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Transverse Curvature of Foliated Manifolds 
Robert A. Blumenthal 

Let M be a smooth manifold and let V be a linear connection on M. A 
fundamental problem in differential geometry is to find relations between the 
curvature of V and the topology of M . We consider the analogue of this funda
mental problem for foliated manifolds and basic connections. 

Let (MjU) be a foliated manifold. Let Q be the normal bundle of JJ and 
let V be a basic connection on Q . Our fundamental problem is then to study the 
relationship between the curvature of V and the structure of the foliated mani
fold (M,3) . 

We recall a few basic concepts. Let T(M) be the tangent bundle of M and 
let E c T(M) be the subbundle tangent to the leaves of 3 . Let Q = T(M)/E be 
the normal bundle. Let it:T(M) Q be the natural projection and let x(M) y 

T(E) 9 T(Q) denote the sections of T(M) , E , Q respectively. A connection 
V:x(M) X T(Q) -*r(Q) is basic [3], transverse [9], adapted [7] if V̂ Y = ?t ([X, Y]) 
for all X € T(E) , Y € T(Q) where Y € x(M) satisfies *(¥) = Y . The parallel 
transport which V induces along a curve lying in a leaf of coincides with the 
natural parallel transport along the leaves. Let R:x(M) X x(M) * T(Q) -» T(Q) , 
R(X,Y)Z = VX7YZ ' 7Y7XZ " V[X Y]Z be the curvature of 7 • 

Question. What influence does R exert on the structure of (M,Jf) ? 

We consider this question in the particular case where 5 is Riemannian and V is 
the unique torsion-free metric-preserving basic connection on Q . 

Let M be a compact manifold and let 3 be a codimension-q Riemannian folia
tion of M . There is a metric g on Q such that the natural parallel transport 
along a curve lying in a leaf of 3 is an isometry. This is equivalent to the 
existence of a bundle-like metric in the sense of Reinhart [11]. 
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Lemma [9]. There is a unique metric-preserving basic connection V on Q 
with zero torsion (T(X,Y) = vytY - VY*X - *[X,Y] = 0 for all X,Y € xOO) . 

Remark. 7 is transversely protectable [9], basic [7] (R(X,Y) = 0 for all 
X € rOO , Y € X(M)) . 

Let p € M . Let jt be a two-dimensional subspace of and let JX,Y) 
be an orthonormal basis of jt . The transverse sectional curvature of ir is 

P P defined by K(* ) = -g (R(X,Y)X,Y) where X,Y € T (M) satisfy it (X) = X, *(Y)=Y. P P P 
Let M be the universal cover of M and let 3 be the lift of 3 to 3 . 

Theorem A [2]. If VR = 0 and K < 0 , then M is_ diffeomorphic to a product 
I X where L is the common universal cover of the leaves of 3 and 3* îs the  
product foliation. 

Application to Reeb's structure theorem [10] for codimension-one foliations  
defined by a closed one-form: Let M be a compact manifold and let 3 be a 
codimension-one foliation of M defined by a nonsingular closed one-form U) . Then 
E = kernel (U)) . Let Y 6 x(*0 be such that w(Y) = 1 . Then Y = it (?) €T(Q) . 
Define a metric g on Q by requiring g(Y,Y) = 1 . Define a connection V on Q 
by requiring VXY = 0 for all X € x(M) • 

Lemma, g is parallel along the leaves of 3 and V i£ the unique torsion-
free metrie-preserving basic connection on Q . 

Proof: Let X € f(E) . Then 0 = dcu(X,Y) - Xoo(?) - YU)(X) - u)[X,Y] and so 
[X,?] € T(E) . Let f € C°°(M) . Then VxfY = fVxY + (Xf)Y = (Xf)Y = *((Xf)Y) = 
*([X,f?] - f[X,Y]) = Tt([X,f?]) - f*([X,¥]) = *([X,f¥]) . Thus V is basic. 
Clearly V preserves g and so g is parallel along the leaves. Let ZpZ2 € 
X(M) . Then T(ZX,Z2) = T(hY,kY) where h,k € C°°(M) and so T(Z^ Z2> = hkT(Y, Y) = 
0 proving the lemma. 
Since Y is a nowhere zero parallel section, it follows that R = 0 . Hence VR = 0 
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and K = 0 . Thus Theorem A implies that 8 a l x F and 8 is the product folia

tion which is Reebfs result. 

Remark. We may rephrase Theorem A in terms of foliages [8J: If the foliage 

W = M/35 admits a Riemannian structure with parallel curvature and non-positive 

sectional curvature, then W will have (in terms of foliages) a "covering" which 
q 

will be a smooth manifold diffeomorphic to R . 

We now consider the relationship between curvature and cohomology. The rele

vant cohomology theory here is base-like cohomology [11], [12]. A differential 

r-form U) on M is called base-like if on each coordinate neighborhood U with 

coordinates (x*,... ,x̂ ,ŷ ,.. #,ŷ ) respecting the foliation 3 , the local expres

sion of 0) is of the form 

2 a . (y ,...,yM)dy A ... A dy r . 
Ki_<...<i <q I* " r - 1 r~ 

Equivalently, i^ii = ixdu) = 0 for all X € T(E) [13]. Since d preserves such 

forms, we obtain the base-like cohomology algebra H£ (M) = & H5 (M) . 
Das r=0 Das 

Theorem B. _If VR = 0 and K > 0 , then Ĥ ag (M) Is finite dimensional and 

SFFSfv cx< < 

Remark. We may rephrase Theorem B in terms of foliages [8]. Let W = M/35 

be the space of leaves (a foliage). We can think of Ĥ ag(M) as the "De Rham 

cohomology" of W , Ĥ e R (W) . Of course, if W is a smooth manifold, this agrees 

with the De Rham cohomology algebra of W . In this terminology, Theorem B states: 

If W admits a Riemannian structure with parallel curvature and positive sectional 

* 1 curvature, then tÇeR (W) is finite dimensional and R(W) = 0 . 

Example. Let G be a compact connected Lie group of dimension q and let g 
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be the Lie algebra of G . Let M be a compact manifold and suppose U) is a 
smooth q-valued one-form of rank q on M satisfying du) + ̂-[u),to] = 0 . Then 
U) defines a smooth codimension-q foliation 3 on M which is a Lie foliation 
modeled on G [5]. Let < , > be a bi-invariant Riemannian metric on G . Then 
< , > induces a holonomy-invariant metric on Q with parallel curvature and 
K > 0 . For example, if G = Ŝ" then 3 is a codimension-one foliation defined 
by a nonsingular closed one-form. If Jt̂ (G) is finite (e.g., if G is semi-
simple), then H* (M) — H*(G) [1]. 

Example. This example uses the suspension construction of Haeflî er [6]. 
1 2 Define a left action of n^(S ) = Z on S by 

1 
cos 2ita 
• sin 2jta 

0 

sin 2ita 
cos 2jta 

0 

0̂  
0 e so(3) 

2 
where 0 < a < 1 is irrational. Let M = R X ̂  be the associated bundle over 
1 2 2 S with fiber S . The foliation of F X S whose leaves are the sets Fx jxj , 

2 2 x € S passes to a foliation «F of M . Since Z acts on S by isometries, 
the normal bundle of (M,30 admits a transverse metric with K = 1 . There are 
exactly two compact leaves. If L is a non-compact leaf, then L is diffeomor-
phic to the two-dimensional torus and the foliation of L by the leaves of JJ is 
Riemannian with K = 0 . 

We now prove Theorem B. Since VR = 0 , we have that N = M/5 is a complete; 
Riemannian, Hausdorff manifold and the natural map f:M~* N is a fiber bundle [2]. 
Each covering transformation o of M induces an isometry Y(a) . We thus obtain 
a homomorphism Yrrt̂ M) -• I(N) such that fo<j=Y(a)° f for all a € tf^(M) 
where I(N) denotes the isometry group of N . Let Z = image (Y) and let 
K = EC I(N) . Let Â (N) be the space of K-invariant r-forms on N and let 
Af (M) be the space of base-like r-forms on M . bas 
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Lemma. There is an isomorphism of cochain complexes 

d r , , d 

d ^ d ... —4 AR(N) —> ... 

^ H^as(M)^H^(N) 
r Proof: Let p:M -» M be the covering projection. Let u) € Â ag(M) Then 

p*U) = f*T] for a unique r-form T) on N . Since p*U) is it̂  (M) -invariant, it 
follows that T) is E-invariant and hence K-invariant. Conversely, let TjGAv(N). 
Then f*Tl € A£ag(?i) . Since T| is E-invariant, it follows that f*T| is ̂ (M)-
invariant and hence f*T) = p*U) for a unique co € A£ (M) proving the lemma. 

Lemma. N and K are compact. 
Proof: Let Q be the normal bundle of JJ and let g be the lift of g to 

Q . The Riemannian metric on N is the one induced by g . Since VR = 0 , it 
follows that N has parallel curvature. Thus N is a complete, simply connected, 
Riemannian locally symmetric space and hence N is Riemannian symmetric. Since 
K > 0 , it follows that N has positive sectional curvature. Thus N is compact 
[14] and K is compact proving the lemma. 
Since K is compact, the inclusion Aj£(N) -» A*(N) induces an injection 
H*(N) -» H*(N) [4]. Since N is compact, H*(N) is finite dimensional and hence 

(M) is finite dimensional. Since TT- (N) = 0 , we have that u} (M) = 0 . Das i Das 
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