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On the meromorphic propagation of singularities and 

the Levi condition 

by Sigeru MIZOHATA 

§1. Levi condition 

We are concerned with the partial differential operator P(x,t; 3 3 ) of 
x, t 

order m with analytic coefficients, defined in a neighborhood of the origin, 

whose principal symbol Pm is of constant multiplicity, namely, 

o(Pm) = ( T - X ^ X , ^ ) ) 

m l 

(T-X2(x,t;0) 
m2 

df 
(T-Xs(x,t;Ç)) 

m 
s 
f 

where, for all i,j (i^j), Xi(x,t;0 t X.(x,t;Ç), for £ e Rn\0. 

First we explain the Levi condition. In view of the hypothesis of constant 

multiplicity, using the pseudo-differential operators, P can be factorized in the 

form: 

(1.1) P = P o 
S 

P o . . . o P + R , 

S-l 1 
m. 

where each P. has its principal part ( 3 -iX.(x,t;D )) \ and R is an 
3 t j x 

analytic regularizing operator. This is called perfect factorization in the 

analytic class. More precisely P.. has the form: 

P i = ( 3 -iX. (x,t;D )) 
^ t i v x^J 

m. 
J + Si, . (x,t;D ) ( 3 -iX. (x,t;D )) 

m. -1 
3 

(1.2) 

+ . . . + a, . 
k,3 

(x,t;Dx)(3t-iXj) 
m. -k 

1 + ... + a 
m. 

3 , 

•(x,t;D ) , 

where 

(1.3) order ak (x,t;Ç) < k - 1 (1 < k < m.) . 
3 

Here the total symbol of a, . is determined uniquely as an analytic formal 
K> 3 

symbol; see for example [12 ]. Then, by a suitable modification in the £-space, 

we associate to it a true symbol, which Treves calls pseudo-analytic symbol 
[14 ]. R is represented by 

R = 
m 
f 

R = 

r.(x,t;D )3^ 
l x^ t 

m-j 

x 

and each r. is an analytic regularizing operator, namely 
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u(x) e ex r (x,t;Dx)u(x) e A ( ^ ) 
is continuous, depending smoothly on t, where A(ft ) is the space of analytic 
functions in fi^. fix(dRn) is an open neighborhood of the origin. 

Levi condition. We say that P.. satisfies the Levi condition if for all k, 

(1.4) order 
f 

ak^(x,t;0 < o. 

We say that P satisfies the Levi condition if all P. satisfy the Levi condition. 
Levi condition has been introduced to characterize the hyperbolicity, assuming 

the characteristic roots are real. 
Now we are concerned with the following local Cauchy problem 

(1.5) 
Pu = 0 

a j t f ft=0 = u (x) e C f 
f № x ) » 0 < j < m-1 , 

where 0, is a neighborhood of the origin. If for any C -Cauchy data \p = (u^(x), 
00 

um_^(x)) there exists a solution u(x,t) e C in a neighborhood of the 
origin, we say that the homogeneous Cauchy problem is locally solvable at the 
origin. 

Theorem 1. The above Cauchy problem is locally solvable if and only if all P. 
are locally solvable. Each P. is locally solvable if and only if A,.(x.t;g;) is  
real and that it satisfies the Levi condition. 

Let us remark that the above homogeneous Cauchy problem is merely concerned 
with the problem arround the origin. The sufficiency is almost evident. However 
the proof of the necessity is far from trivial. We assumed that the coefficients 
are analytic. This assumption enables us to prove the necessity by using the 
techniques developed in [10 ]. 

§2. Cauchy-Kowalewski Theorem with meromorphic initial data 

For simplicity, first we consider the case n = 1. We are concerned with the 
following Cauchy problem. 

(2.1) 

Pu = 0 

a; I u I t=0 f 
w.(x) 

(x-y) pi 
(0 < i < m-1), w ^ x ) being analytic; p^ are 

non-negative integers. 
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MEROMORPHIC PROPAGATION AND LEVI CONDITION 

The solution u(x,t) exists in a neighborhood of the origin, and it is represented 

in the form. 

[2.2) u(x,t) = 
s 
E 

y=i 

E 
-°°< j <oo 

f. (<l> (x,t)-y)a 
cc 

(x,t), 

where 

(2.3) 

fn(s) = log s, R =R = 
fj-l(S) 

fn(s) = 
fn(s) = (j-l)! 

x , (j a 1) 

f,(s) = 
1 

x 
{s^ log s - s-' (1 + 

1 

2 
+ . . . + 

1 

j 
)} , (j* i) ; 

<$> (x,t) is the phase function corresponding to X (x,t) : 

(2.4) 

3t4>(x,t) = X (x,t)3 (j) (x,t) 

v ; x T V J 

4> (X,0) = X . 

Let us remark that all a. (x,t) are analytic in (x,t), more precisely 
J > y 

they can be continued analytically in a common complex domain, and they have the 

following form of majorations: 

(2.5) 

|a,y(x,t)|< j! 
fn(s) = 

for j > 0, 

k u(*,t)|< 
J y M 

xx 
:-j)ï 

, for any e > 0, for j < 0. 

This result is usually called Hamada's theorem. 

Historical Note. 

In 1969, Hamada first proved the above theorem under the assumption that all 

A. 
l 

are simple, and in 1970 he proved the same result when the characteristic 

roots are at most double, assuming the Levi condition on P [ 5 ]. Next De Paris 

introduced the notion "bien decomposable", and showed that the above result is 

also true for these operators [ 4 ]. Chazarain showed in [ 3 ] that the notion 

of bien decomposable is equivalent to the Levi condition. In all these works, the 

number of the terms with negative j which appear in (2.2) is finite. In 1973, 

Hamada showed that, in the case when the multiplicity is at most double, the 

result is even true without assuming the Levi condition [6]. Let us note that, in 

this case, in general, the essential singularities appear, namely the number of 

the terms with negative j may become infinite. Finally, in 1976 Hamada-Leray-

Wagschal [7] proved the above theorem in general case (even for general 
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systems). 

We say that the operator P has the property of meromorphic propagation of  

singularities, or shortly meromorphic propagation property, if for any meromorphic 

initial data, the solution u(x,t) has only a finite number of the terms with negative 

j in the expression (2.2). Thus, the result of De Paris can be stated as 

follows. 

Theorem 2.(De Paris). When P satisfies the Levi condition, P has the meromorphic  

propagation property. 

The purpose of this article is to prove the converse. Namely, 

Theorem 3. When the operator P has the meromorphic propagation property, then  

P satisfies the Levi condition. 

The plan of the proof is the following. First we suppose that all the 

characteristic roots A^(x,t;£) are real. Then our proof is carried out in the 

manner, 

meromorphic propagation • P is C -wellposed >Levi condition 

(Theorem 1) 

In the case when X are not real, we reduce the problem to the case of X 
y y 

real by some artifice in the calculus of Fourier integral operators (canonical 

transformation). Let us mention that our proof is not direct. It is desirable 

to prove the above theorem by direct method. 

§3. 

In this section we give the proof of Theorem 3. First we consider the case 

n=l, and suppose further the characteristic roots X^(x,t) are all real. The 

proof is almost evident. In this case, in the definition of f.(s), we can take 

f Q ( s ) = log I s I, and 

f (Ò (x,t)-y) = (-i)J_1Cj-i)ï Pf 
1 

(6 (x,t)-y)j 

, j > 0 , 

where y is real and Pf denotes the finite part. 

We represent (2.2) by Fourier integral operators, Let us recall 
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MEROMORPHIC PROPAGATION AND LEVI CONDITION 

FtfjCs)] = 1 

fn(s) = 
T l f P f 

Y(0 

ç j + 1 

- Pf Y(-0 
cv 

fn(s) = 2 T T C 

j! 

fn(s) = 
j > 0 

fn(s) = - i ' 1 T T ( Y ( Ç ) - Y(-0) 
cvg 

vv Ì < -1. 

In particular, 
î 

TT 
p.v. 

1 

s 
Y(Ç) - Y C - 0 

Let the Cauchy problem be 

(3.1) 

Pu = 0 

3 
k 

t 
u 

t=0 

= g(x) e C 
00 

0 

c 
i 

t UD 
t=0 

= 0, (k^i, 0 < i < m-1). 

We consider the solution u(x,t) of the corresponding Cauchy problem : 

(3.2) 

Pu = 0 

c. 
k 

t c 
t=0 

c 
i 

TT 

1 

x-y 

3 
i 

t 
u J 

t = 0 

= 0 fitfc, 0 < i < m-1) 

We decompose 

fn(s) = fn(s) = fn(s) = fn(s) = 

where g 0(C) has compact support, and g +(0 has its support strictly in 

E, >0 (resp. Ç<0) . Then we consider. 

(3.3) u(x,t) = 

s 
x 

xc 
(2TT)" 1 

c 
e 

c 

icj) (x,t)Ç 
[ 
j 

c .a. fn(s) = (ç)ç"j_1] 
fn(s) = 

Ce. = - i " 3 * ) . 

where C x i i + (5)} is a sequence of suitable cutoff functions to make analytic formal 

symbol Z 

j 

c. a. 
fn(s) = fn(s  

a true symbol which Treves calls pseudo-analytic 

symbol ; see [ 14]. 

Now it is easy to see that 

Pu = analytic function, 

3 
k 

t 
u 

4- lt-0 
= g (x) + analytic function, 

3 c u 
+ t = 0 

= analytic function. 
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The same procedure can be applied to g (x). Since SQ(x) (= Fourier inverse 

transform of g ^ C ? ) ) 1S analytic, by applying the Cauchy-Kowalewski Theorem, 
CO 

we conclude that problem (3.1) is C -wellposed. 

In general case, we extend the above result as follows. (3.2) is replaced by 

(3 .4) 

Pu = 0 

9 
k 

t d 
t = 0 

d 
a 
n n ' 

<x-y ,a)> 

(a = (-l)ni"n(n-l)!/„), 

8 
i 

t 
Ll 

t = 0 

= 0 (k^i, 0 < i < m-1), 

where 0 ) € K ,t = 0 -I = 1. Then (2.2) becomes 

(3 .5) u(x,t) = 

s 

E 

y=i 

E 

J 

f,(<j> (x,t ; a ) ) - <y,ü)>)a. (x,t ; u ) ) . 

Here <|> (x,t;Q is the phase function satisfying 

M = * (x,t;3 4>) 
t y y X ' 

<|> (x,0;œ) = <x, ü)> , 

t = 0 
being a parameter in a neighborhood of . 

Now, by partition of unity in the dual space, we can suppose that g(£) has 

its support in a conical neighborhood of cô . Put 

aj>y (x,t;0 = c .a. 
J j>y 

( x , t ; Ç ' ) / | ^ + 1, t = 0t = 0t = 0 

Then E 

j 

a. 
j*y 

(x,t;£) is an analytic formal symbol. Thus, by suitably chosen 

cutoff functions x ( U h , we form a true symbol 

ay(x,t;0 = E 

J 

a. 
j>y 

(x,t;0Xj(|E|). 

It follows easily that 

(3 .6) u(x,t) = 
s 
E 

y=l 

(2,)"n e 
i<|> (x,t;0 

a (x,t;Og(Odç 

solves the Cauchy problem (3.1), except analytic functions. 

§ 4 . Canonical transformations 

When the phase function is complex-valued, we introduce a positive small 

parameter e. Instead of ( 3 . 4 ) , we consider modified Cauchy data. 

132 
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( 4 . 1 ) 

Pu = 0 

9 i 
i 

u 

t = 0 
c 

wi(x) 

(<x-y, üo>+ie)^i 
c ( 0 < i < m - 1 ) . 

The solution takes the forir 
s 

vfx.t) = c 
y=l j 

f.(è (x,t ;o)) + i£-<y, co>) a . ix,t ;o)J . 

This implies that 

( 4 . 2 ) u (x,t) c 

s 
c 

M = l 

(2,)"N e 

fn(s) = fn(s) = 

a ;x,t;Ogy(OdC, 

satisfies Pu = 0 modulo analytic function. 

To introduce a small parameter e is used by many authors in the case of 

complex phase functions. We are inspired by Baouendi-Treves [ 1 ]. In ( 4 . 2 ) , 

Im $^(x,t;u)) + e > 0 is required. 

Hereafter, we consider (t,e) under the restriction, 

( 4 . 3 ) citi < e , 

where c is a suitable (large) constant. 

We say that an operator A^(x,t), from E'X into A(fi^), is uniformly (with 

respect to e and t) analytic regularizing, if we restrict (t , e ) by ( 4 . 3 ) , 

it is equi-continuous mapping, and that all derivative 8^A(x,t) has the same 

property (where the constant c in ( 4 . 3 ) may depend on k ) . 

Now in view of the form P = P o P 0 . . . 0 P +R, and since A are distinct, 

we see that 

( 4 . 4 ) P1°(2TT) 
-n 

e 

id>, (x,t;n-ekl 
ai(x,t;Ç)u(OdÇ % 0, 

where " ^ " means that the left-hand side operator is uniformly analytic 

regularizing. 

Next, put 

gy(Od = (2,)"N e 

;x,t;Ogy 
;x,t;Ogy 

There exists an analytic symbol a1 (x,t;£) such that 

1 , £ 

( 2 T T ) 

-n 

e 

;x,t;Ogy 
ai(x,t;Ou(^)dÇ * I, . oa, 

(j)1 + l£ 1,£ 

# r 
(x,t;D)u . 

In the same way, there exists another analytic symbol P1)£ (x,t;VDx) 

such that 
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P oT . u(-,t) 

1 <j> + 1 E ^ 

^ I o p 

<J)1 + ie l,e 

# u(.,t). 

Thus, 

(4.5) 
# # 

I, . °P, °SL1 ^ 0. 
<f>,+ie l,e l , e 

Let us remark that, P1, e and a1,e are analytic symbols depending analytically 

# # 

on e (even for e = 0 ) . Further, the symbols p ^ Q > a i Q corresponding 

to e =0 are nothing but those ones when the phase function <j> is supposed real 

(canonical transformation). By fairly delicate argument, we deduce from (4.5) 
that 

( 4 - 6 > p i , o ° a i , o - ° (modulo analytic regularizing operators), 

By hypothesis, a^ is analytic symbol (more precisely pseudo-analytic symbol) 

# # m l 
thus a^ Q is also analytic symbol. Now, P^ Q has its principal part 3 

# # 
So we can apply Theorem 1, because the existence of a^ ^ implies that P^ ^ 

oo # 
is a C -wellposed operator. Thus P^1,0 should satisfy the Levi condition, which 

implies further P itself satisfies the Levi condition. This proves Theorem 3. 

Finally, the author would like to call attention to the work of Pallu de la 

Barriere and Schapira [15], which proves Hamada's theorem using the canonical 

transformations in the complex spaces. 
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