Robert A. Blumenthal
 Transverse curvature of foliated manifolds

Astérisque, tome 116 (1984), p. 25-30
http://www.numdam.org/item?id=AST_1984__116__25_0
© Société mathématique de France, 1984, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

Robert A. Blumenthal

Let M be a smooth manifold and let ∇ be a linear connection on M. A fundamental problem in differential geometry is to find relations between the curvature of ∇ and the topology of M. We consider the analogue of this fundamental problem for foliated manifolds and basic connections.

Let $(M, 3)$ be a foliated manifold. Let Q be the normal bundle of 3 and let ∇ be a basic connection on Q. Our fundamental problem is then to study the relationship between the curvature of ∇ and the structure of the foliated manifold ($M, 3$) .

We recall a few basic concepts. Let $T(M)$ be the tangent bundle of M and let $E \subset T(M)$ be the subbundle tangent to the leaves of 3 . Let $Q=T(M) / E$ be the normal bundle. Let $\pi: T(M) \rightarrow Q$ be the natural projection and let $X(M)$, $\Gamma(E), \Gamma(Q)$ denote the sections of $T(M), E, Q$ respectively. A connection $\nabla: X(M) \times \Gamma(Q) \rightarrow \Gamma(Q)$ is basic [3], transverse [9], adapted [7] if $\nabla_{X} Y=\pi([X, \tilde{Y}])$ for all $X \in \Gamma(E), Y \in \Gamma(Q)$ where $\tilde{Y} \in X(M)$ satisfies $\pi(\widetilde{Y})=Y$. The parallel transport which ∇ induces along a curve lying in a leaf of coincides with the natural parallel transport along the leaves. Let $R: X(M) \times X(M) \times \Gamma(Q) \rightarrow \Gamma(Q)$, $R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z$ be the curvature of ∇.

Question. What influence does R exert on the structure of ($M, 3$) ?

We consider this question in the particular case where \quad is Riemannian and ∇ is the unique torsion-free metric-preserving basic connection on Q.

Let M be a compact manifold and let J be a codimension- q Riemannian foliation of M. There is a metric g on Q such that the natural parallel transport along a curve lying in a leaf of J is an isometry. This is equivalent to the existence of a bundle-like metric in the sense of Reinhart [11].

R.A. BLUMENTHAL

Lemma [9]. There is a unique metric-preserving basic connection ∇ on Q with zero torsion $\left(T(X, Y)=\nabla_{X} \pi Y-\nabla_{Y} \pi X-\pi[X, Y]=0\right.$ for all $\left.X, Y \in X(M)\right)$.

Remark. ∇ is transversely projectable [9], basic [7] (R $(X, Y)=0$ for all $X \in \Gamma(E), Y \in X(M))$.

Let $p \in M$. Let π_{p} be a two-dimensional subspace of Q_{p} and let $\{X, Y\}$ be an orthonormal basis of π_{p}. The transverse sectional curvature of π_{p} is defined by $K\left(\pi_{p}\right)=-g_{p}(R(\tilde{X}, \tilde{Y}) X, Y)$ where $\tilde{X}, \tilde{Y} \in T_{p}(M)$ satisfy $\pi(\tilde{X})=X, \pi(\tilde{Y})=Y$. Let \tilde{M} be the universal cover of M and let \tilde{J} be the lift of \tilde{B} to \tilde{M}.

Theorem A [2]. If $\nabla R=0$ and $K \leq 0$, then \widetilde{M} is diffeomorphic to a product $\tilde{L} \times R^{q}$ where \tilde{L} is the common universal cover of the leaves of $\underset{3}{ }$ and $\tilde{\tilde{z}^{3}}$ is the product foliation.

Application to Reeb's structure theorem [10] for codimension-one foliations defined by a closed one-form: Let M be a compact manifold and let 3 be a codimension-one foliation of M defined by a nonsingular closed one-form ω. Then $E=$ kerne1 ((ω). Let $\tilde{Y} \in X(M)$ be such that $\omega(\widetilde{Y}) \equiv 1$. Then $Y=\pi(\widetilde{Y}) \in \Gamma(Q)$. Define a metric g on Q by requiring $g(Y, Y) \equiv 1$. Define a connection ∇ on Q by requiring $\nabla_{X} Y=0$ for all $X \in X(M)$.

Lemma. g is parallel along the leaves of $\overline{3}$ and ∇ is the unique torsionfree metric-preserving basic connection on Q.

Proof: Let $X \in \Gamma(E)$. Then $0=d \omega(X, \tilde{Y})=X \omega(\tilde{Y})-\tilde{Y} \omega(X)-\omega[X, \tilde{Y}]$ and so $[X, \tilde{Y}] \in \Gamma(E)$ Let $f \in C^{\infty}(M)$. Then $\left.\nabla_{X} f Y=f \nabla_{X} Y+(X f) Y=(X f) Y=\pi(X f) \tilde{Y}\right)=$ $\pi([X, f \tilde{Y}]-f[X, \tilde{Y}])=\pi([X, f \tilde{Y}])-f \pi([X, \tilde{Y}])=\pi([X, f Y])$. Thus ∇ is basic. Clearly ∇ preserves g and so g is parallel along the leaves. Let $Z_{1}, Z_{2} \in$ $X(M)$. Then $T\left(Z_{1}, Z_{2}\right)=T(h \tilde{Y}, k \tilde{Y})$ where $h, k \in C^{\infty}(M)$ and so $T\left(Z_{1}, Z_{2}\right)=h k T(\tilde{Y}, \tilde{Y})=$ 0 proving the lemma.

Since Y is a nowhere zero parallel section, it follows that $R=0$. Hence $\nabla R=0$
and $K=0$. Thus Theorem A implies that $\tilde{M} \cong \tilde{L} \times R$ and $\tilde{\mathcal{j}}$ is the product foliation which is Reeb's result.

Remark. We may rephrase Theorem A in terms of foliages [8]: If the foliage $\mathrm{W}=\mathrm{M} / \mathrm{Z}$ admits a Riemannian structure with parallel curvature and non-positive sectional curvature, then W will have (in terms of foliages) a "covering" which will be a smooth manifold diffeomorphic to R^{q}.

We now consider the relationship between curvature and cohomology. The relevant cohomology theory here is base-1ike cohomology [11], [12]. A differential r-form ω on M is called base-1ike if on each coordinate neighborhood U with coordinates $\left(x^{1}, \ldots, x^{k}, y^{1}, \ldots, y^{q}\right)$ respecting the foliation δ, the local expression of ω is of the form

$$
1 \leq i_{1}<\ldots<i_{r} \leq q{ }^{a_{i_{1}} \ldots i_{r}}\left(y^{1}, \ldots, y^{q}\right) d y^{i_{1}} \wedge \ldots \wedge d^{i_{r}}
$$

Equivalently, $i_{X} \omega=i_{X} d \omega=0$ for a11 $X \in \Gamma(E) \quad[13]$. since d preserves such forms, we obtain the base-1ike cohomology algebra $H_{b a s}^{*}(M)=\underset{r=0}{\oplus} H_{b a s}^{r}(M)$.

Theorem B. If $\nabla R=0$ and $K>0$, then $H_{b a s}^{*}(M)$ is finite dimensional and $H_{\text {bas }}^{1}(M)=0$.

Remark. We may rephrase Theorem B in terms of foliages [8]. Let $W=M / K$ be the space of leaves (a foliage). We can think of $H_{b a s}^{*}(M)$ as the "De Rham cohomology" of W, $H_{D e R}^{*}(W)$. Of course, if W is a smooth manifold, this agrees with the De Rham cohomology algebra of W. In this terminology, Theorem B states: If W admits a Riemannian structure with parallel curvature and positive sectional curvature, then $H_{D e R}^{*}(W)$ is finite dimensional and $H_{D e}^{1}(W)=0$.

Example. Let G be a compact connected Lie group of dimension q and let g

R.A. BLUMENTHAL

be the Lie algebra of G. Let M be a compact manifold and suppose ω is a smooth q-valued one-form of rank q on M satisfying $d \omega+\frac{1}{2}[\omega, \omega]=0$. Then ω defines a smooth codimension-q foliation \quad on M which is a Lie foliation modeled on G [5]. Let $<,>$ be a bi-invariant Riemannian metric on G. Then $<, \quad>$ induces a holonomy-invariant metric on Q with parallel curvature and $K \geq 0$. For example, if $G=S^{1}$ then J is a codimension-one foliation defined by a nonsingular closed one-form. If $\pi_{1}(G)$ is finite (e.g., if G is semisimple $)$, then $H_{b a s}^{*}(M) \cong H^{*}(G) \quad[1]$.

Example. This example uses the suspension construction of Haefliger [6]. Define a left action of $\pi_{1}\left(S^{1}\right)=Z$ on S^{2} by

$$
1 \mapsto\left(\begin{array}{ccc}
\cos 2 \pi \alpha & \sin 2 \pi \alpha & 0 \\
-\sin 2 \pi \alpha & \cos 2 \pi \alpha & 0 \\
0 & 0 & 1
\end{array}\right) \in \operatorname{so(3)}
$$

where $0<\alpha<1$ is irrational. Let $M=R \times{ }_{Z} S^{2}$ be the associated bundle over S^{1} with fiber S^{2}. The foliation of $R \times S^{2}$ whose leaves are the sets $R \times\{x\}$, $x \in S^{2}$ passes to a foliation J of M. Since Z acts on S^{2} by isometries, the normal bundle of ($\left.M, \begin{array}{rl} \\ \text { J }\end{array}\right)$ admits a transverse metric with $K \equiv 1$. There are exactly two compact leaves. If L is a non-compact leaf, then \bar{L} is diffeomorphic to the two-dimensional torus and the foliation of \bar{L} by the leaves of $\bar{\pi}$ is Riemannian with $K \equiv 0$.

We now prove Theorem B. Since $\nabla R=0$, we have that $N=\widetilde{M} / \widetilde{3}$ is a complete, Riemannian, Hausdorff manifold and the natural map $f: \tilde{M} \rightarrow N$ is a fiber bundle [2]. Each covering transformation σ of \tilde{M} induces an isometry $\Psi(\sigma)$. We thus obtain a homomorphism $\Psi: \pi_{1}(M) \rightarrow I(N)$ such that $f \circ \sigma=\Psi(\sigma) \circ f$ for all $\sigma \in \pi_{1}(M)$ where $I(N)$ denotes the isometry group of N. Let $\Sigma=$ image (Ψ) and let $K=\bar{\Sigma} \subset I(N)$. Let $A_{K}^{r}(N)$ be the space of K-invariant r-forms on N and let $A_{b a s}^{r}(M)$ be the space of base-1ike r-forms on M.

Lemma. There is an isomorphism of cochain complexes

$$
\begin{aligned}
& \cdots \xrightarrow{d} A_{\text {bas }}^{\mathbf{r}}(M) \xrightarrow{d} \cdots \\
& \cdots \xrightarrow{d} A_{K}^{\mathbf{r}_{(N)}} \xrightarrow{d} \cdots
\end{aligned}
$$

Thus $H_{\text {bas }}^{*}(M) \cong H_{K}^{*}(N)$.
Proof: Let $p: \widetilde{M} \rightarrow M$ be the covering projection. Let $\omega \in A_{\text {bas }}^{r}(M)$. Then $p * \omega=f * \eta$ for a unique r-form η on N. Since $p * \omega$ is $\pi_{1}(M)$-invariant, it follows that η is Σ-invariant and hence K-invariant. Conversely, let $\eta \in A_{K}^{r}(N)$. Then $f^{*} \eta \in A_{\text {bas }}^{r}(\widetilde{M})$. Since η is \sum-invariant, it follows that $f^{*} \eta$ is $\pi_{1}(M)$ invariant and hence $f * \eta=p * \omega$ for a unique $\omega \in A_{b a s}^{r}(M)$ proving the lemma.

Lemma. N and K are compact.
Proof: Let \tilde{Q} be the normal bundle of $\tilde{\tilde{J}}$ and let \tilde{g} be the lift of g to \tilde{Q}. The Riemannian metric on N is the one induced by \tilde{g}. Since $\nabla R=0$, it follows that N has parallel curvature. Thus N is a complete, simply connected, Riemannian locally symmetric space and hence N is Riemannian symmetric. Since $K>0$, it follows that N has positive sectional curvature. Thus N is compact [14] and K is compact proving the lemma.

Since K is compact, the inclusion $A_{K}^{*}(N) \rightarrow A^{*}(N)$ induces an injection $H_{K}^{*}(N) \rightarrow H^{*}(N) \quad[4]$. Since N is compact, $H^{*}(N)$ is finite dimensional and hence $H_{\text {bas }}^{*}(M)$ is finite dimensional. Since $\pi_{1}(N)=0$, we have that $H_{\text {bas }}^{1}(M)=0$.

References

[1] R.A. Blumenthal, "The base-like cohomology of a class of transversely homogeneous foliations", Bu11. Sc. Math. 104 (1980), 301-303.
[2] R.A. Blumenthal, "Riemannian foliations with parallel curvature", preprint.
[3] R. Bott, "Lectures on characteristic classes and foliations", (Notes by L. Conlon), Lecture Notes in Math., No. 279, Springer-Verlag, New York, 1972, 1-80.
[4] C. Chevalley and S. Eilenberg, "Cohomology theory of Lie groups and Lie algebras", Trans. A. M. S. 63 (1948), 85-124.
[5] E. Fedida, "Sur les feuilletages de Lie", C. R. Acad. Sc. Paris 272A (1971), 999-1001.
[6] A. Haefliger, "Variétés feuilletées", Ann. Scuola Norm. Pisa 16 (1962), 367-397.
[7] F. Kamber and P. Tondeur, "Foliated bundles and characteristic classes", Lecture Notes in Math., No. 493, Springer-Verlag, New York, 1975.
[8] P. Molino, "Invariants structuraux des feuillages", Bull. Sc. Math. 105 (1981), 337-347.
[9] P. Molino, "Géométrie globale des feuilletages riemanniens", preprint.
[10] G. Reeb, "Sur certaines propriétés topologiques des variétés feuilletées", Actualités Sci. Indust., No. 1183, Hermann, Paris, 1952.
[11] B. Reinhart, "Foliated manifolds with bundle-like metrics", Annals of Math. 69 (1959), 119-132.
[12] B. Reinhart, "Harmonic integrals on foliated manifolds", Am. J. of Math. 81 (1959), 529-536.
[13] G. W. Schwarz, "On the De Rham cohomology of the leaf space of a foliation", Topology 13 (1974), 185-187.
[14] J. Wolf, "Spaces of constant curvature", McGraw-Hill, New York, 1967.

Robert A. Blumenthal Department of Mathematics St. Louis University St. Louis, Missouri 63103

