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BETWEEN DISTRIBUTIONS AND HYPERFUNCTIONS 
By 

Lars Hormander 

1. Introduction. The space P'(X) of Schwartz distributions 
in an open subset X of Rn is by definition the space of continuous 
linear functionals on C Q ( X ) . A larger space is obtained if C^(X) 
is replaced by a dense subset with a stronger topology, such as 
the space of functions of compact support in a non-quasianalytic 
Denjoy-Carleman class of functions. (See section 2 below for defi­
nitions.) This leads essentially to the distribution spaces dis­
cussed by Beurling [2] (see also Bjorck [3]). 

In the quasianalytic case this definition breaks down. How­
ever, dropping the condition of compact support one can always 
consider the dual as an analogue of the dual E ' ( X ) of C°°(X). The 
largest space of its kind is then the space A'(Rn) of analytic 
functionals carried by compact subsets of Rn; this is dual to the 
real analytic functions. Martineau [5] has shown how one can de­
fine the hyperfunctions of Sato [ 6 ] starting from the properties 
of A'(Rn). The first point is to prove that every element in A'(Rn) 
has a unique minimal carrier, the support. For any open set XcRn 
the space of hyperfunctions in X can then be defined so that its 
elements are locally equal to those in A'(Rn). We shall here use 
the analogous definition for any Denjoy-Carleman class. 

In sections 2 and 3 we shall give the basic definitions and 
discuss the notion of support for the dual E' of any Denjoy-

Carleman class C . Sections 4 and 5 are then devoted to the 
non-quasianalytic and the quasianalytic cases respectively. The 
properties of the distribution spaces VI (X) in an open set XcRn 
are then summed up in section 6 . We show in particular that the 
sheaf of distributions is flabby precisely in the quasianalytic 
case. (Flabbiness means that all distributions can be extended 
to the whole space.) Another equivalent property is that every 
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distributions with support in the union K^uK^ of two compact sets 
is the sum of one with support in and one with support in . 
These facts are of course well-known for hyperfunctions. What may 
be new is the equivalence with quasianalyticity. 

2 . Denjoy-Carleman classes. Let L̂ . be an increasing sequence 
of positive numbers such that LQ-1 an<3 

(2.1) k < Lk, Lk+1 < CLk; k = 0, 1, 

for some constant C. If XcRn is an open set we shall denote by 
CL(X) the set of all u£C°°(X) such that for every compact set KcX 
( 2 . 2 ) |u|T ^ „ = sup sup (r/L, , ) I a I I Dau(x) I < co, 

'L'r'K xGK a 'al 
for some r = rK > 0. When L^=k+1 this means that CL(X) is the set 
of real analytic functions in X, which is thus the smallest class 
considered. The class CL with L,=(k+1)a, a>1, is the Gevrey class 
of order a. Leibniz1 formula shows at once that C is a ring, 

(2-3) lUVlL,r/2,K * lUlL,r,KlVlL,r,K-
It is invariant under differentiation since 

(2.4) <Lj+1)J + 1 S (CLj)^1 £ C2^\.\ 

which implies 

(2-5) lDkUlL,r/C2,K ^ C/r lUlL,r,K-
By the Denjoy-Carleman theorem there are non-trivial func­

tions u£CL(X) of compact support if and only if 

( 2 . 6 ) J . 1/Lk < °°* 

The class is then called non-quasianalytic. In the opposite case 
a function in CL(X) vanishing in a neighborhood of a point x must 
also vanish in the component of x in X. As a substitute for CL 
functions of compact support one can often use cutoff functions 
with the following properties: 

LEMMA 2.1. Let K be a compact subset of Rn and denote by K(t) 
the set of points at distance ^ t from K. For any integer v>0 one 
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can find x£Cg(K(vt)) e(3uaJ- to 1 in_ a neighborhood of K such that 
o <; x ^ 1 a n d 

(2.7) |Dax| < Clalt"lal , | ot | 1 v. 

Here C depends only on the dimension n. 
For a proof se e.g. [4, section 1.4]; one just takes x a s 

the convolution of the characteristic function of K(tv/2) and v 
convolution factors (x/t) t n where 0 < \|;ECQ({X; |x|<|}) and 
/ dx = 1 . The point is that one can then let all derivatives act 
on different factors ip(x/t). 

3. The space E'(X). Let KcRn be a compact set. The space 
E'(K) of Schwartz distributions supported by K consists of the 
linear forms u on C°°(Rn) such that for every neighborhood X of K 
we have for some C and N 

|u(cp)| < C V sup |Dacp|, cpGC^R11). 
|a|<N X 

It suffices to have such a functional defined for all polynomials 
cp, for they are dense in C°°(Rn). The following is therefore an 
analogue for the class CL. 

DEFINITION 3.1. Let K be a compact set in Rn. Then E£(K) is  
the space of linear forms u on the space of polynomials cp i_n Rn 
such that for every neighborhood X of K and every r>0 we have 
(3.1) |u(«p)| £ CrfX|?|LfrfX. 

For any XcRn we denote by E£(X) the union of E£(K) for all compact  
subsets K of X. When L^=k+1 we also write A1 (K) instead of E£(K) 
for the space of analytic functionals carried by K. 

Note that E* D E' if L1 < CL0 for some C. In particular, 
E'cA1 for every L. 

It follows from (3.1) that there is a unique linear exten­
sion of u(cp) satisfying (3.1) in the set A of entire analytic 
functions. In fact, if cpEA the partial sums of the Taylor series 
converge on any compact subset of Cn. This implies convergence in 
the norm II for any r>0 and any bounded X. To extend the 

' Li , r , A 
definition to a more reasonable set of test functions we prove: 
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PROPOSITION 3.2. Let YccX and let cpGCL(X). Then there is a 

sequence of entire functions cp̂  such that for sufficiently  

small r>0 

(3.2) I ^ J I L ^ Y " 0 AS 

PROOF. Choose x£CQ(X) with 0 < x £ 1 a n d X = 1 in a neigh­
borhood of Y, and set 

9j(x) = jEj(x-y)x(y)cp(y)dy; E.(x) = ( j/7T)n/2 e~j<X'X>. 

By induction we obtain for any N 

(3.3) D. ...D. (E.*(Xcp)) =E.*(XD. ...D. cp ) + 

N 
+ 1 TT Di E.*((D. X) JT D. cp). 

V=1 V<U<N y v 1<y<v y 

We can write 

E^(xDacp)(x) - Dacp(x) = J E^ (y ) (x(x-y)Da(p(x-y )-Dacp(x) )dy. 

Choose c>0 so that ^{YL-y) = î when xGY and |y|<c, and let p be so 

small that M = I cp I T < °°. By ( 2 . 4 ) we have 

I Dacp ( x-y ) -Dacp ( x ) I < n I y I (L|a|+1/p) la'+1M ^ 

< nC|y|/p ( L | ̂  | C2/p ) I 06 I M; xEY, |y|<c; 

and 

is independent of j. Furthermore, 

j2 I MEjty) dy 

2 . , 
/ E.(y) dy = 0(e C 3/Z), j^cc. 

|y|>c 3 
This proves that 

sup | E xDacp )-Dacp | <C'(L, , C2/p ) i a I M/j ^ . 

When yEsupp d x we have Re <z-y, z-y> > 0 for z in a complex neigh­

borhood of Y. Hence Cauchy1s inequalities give for some c>0 if xEY 

|DaEj(x-y)| < |a|!c-!«le-C3 £ L | a | I a l c - I a i e _ c j . 

2 
Using (3.3) we now obtain if r<c and rC <p 
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|D ф.-D ф| L,r,Y -< C"M/j2, 

which proves the proposition. 
From Proposition 3.2 it follows at once that every uGE'(K) 

L 
can be uniquely extended to a linear functional on C (X) for any 
neighborhood X of K. However, this is not very useful until we 
know that there is a unique minimal compact set K such that uG E'(K). For the analytic class this follows from basic facts on the li 
cohomology of the sheaf of germs of holomorphic functions (see 
Martineau [5]). An elementary proof using only properties of the 
corresponding Poisson integral can be found in [4, section 9.1]. 
We quote the result without repeating the proof. 

THEOREM 3.3. lf_ uGA' (Rn) then there is a smallest compact  
set KcRn such that uGA' (K) ; ijt is_ called the support of u. 

If u is a Schwartz distribution of compact support this 
agrees with the usual definition. In fact, if X is a neighborhood 
of the Schwartz support K then 

И ф > 1 < С У sup |D%| < CLrr|v|LfrfX; ФЕС00 

in particular uGA'(K). On the other hand, if uGE'(R )nA'(K) and 
we obtain with the notation in the proof of Proposi­

tion 3.2 
c p e c ~ ( R n \ K ) , 

n 

u (cp ) = 1 i m u ( E . *cp ) 
j-foo ^ 

= 0 

since Е_.*ф-*ф in С (R ) and 
Е_^*ф(х) = Г Е^(х-у)ф(у) dy+0 

in a complex neighborhood of K when j-+oo. Thus the Schwartz support 
is contained in K. With this possible ambiguity removed we shall 
now prove 

THEOREM 3.4. If uGE;(Rn)nA'(K) then uGE '(K). 
Since on the other hand uGE'(K) implies uGA'(K), we obtain: 
COROLLARY 3.5. I_f uGE£ then there is a smallest compact 

set KcR such that u£E£(K) ; it. i_s equal to the support of u as 
an element of A 1(K). 

Thus we may use the term support without specifying an L 

93 



L. HORMANDER 

such that uEE'. We shall say that u=0 in an open set X if Xnsupp u 
is empty. 

PROOF OF THEOREM 3.4. Let Kcc Ya=xccRn, and let cp be a poly­
nomial. We shall estimate u(cp) in terms of the norm M=|cp|L ^ x# By 
def inition 

(3.4) |Dacp(x)| < M(L|a|/r) lal , xGX. 

The proof is a refinement of that of Proposition 3.2 where diffe­
rent regularizations are used in different frequency ranges. 

1. Choose v GC^(X) using Lemma 2.1 so that v =1 in Y and Av 0 Av 
IDaxv| < (ClV)lal, |a|<v-

(Here C^ is the constant C in (2.7) divided by the distance from 
Y to CX.) Since v<L we obtain using (3.4) = v 

| Da ( x̂ cp ) | ̂ M ( U C 1 + 1/r))v, |a|=v, 

which implies for small r that 

m V | F < X v 9 > U ) | i M(LvC2)vm(X). 

Here C2=2n/r, and F is the Fourier transformation. Set 
(3.5) Lit) = sup (t/L )v, t>0. 

v^O V 
Given t>0 we can choose v=v(t) so that L(t)=(t/L )v, and then we 
obtain 

|F(XV9)^)| 1 Mm(X)/L(t) if |5|>C2t. 

Since L is increasing it follows that 
(3.6) |F(Xcp)(5)| 1 Mm(X)/L( |?|/4C2) if v=v(t) and C2< | £/t | <4CZ 

When v=v(N,r)=v(2N ^r/n) this estimate holds in the annulus where 
2N_1<|C|<2N+1. Choose 4>n6CQ(U; 2N_1 < | 5 | <2N+1 } ) when N^O and 
choose ip GC™({C; |?|<2}) so that *N > 0 , I *N = 1 , and set 

oo 
(3.7) Rcp(x) = I ^N(D)(Xv(Nfr)9)(x). 

We claim that the sum converges in CL(Rn) and that for some C^ 
and r'>0 (depending on r) 
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(3.8) I RcP I L, r ' ,Rn = C3 I ^ I L, r , X' 

From (3.6) it follows that 

l | C a | ! ^ N ( C ) | | F ( x v ( N , r ) c p ( ? ) | = Mm(X)|?| la l/l (K|/4C2) < 

, Mm(X)|E|-n-1(4C2I.|a|+n+1)lttl+n+1 < C4M(L|a|/r-)l°l |5rn-1. 

Here we have used (2.4). By Fourier's inversion formula we obtain 

I lD%(D,(Xv(N,r)^l = C3M(L|a|/r')|a|" 

This proves (3.8) and also convergence in the norm I I ,/0 n. 
From (3.8) it follows that 

oo 

Ul(cp) = u(Rcp) = £ u(i|;N(D) (Xv(N^r)9) ) 

is continuous for the norm | | . 
2. To be able to estimate u-u^ we must make an appropriate 

choice of too. So far we have only used that the partition of 
unity is continuous. First we use Lemma 2.1 to choose h^ for N=0, 
1, ... so that Olh <1, h (5)=1 when |K|<2N,hN(?)=0 when 1^|>2N+1, |DahNU)| < (C6)lalf |a|<2N6 

Here 6 is a small positive number to be chosen later of the same 
order of magnitude as the distance from K to CY. It is important 
that C does not depend on 6. The same will be true for the other 
constants below. Set ^= h^ and 

% = hN " hN-r N = 1 , 2 , . . . 

Since the derivatives of the terms have disjoint supports, we have 
(3.9) | D a V U | < ( C 6 ) H , |a|<2N"16, 

and 2N 1<|^|<2N+1 in supp ip if N^O. 
The operator ^N(D) consisting in multiplication of the 

Fourier transform by i[> is equal to convolution by ¥^ where 

VN(z) = (2TT)"n J E I < Z ^ > ^n(?) de, zGCn. 

With H = HN = 2N we have by (3.9) 
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| z % ( z ) | i C'(C6)lalHne2lImzlH, |a|!2N-16. 

Hence 
|TN(z)| £ C'(C56/|z|)H6/2 Hn e2|Imz|H ^ 

1 c.Hn e2|lmz|H-H6/2 .f |2|>C5e6f 

so we have 

(3.10) l^N(zH £ C"6~n e"H6/3 if |z|>C5e6 and |lmz|<6/13. 

Let x^CQ(X) be equal to 1 in Y and set 

Tcp(x) = f VD)((x~Xv(N,r))cp)(x)* 
Choose 6 so small that C^e6 is smaller than the distance from K to 
CY. Then there is a complex neighborhood H of K such that 

|^N(z-y)| < C6e~HN6/3 if zttt and y$Y. 

Hence we have for all z£Q, 

I^N(D)((x--Xv(N<r))cp)(z)l ^ 2 { l^N(z-y)cp(y)|dy < 2C6e-HN6/3||cp|| 
X\Y 

where ||cp|| is the L norm in X, so the series Tcp ( z ) converges for 
zGfi, and 

u2(cp) = u(Tcp) = £ u(ipN(D) ( (X"Xv(N/r) )cp) ) 

is a well defined function in L°° with support in X. 
3. The proof of Theorem 3.4 will be completed if we show 

that u = u1+uof for then we obtain an estimate | u (cp) | <C | cp | 
I Z — L / r f X 

for any neighborhood X of K and any r>0. We have 
u-(cp)+u9(cp) = Y. u(^vr(D) <X<P) ) • 

To prove that u^+u2=u it suffices to show that the sum of 
\p (D) (xcp) converges to cp in a complex neighborhood of K. It is 
clear that the sum converges to X9 in 5, which implies that it 
converges to cp in C (Y). Now consider the derivative of order 
a when |a| exceeds the degree of the polynomial cp. It is a finite 
sum of terms of the form 

^N*( (D3X)DYcp) 
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where |3|+|y|=|a| and |y|<|a|, hence |3|^0. In view of (3.10) it 
follows that Y_ Da^N(D)(X9) is locally uniformly convergent in Q. 
The sum must be equal to D cp since this is true in Y. Taylor's 
formula now shows that £^N(D)(xcp) converges locally uniformly to 
cp in 1], which completes the proof. 

As we shall see in section 4 the preceding fairly technical 
argument is superfluous in the non-quasianalytic case. In the 
quasianalytic case it will be used again in section 5. 

4. The non-quasianalytic case. When Y_ 1/Lk < 00 the sPace CL 
contains functions of x1 vanishing for x-<0 but not identically. 

Since C is a ring invariant under linear changes of variables 
it follows that the space of elements in CL with compact sup­
port contains non-negative functions with integral 1. Regulari-
zation by convolution with elements in shows that CQ is dense 
in CQ and allows one to construct cutoff functions and partitions 
of unity in CQ just as in CQ. The proof of Proposition 3.2 can be 
simplified for we may assume that <P£CQ. Taking cp_.=E_.*cp we get rid 
of all terms in the proof containing derivatives of X- The proof 
of Theorem 3.4 for Schwartz distributions preceding the statement 
also gives u(cp)=0 if cp̂ Ĉ  and Knsuppcp = 0. The full result follows 

since u(cp)=0 if cpGC and K'nsuppcp = 0 for some K1 such that uG 
E^(K'). The following decomposition theorem is also proved just 
as for Schwartz distributions: 

THEOREM 4.1. I_f X1 and X2 are open sets in Rn, CL i_s non- 
quasianalytic, and uGE ' (X u X0 ) , then u=u1+un with u.EE •(X . ). 

PROOF. We can choose Xj£CQ(X-j) so that X-]+X2=1 in a neigh­
borhood of supp u and set 

Uj(cp) = u(Xj9) • 

Then u.GE_!(X.) and u,+u0=u. 
It is not possible to replace the open sets X^ by compact 

sets in Theorem 4.1: 
THEOREM 4.2. For every non-quasianalytic class CL one can 

find compact sets Ky K2 c Rn and a Schwartz distribution uG 
E;(K1 UK ) of order 1 such that u^u.+u, for all u.GE'(K.). J_J i z — I i j L j 
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PROOF . Let K. be the closure of a sequence x .ERn with 1 M 3 |x1|>|x|> . . . -> 0. Since £ 1/(L .<5 . ) <oo if 6 .+ 0 sufficiently slow-L 3 3 3 ly, we can choose cPJECQ(C{0}) SO that 

cpj(Xj) = 1, cpj^xk) = 0 for k^3f aj=l<Pj|Lfl ,Rn <c°-

Next choose y^x^. for every k so that | x_.-y| a.. < j \ and let 
consist of the points and the limit 0. Then 

u(cp) = Y. Jaj(cp(Xj)-cp(y^) ) 

is a Schwartz distribution of order 1. If u=u1+u0 with U.GE.MK.) 
L I z 3 L j 

and we write cp _.=\|; ̂ w i t h ^ ] < . ^ C o ^ K k ^ ' ^t follows that 
ul (cp j) = ul(\p2) = u(\p2) = ja.^(x.) = jâ cp (Xj) = ja... 

In view of the definition of a. this contradicts that u.GE'. 
3 1 L 

5. The quasianalytic case. In this case we cannot find par­
titions of unity in C^. Nevertheless there is a stronger version 
of Theorem 4.1 which by Theorem 4.2 is false in the non-quasi-
analytic case: 

THEOREM 5.1. Let K and K be compact sets in Rn and let 
L 

C be_ quasianalytic. For every uGE£(K^ u ) one can then find u.EEMK.) , j = 1 , 2, such that u=u..+u0. j h 3 I z 
An essential point in the proof is that one can approximate 

distributions with support at one point with distributions having 
support at another. This can be derived from the following 
consequence of the proof of the Denjoy-Carleman theorem: 

LEMMA 5.2. Let CL be quasianalytic, that is, Y 1/Lk < 00' and 
let 6, r be positive numbers. Then one can find an integer N and 
real numbers an, . . . , a such that for cpECL ([0,1]) 

N N 
(5.1) |«p(1) - Y a^(])(0)| < « M L f r f [ 0 f l ] . 

This follows from the proof by Bang [1] of the Denjoy-Carle­
man theorem or the variant of the proof given in [4, section 1.3]. 
If the derivatives of cp up to some high order vanish at 0 we can 
just use the estimate (1.3.13)' there. Inspection of the proof 
shows that if we define cp(t)=0 for t<0 then Lemma 5.1 is obtained 
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without any such restrictions. 
Using Lemma 5.2 we can prove the following approximation 

lemma: 
LEMMA 5.3. Let K be a compact set cRn, and let K(t) be the  

set of points at distance ^t from K. Assume that CL iŝ  quasi- 
analytic . For arbitrary positive 6, p, t one can find r>0 inde­
pendent of 6 such that for every linear form u on A with 

|u(cp)| < C|cp|L^K(t/2), cpGA, 

for some C, there is some vGE£(K) with 
|<v-u,cp>| £ 6 ML,p,K(t)' cpGA* 

PROOF. Choose x^C^KCt)) equal to 1 in K(2t/3), and set with 
Ej defined as in the proof of Proposition 3.2 

Uj = x(u*E_.); u*Ej(z) = u(Ej(z-.)). 

The proof of Proposition 3.2 gives for some r>0 

l*-Ej*(X<P)|L,r,K<t/2) i C3_llcPlL,p,K(t)' *€A-
_ 1 

We fix j so that C j 2 < 5/3. It remains then to approximate the 
function U_.£CQ (K( t) ) . Approximating <u_., cp> by a Riemann sum we 
obtain a finite sum y = Y_ with x, GK(t) such that 

k 
|<uk, cp> - / flu I < «l«PlLfPfK(t)/3. 

For every x^ we can find with |x^-y^|<t. If we note that 
the line segment between ŷ . and x^ belongs to K(t) and apply 
Lemma 5.2 to the function s i-> cp (ŷ . + s (x̂ .-ŷ .) ) , it follows that we 
can find a finite sum v of derivatives of Dirac measures at the 
points such that 

l/cpdu - <v,cp>| < 6|<PlLfPfK(t)/3. 

Adding up these estimates, we have proved the lemma. 
LEMMA 5.4. Let the hypotheses of Theorem 5.1 be fulfilled,  

and let X b e bounded open sets containing K . Then one can for 
r>0 find linear forms u^r on A, j = 1,2, such that u=u1r+u2r and 
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(5.2) |u.r(<p)| i C |<p| • cpÊA; 
J / f • 

(5.3) |<Ujr - Ujr , «p>| < Crfr,|„|Lfr^in^; cpEA, 0<r'<r. 

PROOF. It suffices to construct u. for small r>0. Choose 

open sets Y. and Z. with K.cY.ccZ .ccX.. We shall now follow the 

same steps as in the proof of Theorem 3.4. 

1. Choose vDGC^(Z.) so that X"l=1 in Y. and 

|Dax^| < (Clv)lal, |a|<v. 

Set xl = xl and = (l-X^)X^, which means that 

i - x j - x * = ( i - x j ) d - x j ) = o in YIUY2. 

We have the same estimates for (with replaced by 2C^). Thus 

(3.6) remains valid for small r when xv is replaced by X^ and M 

is replaced by | cp | . With \p defined as before, with suffi-

ciently small 6 independent of r, we set for polynomials cp 

R.rcp<x) = I *N(D)(X^(Nfr)«P)(x). 

Corresponding to (3.8) we obtain for some r'>0 

(5-4) lRjr<P|L,r'fRn = ^I^L.r.Zj-

Thus 

Wjr(cp) = ufR^cp) = I u(yD)(^(S(r)<f)) 

defines a linear form on A which is continuous for | | . 

2. Choose x^CQ(Z1UZ2) equal to 1 in ^ u Y ^ Since we have 

X^+X^=1 in Y1uY2, it follows that 

vr«p) = I u ( H » N ( D ) ( ( X - x J ( N f r ) - x J ( N f r ) ) q » ) 

is continuous for the l? norm in Z-|UZ2 and is therefore defined 

by a function v tL with support in Z^uz^. 

3. Since 

wir(cp)+w r(cp)+vr(cp) = I u(\p (D)(xcp)) 

r r r 
the end of the proof of Theorem 3.4 gives that w^ +w2 +v =u. Now 
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vr£L°° and supp V ^ X ^ L ^ , SO v_.r£E'(X_.) and v1r+v2r=vr if vlr=vr in 
X 1 , v1r=0 in C X 1 , while v2r=0 in and ^2=v in Thus ujr= 
v.r+w.r is a linear form on A which is continuous for I I , 
and u=u1 +u9 . 

4. What remains is to prove (5.3). Since u^ -u^ uranaia = rux 2 
we may take j=1. By definition 

Wir-Wir' = f u ( V D ) ( ( x J < N , r ) - x i ( N , r ' ) ) 1 ) , ) -
The support of y /10 V-Y is contained in ZAY.. NOW choose 
a cutoff function fN^CQ^X2^ sucn that fN=1 in and 

|DafN| < (C v)lal, |a|<v, if v=v(N,r) or rue uuas 

It follows from the proof of Lemma 2.2 that this is possible with 
a constant depending only on X^ and Z^. Set 

wr'r'(cp) = I u<*N<D> < f N < x J ( N , r ) - x i { N , r . ) > ¥ > ) • 
r r ' 

Each of the terms is of the form already discussed, so w ' is 
continuous for the norm I I_ ^v . Next consider 

Wr'r'(cp) = I u(*N(D)((1-fN)(xJ(Nfr)-xi(Nrrl))<p)). 

Since ( 1-fN) ( x ^ ( N f r ) - X ^ ( N f r . ) )cp has support in ̂  ( CZ2 ) n ( Z ̂  ) 
cZ^\(Y1uY2), it follows as in step 2 that Wr'r is a function in 
L°° with support there. 

r r1 
We split v -v in the same way, noting that 

<V "V ' f> = I u ( V D ) ( ( X v ( N , r - ) + X v ( N , r ' r X v ( N , r ) -

-^(N,r),cP))-
Since vanishes in Z^ the terms involving x drop out in the 

r r' ^ r r' r r' term where we insert a factor 1 -F , , , so v -v = v ' -W ' 
where v ' has support in X^. Hence W ' +v^ -v^ =0 outside X^. 
The support is therefore in X^nX^, so 

r r' r,r'ir7r,rl1 r r' u^ -u^ = w + W +v^ -v^ 

satisfies (5.3). 
PROOF OF THEOREM 5.1. Define K..(t) as in Lemma 5.3. We shall 
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first prove that for fixed t>0 one can find u .EE'(K.(t)) so that 
u1+u2=u. Set K=K1nK2 and choose f so that K1(t')nK2(t')cK(t/2), 
thus t'<t/2. We choose a decreasing positive sequence r^<1/v so 
that Lemma 5.3 holds with r=r and p=1/v. With X. equal to the 
interior of Kj(t') we define u_. by Lemma 5.4 and set U_. =Uj v. 
Then 

|U % ) | < Cjcpl 
J v 3 

and 

< и Г + 1 - " Л И ± %\^L,r ,K ( t/2)-

Hence it follows from Lemma 5.3 that we can find v EE'(K) so that 

l < V + l-U1V-vV' «P>I ± 2-V|<p|Lf1/VfK(t). 

This implies that 

u^cp) = U11(Cp)+ J_ <U1v+1-U1V-vv, cp> = 

= U1k(cp) + Y. <U1V+-U1V-vV, cp> - Y <vV' <P> 

exists and is bounded with respect to | cp | ̂  \/\ K (t) ever^ ^ • 
Hence u1EE£(K1(t)). Set u2=u-u =Unk+U2k-u1! Then1 

u2(cp) = U (cp) - Y <U-,V " U ^ V , cp> + ^ <vV,cp> 

so we obtain in the same way that u0EE'(K0(t)). 
Changing notation we have for every t>0 found u. EE'(K.(t)) 

so that u=u^ +u2 . Thus 

u ^ - u ^ u2T-u2TEE£(K1 (T)nK2(T) ) , t < T. 

When t and T are small we can use Lemma 5.3 to approximate this 
difference by elements in E'(K nK ). The same argument as above 
then shows that u=u.+u for some u.EE'(K.). (See also the proof l Z 3 L j 
of Theorem 5.6 below.) This ends the proof of Theorem 5.1. 

The following reformulation of Theorem 5.1 will be useful 
in section 6. 

COROLLARY 5.5. Let u .EE' (R°) and let X1, X be open sets 
such that u^-u2=0 in X nX . If_ C is_ quasianalytic it follows 
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that one can find uEE^(Rn) so that u-u^=0 in for j=1 ,2 and 
supp uc supp u^usupp -

PROOF. By hypothesis supp (u^-u2) cKn(CX^uCX2) if K=supp 
usupp u0. Hence Theorem 5 .1 shows that one can find v.EE'(KnCX.) 
so that ui~u2=vi~v2* T h u s U=U1~V1=U2~V2 haS t h e r e < 3 u i r e d proper­
ties . 

Lemma 5.3 also gives an important completeness property: 
THEOREM 5 . 6 . Let K be a compact set in Rn and let CL be 

quasianalytic. If UjGE-^(Rn), j = 1 , 2 , . . . and for every neighborhood 
X of K we have 
(5.5) U - G E ; ( X ) , j>J(X), 

then one can choose uGE£(Rn) scj that for every such X 
(5 .6) u - Y u-GEJ(X). 

jfj(X) 3 L 
(5 .6) determines u uniquely modulo E£(K). 

PROOF. Let u .GEJ (K(t(j)) ) where K(t) is defined as in Lemma 
5.3 and t(j)4-0. By Lemma 5.3 we can choose v.GE'(K) so that for 
all polynomials cp 

|<u.-vjf«p>| 1 2"]klL(1/jrK(t(j)). 

Hence 

<U,(p> = Y. <Uj"Vj^cP> 

is well defined, and 

|<u _ ^ <u.-vj,«p>| < 2 1 - k | 9 l L ( l / k / K ( t ( k ) ) 

for every k. Since Y . , (u.-v . )GE'(K(t(1))) we conclude that 
uGE;(K(t(1))). Hence 

L 
u - Y (u.-v.)GE;(K(t(k))) 

for every k, which proves (5 . 6 ) . The last statement is obvious. 

6 . The spaces P^(X). We define a presheaf on Rn by assigning 
to each open set XcRn the quotient space El(Rn)/E'(CX). The 
stalk at x of the corresponding sheaf V\ is the quotient space 

L 

103 



L. HÓRMANDER 

E¿(Rn)/{uGE¿(Rn), x(fsupp u}. 

If u6E'(Rn) and X is any open neighborhood of x then we can by 

Theorem 4.1 or Theorem 5.1 find u-GE'ÍX) and u GE'(C{0}) such 

that u=u^+u2. Thus x^supp u^ which proves that the stalk of 

at x is also equal to 

E¿(X)/{uGE¿(X), x^supp u}. 

Now let uGD'(X) be a section of the sheaf over an open set 

XcR . This means that X=uX_. where X_. are open and that for every 

j we have some u.GE'(X) defining u in X.. Thus u.-u=0 in X.nX . 

We claim that for every open YccX one can find u GE'(X) such that 

(6.1) X^nYnsupp (uy-Uj)=0 for all j. 

In the non-quasianalytic case this follows if we take u=]TcpjU_. 

where cpjGC^(Xj), only finitely many terms are non-zero, and 

Y_ 9j = 1 in a. neighborhood of Y. In the quasianalytic case the 

statement follows by repeated use of Corollary 5.5. Thus we 

obtain the following description of P'(X): 

THEOREM 6.1. Let X be an open set in Rn and let uEP;(X). 

Then one can find v_.GE^(X) such that the supports are locally  

finite and for any YccX we have u=^v^ i_n Y, the sum taken over  

the terms with support intersecting Y. Conversely, every such  

sum defines an element in P£(X). 

PROOF. Choose an increasing sequence of relatively compact 

open sets Y., Y9, ... with union X, and for every j choose u.G i z j 
E'(X) with u .=u in Y.. Then the statement is valid with v1=u1 

and v . = u . - u . ^ for . 
3 3 D-1 £ 

If the class C is non-quasianalytic and K is a compact 

subset of X, we can define 

<u, cp> = <v, cp>; CPGCQ(K); 

where vGE'(X) defines u in a neighborhood of K. The definition 
L 

is clearly independent of the choice of v. From (3.1) we obtain 

(6.2) |<u, cp>| < C r f K ML,r,K' CPGCS(K)-
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Conversely, assume that we have a linear form u on CQ(X) satis­
fying ( 6 . 2 ) . If x ^ C o ( X ) t h e n 

<XU, cp> = <u, X9> 

defines xu£E^ with support in supp x - If Xj£Cq(x)' Z Xj=1' and 
the supports are locally finite in X, then y_ (Xju) defines a 
distribution UGP'(X), and it is clear that U gives rise to the 
linear form u on Cn(X) which we started from. Thus we can iden-
tify P£(X) with the space of linear forms on CQ(X) satisfying 
(6.2) for every compact set Kcx and every r>0. This is just as 
in the case of Schwartz distributions. 

In the quasianalytic case we get another simple description 
of VI (X): 

THEOREM 6.2. If_ X i_s a bounded open set in R and C is  
quasianalytic, then P^(X) i_s isomorphic to E£(X)/E£(9X). 

PROOF. This follows if we apply Theorem 5.6 to the series 
in Theorem 6.1. 

The meaning of the theorem is that the distribution which is 
equal to u in X and 0 in CX can be extended to a distribution in 
the whole space. This remains true for any open set: 

THEOREM 6.2'. lf_ X i_s any open set in Rn and C rs quasi- 
analytic, then every uGP£(X) is_ the restriction of some U£P£(Rn). 

PROOF. Using Theorem 6.1 we can write u=Vv . with V.GE'(X\K.) 
for a sequence of compact sets K_.cX containing every compact sub­
set of X for large j. Repeated use of Theorem 5.1 gives 

Vj = Y. ujk; SUPP ujkc{xEX\Kj; k<|x |<k+1}> 

where the sum is actually finite. If we apply Theorem 5.6 to 
Y_ jujk we °^tain u^^^L wi-tn support in {xGX; k< | x | <k+1 } such that 
the support of u, - Y . u d o e s not meet K for any J. Hence 
U=yu, is an element in P'(R ) with support in X which is equal 
to u in X. The proof is complete. 

Theorem 6.2' means that the distribution sheaf is flabby. 
Summing up, we have proved: 

COROLLARY 6.3. The following properties are equivalent: 
( i ) P£ iŝ  flabby. 
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(ii) If_ uEE^CK^uK^) where and are compact subsets of Rn, 
then u=u..+u0 for some u.EE'(K.). 

(iii) C is quasianalytic. 
PROOF, (iii) =>(i) by Theorem 6.2', and (ii) =Miii) by Theo­

rem 4.2. To prove that (i) =>(ii) we must for given uEE^K^uK^) 
find u1 EE ' ( K ) so that u-u.GEMKJ. This means that u = 0 in CK1 
and that u^=u in Cl^. Now CK^nCK2=C(uK2), and by hypothesis 
u=0 there. Thus we have a well defined distribution u^EP£(CK^uCK 2) 
and by condition (i) it can be extended to R . The proof is 
complete. 
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