+1 n r (3.26) p = P - Pnw 

Step 2 : New descent direction 
(3.27) g = g - pn /5w , 

l|gn+1ll 2

2 

(3.28) v - l <"> 
|g u 2 

L (fi) (3.29) w = g ^ n W * 
Do n = n+lf go back to (3.25). 

Actually since operator Jk is not known explicitely we should 
proceed as follows in practice : 
With p° as in (3.22), compute u° e by solving 

(3.30) 
au° -vAu° = f - Vp° in fi. 

o „ u = g on r, 

and set 
(3.31) g° = v.u°, 
(3.32) w° = g°. 

F o r n ^ 0, u n, p n , g11, wn being known solve 
ax11 - vA)(n = - Vwn in fi, 

(3.33) 
Xn € VQ (= (Hj(fi))N), 
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compute 

(3.34) Pn = 
i|gnll \ 

it (ft) 

ft' 
n n, V.x w dx 

and then 
/-i oirx n+1 n n 
(3.35) p = p - Prw , 
,-> n+l n n 
(3.36) u = u -Pnx , 
(3.37) g = g - PRV. X , 
(3.38) ^n = 

n+1 m 2 
q L2 (ft) 

l|gnll 2

2 

LZ (ft) 
(3.39) w = g +Y n w, 
do then n = n+1 and go back to (3.3 3) . 

Remark 3.5. : The costly part of the above conjugate gradient algorithm 
is the solution of the Dirichlet system (3.33) ; we observe however 
that the N components of x11 c a n ^ e computed independently (and pos­
sibly in parallel). 

Remark 3.6. : If we do not suppose that p° belongs to H we shall have 
convergence of {un,pn} to a limit {u,p} which is the unique solution 
of (3.17) such that 

j p dx = | p°dx . 
ft ft 

Remark 3.7. : For very large problems, when the finite element approxi­
mation of the Navier-Stokes equations involve several ten thousands of 
unknowns, it might be useful to split (3.13), (3.14), (3.33) into smal­
ler size problems of the same type, obtained by domain decomposition 
techniques (see [ 5 ] for more details). 

3.5. Numerical experiments. 
We illustrate the numerical techniques discussed in the above sec­

tions by presenting some results of numerical experiments where these 
techniques have been used to simulate several incompressible viscous 
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Re = 750 ; t = .0 
Figure 3.2 

Re = 7 50 ; t = .2 
Figure 3.3 
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Re = 750 ; t = .4 

Figure 3.4 

Re = 750 ; t = .6 

Figure 3.5 
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flows modelled by the Navier-Stokes equations. 
The experiment presented here concerns an unsteady flow around and 
inside a nozzle at high incidence (30 degrees) and at Reynolds number 
750 (the characteristic length being the distance between the nozzle 
walls).The finite element methods used to approximate the Navier-
Stokes equations in this experiment are discussed in [ , Chapter 7]. 
Figures 3.2 to 3.5 represent the streamlines at t=0, t=.2, t=.4, t=.6 
respectively, showing clearly the creation and motion of eddies of va­
rious scales, inside and behind the nozzle (for more results obtained 
by the methods in this paper see [7, Chapter 7], [ 5 ] , [13]). 

4. Decomposition Methods by Augmented Lagrangians. 
The main goal of this section is to give a brief account of solu­

tion methods for variational problems when some decomposition property 
holds ; introducing a convenient augmented lagrangian, we obtain solu­
tion methods taking full advantage of the special structure of the pro­
blem under consideration. We shall first consider in this section the 
solution by augmented lagrangians of a simple nonlinear model problem, 
before considering in Sec. 5 the application of these techniques to 
the solution of nonlinear three-dimensional problems in Finite Elasti­
city . 
4.1. Formulation of the model problem 2 

Let ft c IR be a bounded domain with a smooth boundary r = 3ft, 
and consider the following model problem (with 1 < p < +«>) : 

(4.1) 
-V.(IVu|p 2Vu) = f in ft. 
u = 0 on r 1 , 
I Vu|p~2Vu.n = g on r 2 ; 

in (4.1) we have t ± n t 2 = 0, 1̂  u v2 = r , dr > 0, 

Such problems, discussed in [14] appear for example in the study 
of Norton viscoplastic fluids flowing viscously in a cylindrical duct. 
Problem (4.1) is actually equivalent to the following problem of the 
Calculus of Variations : 

(4.2) 
Find u e V such that 

J(u) < J(v) Vv e V 
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where 
(4.3) V = {v|v eW 'Mfi) , w = 0 on r±} , 

(4.4) J(v) = 1 
P fi 

IVviP dx -
fi 

fvdx -
F2 

gvdr 

Observe now that the above functional J(.) can be naturally decomposed 
as follows : 

(4.5) 
J(v) = <̂ (Bv) + Ê(v) With Bv = Vv and 

2 ( G ) = A 
p 

fi 
|G|P dx, £(v) = -

fi 
fvdx -

r2 
gvdr 

We have therefore for (4.1), (4.2) the equivalent formulation 

(4.6) 
Find {u,F} £ W such that 

j(u,F) < j(v,G) V{v,G) £ W 

where the space W and the functional j(.) are defined (with 
fit = (Lp(fi))N) by 

(4.7) W = {{v,G} |v £ V, G £ H, G = Bv} , 

(4.8) j (v,G) = #(g) + y(v) , 

respectively. Problems (4.1), (4.2) and (4.6) are indeed equivalent 
but (4.8) has in some sense a simpler structure than (4.1), (4.2), des­
pite the fact it contains an extra variable. This is because the linear  
relation Bv-G = 0 can be efficiently treated by methods using simulta­
neously penalty and Lagrange multipliers, via an approximate augmented 
lagrangian (cf. [6]). 

4.2 An augmented lagrangian associated to (4.6). 
Let R be a strictly positive parameter ; we define then an augmen­

ted lagrangian from V x H x H* (H* = (Lp*) ; i + = 1) into ]R 
by 

(4.9) 
S£R(v,G,y) = e?(G) + ^(v) + i II Bv-G II Q ^ +| y . (Bv-G) dx 

= ì |G|Pdx- fvdx -j gvdr + |{||Vv-G|2+ y.(Vv-G)}dx, 

where ||g|| n 0 = ||g|| 9 9 VG £ (l/(fì)) . 
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Remark 4.1. : We have to suppose that p > 2 in (4.9) to have 
Vv-G e(L2(ft))2 V{v,G} e V x H ; however the algorithms obtained 
from the above ^ R behave quite well for p < 2, once (4.1) has been 
approximated, even by the most standard finite element methods (see 
[6],Ll4] for more details). • 

Back to (4.9) we consider the problem 
(4.10) Find {{u,F} ,A} saddle point of 25«. over {V x h} x h* , 
or, in other words. 

Find {{u,F},A}e{V x h} x h* such that 
(4.11) ofR(u,F,A) <2̂ (v,G,A) V{v,G>£ Vx H, 
(4.12) stR(u,F,A) >S (̂u,F,u) Vy e H* . 
Problems (4.10) and (4.6) are equivalent. Indeed, let {{u,F},X} 
be a solution of (4.10). From (4.12), we have F = Vu, necessarily 
which means that {u,F} e W. Then if we write (4.11) with {v,G} in 
W we obtain 

j(u,F) < j(v,G) V{v,G} £ W. 
which means precisely that {u,F} is a solution of (4.6). 
Conversely, if {u,F} is a solution of (4.6), by denoting 
x = (F) (= |F |P~2F) , one checks easily that {{u,F},A} is a solution o 
(4.10) . Observe that in this proof, the penalty term ||Bv-G|| 2 ^ 
plays no role. But its role is fundamental in accelerating the convex 
gence of the numerical algorithms used for the solution of the saddle 
point problem (4.10). 

4.3. An Uzawa algorithm for solving (4.10). 
In Sec. 4.2 we have replaced the original model problem (4.1) by 

the equivalent saddle-point formulation (4.10). A basic algorithm for 
the solution of this last problem combines an Uzawa algorithm for the 
solution of the saddle-point problem and a block relaxation algorithm 
for the solution of the minimization subproblems associated to the pr 
mal variable {v,G} . This leads to the following algorithm 

(4.13) {A0,u-1} e H*x V is given ; 
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then for n > 0, un 1 and \ n being known, we compute {un,Fn} by block 
relaxation, i.e. by setting 
/ a -. a \ n n-1 
(4.14) uq = u , 
and by computing sequentially u£ and f£ by solving 
(4.15) ^R(uk-l'?k'^n) " ^ r k - I ' ? ' ^ V5 £ H ; Fk e H' 

(4.16) ^R(uk'?k'^n) ' ^R(v,?k'~n) VV € V ;Uk £ V* 
Once {un,Fn} known, the Lagrange multiplier An is updated by 

(4.17) An + 1 = An + p Rz(Vun-Fn), p > 0, 

Rz being the Riesz mapping from H onto its dual space H* (i.e. 

Rz(G) = |G|P~2G VG e H). 
Remark 4.2. : Many variants of the above algorithm exists ; they are 
described in e.g., [6] . 

Remark 4.3. : In practice, once problem (4.1) has been approximated by 
a convenient finite element method, we should replace Rz by the Identi­
ty mapping and take p = R, since, as shown by numerical experiments, 
this value of p is then quasi-optimal. 

Remark 4.4. : It follows from [6] (see also [14] ) that if p > 2 (or 
for the finite dimensional problems approximating (4.1)) we have, for 
Rz replaced by 1̂  and p e ]0,2R[,the following convergence results for 
algorithm (4.13)-(4 .17) : 

lim {un,Fn} = {u,Vu} strongly in V x H, 

lim An = |Vu|p 2Vu weakly in H*. 

where u is the solution of (4.1). 

Remark 4.5. : It is interesting to further analyse the structure of 
subproblems (4.15) and (4.16) which appear at each full step of the 
Uzawa algorithm used for the solution of our model problem (formulated 
as the equivalent saddle-point problem (4.10)). First, (4.15) in which 
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the variable is G, does not involve spatial derivatives of G ; if a 
convenient discretization of H is used, it reduces (4.15) to a family 
of independent algebraic pointwise problems of the following type : 

(4.18) Min 
G elR2 {¿ |G|P + « |G-7u"H - An.G}. 

Solving problems like (4.18) is quite easy since |F^| is the solution 
of the one variable minimization problem 

(4.19) Min 
ze JR 

(i zp + | z2_ IrvuJ^ + xn|z} . 

Solving (4.19) by Newton's method is trivial ; then we obtain finally 
f£ from |f£| by 

f£ = 0 if RVuJJ_1 + Xn = 0 , 

and in general 

Il = & 
( R ! u k- i + ^П) 

l R v u k-l + *nl 
On the other hand, (4.16) is a global quadratic minimization problem 
given by 
(4.20) Min 

VeV 
l2 

ft 
|Vv-F£|2dx + 

ft 
A .Vvdx -

ft 
fvdx-

r7 
gvdr} ; 

problem (4.20) is in fact equivalent to the following linear variatio­
nal problem 

(4.21) 
Find uf1 £ V such that  k 

R 0. 
Vu£.Vvdx = 

f̂t 
(RF̂ -Xn).Vvdx + 

ft 
fvdx + 

r2 gvdr Vv £V ; 
we observe that Vk,n problems (4.21) are associated to the bilinear 
form {v,w} -M Vv.Vw dx . 

Jft~ ~ Therefore we have achieved a decomposition of our model problem 
into a sequence of pointwise nonlinear algebraic problems which can be 
solved easily by Newton's type methods in IR and of elliptic linear 
problems, associated to the same bilinear form and whose finite dimen­
sional approximations can be solved by either direct methods (such as 
Cholesky's) or efficient iterative methods. 
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Remark 4.6. : Although not critical, the choice of good values for R 
is complicated ; theoretically the speed of convergence of algorithm 
(4.13)- ( 4 .17) increases with R but the efficiency of the block relaxa­
tion algorithm ( 4.14)-( 4.16) deteriorates as R increases (see [6] for 
more details). 
5. Application to Finite Elasticity 
5.1. Generalities 

The application of augmented lagrangian techniques to the solu­
tion of equilibrium problems in Finite Elasticity encounters three 
types of difficulties : 
(i) The choice of reasonable constitutive laws ; 
(ii) The choice of a correct functional framework for the problem de­
composition (there is no true convexity in hyper elasticity) ; 
(iii)The derivation of adequate iterative methods for the pointwise 
solution of the algebraic problems appearing after decomposition. 

Since it corresponds to our more recent numerical results, we 
will concentrate herein on the case of compressible hyperelastic bo­
dies. The other case, concerning incompressible bodies, has already 
been extensively described in [ 9 ],C10] and [11 ] and is quite similar. 

5.2. Formulation of equilibrium problems in compressible hyperelasti-
city. 
The problem that we consider consists in the determination of the 

final equilibrium position of an hyperelastic compressible body sub­
jected to large deformations through the application of given exter­
nal loads and imposed boundary displacements. We label any particle x 
of the body by its position in a stress free reference configuration 
(lagrangian coordinates) and we relate both x and the displacement 
u(x) to a fixed cartesian system. With these conventions, the interior 
of the body can be identified with an open set ft of IRN (N=2 or 3) . 
The body is subjected to body forces of intensity f per unit volume 
in the reference configuration and to surface tractions g, measured 
per unit area in the reference configuration, prescribed on a por­
tion T2 of the boundary r of ft . Both f and g might depend on the 
displacement field u. This displacement field takes on prescribed va­
lues uQ on a portion 1̂  of r and we have : 

r = rx v r 2 , r i n r 2 = 0 . 

151 



R. GLOWINSKI, P. LE TALLEC 

Writting the laws of force and moment balance in lagrangian coordina­
tes, and for a given law of hyperelastic type on ft , we can characte­
rize formally the equilibrium positions of the considered body as the 
solution of the following system : 

(5.1) 
-V.T = f in ft , 

ïRv = g on r 2 

(balance of forces and moments) ; 

(5.2) T = — (x,I+Vu, adj(I+Vu), det(I+Vu)) 

(hyperelastic constitutive law) ; 

(5.3) det(I+Vu) > 0 a.e. in ft , 

(orientation preservation) ; 

(5.4) u = uQ on Y± . 

In the above relations, TD denotes the first Piola-Kirchoff stress 
tensor (whose mechanical interpretation is given in e4g. Ill J, C3], 
£12]), v denotes the outward unit normal vector in r 2 , before defor­
mation, and W the elastic stored energy density, per unit volume of 
the reference configuration. Typically, this stored energy density 
function W is of the following type 

(5.5) W(x,F,G,6) = ^(x,F) + ^(x,F,G,6), 
2 

where c?, is a regular convex real valued function defined on ftx ir 7 V. N2 N2 , , and where ' from ft x ]r x ir x ]r+ into IR u 1+°°} can be singular 
at 6 = 0. For example, for OGDEN1s type materials, we have (cf. 
[ 4 1) : 
(5.6) W(x,F,G,6)=C1|F|2+ C2|G|2+ C3 62- C4 Log 6 , 

with Ci, i=l,2,3,4, nonnegative coefficients, and where, for a tensor 
X, |x| denotes the euclidian norm of X considered as an element of 
RN2. 

For a constitutive law, such as (5.2), (5.5), we may formulate 
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the equilibrium system (5.1)-(5.4) as a variational problem as follows : 

Find u e {U1,S+ uQ} , A e (LS (ft))N such that 

(5.7) ô = det (I+Vu) > 0 a.e. in ft. 

(5.8) 
ft 

3* 
3F 

(x,I+Vu).Vv + A.Vv}dx = 
ft 
f .vdx + 

r2 
g.vdr Vv e U ' S , 

(5.9) 

ft 
A.F dx = 

$$$ 
3F ;x,I+Vu,adj(I+Vu),ô).F dx + 

3§o 
3G [x,I+Vu , adj(I+Vu) ,6) 

3adj(I+Vu) 
3 (Vu) 

,F dx + 
$$$ 

36 
x,I+Vu , adj(I+Vu) ,6) 3 aët(I+Vu 

3 (Vu) 
F dx 

VF e (LS(ft))N 

the notation adj(F) denotes the adjugate of F, i.e. the transpose of 
the cofactor matrix. The usual notations are used for Ls(ft), LS (ft) 
(s* = t~t) and the Sobolev space W1,S(ft) ; we have 

(5.10) U 1 , s = {y|y e (W1,S(ft))N, v = 0 on 1^}, 

(5.11) U1,S+ uQ = {v|v £ (W1,S(ft))N, v = uq on r i>. 

The exponent s is related to the energy density function W by conti­
nuity and coercivity properties. From a mechanical point of view tne 
variational problem (5.7)-(5.9) is obtained from (5.1)-(5.4) by ap­
plying the virtual work principle for displacements v compatible with 
the boundary condition (5.4) (constraint (5.7) does not appear in the 
variational equations (5.8) where virtual displacement fields v pos­
sibly incompatible with (5.7) are allowed ; however, for adequate W 
(such as (5.6), for example), smooth solutions of (5.8), (5.9) will 
satisfy (5.7)). Actually the variational formulation (5.7)-(5.9) is 
unusual in finite elasticity, where A is often eliminated between 
(5.8) and (5.9). However, formulation (b.7)-(5.9) is quite interesting 
since it is close from the variational formulation of equilibrium 
problems in incompressible hyperelasticity. Under that form, the aug­
mented lagrangian decomposition described in Sec. 4, already introdu­
ced in L 9 ] for incompressible hyperelasticity, can be easily genera­
lized to compressible hyperelasticity. 
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5.3. An augmented lagrangian formulation of (5.7)-(5.9). 
The extra variable needed for the decomposition of the equili­

brium equations appears quite naturally to be the deformation gradient 
matrix 
(5.12) F = I + Vu . 

The augmented lagrangian associated to our problem is then 

J2?R(v,H,y) = I f̂ (x,I+Vv)dx + j ^ (x,H,adjH,detH) dx + 
(5.13) < n n 

p f 2 f 
+ I |l+W-H| dx + y.(I+Vv-H)dx , 

R being an arbitrary strictly positive constant. Now, as in Sec. 4, 
the variational system (5.7)-(5.9) of equilibrium equations can be 
written equivalently as the lagrangian system below : 

Find {u,F,A} e (U 's+u )x Y x(LS (ft)) such that 
3*R I f I s 

(5.14) _^(u,F,X).v = f.v dx +j r g.v dr Vv e U 1 , s , 
g 2 

3*r s N2 

(5.15) -s|(u,F,A) .H = 0 VH e (LS(ft))IN , 
^R f s* N2 

(5.16) -^(u,F,A).y s (i+Vu-F) .y dx = 0 Vy £ (L (ft)) . 
In the above relations, Y denotes the set of those elements H of 
(LS(ft))N2 such that 

det H > 0 a.e. on ft . 
5.4. Solution algorithm for the lagrangian system (5 .14)-(5 .16) . 

We apply to the solution of (5.14)- (5 .16) an algorithm, similar 
to (4.13)-(4.17) of Sec. 4.3, and defined as follows : 

• 2 
(5.17) {A°,u"1} £ (LS (ft))N x {U1,s+uq} is given ; 
then, for n > 0, u11"1 and An being known, we compute {un,Fn} by  
block relaxation, i.e. by 
/ t- -, n \ , , . n n-1 
(5.18) setting uq = u , 
and by computing sequentially u£ and f£ by solving 
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83f 2 
(5.19) ~af (^k-i ,~k'òn )-5 = 0 V~H 6 ( l S (")) N 

(5.20) 

{ö (vu) ( ^ ^ + ^ k ) + R ( ì + ^ k " ! k ) + ò n } ' ! v d x = 

f.v dx + [_ g.v dT , Vv e U 1 , S , e U1'S+u 
ft Z 

and {un,Fn} known, An is updated by 

(5.21) Xn + 1 = An + p Rz(I+Vun-Fn) , p > 0 . 

In the numerical applications, since we are always working with fini-
s N2 

te dimensional approximations of (L (ft)) , the Riesz mapping R is 
replaced by the identity mapping. The updating of An by (5.21) is then 
straightforward and the whole algorithm above reduces the solution of 
the equilibrium equations in compressible hyperelasticity to a sequen­
ce of convex displacement problems (5.20) (quadratic if (5.6) holds) 
and local deformation gradient problems (5.19) . 

Since corresponds only to the convex part of the elastic 
energy function W, the displacement problem (5.20) corresponds for­
mally to an unconstrained uniformly convex minimization problem, set 

1 s 
on the linear space U ' . Among all the solution methods existing 
for such problems, we have chosen a conjugate gradient method with 
preconditioning by incomplete Cholesky factorization (icgg algorithm ; 
see [2l] ). The preconditioning matrix is taken symmetric, positive 
definite, sparse, and invariant during the iterative process. Its 
"inversion" will be therefore very cheap, even in the case of large 

1 s 
three-dimensional finite element approximations of U ' . Due to the 
convexity of in (5.20), and since the solution u^_1 at the pre­
vious step is usually a good approximation of u£. The conjugate gra­
dient algorithm will converge quite quickly. Nevertheless, a special 
attention must be paid to the choice of the preconditioning matrix, 
in order to avoid unnecessary oscillations in the iterative process 
(5.17)- (5.21) . 
5.5. Three-dimensional analysis of the deformation gradient local 

problems (5.19). 
s N2 

If (L (ft)) is approximated by a space of piecewise functions, 
problem (5.19), which does not involve any spatial derivative of F, 
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reduces to a sequence of independent local problems. For R sufficien­
tly large, one can prove (cf. [lb]) that each local problem is equiva­
lent to 

(5.22) Min 
^ Yloc 

{^2(x,F,adjF, detF) + § | F-I-Vuj^ | 2 - Xn.F} , 

Y. = {F £ IRN , det F > 0} . loc 

with 
(5.23) 

If, as it is generally the case, fe' takes infinite values for non 
N2 

positive values of det F, then we can replace Y 1 q c by 1R . Due to 
its small dimension this problem could have been solved, in 
principle, by standard minimization technique for multidimensional al­
gebraic functions. But in fact, due to its local structure which in­
volves F, its adjugate and its determinant, (5.22) can be reduced to 
a one dimensional minimization problem if N=2, or to a sequence of 
one dimensional convex minimization problems if N=3. From now on we 
restrict ourselves to the most difficult case N=3 (three dimensional 
structures). 

The decomposition of the local minimization problem for N=3 
is again based on augmented lagrangian techniques. For that purpose, 36 9 9 we introduce three new variables f e 3R , g e JR and G e 3R which 
allow a simple expression of adj F and det F as functions of F and 
which are defined by /2 f± =(F5+ Fg) /2 f13 = (F8+F3) v2 1 ^ (F^Fg) 

/2 f2 =(F5- F9) /2 f14 = (F8-F3) /2 f̂ - (F^Fg) 
/2 f3 ={F6+ Fg) /2 f15 = (F9+F2) /2 f2?= IF3+F5) 
/2 f4 =(F6- Fg) /2 f16 = (Fy-F2) v2 ( F ^ ) 
/2 f5 =(F6+ F?) /2 fl7 = (F 9 + F l) /2 f2g= (F3+F4) 
/ 2 f6 = < v F7> / 2 f l8 = ( v F 1> / 2 f30= ^3"F4 ) 

/2 f7 =(F4+ F9) /2 f19 = (F7+F3) v2 (F̂ +Fg) 
/2 fg =(F4- F9) /2 f2Q = (F7-F3) /2 f32= (F.-F^ 
/2 f9 =(F4+ Fg) /2 f21 = (F7+F2) /2 f33= ( F ^ ) 
/ 2 f10 = ( F4" F8 } / 2 f22 = < W / 2 f34= ( F r F 5> 
/2 fxl = (F5+ F?) /2 f23 = (Fg+F1) /2 f35= (F2+F4) 
/2 f 1 2=(F 5- F7) /2 f24 = (Fg-Fj) /2 f3fi= ( F ^ ) 

Table 5.1. 
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(5.24) f = T F (T given by Table 5.1), 

(5.25) 
g j 2 £ i r4j-4+i' 
Vj=l,...,9,i=l,...,4,£1=-£2=-£3=£4 = 1, 

(5.26) G = g . 
With these new variables, it is easy to calculate 

adj F = GT, det F = F.G/3 
Let us now introduce the following local augmented lagrangian 

((F,G},{f ,g},{z,t}) = ^U,F,G,F.G/3) + 
(5.27) 1 

i + fl F-J-Z uk-il 2 " ^ + i ( l ! -H l 2 + 

|g-G|2 - z.(f-TF)-t.(g-G) , 
r being a strictly positive constant. The local minimization problem 
(5.22) can then be decomposed into the equivalent system 

Find {{F,G}.{f,g},{z,t}}£ X£ x Y£ xz„,such that 
(5.28) \^,G} minimizes g?, ({.,.},{f,g},{z,t}) over X£ , 

{f,g} minimizes Qf̂  ({F,G},{.,.},{z,t}) over Y£ , 
f = TF, g = G, (z,t> £ Z£ , 

the sets , , being defined by 
9 9 36 9 X£ = 3ET xk", z £ = 3R x ]p/ , 

Y£ = { { ? ' ? } e Z£ ' *j = 1 £ i f42j + i-4} ' 
The solution of the local minimization problem (5.22) reduces, final­
ly, to the iterative solution of its augmented lagrangian formulation 
(5.28) by an algorithm similar to (4 .13)-(4 .17) (cf. Sec. 4.3) (with 
{f,G},if,g},{z,t} playing the role of u,F, A, respectively). In this 
algorithm, two elementary subproblems appear 

(5.29) Min (F,G,f£ ,,g™ , ,z m , t m ) , {F,G}£ X£

 1 k ~ 1 ~ ~ 
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(5.30) Min «?. (F?,G™,f,g,zm,tra) . 
{f,gk y t

 1 ~k - k ~ 
Problem (5.30) is similar to (5.29), but simpler. That's why we only 
detail below the solution of (5.29), referring to [18] for the solu­
tion of (5.30). 

5.6. Solution of (5.29). 
In this section, we suppose that the stored energy function W 

is of OGDEN1 s type and is given (cf.[ 4 ]) by 

W(x,F,G,6) = C1|F[2 + C2IGI 2 + C3 62 - C4 Log 6 . 
For this stored energy function, the solution of (5.29) is achieved 
by making the following change of variables 

(5.31) U = F + 3G, V = F - 3 G, 
with 
(5.32) a = R + 4r , 3 = ((2C2+ r)/(R+4r))1 / 2 . 

Problem (5.29) is then transformed into : 
(5.33) Min ft { ^( j U-AI 2 + |V-B|2)+ C^q2-Cd Log q} , {U,V} €]R i a 4 ~ ~ ~ ~ 6 4 

with 
(5.34) q = F.G/3 = (|U|2 - |VI2)/123 , 
(5.35) A = i{R(Vu+I)-A + T t(rf^ 1-zm) + (rg^_1-tm)/3} , 
(5.36) B = ±{R(Vu+I)-X + T t(rf^1-zm)-(rg^_1-tm)/3} . 
The solution of (5.33) is easy to compute and is given by 
(5.37) U = A/(f + P/63), V/(| - p/63). 
where p is the unique solution in interval ]-3a$ ,3a3[ of the single 
variable equation 

(5.38) l^|2/(f + P/63)2-|B|2/(^- p/63)2- ^(p+/p2+8C4C3) = 0 

The numerical solution of (5.29) is thus simply obtained by 

(i) Solving (5.38) by (e.g.) a Newton's method, 
(ii) Computing {U,V} by (5.37), 
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(iii) Computing {F,G} , from {U,V}, by solving (5.31), which is a 
trivial operation. 

5.7. Axisymmetric numerical experiments. 
The formulation of the equilibrium equations and the treatment 

of the deformation gradient local problems are given in [16J for the 
case of axisymmetric loadings of axisymmetric hyperelastic incompres­
sible bodies. For the numerical solution of such problems, we choose 

1 s 
here finite element approximations of the displacement space U ' and 

s 5 
of the deformation gradient space (L (ft)) , based on the 4 nodes asy­
mmetric finite element developped by RUAS [25]. The element geometry 
is a triangle, the degrees of freedom for the displacements are their 
values at each vertex and at the midpoint of one side, the degrees 
of freedom for the deformation gradients are their values at the cen­
ter of the triangles. 

Assembling these elements 3 by 3 (as shown on Fig. 5.1) we ob­
tain seven nodes symmetric finite superelements. The approximate 
displacements are taken continuous at element interfaces, tne approxi­
mate deformation gradients are not since they are taken piecewise 
constant. ¿3 

Al Au A2 

The asymmetric finite element : Symmetric assembly of 3 elements 
* degrees of freedom in deformation gradients. 
• degrees of freedom in displacements. 

Figure 5.1. 

The numerical problem to be solved correspond then to the same lagran­
gian system (5.14)-(5.16), but set on the above finite element appro-

1 s s N2 
ximation of U ' and (L (ft)) . Solution techniques remain unchanged 
compare to those described in the continuous case. The numerical exam­
ple presented in this paragraph concerns the axial compression of an 
axisymmetric incompressible hyperelastic shaft whose shape is indica-
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ted below. For symmetry reasons, we restrict our domain ft to the up­
per meridian section of this shaft. The mesh before and after compres­
sion is represented on the figure below. We observe a surface discon­
tinuity on the shaft after deformation, such a singularity is in com­
plete agreement with the experimental studies and would be very dif­
ficult to obtain by usual numerical techniques. 

Figure 5.2.  
Mesh before compression 

Figure 5.3. 
30 % compression 

Axisymmetric calculations for incompressible Mooney-Rivlin materials 
are discussed in Ref. [9] where comparisons with known analytical so­
lutions are also presented. 
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Figure 5.4.  
mesh before deformation 

Figure 5.5. 10 % compression stable unsymmmetric solution 

Figure 5.6. 
Convergence rate as a function of the iteration number 
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5.8. Three dimensional numerical experiments. 
The numerical example presented here illustrates the capability 

of the above numerical method for computing stable postbuckling equi­
librium positions of hyperelastic bodies, even in three-dimensional 
configurations. The considered body is a 2x2x20 compressible elastic 
beam shortened to 90% of its initial length and subjected to a very 
small surface pressure on one of its faces. The stored energy func­
tion of the beam is supposed to be given by the function of (5.6) (i. 
e. we are dealing with an Ogden's material). 

The displacement space is approximated by standard isoparametric 
8 nodes hexahedral elements (Q1 cubes), the approximate deformation 
gradients being constant on each element. Two solutions are then ob­
tained by using the augmented lagrangian techniques of this paragraph : 
(i) an unstable symmetric solution with almost no horizontal displa­
cements ; 
(ii) a stable unsymmetric solution with large horizontal displacements. 
The aspects of the beam before and after deformation is indicated on 
Figures 5.4 and 5.5, respectively. For symmetry reasons, we only con­
sider the upper part of the beam. 

It is particularly interesting here to monitor the convergence 
of the Uzawa algorithm. Measuring the convergence rate by ||I+Vun-Fn ||q ^ 
at each iteration, we observe that this convergence indicator first 
decreases while the computed solution un goes from zero to the uns­
table symmetric solution, then increases as u11 automatically leaves 
the neighborhood of this symmetric solution, and finally decreases to­
wards zero as un approaches the final stable buckled solution (see 
Figure 5.6). This whole iterative process goes on completely automati­
cally without any operator's action or incremental loading technique, 
by the simple execution of algorithm (5.17)-(5.21) with u° = 0. 
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