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1. Introduction
Let {Xt,t 20} be the Brownian motion process of a Riemannian
manifold (M,g). The exit time from the geodesic ball centered at

meEM is defined by
Te = inf{t >0: d(Xt,m)= e}

where d(+,+) is the distance function defined by g.

In a previous paper [4] we studied the mean exit time Em(Te) and
obtained three non-zero terms of the asymptotic expansion when e ¥ 0.
This was used to prove the following stochastic characterization of
the Euclidean space (Rn,go): If for each meM, Em(Tg) = 52/2n-+0(€8)
when ¢ ¢+ 0, then (M,g) is locally isometric to (Rn,go) provided n<6.
In case n=6, we provided an example of a non-flat symmetric
Riemannian manifold whose asymptotic expansion is 52/2n4-o(e10)
when € ¥ 0.

In this paper we shall extend our analysis to the second moment
Em(Ti), meM, € +0. By combining the previous techniques with the
"stochastic Taylor formula" we obtain a three-term asymptotic ex-

pansion for the second moment, given at the end of section 4. As a
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by-product we have the following characterization of Euclidean space
(Rn,go) valid in any dimension n <»; If for each me€M, Em(Te) =
const. EZ‘FO(€8) and Em(Ti) = const. 54-+O(e10) when € ¥ 0, then (M,q)
is locally isometric to (Rn,go). Similar characterizations are ob-
tained for any space of constant curvature.

The present work, which could be formulated in non-stochastic
terms, may be viewed as complementary to the general theory of semi-
martingales on manifolds as formulated by Laurent Schwartz [5]. 1In
particular our stochastic Taylor formula (proposition 2.1 below) is a

consequence of the martingale formulation of diffusion processes.

2. Notations and Definitions

Let (M,g) be an n-dimensional Riemannian manifold. We use the
following notations.
ﬁm is the tangent space at meM.

Bm(e) is the ball of radius € in M with center at me M.

Bm(e) is the ball of radius € in Mm with center at Oest

exp is the exponential mapping (which is defined on all of Mm
in case M is complete; otherwise it is a mapping) from
ﬁm(e) to Bm(e) for sufficiently small € > 0.

(o] is the mapping on functions defined by
(®€f)(expmex) = f(x);

@E maps from Cm(ﬁm(1)) to Cm(Bm(e)) for sufficiently
small € > 0.
A is the Laplace-Beltrami operator of the Riemannian

manifold:
10 ij of ij_ =104 _
Af = 7: 5§7 (/5 g §§7> where g (g V77, g det(gij).
g9 1 J

The following result, which will be used repeatedly, was proved in
[41.

Proposition 2.0: There exist second order differential operators

(A_2,A0,A1,...) on Cw(ﬁm) such that for each N2> 0 and each f<ECm(ﬁm)

(2.1) oMo £ =% £+ 3 edag+ oM (c+0).
€ € -2 5=0 3j

Aj maps polynomials of degree k to polynomials of degree k+ j. In

any normal coordinate chart (x1,...,xn) we have

90



BROWNIAN MOTION ON A SMALL GEODESIC BALL

n 2
o f
(2.2) b= 1 —%
i=1 9x;
i
n 2 n
0" f of
A E = (1/3) ) R, . X X =————— = (2/3) ] 0. X = .
0 i,a,3,b=1 iajb™a"b Bxiaxj i,a=1 ia”a axi
n
Here R,_., 1is the Riemann tensor and p.. = z R._._ is the Ricci
—— Tiajb ij asq taja ————

tensor at meM.

Let (Xt,PX) be the Brownian motion process with infinitesimal
generator A. For each meM let Te be the exit time from the geodesic
ball Bm(e). To study the moments of TE we invoke the following

"stochastic Taylor formula."

Proposition 2.1 [1,2]: Let (Xt,P ) be a Feller-Markov process with
infinitesimal generator A. Let T be a stopping time with E (TN+1)
finite and let f be a function in the domain of AN 1. Then

(=1)

N T
_ (- 1) N_N+1
£(x) - E £(Xy) = k£1 T {TkA f(xl,} —KT— {

/S uA f(Xu)du}

(If N=0 the sum is empty and we have the Dynkin formula E f(x ) -

f(x) = {f Af (X )dU} )
Corollary 2.2: TLet T be the 9x1t time from the geodesic ball B (e)
and let u, = 1, uy (x) = (1/k')E (T ) for k>1. Then in the 1nterlor
of Bm(s) we have Auk = -u (k-1 2,...) and on the boundary we have
w =0 (k=1,2,...). In particular 8%ug = (-1 ug_,, 0<k<N, N>1.
Proof: Let GO = 1 and let Gk be the classical solution of the ellip-
tic problem Aﬁk = -ﬁk—1 with ﬁk = 0 on the boundary of B _(e). Taking
T = min(R,Te) and f = EN+1 in the proposition 2.1 we have
- - ¥ k= 1 N+1
Uyeq (0 Byl (Xp) = Ly EX{T UN-k+1 ‘XT)}+(—N+—177 B (T
Thus
N u |
1 N+1 - UN-k+1 o k
< S\ S e
T BT ) S 2 le t Loy BT

Letting R+« in this inequality and using induction we see that

E (TN+1) is finite. Taking T = T€ above yields
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- 1

Uer1 X = 0 = eyt By (T

This completes the necessary identification.

The exact solution u

manifold.

solution vy

(2.3)

where go, 9y g3+

(2.4) A_2g0 =
(2.5) A_292 +
(2.6) A_p95 +
(2.7) A_2g4 +
The functions fo, f2
equations:
(2.8) A_2f0 =
(2.9) A_nf, +
(2.10) A_2f3 +
(2.11) A_2f4 +
Letting v, = 0 (€2f
g Vs € 0
22y, = 1+0(").
2
- (1
vy (p) = (DE (T7(1+

have the following:

Proposition 2.3:

2

in the form

—fo

bo90 = %

B199 = ~f3

body + B9y = —f,

, f3, f4 are solutions of
-1

boFy = O

Bify = 0

Bofy + Dyf =0

+ €4f

2

o) =

The function v, defined by

(%)EP(TZ) +0(e').

(2.3) -

is not available for a general Riemannian

Therefore, following [4] we shall construct an approximate

_ 4 6 7 8
v, = @e(e gg t €9, * € g3 + € g4)

g, are functions on Em(1) satisfying

g0|a§m(1) =0
gzlaﬁm(1) =0
g3|aﬁm(1) =0
g4|aﬁm(1) =0

the following set of

folaﬁm(1) =0
leaﬁm(1) =0
f3|8§m(1) =0
f4|8§m(1) =0

5 6 _ 8
+ ¢ f3 + € f4) we have sz = v14-0(€ )

Applying proposition 2.1 with N=1, f==v2 we have

To summarize, we

(2.7) satisfies

V2| BBm(z-:) =0=

_ 1 2 1
v2(m)-§Em(T€)-+O(e

2o lamg(e) © 22T 7Yy

2
Av, = =V

O) when € ¥+ 0.
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3. Determination of 997 95

In this section we shall prove

Proposition 3.1. We have

9o = (1/2m%(1=x%) = (1/8n(n+2)) (1 -2
g = <Q_Tr2> nt2 4.2 n+3 (1_r4)]
2 n 61‘12 (n+4)2 12n (n+2) (n+4) (n+6)
1 - r2 1 - r4 1- rF
L Py * o3 Y
24n~ (n+2) 24n~ (n+2) 24n° (n+2) (n+4)
n 5 n
where o = ) p..X.x. is the Ricci tensor, r° = ] x. and
L i3=1 P i=1 -
T= ) 0;; is the scalar curvature.
i1

Proof: Recall from the previous work ([4]

£, = (1/2n) (1 -7
2 4
r 1-r 1-r
f, = <p—I—-—> + T
2 n 6n(n+4) 12n2(n+2)
6_y(x?)y=2n, b_, (Y =ami2)r®, o, (x®) =6 (n+a)x?
noe?y = =20, apety = mdor?, g ®) = 20!

]

A_z(p) =21, A_z(rzp) 2Tr2<+2(n+4)p, A_z(r4p) =2Tr4-+4(n+6)pr2.

2

2 2 2 2 2

bo(p) =5(p#R=2p°p), B (r"p) =Z3—(p#R-2p°0) =50,
4 2r? 4 22
bglxrp) = —— (p#R=-2p°p) -3 07",

where in the last two formulas we have used the fact that Ao(fg) =
fAOg-FgAOf if £f=f(r) is a radial function and g is arbitrary. A
lengthy but straightforward computation then shows that A_2g0 = - fO'
A_2g2 =-f2-AOgO, as required. Clearly both 9079, satisfy the re-

quired boundary conditions.

4. Determination of g4(0)
We introduce the Green's operator:
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P: C (Bm(1)) — C (Bm(1H

defined uniquely by the properties that for all ftECm(ﬁm(1))

A_Z(Pf) + £=0 in Bm(1)
Pf = 0 on 3B (1) .
With this notation we have from (2.8) - (2.11)
fO = P1
f2 = PAOf0
f3 = PA1f0
£, = PAOf2 + PA2f0
Similarly equations (2.4) - (2.7) can be written in the form
90 = Pfy

g, = sz + PAogo

93 = Pf3 + PA1g0
g4 = Pf4 + PAOg2 + PAng
= P2A £ -+P2A f +PA g, +PA g
072 270 072 270 °

Therefore to compute g, we must first compute A f., A f., A 9,, A g9,.
4 072 270 0°2 2°0

To handle the terms PAOg2 and PA2g0 we may use lemma 6.3 of [4]. To
handle the terms PZAOf2 and P2A2f0 we invoke the following lemma,
where the integrals are normalized so that [ d6=1

n-1

S

Lemma 4.1. Let j be the solution of the biharmonic Poisson egquation

2 . . . = . s
A ]==rkg(e) in the unit ball Bm(1) and satisfying the boundary con-

-2
ditions j =0 and A_zj =0 on the boundary Bﬁm(1) =Sn-1. Then
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. n+k+4
30 = e ek, 9948

Proof. Let G(x,y) be the Green's function for the biharmonic equa-
tion A32G==6 with the same boundary conditions. Then
j(x)= f G(x,y)|y|kg(y/|y|)dy° Let g= [ g(6)d6 be the mean value

= n~-1
Bm(1) S

of g on the unit sphere. Then

. k - k
j0) = _ /7 c,y) |yl lgly/lyD)=gl+_ J G(0,y)|y|"dy .
B_(1) B_(1)
m m
The first integral is zero, since G(O,y)==G(|y|), a radial function.
The second integral is the solution of the problem A_2j =rk§, which

is directly computed as

- 1 2 1 k+4
j(r)= g - X _ - .
(k+2) (n+k) 2n (k+4) (n+k+2)
Thus

. _ g 1 1
300) = oy Ry [EH (KFE) (a¥kF2 ]

which is of the required form.

For small values of k, we have for example

k=0: j(0) = g
8n" (n+2)
5. . _ (n+6) -
k=2 300 = ey mrdy 9
4. . _ (n+8) =
k=4 30 = 5ntmen mrey 9

We also recall the following integral formulas which were used in [4]

where integration is with respect to the normalized uniform surface

measure on Sn-1.
2 2
_1r _ 2 ( 2 1 )
Lemma 4.2 n£1( -—n—') = m |lp|| Tl_
S
Nol?
J  p#R = lol”
n
Sn—1
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2
ol
I oep = _%r_
Sn—1
_ 1 2 .3 2
n-1
S
2 2
f v o = m AT
n-1
S
It 1is easily checked that this implies that J A0<p-1§—)
2 T2 Sn_1
= -(2/3n)<”p” -TT'>'
Computation of P2A2f0: We have
2
A2f0 = (1/90n) (9V"p + 2R#R)

Both of these terms are homogeneous with k=4. Applying the above

lemmas 4.1 and 4.2 we have

2 n+ 8 18 2 2 3 5
(PA,£,) (0) = [ AT + (llp" + = IRIl )]
270 90’16n2(n+4)(n+6) n(n+2) n(n+2) 5

Computation of PA : We have

29

A = 1 (9v%p + 2RriR) [ —= - _z
29 T 90 P 2 2n(n¥2)

which is a combination of terms with k=4 and k=6. Applying lemma

6.3 of [4] and lemma 4.2 above, we have

"2 \
(PA,g,) (0) = n_+20n: 18 [n(ll-?—2)AT e <l|p1|2 +%||an>]
90+48n" (n+2) (n+4) (n+6)
Computation of P2A0f2: We have

Tr2 0 (1-r2) 2 27Tp 'rpr2
bof =<o———-—) + —(o#R-2o°o)+—]+———
072 n In(n+4)  6n(n+4)|3 3n 9n2(n+2)

which is a combination of terms with k=2 and k=4. Applying lemmas

4.1 and 4.2 we have

n?+ 12n + 48 2) n+8 2
n + T

(P%8,£,) (0)= -—3 5 (upnz-l_ .
432n” (n+2) (n+4) ~ (nt+6) 144n” (n+2) (nt+4) (n+6)
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Computation of PAng: We have

2
_ X n+ 2 2 n+ 3 _ 4
93 = (D'T)Ao[ — 2 ") - Topmrn) mrd) (meey T T )]

" n+2 (1_2)_ n+3 (1_4)A<_Tr2>
7 7 r T2n (n+2) (n+4) (n+6) r o\P "~

6n” (n+4)
+ A 1—r2 + 1-r4 _ 1—r6
0l24n3 (n+2)  24n> (n+2)  24n° (n+2) (n+4)

_ _ Tr2 p(n+2) _ pr2 (n+3)
=\ on? (nea)2 90 (n*2) (n+d) (n+6)

n+ 2 2 n+3 4.112 . 2Tp
+ [m“ T TR el ey T ’][i‘p#R‘Z" °) *"55‘]

2 4
bl et er
36n~ (n+2) 18n~ (n+2) 12n” (n+2) (n+4)

which is a combination of terms with k=4 and k=6. Applying lemma

4.2 above and lemma 6.3 of [4] we have after some lengthy algebra

n5+27n4+290n3+ 1312n2+2784n+2304 2 T2
(PAng) (0) - 3 5 ol -5
432n~ (n+2) " (n+4) (n+6)
2
5n” + 106n + 240 2
+ T

864n” (n+2) 2 (n+4) (n+6)

These results are recorded in the table in the Appendix. We

summarize the result in the following form.

Theorem 4.3, For small € >0

2) 4 6 8 2 2 2 10
1 =
2Em(T€ CyE +c1€ ‘rm+e [C2AT+C3T +c4llpll +cSIIRII ]m+0(e )

where the constants cO,c1,cz,c3,c4,c depend on the dimension n. In

5

fact c0=g0(0) and c, =g2(0) given by proposition 3.1; €y1C31C4sCq

n
are given in the appendix. Here 1= Z Pis is the scalar curvature
i=1

97



M. A. PINSKY

n
and At = 2 ViiT is the Laplacian of the scalar curvature. Also
i=1

- 2 3 - 2 |3
HRH—-{Z Rijkﬂ} and lpl —{z oij} are the lengths of the curvature

tensor and the Ricci curvature.

5. Converse theorems

Theorem 5.1. Let (M,g) be a Riemannian manifold such that for all

meM we have Em(T€)==const. EZ-FO(EB) and Em(T§)==const. 54-+O(e10)

when € + 0. Then (M,qg) is locally isometric to (Rn,go).

Proof. From the first hypothesis and theorem 1.1 of [4] we have that
for all me M, Tm==0 and HRMH= npum. From the second hypothesis and
SIRIZ=0. This

m

+c5:=0. From the table of

theorem 4.3 above we have in addition that c4HpHi~¥c

is possible for HRMn#O if and only if Cy

values in the Appendix this entails the equality

4 4 8292n3 + 38208n + 69120

18(n+4)2(n+6)(2n2-+25n+-48)= 33n5-+792n
Multiplying out the left side it is seen that the left side is
strictly greater than the right side for every n=>1. Therefore

c +05 # 0 and we must have lIRIIm= 0= ||pl|m and (M,g) is locally iso-

4
metric to (Rn,go).

Theorem 5.2. Let (M,g) be a Riemannian manifold such that for all

™, ,q9,)
meM we have E(M'g)(T ) - E ATEA (T )==O(€8) and E(M’g)(Tz)
(M IE—T__;— m 10 € m € — ™m €
Em ATEA (T€)==O(e ) when € + 0 where (Mx,gk) is a space of constant

sectional curvature A. Then (M,g) is locally isometric to (Mx,gx).

Proof. From the first hypothesis and theorem 1.1 of [4] we have that
for all me€M

T = T(A)

2 2 2 2
HRHm - HpHm IRV IS = lp ()1

where T(X), R(A), p()) are the values for a space of constant sec-

tional curvature. From the second hypothesis and theorem 4.3 above,

we have further
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2 2 _ 2 2
c4HpHm + c5IIR||m = c4Hp(A)H + c5HR(A)H

The proof of theorem 5.1 above shows that c4+c5 # 0., Therefore the

above equations uniquely determine the values URH;==HR(A)H2,

HpHi==Hp(A)H2. It is well known that this implies that (M,g) has
constant sectional curvature.
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6. Appendix. Table of the coefficients of g4(0) = CZAT + c3T2 + c4llpll2 + CSHR”

coefficient of

in

AT Ho"z
2 n? 4+ 12n + 48
P Aof 0 - < n 5
432n°> (n+2) (n+4) 2 (n+6)
P2A2f0 5 n+ 8 s n+8 L
80n~ (n+2) (n+4) (n+6) 720n~ (n+2) (n+4) (n+6) 480:;
pa,9, 0 _n°+27n% +290n3 + 13120° + 2784n + 2304
432n° (n+2) 2 (n+4) > (n+6) 2
2 2
PAZgO 3n v+zgn-+48 3n -+%fn-+48
240n° (n+2)  (n+4) (n+6) 2160n° (n+2) 2 (n+4) (n+6) 1440
c2 = C4 = c5
2 5 4 3 2
TOTAL 2n®+25n+48 | 33n° +792n" + 8292n° + 38208n° + 83520n + 69120
120n° (n+2) 2 (n+4) (n+6) 12960n° (n+2) 2 (n+4) > (n+6) 2 720
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