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FLOW OF OIL AND WATER THROUGH POROUS MEDIA

by H.W. ALT (Universitdt Bonn) and E.DI BENEDETTO (Indiana University)

We shall prove existence and regularity for the flow of two immiscible fluids
through a porous medium. It is described by the following system of degenerate

elliptic parabolic equations (see [2]1, [31).

(1) 3 S; - v ‘(ki(Vpi-+ei)) =0 in QT := Qx10,TC

t

for i =1,2 , with side condition

1 2

R N , . . :
The porous body §! is a bounded domain in TR with Lipschitz boundary. s, 1is

the fluid content of the i-th fluid depending on Py =Py s ki its conductivity
depending on S The hydrostatic pressure is denoted by p, and e, is the
gravity. s; and ki are continuous functions as in the Figure, s; strictly

monotone in [ ] here - < <0< < iti i
P P , wher __pmin Pmax- , and ki positive in

min’“max

J10,1]. Therefore we have the additional side condition

<
pmin -

- <
Py Py —'pmax
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H.W. ALT, E. DI BENEDETTO

As initial condition we pose

si(pi-pz)(x,O) =sg(x) for x€N ,

o, o

+s
1 72
11)(5?) €L1(Q) where Y is defined below. The boundary conditions are induced by

where s, are nonnegative measurable functions with s = 1. We assume that

a partition of 0 into three measurable sets 1"1,1‘2 and Fo' We consider

Neumann data
ki(Vpi+ei) *v =0 on I‘OXJO,T[
and mixed Dirichlet and overflow conditions
D
P =P
k2(Vp2+e2) v =20 if Py -P, > Poin
kz(Vp2+e2) v =0 |if Py =Py =P ..

on I‘1 xJ0,TL and similar conditions on F2><]0,T[.

Here

2 er” @) ntlo, a2 @)

i T
with
D D
- <

pmin < pl p2 - Pmax

and

D 1 2 r
BtpiEL (0,T;L° () NL (QT) for some r>1 .

Common Dirichlet conditions for Py and p, are easier to handle.
Multiplying (1) by pi—p? we see that
X[ 2
(2) i=1,2Jo Jﬂki(si(pi‘Pz))IVPil
determines the natural topology of the problem. Therefore since ki degenerates

we cannot work in function spaces for p,. But if we define
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FLOW OF OIL AND WATER...

91_92\/k1(51(min(510)))
u, == Ql(plypz) = 92+J ag |,
o kl(sl(o))
(3)
pl_Pz\/t2(sz(max(€,0)))
u, := 0, (p;,py) = p, - ag

o kz(sz(O))
then (2) is equivalent to the L2—Norm of (Vul,Vuz). Also

kl(sl) Vp1 Vu1
= K(s1)
kz(sz) sz \7u2 ,

where in the set {plzpz} the matrix K is given by

kl(sl) 0

K(sl) =

k,y(s,) = Vk,(s,(00)k,(s,)  Vk,(s,(0)k,(s,)
and similarly in {p1£p2}. Introducing the notation

2 1,2 . _ D _
K := {(v1,v2)€L (0,T;H "“(R)) ; vi=p, and v,-v,>p - on l“lx:lo,'rl: ,

<

D
= - <
5 =P, and Vy=Vy SP . on l"2 x J0,TC}

we can formulate the properties of a weak solution (Pl’p2) as follows. p; : Q2+ R
with pminipl - pzipmax and the transformation (ul,u2) obtained by (3) (in Q)
is of class L2(0,T;H1’2(Q)). Furthermore for (vl,vz) €K with atvi ELI(QT) the

following inequality holds for almost all t , where s; =8 (p1 -p2) :

t
o o
JQ(W(sl(t)) —w(sl)) - JQ(S1(t) (v1 - v,) (t) -s1(v1 -v,) (0)) + L JQS13t(V1 —v2) +

(4)
1

t
+ Zijo L_Z(Ej kij(si)Vuj +ki(si)ei)- (W Zj kij(si)Vuj —Vvi) <0 .

Here by convention

k..
= 1) =
kij(O) 0 and Vi (0) o ,

i
and the convex function { is defined by
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H.W. ALT, E. DI BENEDETTO

zZ
V(s (2)) := Jo(sl(z) - s,(8)) & .

Hence formally atlp(sl (p1 —p2)) = (pl —pz)ats1 (p1 —pz) , therefore the variational
inequality (4) formally is equivalent to the above stated initial boundary value

problem. We prove

1. Existence Theorem. Suppose that HN-l(I‘l) >0, Plin”> "% and

N-1
o= - - >
u = =-0,(0,-p )<=, or that K (T))>0, p <=, and

u ., o= tI>1(p ,0) >~ o, Then there exists a weak solution.

min min

Proof. We approximate the conductivity ki by positive functions

K . := max(e2,k,)
€1 1

and the water content by adding a penalizing term

s ,(z) := sl(z)+€z '

e1 (z) := s2(z) -€z .

Se2

Furthermore we approximate the time derivative 29 £ by backward difference

. -h . . _
quotients Bt . Thus we start with solutions (phel'pht-:Z) €](h of =

(Ppe = Ppeq -

= Phep)

-h
) Zifﬂ (at Sei (Phe) Preg Vi) * VB vy )key (sy (B ) (Vpy oy + ei)) 20

for all times and for every (vl,vz) E](h. Here Kh is defined as K with p]z
replaced by
D n D
p, . (t) :=)[ p. (1) dt for (j-1)h<t<jh .
hi . i
(3-1h

The initial condition is

o
sei(phe)(t) =s; for ~h<t<0 .

The solution | of these inductively defined elliptic problems exists since
-1 D
HN > 0. . - . . R
(l"1 U 1"2) 0. Setting v, =Py we obtain for the parabolic part since Sey

is monotone
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FLOW OF OIL AND WATER...

[ ,n S Fhe D
J J 3¢ SeiPp) (P -P) 2 ][ J (J (sg; (Ppe) =5 (B))AE-s (phE)Ph) +
o ‘Q t-h’'Q Vo

t-h t t

h D 2 h D

* J J Sey(Ppeld pp - C2c ef J lppel” - EJ J oyl og |
o Q Q o ‘Q

Together with the elliptic part we obtain the a priori estimate

t-h

2<c .

T
2
€ sup le |+Z.J Jk.(s.(p ))|Vp <
0_<_t_§TQh€ 109811h€ hei

Therefore if uhei are defined as in (3) with respect to kei we can conclude

2 : .
>
that Vuht-:i are bounded in L (QT) . Now in the set {phel > pha2} by definition

of kei (write Yo = uhel—uheZ)

Oiuheﬁumax+celphe| .

Thus if U oo < ® by the a priori estimate

max(y - u_,0) 0 in LT(0,mLi@) .

Similarly if Uoin > -
. ® 2
mln(uhs—umin,O) +0 in L (0,T;L7(Q)) .

Together with the boundary condition and the assumptions made this implies that

uht-:i are bounded in L2(O,T;H1’2(Q)). Hence for a subsequence h-=+o , €-=*o
X 2 1,2
uhei - uy weakly in L°(0,T;H Q)

and

u Lu, -u

<
min 1 2 — “max

Consequently P, and p, are well defined by (3).

The next step is to prove compactness of s ). We multiply the equation

ei Phe

in the time interval J(j-m)h,jh[ by the time independent function

_ 2
Vi T Ppeg N (e (8) -y, (£-mh))
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0
where neco(ﬂ) , j>2m , and (j-1)h<t<jh. Using the a priori estimate we

obtain

T
2
JmhLl n (Sel(phe(t)) - Se1(phe(t'mh))(uhe(t) -uhe(t—mh)) <Cmh .

. . . . : 1 .
>
Since B, € is a monotone function of e and since E:Iph€| 0 in L (QT) it

follows as in [1] that ) is relative compact in LI(QT) , hence for a

Seq (P
subsequence convergent to Sy (p1 -p2) in LI(QT) and almost everywhere.
- -> - i
Then also Yot u.h€2 u1 u, almost everywhere in QT. Moreover the

boundary condition on Ti , i=1,2 , is of the form

Unet ¥ Yhea T Ye(het T Uhea) v
where Yei are continuous functions converging uniformly to some Y. This implies
that

)

u1+u2 = Y(ul-u

2
that is, (ul,uz) is of class K.
Finally we have to show that (ul,uz) satisfies the variational inequality.

For this write (5) (omitting unessential positive terms on the left) in the form

t t
1 o 2
n Jt-hJQ (Wsl(phe)) -U)(sl)) + ZJO J;.(kei(si(Phe)) lvPheil +k€i(si(ph€))Vphei e’)
t h t-h
1 J J 1 o h
<= s_, (p. )V__JJSV-J Js(p Yo v+
ht_hgsl he’ 'h hoglh ° Qei he’ "t'h
t
* Eijo JQ (kei(si(phe))vvhi "oy T Key Sy (P WPy 'Vvhi) :
Here (vhl’vh2) EKh is a suitable approximation of a given function (v1,v2) with

the properties as in (4). Since sl(phe) converges almost everywhere the first
integral on the left and all terms on the right except the last one converge to the

desired limit. Since

ey (55 (Pre))VPpey = zjkeij(si(Phe))Vuhei
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FLOW OF OIL AND WATER...

also the last term on both sides converge. The second term on the left is (e:;eo)

2

t
1
S 1 AR S PO
i, ngoi(si(phe)) joeij o1 Phe’’ "Yhei
which in the 1limit €-+0 , h=+0 is

2

.

t
1
> I, 5 k. (s _ Tu.
- lJo JQ ke 3(s1(p1-p2)) |73 1485 (Py Py Vuy

Then let eo -+ 0.
That weak solutions satisfy the differential equation is stated in the next

Lemma.

o
2. Lemma. For any weak solution 2)tsi(p1 —p2) eL2(0,T;H1’2(Q)*) with initial

values s?_ , that is,
T T °
(6) J <3tsi(p1-pz),C> + J J (si(pl-pz) -sl)at; =0
o o ‘R
for ¢ €C:(Q>< L0, TL). Moreover in the above space
(7) atsi(p1 -p2) -V (Ejkij(si(pl -pz))Vuj +ki(si (p1 -p2))ei) =0 .

Proof. Formally this follows by setting v, = pii T in (4). But since we do not
know whether P, is regular enough to do so, we have to approximate these
p. ~Nou and up
in min

functions. Choose u 2T ua nd fin
n nax hax a define

p 1L 2,1 P in(uP -
u : tomax{uw. . mln(umax, uy u2) .

Then the corresponding pressures p? belong to L2(0,T;H1’2(Q)). Similary

define p?p. Then

D p _Dp
1= + -
w, Py (Pi 1 )
satisfy p . <w, -w, <p and the Dirichlet condition on I,. As test
min 1 2 max i

function in (4) we use
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TE 1 TE TE 1 TE TE
o= = + = i -
Vi,2 532 ("’1 tw ) *2 “‘ax(P in’ TR Wy -, ))+ 1,2
where
TE - .D p__Dp
Wy (t) : pi(t) + (pi p; ) (t) +

_G+bh-T-t p__Dp , oy _ P DP
+ max (0,1 c (pi p, Y3+ Dh-1) (p1 Py ) (Gh-T)

whenever jh-T <t < (j+1)h-T , j=0,...,jh , t *h , th-hitoit for

h~n

h
) : s D D P op
given t <T. In this definition pi(t) := p;(0) and p/(t) :=p~ for <0,
op 1,2 oP oP
< -
where p, €H (R) is chosen such that P iniPy -Py 2P o and
op_ op

J (W(Sc;) -J (s?-s“g))dg)* 0 as p~>0 .
Q o

Then the Ci terms in (4) give the assertion provided we can show that for Ci =0
the right side in (4) does not exceed the left in the limit € + 0, h > 0 , and
p »+ O.

Let us consider the parabolic terms. For almost all T almost everywhere in

2 we have (writing sl(t) for sl(x,(pl—pz)(x,t)) , v for v}e—vge etc.)
(j+1)h-T1 (3j+1)h-T
TE _ TE . _ . B TE
. s1 8tV B J X({pmin<w <pmax}) (51 sl((J+1)h T))Btw +
jh-1 jh-1

+ si((j+1)h-T)(wT€((j+ 1)h - 1) -wTe(jh—T)) >

(j+1)h-T (j+1)h-T
> - |sl—sl((j+1)h—‘r)| |3tpD|-éJ |sl-51((j+1)h-‘[)| .
jh-T (3+1)h-T-€
(j+1)h-T
- [mol P - gn - | - Isi((j+1)h—T)|J 3, -] +
jh-1
. P, s P
"’51((3*’1)1’1"5)(P((J+1)h—‘t)-p(jh—’t)) .

The second term tends to zero as € =+ 0 , hence summing over j and integrating
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FLOW OF OIL AND WATER...

over §l we obtain

5T In
TE . Poors P,
(8) 1lim 513 v >R + s {(3+Dh-1){p ((J+1)h-1) -p (Fh-1) .
t 1 1
€+0 ‘o Q Q

For the second term on the left of (4) we have

TE o, T€ _ B o} oy _0.,.P
(9) -JQ(sl(th-‘r)v (th—‘r) s v (o))zR2 Jg(sl(th T)p (th T) s, °Pp (o))

Thus the sum of the left sides in (8) and (9) is

j, -1
3R3 - J (sl((j+1)h-‘r) - Sl(jh—T))Pp(jh-T) 2>

j=o ‘Q

pP(t, -1) p°P
o
> R3 - (sl(th_.-l-) - sl(g))dg + J J (sl-sl(E))dE >
o Qo
p°P

3R3—J(w(sl(th—ﬂ) —J (ST-SI(E))GE> .
Q o

Integrating over T from O to h and dividing by h the last integral
converges to the first term in (4). The remander R3 tends to zero with h and
p after perferming the mean over T. In the elliptic term we first can go to the

limit with €. After that it is not hard to complete the proof.

3. Remark. In order to show that the weak solution py/P, satisfies the original
problem, we have to show that si(p1 —p2) are continuous in space and time. This
would imply that Vpi is well defined in the open set {ki(si (p1 —p2)) >0}.

We need

4. Assumptions. s:L is continuous differentiable with respect to the 2z variable

in Qx{pmin<2<pmax} and

(10) 9ds, >0 ,
z"1

X, (s, ()
Ll 5c0) >0 for z<p® _ p

(tn stl(z) max max

97



H.W. ALT, E. DI BENEDETTO

ki(si(z))
(12) '—3_5—(—2—)_- <Cc for 2z <0(>0) if i=1(2) ,
z i
(13) |k1(sl(z))(azk2) (sz(Z)) + k2(52(z))(azk1)(51(z))| <c .

Let us consider the transformation (see [8]1, [13])

P17Py k, (s, (E))
kl (s1 (&) +k2(52(€))

v=sl,and u=p2+J ag .

o
Then formally v and u locally in § are solutions of the system
->
v

(14) 0=Ve (k(v)Vu + e(v)) (define = = (k(v)Vu + e(v))) ,

(15)  d.v =V (awVv +b(v) + awv)

where

k(z) = kl(z) + k2(1-z) ,
e(z) = kl(z)e1 + k2(1—z)e2 ,
k,(2z) k,(1-2)
17 2 .-t
a(z) = %(2) Btsl (z) ,
b(z) = —kl(Z) k2(1-Z) (e, ~e,)
k(z) 1 2 !
da(z) = ——kz(l—Z) or = - —ki(Z)
T k(z) k(z)

The assumptions made imply that these coefficients are bounded and

c<ks<c, |34l <c ,

¢ (W) := inf a(z) >0 for every w>0 .
z<1-w/4

Then u satisfies an elliptic equation and v a degenerate parabolic equation,

coercive near O.
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FLOW OF OIL AND WATER...

5. Remark. u and v are solutions of (14) and (15) with Vv replaced by

lim V min (v,1-p) and Vu replaced by 1lim Vup , where min (v,1-p) and up
p>0 2 1,2 p p>0
are in L°(0,T; H '"()). u is defined as u with pi replaced by ps , which

is the transformation of ug according to (3), and

u, +u
p_1 2,1 p in(uP -
u; 3 * 5 max umin' mln(umax, u, u2)
: ] P
with u . Nu . and u A2 u
min min max max

Next we show

6. Lemma. In addition to the assumptions in theorem 1 suppose that if HN_I(Fl) >0

then p . > - and
min

b
max k,(s,(&))
J 22 E€<c ,

kl(sl(E))-sz(sz(E))

(similar if WNH(T) >0 ). Then u is locally bownded in 9.
Proof. The assumptions imply that the functions up defined as above are

uniformly bounded on Fl Urz by some C. Then
¢(up) = min(up-kc, max(up-C, 0))

can be used as test function for the equation (14). This gives that
lim ”¢(up(t))|| 1.2
p>0 H "7 (Q)
: . 2 P . g
is bounded in t. Then multiplying (14) by n u with r|€C°(Q) we obtain that

: P
lim ||u” (t)

P loc

is bounded in t. Therefore up has a weak limit, which is a bounded function
satisfying (14).

Now we are able to prove

7. Regularity theorem. Suppose that the assumptions in 1. and 4. hold and that u

18 bounded. Then s; (P -Pp,) are continuous in QT , and the modulus of
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continuity can be estimated.

Proof. This follows by an iterative procedure from the two propositions below,
and they are proved using the De Giorgi techniques, where the special features here
are the degeneracy of the coefficient a in the parabolic equation for v and

the coupling to the elliptic equation for u.

0,<1 we let

8. Notation. Let (x ,t )€R . For R>0, a>0, and 0<o0o, ,
—_— o © T 1 2

2
(x ) % JtD - (1-02)aR , tot

a -
Qp(0y,0,) := B(1-01)R o

and o = 0%(0,0) , 0 = Q. We define

w? [ wl?

2
2
R QR

egs sup J
-R<t<
tO R t to BR(XO)

and similar for 0%(0,,0,). 1In the following O<R<R_ with Qp cc . and u' ,
R 1"°2 —'o o T

u are any numbers with

+ X -
ess supv <u <1, essinfv>u >0 ,

2r 2R
hence ess osc v < u+—u- < 1. Furthermore W is any positive number satisfying
+ - + -
uo-n <w <2 -u).

9. Proposition. There is a small constant such that if
meas (Q_N {v>u+ - l-‘-)-})< c ¢, (w)meas(Q_)
R 2= To'1 R

then

5
ess osc v<=-W .
0 8
R/2
Here ¢, (W) = ( o, )2,

+ +
Proof. Let v, T min(v,u+ - %) and u - %gk <u -

(vw—k)'*n2 in the time interval ]to-Rz,t[ with t<t°. Here n 1is a cut off

NS

and multiply (15) by
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function with n =1 in QR(OI’OZ) , N =0 on the parabolic boundary of
and

|vn| _<_c(01R)'1 , |vn] ic(olR)'2 ,

2,-1
< <
We obtain

t t

J n(e) 20 v(t) +J
BR

2
ZJ a(v)n2|V(vw-k)+|2 =J J @) .n° -
t -R” ‘B t,-R” 'B.
+ 2 > + 2
- a(v) (vw—k) VvVn™ - (b(v) +d(v)v)V((vw-k) n

where

P+at-2-nw-q -9

1 +
o) =3 [(v, -k 2 2

Since a(v) > ¢ (W) in {(vw-k)+ $ 0} ana

v v
+ + +
a(v) (v -k Vv = (v, -k V(La(z)ds) - J a(g)dag V(vw-k)

[e]

we derive using the various properties of the coefficients

t
2 2 1 2 +2
el ne v @ -nt* >0 (w)] J n“Viv =077 <
jB w 2% t -r% /m w
o
-2
(0,R) t
<c (—1—— + (0 R2)-1)I x({v>kh - J J vamv((v —k)+n2)
b, (W) 2 0 t -r2 /p w
R o R

->
Using the fact that v is divergence free the last term equals

.
¢ K+ (v, —k)

= - J J 3J @ @) -acE))aE vn? <
to—Rz B. 'x

to-R R to

t t
< 5J I |\7u|2(vw-k)+2n2 + % J J x>k} [Wn]® .
B -R? g

Multiplying (14) with u((vw--k)+n)2 we see that the integral involving |Vu|2

is estimated by

101
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t
cf , I m?[vev, -10* 12+ xdv>xh (| + 0P
to‘R B

Substituting this estimate we obtain

2 C

+ -2 2,-1
| v, =% ”QR(OI'UZ) < ) ((oln) + (0,R%) ) meas (@, N {v>k}) .
(e}

Now we use this over a sequence

=R R =yt e _ 0w
Ry =2 % el and kn =M 2"8 n+3
2 2
Using an embedding Lemma [10; II(3.9)] we get
2
2n 1+
(v -k )+|25C—2——meas(Q nlv >x b N2
W n 2_2 R W n
Q ¢>0(w) R n

Rn+ 1

2
-k ) ‘meas(Q, n{v>kn+ }) , hence

n+1

But the left side controls (k

n+1 1

Cc 2 N+2 i 1

y e i 4 Py meas(Q_ N{v>k }) .
n+1 w2¢ (w)2 n n RN+2 Rn n

Since by assumption y, was small enough, yn->0 as n-o by [9; 2 Lemma 4.7],
which proves the Lemma.

From below we will only assume that
- w
< =} < -
(16) meas (Q N {v<u + 4}) (1 co¢1(w))meas(QR) .

But since a is coercive near 0 , we can derive a similar statement to

Proposition 9. First we show an uniform estimate in time.

10. Lemma. Let k < u+ + w_4_ and p > 3. Then for to - Rz<t1<t<to
2 2 cC (p-2) (1 ZPOR 2 N
-x) -kx) Cp-2) (L < =
PI((v(t) -k) ) < IB Volvie) -k) ) + 5, @ (02 +( " ) )R

B(l-oi)R 1

where

Y(z) := max(O, log —W4——> .

w/4-z+ m/2P
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Proof. Multiply (14) by —(Q_z)'(v--k)_)n2 where n 1is a cut off function in

space with n =1 in B(1—01)R'

We obtain

t N - -

J n2p2 (v -x7) +J I awn@? (v-0 ) |vw-x % =
Br t "By

t , _
=f n2p? (vt =107 +J J a2 ((v-% Vw2 +
Br ty "By

t > o2 -2
+ (b(v) +d(v)V)V(P~ ((v-k) In")
B

t "By

Since a(v) 2 ¢_(w) in {w?"((v-k)') { 0} ana

2,2
, , )
WH" =201+PY'° , hence ——-<2p
- - (/]

we derive that

t
J nzll_Jz((v(t) -x)7) + c¢°(w)J’ f nzqf"((v-k)')|\7(v-k)'|2 gJ l‘lzy((v(tl)—k)_) +
BR t1 BR BR

t t
Sy ?w) J J (1 +@g-2n2+gg|vn|2)+J J aw)W ' ((v-xn?)
o t, By £ "Br

>
Since v is divergence free the last term equals

t
=- I J VAWV w-x" ¥
B

%

"(v-x)Tm? <

t t
55I J N2 (v -107) (Vv =) | 2+ 1) +9J J n2(|n) 2+ 1y
t B 8 t B
1 R 1 R

Using

1
w/2p

(17)  Y((v-k)) < (log 2)(p-2) and P'((v-k) )<

the assertion follows, where the integral with |Vu|2 can be estimated by
multiplying (14) with unz.

As a consequence we obtain
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11, Lemma. There Zs a p = p(w) such that if R < 2P0 and (16) hold then
. _p 2
meas(BR N{vit) <y +2 *w) < (1-o )meas(BR)
2 [o]

[e]
- < < o= m—
for t° OR" <t to. Here o : 3 ¢1(w).

Proof. By the previous lemma (k=u_ + %)

(18) f P2 t) -107) 5J Vit -7 + SR gN
B(l-ol)R B ¢°(w)01

and by (16) for some ty GJtO-Rz,to—aR2[

1- 20
meas(BRn{v(t1)<k}) < T meas(BR)

hence using (17)

1-20
1-a

J lpz((v(tl) -k) ) < (log 2)2(p-2)2 meas(B_) .
B R

R
The left side of (18) is

> V(v -7 2

T
B(l—ci)Rn{V(t)<u +2 P}

p -3

> max(0,log 2 ° )2meaS(B( 2N v <u"+ 2R} >

1-01)

> (log 2)2(po- 3)2(meas(BRﬂ{v(t) <u + 2—Pw}) -0o,N meas(BR)) .

1

Substituting these estimates in (18) we get

+ O0,N .

<53) T4 * € 1

- ~-P
meas(BRn{v(t) <u +2 - wh (5_2)2 1-20 p-2
meas (Bp) - ¢°(w)0f(P' 3?

Now choose O 1= 301.2/ (2N) and p large enough so that

_ _9\2
LI (P__g) <U-w+20) .
¢ @02 (p-3) P

We also need the following estimate
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12. Lemma. There 18 a constant C such that for kgu_+% and 0<B<1

| v-x7]|2 =L ((cla)'2+ (028R2)~1)J gl %+
QS (0,.0) T ¢ W o
+ 3 meas(Qin {v<x} .
¢o(w)

Proof. This follows similarly to the first part of the proof of Proposition 9 by
multiplying (15) with -(v-k)_n2 , where n is a suitable cut off function.

Now we are able to show

13. Lemma. For 6>0 there is a q = q(w,0) >p(w) such that if R§2"pw and

(16) hold, then
meas(an fv<p +27%) <o meas(Qz) .

Proof. Let q>p(w) , L =4 +2 % , and k = u—+2-q_1w. By Lemma 11 for
2

t -0R <t<t

o °

meas (B_ {vity >} > carY .

therefore using [9; 2 Lemma 3.5]

meas(BRn {v(t) <kh < C_l;

f [Vitviey -] .
o BRn{k<v(t) <g}

C

+

27+
Integrating over t yields

2
I

2 2

(19) ( “’1) meas(Qaﬂ{v<k})2ic—R—meas(Qan{k<v<9,})J [V(v-2)"~
2q+ R a4 R QC!.
R

and by lemma 12

- -\2 -
'( 0‘|V(v- 2) |2 5-—C—2 ((essQ sup(v - ¢) ) +R2)RN < —£—§ (2 qv.o)zRN .
r ¢ (W) 2R b, ()

Thus (19) becomes

+
CRN 2

meas (Q°‘n {v<k})2 <
R a4¢ ()
o

5 meas(an{k<v<2}) .

Adding this unquality for gq = p(w) ,...,qo—i we obtain the lemma, if q, is
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large enough (depending on ®w and 6).

14. Proposition. There is a q = q(w) such that if (16) holds and R < 2™%w ,

then

ess osc v < w(l- 2—q-1)

R*

’

R7/6. Here c, s a small constant independent of R and w.

*
where R = c 1

1

Proof. Consider the cylinders Qi and the levels kn defined by
n

R - w W
and k_:=u + + —
2n+1 n 2q+ 1 2q+n+ 1

’

where q = q(w,8) , 8 to be chosen. By the embedding lemma [10; II (3.9)]

J o | (v - kn)-|2 <cC meas(Qz n{v< kn})N+2 || (v _Hza
Q n+1 QR

Rt n+1

- kn)

The left side controls

(k )2meas(Qg n{v<k_..hH ,

1 n+1

n‘kn+1
and by Lemma 12
n 2
-112 C 2 - (¢}
” (v—kn) ”QC" < ——((? essQasup (v—kn) ) + 1) . meas(QR n {v<kn}) .

- 2
¢ (w) n
Rn+1 o Rn

Since (v-kn)‘ < 2% on o we get the recursive estimate

R
n
2
ey 2
< CaN+2 24n +N+2
Yol = ® ((.0)2 ¥n
o
meas(Q* n{v<k }
Rn n
y_ = .
n o
meas (QR )

n

By [10; II Lemma 5.6] we infer that yn->0 as n-*o if

N+2
d)o (w)

< ¢ —m—m— .
yo o
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But if we choose 6 to be the right side of this inequality, this is just the

statement in Lemma 13.

15. Remark. 1In [8] the existence of a classical solution is proved in the case
that the equation (15) is strictly parabolic. The paper also contains uniqueness
and stability results, but the overflow condition is not included. Some of the
arguments are restricted to the two dimensional case.

Recently in [7] the existence of a weak solution was shown for the Dirichlet-
Neuman problem. The assumption is that the initial and boundary data stay away
from one side of the degeneracy, so that the solution contains only one pure fluid
besides the mixture.

In the article presented here the statement of Lemma 6 in connection with the
assumption in Theorem 7 is not quite satisfactory, since if kl(z) < Cz condition

(11) implies that pmin = -, but then Lemma 6 does not cover the case

-1
HN (Fi) >0.
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