Astérisque

ROBERT A. BLUMENTHAL Transverse curvature of foliated manifolds

Astérisque, tome 116 (1984), p. 25-30

<http://www.numdam.org/item?id=AST_1984__116__25_0>

© Société mathématique de France, 1984, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Transverse Curvature of Foliated Manifolds

Robert A. Blumenthal

Let M be a smooth manifold and let ∇ be a linear connection on M. A fundamental problem in differential geometry is to find relations between the curvature of ∇ and the topology of M. We consider the analogue of this fundamental problem for foliated manifolds and basic connections.

Let (M, 3) be a foliated manifold. Let Q be the normal bundle of 3 and let ∇ be a basic connection on Q. Our fundamental problem is then to study the relationship between the curvature of ∇ and the structure of the foliated manifold (M, 3).

We recall a few basic concepts. Let T(M) be the tangent bundle of M and let $E \subset T(M)$ be the subbundle tangent to the leaves of \Im . Let Q = T(M)/E be the normal bundle. Let $\pi:T(M) \rightarrow Q$ be the natural projection and let $\chi(M)$, $\Gamma(E)$, $\Gamma(Q)$ denote the sections of T(M), E, Q respectively. A connection $\nabla:\chi(M) \propto \Gamma(Q) \rightarrow \Gamma(Q)$ is basic [3], transverse [9], adapted [7] if $\nabla_X Y = \pi([X, \tilde{Y}])$ for all $X \in \Gamma(E)$, $Y \in \Gamma(Q)$ where $\tilde{Y} \in \chi(M)$ satisfies $\pi(\tilde{Y}) = Y$. The parallel transport which ∇ induces along a curve lying in a leaf of \Im coincides with the natural parallel transport along the leaves. Let $R:\chi(M) \propto \chi(M) \propto \Gamma(Q) \rightarrow \Gamma(Q)$, $R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$ be the curvature of ∇ .

Question. What influence does R exert on the structure of (M, 3) ?

We consider this question in the particular case where \Im is Riemannian and ∇ is the unique torsion-free metric-preserving basic connection on Q.

Let M be a compact manifold and let 3 be a codimension-q Riemannian foliation of M. There is a metric g on Q such that the natural parallel transport along a curve lying in a leaf of 3 is an isometry. This is equivalent to the existence of a bundle-like metric in the sense of Reinhart [11].

25

Lemma [9]. There is a unique metric-preserving basic connection ∇ on Q with zero torsion $(T(X,Y) = \nabla_{Y}\pi Y - \nabla_{Y}\pi X - \pi [X,Y] = 0$ for all $X,Y \in \chi(M)$).

<u>Remark.</u> ∇ is transversely projectable [9], basic [7] (R(X,Y) = 0 for all $X \in \Gamma(E)$, $Y \in \chi(M)$).

Let $p \in M$. Let π_p be a two-dimensional subspace of Q_p and let $\{X, Y\}$ be an orthonormal basis of π_p . The transverse sectional curvature of π_p is defined by $K(\pi_p) = -g_p(R(\tilde{X}, \tilde{Y})X, Y)$ where $\tilde{X}, \tilde{Y} \in T_p(M)$ satisfy $\pi(\tilde{X}) = X, \pi(\tilde{Y}) = Y$. Let \tilde{M} be the universal cover of M and let $\tilde{\mathbf{3}}$ be the lift of $\mathbf{3}$ to \tilde{M} .

Theorem A [2]. If $\forall R = 0$ and $K \leq 0$, then \tilde{M} is diffeomorphic to a product $\tilde{L} \times R^{q}$ where \tilde{L} is the common universal cover of the leaves of \mathfrak{F} and $\tilde{\mathfrak{F}}$ is the product foliation.

<u>Application to Reeb's structure theorem</u> [10] for codimension-one foliations <u>defined by a closed one-form</u>: Let M be a compact manifold and let **3** be a codimension-one foliation of M defined by a nonsingular closed one-form w. Then E = kernel(w). Let $\tilde{Y} \in \chi(M)$ be such that $w(\tilde{Y}) \equiv 1$. Then $Y = \pi(\tilde{Y}) \in \Gamma(Q)$. Define a metric g on Q by requiring $g(Y,Y) \equiv 1$. Define a connection ∇ on Q by requiring $\nabla_{y}Y = 0$ for all $X \in \chi(M)$.

Lemma. g is parallel along the leaves of \Im and ∇ is the unique torsionfree metric-preserving basic connection on Q.

Proof: Let $X \in \Gamma(E)$. Then $0 = dw(X, \tilde{Y}) = Xw(\tilde{Y}) - \tilde{Y}w(X) - w[X, \tilde{Y}]$ and so $[X, \tilde{Y}] \in \Gamma(E)$. Let $f \in C^{\infty}(M)$. Then $\nabla_X fY = f\nabla_X Y + (Xf)Y = (Xf)Y = \pi((Xf)\tilde{Y}) = \pi([X, f\tilde{Y}]) - f\pi([X, \tilde{Y}]) = \pi([X, f\tilde{Y}])$. Thus ∇ is basic. Clearly ∇ preserves g and so g is parallel along the leaves. Let $Z_1, Z_2 \in \chi(M)$. Then $T(Z_1, Z_2) = T(h\tilde{Y}, k\tilde{Y})$ where $h, k \in C^{\infty}(M)$ and so $T(Z_1, Z_2) = hkT(\tilde{Y}, \tilde{Y}) = 0$ proving the lemma.

Since Y is a nowhere zero parallel section, it follows that R = 0. Hence $\nabla R = 0$

and K = 0. Thus Theorem A implies that $\widetilde{M} \cong \widetilde{L} \times R$ and $\widetilde{\mathfrak{F}}$ is the product foliation which is Reeb's result.

<u>Remark</u>. We may rephrase Theorem A in terms of foliages [8]: If the foliage W = M/3 admits a Riemannian structure with parallel curvature and non-positive sectional curvature, then W will have (in terms of foliages) a "covering" which will be a smooth manifold diffeomorphic to R^{q} .

We now consider the relationship between curvature and cohomology. The relevant cohomology theory here is base-like cohomology [11], [12]. A differential r-form ω on M is called base-like if on each coordinate neighborhood U with coordinates $(x^1, \ldots, x^k, y^1, \ldots, y^q)$ respecting the foliation \Im , the local expression of ω is of the form

$$\sum_{\substack{1 \leq i_1 \leq \cdots \leq i_r \leq q}} a_{i_1 \cdots i_r} (y^1, \dots, y^q) dy^{i_1} \wedge \dots \wedge dy^{i_r}.$$

Equivalently, $i_X w = i_X dw = 0$ for all $X \in \Gamma(E)$ [13]. Since d preserves such forms, we obtain the base-like cohomology algebra $H_{bas}^{\star}(M) = \bigoplus_{r=0}^{q} H_{bas}^{r}(M)$.

Theorem B. If $\nabla R = 0$ and K > 0, then $H_{bas}^{*}(M)$ is finite dimensional and $H_{bas}^{1}(M) = 0$.

<u>Remark</u>. We may rephrase Theorem B in terms of foliages [8]. Let W = M/3be the space of leaves (a foliage). We can think of $H_{bas}^{*}(M)$ as the "De Rham cohomology" of W, $H_{DeR}^{*}(W)$. Of course, if W is a smooth manifold, this agrees with the De Rham cohomology algebra of W. In this terminology, Theorem B states: If W admits a Riemannian structure with parallel curvature and positive sectional curvature, then $H_{DeR}^{*}(W)$ is finite dimensional and $H_{DeR}^{1}(W) = 0$.

Example. Let G be a compact connected Lie group of dimension q and let g

be the Lie algebra of G. Let M be a compact manifold and suppose w is a smooth q-valued one-form of rank q on M satisfying $dw + \frac{1}{2}[w,w] = 0$. Then w defines a smooth codimension-q foliation **3** on M which is a Lie foliation modeled on G [5]. Let <, > be a bi-invariant Riemannian metric on G. Then <, > induces a holonomy-invariant metric on Q with parallel curvature and $K \ge 0$. For example, if $G = S^1$ then **3** is a codimension-one foliation defined by a nonsingular closed one-form. If $\pi_1(G)$ is finite (e.g., if G is semisimple), then $H^*_{bas}(M) \cong H^*(G)$ [1].

<u>Example</u>. This example uses the suspension construction of Haefliger [6]. Define a left action of $\pi_1(S^1) = Z$ on S^2 by

$$1 \mapsto \begin{pmatrix} \cos 2\pi\alpha & \sin 2\pi\alpha & 0 \\ -\sin 2\pi\alpha & \cos 2\pi\alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \in SO(3)$$

where $0 < \alpha < 1$ is irrational. Let $M = R \times z^{S^2}$ be the associated bundle over s^1 with fiber s^2 . The foliation of $R \times s^2$ whose leaves are the sets $R \times \{x\}$, $x \in s^2$ passes to a foliation \mathfrak{F} of M. Since Z acts on s^2 by isometries, the normal bundle of (M,\mathfrak{F}) admits a transverse metric with $K \equiv 1$. There are exactly two compact leaves. If L is a non-compact leaf, then \overline{L} is diffeomorphic to the two-dimensional torus and the foliation of \overline{L} by the leaves of \mathfrak{F} is Riemannian with $K \equiv 0$.

We now prove Theorem B. Since $\nabla R = 0$, we have that $N = \tilde{M}/\tilde{3}$ is a complete, Riemannian, Hausdorff manifold and the natural map $f:\tilde{M} \to N$ is a fiber bundle [2]. Each covering transformation σ of \tilde{M} induces an isometry $\Psi(\sigma)$. We thus obtain a homomorphism $\Psi:\pi_1(M) \to I(N)$ such that $f \circ \sigma = \Psi(\sigma) \circ f$ for all $\sigma \in \pi_1(M)$ where I(N) denotes the isometry group of N. Let $\Sigma = \text{image}(\Psi)$ and let $K = \overline{\Sigma} \subset I(N)$. Let $A_K^r(N)$ be the space of K-invariant r-forms on N and let $A_{\text{bas}}^r(M)$ be the space of base-like r-forms on M.

TRANSVERSE CURVATURE

Lemma. There is an isomorphism of cochain complexes

<u>Thus</u> $H_{bas}^{\star}(M) \cong H_{K}^{\star}(N)$.

Proof: Let $p: \tilde{M} \to M$ be the covering projection. Let $\omega \in A_{bas}^{r}(M)$. Then $p*w = f*\Pi$ for a unique r-form Π on N. Since $p*\omega$ is $\pi_{1}(M)$ -invariant, it follows that Π is Σ -invariant and hence K-invariant. Conversely, let $\Pi \in A_{K}^{r}(N)$. Then $f*\Pi \in A_{bas}^{r}(\tilde{M})$. Since Π is Σ -invariant, it follows that $f*\Pi$ is $\pi_{1}(M)$ invariant and hence $f*\Pi = p*w$ for a unique $\omega \in A_{bas}^{r}(M)$ proving the lemma.

Lemma. N and K are compact.

Proof: Let \tilde{Q} be the normal bundle of \tilde{J} and let \tilde{g} be the lift of g to \tilde{Q} . The Riemannian metric on N is the one induced by \tilde{g} . Since $\nabla R = 0$, it follows that N has parallel curvature. Thus N is a complete, simply connected, Riemannian locally symmetric space and hence N is Riemannian symmetric. Since K > 0, it follows that N has positive sectional curvature. Thus N is compact [14] and K is compact proving the lemma.

Since K is compact, the inclusion $A_{K}^{*}(N) \rightarrow A^{*}(N)$ induces an injection $H_{K}^{*}(N) \rightarrow H^{*}(N)$ [4]. Since N is compact, $H^{*}(N)$ is finite dimensional and hence $H_{bas}^{*}(M)$ is finite dimensional. Since $\pi_{1}(N) = 0$, we have that $H_{bas}^{1}(M) = 0$.

References

- R.A. Blumenthal, "The base-like cohomology of a class of transversely homogeneous foliations", Bull. Sc. Math. 104 (1980), 301-303.
- [2] R.A. Blumenthal, "Riemannian foliations with parallel curvature", preprint.
- [3] R. Bott, "Lectures on characteristic classes and foliations", (Notes by L. Conlon), Lecture Notes in Math., No. 279, Springer-Verlag, New York, 1972, 1-80.
- [4] C. Chevalley and S. Eilenberg, "Cohomology theory of Lie groups and Lie algebras", Trans. A.M.S. 63 (1948), 85-124.

- [5] E. Fedida, "Sur les feuilletages de Lie", C.R. Acad. Sc. Paris 272A (1971), 999-1001.
- [6] A. Haefliger, "Variétés feuilletées", Ann. Scuola Norm. Pisa 16 (1962), 367-397.
- [7] F. Kamber and P. Tondeur, "Foliated bundles and characteristic classes", Lecture Notes in Math., No. 493, Springer-Verlag, New York, 1975.
- [8] P. Molino, "Invariants structuraux des feuillages", Bull. Sc. Math. 105 (1981), 337-347.
- [9] P. Molino, "Géométrie globale des feuilletages riemanniens", preprint.
- [10] G. Reeb, "Sur certaines propriétés topologiques des variétés feuilletées", Actualités Sci. Indust., No. 1183, Hermann, Paris, 1952.
- [11] B. Reinhart, "Foliated manifolds with bundle-like metrics", Annals of Math. 69 (1959), 119-132.
- [12] B. Reinhart, "Harmonic integrals on foliated manifolds", Am. J. of Math. 81 (1959), 529-536.
- [13] G.W. Schwarz, "On the De Rham cohomology of the leaf space of a foliation", Topology 13 (1974), 185-187.
- [14] J. Wolf, "Spaces of constant curvature", McGraw-Hill, New York, 1967.

Robert A. Blumenthal Department of Mathematics St. Louis University St. Louis, Missouri 63103