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R. SACKSTEDER 

FOLIATIONS AND SEPARATION OF VARIABLES 

Richard Sacksteder 

1. Introduction. 

The method of separation of variables has been applied to most of the partial 
differential equations of mathematical physics to represent solutions as sums of 
products of eigenfunctions of ordinary differential operators. The classical tech­
nique developed gradually as the need to solve particular equations arose (see [4]). 
Recently some general theories have been proposed; see [2] and [3] for some of the 
most interesting results and for references to other work. However, as Koornwinder 
[1] has pointed out, even the recent work has sometimes suffered from a lack of r i ­
gor and frequently the basic concepts have not been clearly and explicitly defined. 

The theory presented here has a somewhat different emphasis from any known to 
the writer. All of our considerations here are purely local, that i s , we are con­
cerned with linear partial differential operators defined on arbitrari ly small 
neighborhood of a point in Euclidean space. Our basic concept is that of the sp l i t ­
ting of such an operator by complementary foliations of dimensions n and m , 
where the dimension of the Euclidean space is n+m . Such a spli t t ing leads to re­
presentations of solutions to the corresponding equation by sums of products of 
eigenfunctions of partial differential operators in n and m variables. Repeated 
split t ings then lead to separations in the usual sense. Usually two separations 
have been regarded as equivalent if they correspond by the operation of an element 
of some "obvious" group that leaves the operator or the corresponding equation 
invariant; however, equivalence of this type will not be emphasized here. 
Instead, our concept of equivalence will amount to regarding separations as equiva­
lent if their separating variables have the same level surfaces (cf. [4, p.504]). 

The main theorem, which is stated and proved in section 2, gives necessary and 
sufficient conditions for a pair of complementary foliations to spl i t an operator. 
In section 3, some examples are worked out to show how the theory can be used in 
specific cases to determine al l splittings of an operator. In section 4 some further 
implications of the technique will be discussed. 
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2. Splitting an operator. 

Let A^,...,An,B^,...,Bm be a set of (pointwise) linearly independent 1-forms 
defined in a neighborhood of 0 in En+m . Let U denote the ideal in the exterior 
algebra generated by the A^'s and V the ideal generated by the ^ . ' s • Suppose 
that dU c u and dV c V so that U and V define complementary foliations of 
the neighborhood. The notation F^Fy) will be used to denote the smooth functions 
that are constant on the leaves of the U-foliation (V-foliation), and elements 
of , for example, will be denoted by u or u£ • Thus if u is in F^ , du 
is in U . The complementary foliations determine maps P^ and P^ from the ele­
ments of degree one in the exterior algebra to U and V in an obvious way. 

Let z = (z^,...>zn+m) be local coordinates in the neighborhood and let par­
t i a l derivatives of functions be denoted in the usual way by multi-indices. Let 
Lf = E c(z)Daf be a homogeneous linear partial differential operator. The pair 

0=|a|<k 
U,V will be said to spl i t L if there is a positive function R(z) and there are 
partial differential operators M:Fy -> Fy and N:FV •> Fv such that for every u 
in Fy and v in Fy 

(2.1) L(uv) - R(vM(u)+uN(v)) . 

I t will be assumed from now on that L satisfies the following non-degeneracy 
conditions : (i) either L(l) = 0 or L(l) never vanishes, ( i i ) for some u in 
Fy,LQ(U) = L(u)-uL(l) does not vanish, and ( i i i ) for some v in Fy, LQ(v) does not 
vanish. The notation MQ(u) = M(u)-uM(l) and NQ(v) = N(v)-vN(l) will be used below. 

Now some necessary conditions for U,V to spli t L will be derived. First 
note that Fy D Fv consists of the constant functions, hence (2.1) implies 

(2.2) L(u) = R(M(u)+uN(l)) 

and 

(2.3) L(v) = R(vM(l)+N(v)) . 

In particular, 

(2.4) L(l) - R(M(1)+N(1)) . 

Subtracting the sum of (2.2) multiplied by v and (2.3) multiplied by u from 
the sum of (2.1) and (2.4) multiplied by uv gives 
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(2.5) L(uv)-vL(u)-uL(v)+uvL(l) » 0 

as a necessary condition for spl i t t ing. Eliminating N(l) from (2.2) and (2.4) 
gives 

(2.6) LQ(u) = RMQ(u) 

and similarly 

(2.7) LQ(v) = RNQ(v) . 

Applying the exterior derivative to (2.6) and reducing modulo the ideal U gives 

(2.8) d(LQ(u)) - MQ(u)dR (mod U) 

and similarly 

(2.9) d(L0(v))= NQ(v)dR (mod V) . 

If u^ and U£ are any elements of F^ , eliminating R from (2.6) and (2.8) 
gives 

(2.10) L0(Ul)d(L0(u2)) = L0(u2)d(LQ(u1)) (mod U) 

and similarly 

(2.11) L0(Vl)d(L0(v2)) = L0(v2)d(L0(Vl)) (mod V) . 

In case LQ(u) does not vanish for some u in Fy , (2.10) can be written as 

(2.12) Pvd(Log|LQ(u)|) is independent of u for u in 7^ . 

Similarly 

(2.13) Pyd^oglLQ^) |) is independent of v for v in Fv . 

Then (2.6), (2.7), (2.8), and (2.9) give 

(2.14) d(Log R) = Pvd(Log|L0(u)|)+Pud(Log|L0(v)|) . 

The right side of (2.14) must be an exact 1-form, that is 
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(2.15) dP^aoglLQC^^+dPydCLoglLQCv)!) = 0 . 

If L(l) ^ 0, (2.4) implies that M(l)+N(l) = R^Lfl) . Since dM(l) must be 

in U and dN(l) in V , d2M(l) = dPud(R"1L(l)) = 0 . Using (2.14) one sees that 

Pud(R"1L(l)) = R"1L(l)(Pud(Log|L(l)|)-Pud(Log|L()(v)|) and 

Pvd(R"1L(l)) = R"1L(l)(Pvd(Log|L(l)|)-Pvd(Log|L()(u)|) , 

hence d (M(l)) = 0 is equivalent to 

(2.16) Pvd(Log|L(l)|-Log|L0(u)|)APud(Log|L(l)|-Log|L0(v)|)+ 

dPydaoglUDl-LoglL^v)!) = 0 . 

The conditions (2.5), (2.10), (2.11), (2.15), and (2.16), which do not involve 

the unknown function R or the unknown operators M and N , are necessary conditions 

for U,V to sp l i t . But these conditions are also sufficient : 

THEOREM. Let L be a linear part ial differential operator defined in a simply  

connected neighborhood of a point of E™*11 and suppose that complementary  

foliations are determined by ideals U and V in the exterior algebra. Assume the  

nondegeneracy conditions ( i ) , ( i i ) , ( i i i ) . Then U,V spli ts L if and only if 

(2.5), (2.10), (2.11), (2.15), and (2.16) hold. The function R of (2.1) is 

determined up to a positive constant multiple. Then when R has been given, M 

is determined up to an additive constant and R and M together completely  

determine N. 

Proof. The only if part has already been proved. If (2.15), (2.10), and (2.11) 

(hence (2.12) and (2.12)) hold, R is obtained up to a positive multiple by 

integrating (2.14) because (2.15) is the integrability condition for (2.14). Assuming 

(2.14) and (2.16), M(l) can be obtained up to an additive constant by integrating 

dM(l) = Pud(R"1L(l)) and then N(l) is defined by N(l) = R"1L(1)-M(1). For any 

u in Fy, M(u) can now be obtained by solving (2.6). Now to see that M (̂u) is 

in F , hence M(u) is in F , let u1 be any element of F such that Ln(uf) ^ 0. 
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Taking the exterior derivative of (2.6), dividing by R, and using (2.10) with 

u = and u1 = u^ gives 

d(M0(u))+M0(u)d(Log R) = R~ld(L0(u)) = R '^^dCLog|L0(uf) |) (mod U) . 

By (2.14) and (2.6) this implies 

d(M0(u))+M()(u)(Pvd(Log|L()(u,)|)) = M0(u)d(Log|L0(uf)|) (mod U) . 

The desired resul t , PyM^u) = 0, follows by applying Pv to both sides and 

noting that Pv = Pv . Similarly one defines N^(v) by (2.7) and shows that N^(v) 

and N(v) are in F^. 

Finally to see that (2.1) is satisfied note that by the definition of L^, 

(2.5) can be written L(uv) = vLQ(u)+uL0(v)+uvL(l). Substituting (2.6), (2.7), 

and the relation L(l) = R(M(1)+N(1)), which was used above to define N(l), 

gives (2.1). This completes the proof. 

3. Examples. 

These examples will show how the theorem can be used to determine a l l spli t t ings 

m A 
of an operator. Let z = (x^,... ,xm, y ^ , . . . ,yR) and write Ai = dy.̂  - pi^xj * 

n 4 
B. = dx. - 1 q.dy. . Thus A., B. are given a standard presentation that depends 
J J i=l J 1 1 3 

only on the choice of coordinates at z = 0 .Of course if n or m is greater 
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than one, the P^'s or ^j '8 must satisfy certain integrability conditions to 
insure that dU c U or dV c V . 

Example 1. n = m = 1 , = dy-pdx , = dx-qdy , and Lf = fyyX • If u is in 
, du A = 0 . Hence 

(3.1) ux = -PUy . 

Similarly if v is in , 

(3.2) v = -qv . 
y x 

Relations among the higher derivatives of u , for example, can be obtained 
by differentiating (3.1). In fact, any derivative involving x can be expressed 

2 in terms of y derivatives alone. Thus u = p u + (pp -p )u . The relation xx r yy vrty *x y 
(2.5) reduces to 

u v + u v + 2 u v + 2 u v = 0 , yy x x yy yx y y xy * 

which upon substituting the results of differentiating (3.1) and (3.2) becomes 

(3.3) uyyvx(l+2pq) + uyvxx(-pq2-2q) + uYVx(-pqqx+pqy+2Pyq-2qx) = 0 . 

But the part of the je t of u at z - 0 involving y-derivatives can be chosen 
arbitrari ly as can the part of the v je t involving the x derivatives . I t 
follows that the coefficients of u v , u v , and u v must vanish. In par t i -2 yy x ' y xx ' y x r 
cular, l+2pq = pq +2q = 0 . But since these equations are inconsistent, L admits 
no split t ing and separation of variables cannot be applied to ^yyx = 0 • 

Example 2. Let n,m,A^,B^ be as in example 1 and take Lf = f^-f^ , the heat 
operator. In this case (2.5) is 2u v = -2u v q = 0 and therefore q = 0 . I t is 

y y y xn n 
then easily verified that LQ(v) - -vx , and PudLQ(v) = 0 , so (2.11) is satisfied. Also L (u) = u -u = u +pu and a short calculation shows that (2.10) can only o yy x yy r y 
hold for a l l ui>u2 *-n Py ^ 

(3.4) 2pp = p -p . 
y ryy rx 

If (3.4) does hold, then Pyd Log LQ(u) = -2pydx and dPyd Log LQ(U) = 2p dxAdy. 
Then (2.14) and (3.4) give 
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(3.5) p = 2pp +p = 0 . 
yy vvy *x 

The general solution of (3.5) is seen by elementary integrations to be 
p = (y+b)/(2x+a) , or p = const. The level curves of the U foliation are then 
obtained by integrating dy = pdx . 

4. Remarks. The main interest in separation of variables stems from the the obser­
vation that if u £ FJJ and v € Fy are solutions to the eigenvalue problems 
M(u) = - Xu and N(v) = Xv , then f = uv satisfies L(f) = 0 . Thus the solution 
of L(f) = 0 is reduced a pair of eigenvalue problems, each of which involves 
fewer independent variables. If the spli t t ing process can be continued far enough 
one eventually arrives at eigenvalue problems for ordinary differential operators. 

Sometimes i t is desirable to find a split t ing of a family of operators 
L (f) = L(f)+Xf that works for al l values of the real parameter X . Note, for 
example, that if L(f) = f +f , the level curves determined by the real and f y xx yy ' J 
imaginary parts of an holomorphic function h with hf(z) ^ 0 , determine a spl i t ­
ting of L(f) but the split t ings of L^(f) for X ̂  0 are much more restricted. 
To find conditions for simultaneous spli t t ing note that the addition of the term 
Xf does not affect (2.5), (2.10), (2.11), or (2.15); however (2.16) could hold for 
some value of X but not for others. But if (2.16) holds for at least two values 
of X , i t holds for a l l values. In fact the derivation of (2.16) shows if i t holds 
for two different values of X , d Pyd R =0 and conversely this condition 
implies (2.16) for al l values of X . Using (2.14) i t is clear that d PTT dR"1= 0 
is equivalent to 

(4.1) dPy Log|Lo(u)| AdPu Log|Lo(v)| = dPyd Log |LQ(V) | . 

These observations are summarized in following supplement to the theorem : 

Supplement. Assume the conditions of the theorem and set L'\f) = L(f)+Xf . 
Then (U,V) spli ts LA for a l l X if and only if (2.5), (2.10), (2.11), (2.15), 
(2.16), and (4.1) hold. 

Another easy remark that the reader can verify is that if U,V spli ts L , 
then L is formally symmetric if and only if M and N are formally symmetric. 

Finally we note that some of the ideas employed here can be applied to non­
linear operators. This line of investigation will be continued in a subsequent paper. 
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