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CYCLES AND BIFURCATION THEORY

by S. Newhouse and J. Palis**

Morse-Smale systems, vector fields or diffeomorphisms, play a
fundamental role in the qualitative theory of dynamical systems. A
special class of them was originally defined by Andronov and Pontrjagin
[2] in their characterization of structurally stable differential
equations on the two-dimensional disk. Later, Peixoto showed that this
class was open and dense in the space of vector fields on any compact
surface [23]. Extending these results to higher dimensions, it has been
shown that Morse-Smale systems are structurally stable and that they
form a dense open set of gradient vector fields on any compact manifold
[20], [22], [30]. Thom has related them to models for phenomena in
nature in his extraordinary book, "Stabilité Structurelle et Morphogénese,"
[40].

A large class of Morse-Smale diffeomorphisms can be obtained as
elements of the flows generated by Morse-Smale vector fields without
closed orbits. From those, via isotopy, one may reach many other types
of structurally stable diffeomorphisms. Recently, Smale proved that any
diffeomorphism is isotopic to an fl-stable one with a zero-dimensional
non-wandering set, and then Shub and Williams pointed out that these

Q-stable diffeomorphisms may be made structurally stable [34]. Llater,
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CYCLES AND BIFURCATION

Shub showed this could be done with C0 small approximations [26]. When
these structurally stable diffeomorphisms can be further isotoped to a
Morse-Smale diffeomorphism is one of the subjects in the paper [28] by
Shub and Sullivan.

It is known that the presence of cycles in Axiom A systems
prevents {l-stability [21], [33]. Indeed, one may perturb in this case
to obtain explosions. Part of the motivation for [18] and the present
paper came from trying to control the Q-explosions which arise in this
manner. However, the general analysis of Q~explosions is very complicated,
and a complete description of the phenomenon still remains to be given.

Bifurcation theory 1s concerned with the changes in orbit structure
of systems depending on a set of parameters. We will mainly be concerned
with the generic point of view. A subset 05 of the space $ of arcs & of
dynamical systems is called residual if it contains a countable inter-
section of dense open sets. Properties true for such residual sets(B

are called generic properties, and one says they are true "for most &"

in ¢. Our interest is in the generic way in which structural stability
breaks down in one parameter families of dynamical systems. This
problem was studied by Sotomayor in the case of vector fields on two
dimensional manifolds [35], and many authors have investigated related
phenomena (1], [3], [6], [24], [25], [36], [39].

An understanding of the generic types of bifurcations (i.e.,
places where structural stability fails) in the Smale and Shub-Sullivan
Isotoples Is very important. The results in this paper as well as in
[18] provide, in our estimation, many of the basic ingredients necessary
to describe these bifurcations.

In [18], we studied bifurcations of Morse-Smale systems from the

following point of view. Take any compact C* manifold M without boundary,
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§. NEWHOUSE - J. PALIS

and denote by MS, the set of Morse-Smale diffeomorphisms on M. Let

{Ct: 0<t<1} be an arc of diffeomorphisms of M with Eoc MS. As long

as Et remains in MS for increasing t, it will be topologically conjugate

to Eo. Suppose for some t = bo, Eb ceases to be in MS. The question is:
0

what can be said about the orbit structure of Et for t near b, with t Zbo?

0
In particular, how often will those Et's be structurally stable and what
kinds of stable Et's appear? These questions were considered in [18]

under the assumption that either L (§, ) or L+(€ ) is finite. Here,
bo bO

L_(Eb ) is the closure of the set of a-limit points of Eb , and L+(€b )
0 0 0

is the closure of the set of w-limit points of £b . A description of the
0

kinds of Eb which generally appear at the first bifurcation point b
0

given, and open conditions were presented which insure that there will

was
0

exist structurally stable Et near Eb for t > bo. The kinds of stable
0

diffeomorphisms to be found were also described.

Let us be more precise. Recall that if L-(Eb ) is finite, a

0
cycle for Ebo is a sequence of periodic orbits o(pl), . e ey o(pn)
with o(pl) = o(pn) such that for each 1<i<n there is a point X € M

with Py in the 0-limit set of x, and Pyl in the w-1limit set of x The

i i
cycle is called equidimensional if all the stable manifolds of the pi's
have the same dimension. The simplest situation occurs when there are

no cycles for Eb . Then, one can find a sequence of submanifolds of M,

0
M= Mn > Mn-l 5. . .0D Ml such that Ebo takes each Mi into its interior
and the largest Eb -invariant subset of Mi - Mi—l consists of a single
0
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CYCLES AND BIFURCATION

periodic orbit. In this case there is an interval U about bo in [0,1]
such that Ete MS for t in an open dense subset U1 of U. The set U--U1
may be finite, countable, or even contain perfect totally disconnected

(Cantor) sets [18].

However, when Eb has cycles, the analysis becomes delicate, and
0
a complete description of the Et for t near bo is not yet known. Under

rather stringent conditions we showed in [18] that structurally stable

Et with infinite zero-dimensional non-wandering sets appear for t near bo.

In the present paper we improve this result considerably. In fact, the

natural assumptions that L-(Eb ) (or L+(Eb )] be finite and hyperbolic
0 0

with an equidimensional cycle are sufficient.

Our results here involve delving more deeply into the structure of
cycles. They can be summarized as follows.

In section 2, after some preliminaries, we will obtain a filtration
theorem for applications to bifurcation theory, and we will show that the
diffeomorphisms satisfying Axiom A and the strong transversality condition
form an open set.

Section 3 concludes a proof that generically arcs £ with EO in MS

and L—(Eb ) finite form an open subset of the space of all one parameter
0

families. With the exception of some important l-cycle cases, this was

proved in [18]. Here we will treat these l-cycles to obtain the general

theorem. Of course, the result also holds if L+(€b ) is assumed finite.
0
- +
Moreover, if either L (Eb )orL (Eb ) is finite, our analysis implies
0 0
that the limit set L(E, ) = L'(§, ) v L'(E, ) has finitely many orbits.
0 0 bo

We will remove the asymmetry in these assumptions by proving the converse:
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§. NEWHOUSE - J. PALIS

for most &, if EOEMS and L(Eb ) has a finite number of orbits, then
0
either L-(Eb ) or L+(€b ) is finite. A fundamental tool in the analysis
0 0

of theorem (3.1) of this section as well as theorem (4.2) of section 4
is the measure theoretic resolution of certain small denominator problems
analogous to those familiar in celestial mechanics [13, §32].

In sections 4 and 5 it will be shown that generically whenever

EOeMS and L-(Eb ) is finite, hyperbolic, and has an equidimensional cycle,
0

there always exist structurally stable Et with infinite zero-dimensional
non-wandering sets for t> bo near bo. As t approaches bo, the topological
types of these Et's change, so there are many bifurcation points near bo.
However, in this case, the set of t's in [bo,b0+€) for which EC is not
structurally stable has small measure compared to € for € >0 small. In
fact, we conjecture that it has measure zero. Thus, in some sense it is

most likely that Et will be structurally stable for bo< t<b,+€ with ¢

0
small provided that L-(Ebo) is finite and hyperbolic with an equidimensional
cycle.

Finally, in section 6, we consider bifurcations of more general
Axiom A systems. We will describe some examples and formulate several

problems.

Let us summarize briefly the results concerning generic arcs

with EO in MS. 1If L-(Eb ) is finite with no cycles, then for some € >0,
0
Et ¢ MS for t in a dense open set in [bo,bo+ €). If L_(Eb ) is finite,

0

hyperbolic, and has an equidimensional cycle, then for € > 0 small there
are infinitely many topologically distinct structurally stable Et's with
L(E,t) infinite and b0< t< bo+e. Borrowing Thom's terminology, one might

say that one has an infinite unfolding in this latter case. Finally, the
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CYCLES AND BIFURCATION

set of arcs & with L_(Eb ) finite is open in the space of all arcs.
0

From the perspective adopted here and in [18], it is apparent
that a fairly complete description of the bifurcation theory of Morse-

Smale systems reduces to the following two conjectures.

Conjecture 1. For most arcs § with £ in MS, the limit set L(§, )
0 bo

consists of finitely many orbits.

Conjecture 2. For most arcs & with Eo in MS, there is an € >0 such
that Et is structurally stable for a dense open set of t in

[bo,b0+ €).

Note that even if these conjectures have negative solutions, a general
description of bifurcations of Morse-Smale systems would necessarily
include our results, since they describe an open set of arcs of

diffeomorphisms.
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S. NEWHOUSE - J. PALIS

§2. Let us recall some notation and definitions. Given a compact
connected C manifold M, denote by ,,Br (M) the space of c* diffeomorphisms
of M with the uniform C* topology, r>1. For fe (M), peM, the orbit
of p, o(p), is the set {f"(p): n=0, *1, 2, . . . }. The positive
orbit o (p) is {£%(p): n=20} and the negative orbit o_(p) is

{fn(p): n<0}. A point yeM is an w-limit point of p if there is a

sequence of integers n1< n2< « « « with ni*°° as 1+® guch that

n
f i(1:') +y as 1+»; y is an 0-limit point of p if there is a sequence

n
n1>n2> -+ . withn, >-®ag 1+ and f i(p)-Py. The set of w-limit
points (0-limit points) of p is denoted w(p) = w(p,f) (a(p) =a(p,f)).

The w-1imit set of £ isu w(p,f) and is denoted Lw(f)° Analogously,
peM

the o~-limit set of f, La(f)’ is defined to be La(f) =U a(p,f). While
peEM

each wW(p,f) is a closed subset of M, this is not generally true of Lw(f)’
so we define L'(f) = C1L (f). Also, set L (f) = CLL (£). L'(f) and

L (f) are called, respectively, the positive and negative limit sets of f.

The set L(f) = L (f) v L+(f) is called the limit set of f. A point xeM
is non-wandering if for every neighborhood U of x in M, there is a positive
integer n (depending on U) such that fn(U) nU # @. The non-wandering set

of f is denoted Q(f). A subset KcM is invariant or f-invariant if

f(K) = K. Thus, (f) is a closed invariant set, and L(f) is the smallest
closed invariant set in M containing all a and w limit points.
Let d be the distance function defined by some metric on M.

Given any subset K< M, define the stable set of K by
Wl (K) = WK, E) = {yeM: dist (f°(y),f"(K)) + 0 as n>w},

and the unstable set of K by
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CYCLES AND BIFURCATION

WK = WK, ) = {yeM: dist (£"(y),£7(K)) + 0 as n + -},

set W'(K) = W'(K)-K and A®(K) = W*(K) -K.
A closed f-invariant set AcM is called hyperbolic 1f there are
a continuous splitting TAM = ESGEU, a constant 0<A<1, and a Riemann

norm |'| on TM such that

s

s
(1) Txf(Ex) = Efx’

u, _ -u
Txf(Ex) = Efx’ xel
@ |1, e < Alvl, veES, xeh and Iz et < Alvl, veE], xeh.

As usual, we will also write s = dim E® and u = dim E" s0
u+s = dim M.

If A is a hyperbolic set for f, then W' (x) and W (x) are C*
injectively immersed copies of Euclidean spaces of dimension u and s,
respectively [8]. A periodic point p of £ is a point for which there is
an integer n> 0 such that fn(p) =p. The point p is called hyperbolic if
no eigenvalue of Tpfn has absolute value equal to one. The set of
periodic points of f is denoted P(f).

f is said to satisfy Axiom A if

(1) Q(f) is hyperbolic

(2) c1P(f) = Q(f).

In this case WU(Q(f)) = U Wu(x) =M and
xeQ(£)

wo(e(e)) = U wix) =M [9].
xcQ(f)

1f f satisfies Axiom A, we say that f satisfies the strong

transversality condition if w“(x) 18 everywhere transverse to W (x)

for all xe M.
Let AS = AS® (M) denote the set of diffeomorphisms satisfying

Axiom A and the strong transversality condition. f e AS is called
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S. NEWHOUSE - J. PALIS

Morse-Smale if Q(f) is finite. Denote the set of Morse-Smale
diffeomorphisms by MS. It can be shown that f e AS 1ff L™ (f) is hyperbolic
and Wu(x) is transverse to Ws(y) everywhere for x,y € L (f) [15]. Thus
feMS if and only if L (f) is finite and hyperbolic and Wu(L-(f)) is
transverse to W° (L (£)).

Our main goals in this section are to establish a sufficiently
general filtration theorem for applications to bifurcation theory and
to prove that Asr(M) is open in ,Bt(M) for r21.

Let us review some basic facts about filtrations. Recall that
given a diffeomorphism f: M+M, a filtration for f is a decreasing
sequence of submanifolds with boundary M = M.k >, ..°oM

) 2 My =9

of M (except M'k and MO of course) such that f(Mi) cint M,, 1i=1, . . . , k.

1
Filtrations were used in [20] as part of the proof that MS is

open and more generally by Smale in [32] to get control on the non-
wandering set. Since then they have been widely employed.

To construct a filtration for f we begin with a decomposition
L (f) = Al U...u AR, where each Ai is a closed invariant set and
Ai n Aj =@ for i#j. Say that AizAj if there is a sequence

A, = A .., A, =01, such that CLW*'(A, ) n A z @9 for 1<s<m.
1 il’ im 3 is 1s+1

This defines an equivalence relation ~ on {Ai} by 1\1~1\.1 if and only if

; >
l\izl\:l and /\-1 -1\1. Let ‘Yl, e e ey 'Yk be the distinct equivalence

classes. These in turn are naturally ordered by Y1 2y, 1f and only if

3

there are AQ"YV I\meY such that I\R;é I\m. We may extend this partial

]
ordering on le} to a linear ordering which we also denote by 2.
Re-labeling the Yi's we may assume Ykzyk_lz e e e 2 Yl' We call this a

filtration ordering of {Yi}' Then we have
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CYCLES AND BIFURCATION

(2.1) Proposition. Corresponding to every filtration ordering

Y2 Y12 s - 2 Y there is a filtration M = MM 2. . 2M 2N

UAC mf(M-

for f such that

A eYi
2 m £01) = Uw o, = U cLwey,)
nz0 i<t EX!

Here, of course, we define Wu(Yj) = l ){WU(AK): /\26 Yj}’ for 1sj<k.

The proof of (2.1) is the same as that of theorem (3.6) of [15] and need
not be given here. With L™ (f) = Al U...U AR,’ we define a cycle

(for L™ (f)) to be a sequence Ai s v e e s A:l. with A, = A, and
1 v L Y

CJU(A ) n QS(A ) 2@ for 1sj<v., Given a filtration Mkb . .2M
i i 0
h] i+l

as above we will be interested in studying the structure of

£ (Mi- M For this purpose it is convenient to know when

).
~o< n <o i-1

an(ni -Mi—l) either contains a cycle or reduces to A:l' A condition
n

which guarantees this is that each I\1 be an isolated invariant set; that

is, that there be a compact neighborhood U, of A:l with mf“(ui) = A:L'
n

In particular, m fn(Ui) C int “i' We record this as
—_—

n

(2.2) Proposition. Suppose L (f) = Aju . .u Ay where each A, is an
isolated fnvariant set. Let Y, be the equivalence class of {Ai} under ~.

1f Yy contains more than one element, then it contains a cycle.

Proof.  Agsume I\l,l\2 €y and Al zAz. We first assert that the next

statements are equivalent

53
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(a) c1€:“(1\1) nh, = o

() c1W ) o ﬁ“(AZ) z 0
(e) c1i(A) n W) = 9.
Clearly, (b) implies (a) and (c) implies (a). We show that (a) implies

(b), and then leave to the reader the analogous verification of (a)

implies (c). Assume that Cl ﬁ“(l\l) n A2 z @ and let IJ2 be a compact

neighborhood of A, with mf“(uz) A, C int U,.
n —

u S
Set u‘z1 - ﬂ £(u,) and U3 m £8(0,). Then U, n U, = A,
n20 n<0

8
Let F = Uz-f(U;). By analogy with [9], [20] we call F a fundamental
domain for WS(AZ). We first claim that F#@. Indeed, if we assume that

8
U = £@0), then US = £3(0®) for all 320, so mf“(u ) = U5 =
2 2 2 2 Lo 270

mfj w3 = m £2(0,) = A,. By Smale's lemma (15, Lemma (3.5)],
jzo0 nez

there is a compact subneighborhood Q':U2 with Az c int Q and
f-l(Q) c int Q. Then any x€ Q is such that a(x) CAZ in contradiction

to the fact that Cl ﬁ“(Al) nA,#@. Thus F=@. Also, CLFnA, = ¢,

so F is a proper fundamental domain for WB(AZ). Now we claim

(d) if V is any neighborhood of C1F, then Uf“(V) vt is a

n20 2
neighborhood of I\2 in M. Indeed, suppose there were a sequence
Xyy Xy + - . 1n U, with x, *A, as 1+~ and x, ¢ fn(V)UUu for
1’ 72 2 i 2 i 2
n>0
-n

all 1. For each 1, let n1>0 be the first integer such that £ i(xi) ¢ U2.

+o ag 1+ gince A2 C int U2
—

Since x, 4 U‘zj, n, exists. Moreover, n

i i
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-n,+1
and l\2 is invariant. Let y be a limit point of {f 1 (xi)}. Then

fn(y) €y, for all n20, but f-l(y) ¢ int U Thus, ye U;— int [f(Uz)).

2°
For large j >0, fj (U;) is near AZ’ 8o there is an integer j0>0 such

i Jo-1 h|
that yeU:—f Ows) = v5-£a3) v f(U;)-fz(U;) v...uv£0 w5 - £ °(u;)

= U fi(F) < U fi(V). But then for large £,

0sisj-1 0<is<jg -l

Xy € U fi(V) which is a contradiction. This proves (d). The
0<is<jy-1

completion of the proof of Proposition (2.2) now follows exactly as
the proof of Proposition (3.10) of [15].

We now prove that AS is open in ﬁt. The proof is analogous to
that for MS in [20]. We first need some definitions and facts.

Suppose A is a hyperbolic set for a ct diffeomorphism f: MM,
For xe A, €> 0, let H:(x) = {yeM: d(fn(x),fn(y)] < €, for n20} and
W) = {yed: d(£7(),£°(9) s €, for n<0}. For € small, Wy(x) and
w:(x) are Cc' disks tangent at x to E: and E:, respectively [8]. Further,
A is said to have a local product structure if for x,ye A, € small,

w:(x) n wz(y) c A. A has a local product structure if and only if it

is an isolated invariant set [9]. Set WU(A) = Wu(x) and WS(A) =
€ xed € €

Uwz(x). Then w‘e’(A) and W:(A) are closed subsets of M for € small,
xeh

and from theorem (1.1) of [9] we know that Wu(A) = Ufn(wg(l\)) .and
n20

we(n) = Ufn (wf(/\)) when A has a local product structure.
n<0 )

Civen two subspaces H,K of T M, y¢M, define the angle between H

v :

and K to be%’(ll,K) = inf ;
[vi[]val

arccos c¢H-{0}, vyeK- {0}

V1
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where<,> is the Riemann metric and |'| is its norm. The angle between
two submanifolds at a point means the angle between their tangent spaces
there. Suppose 21 and 22 are two smooth submanifolds in M which meet

at a point y, and let 1>c>0. We say that El is c-transverse to 22 at
y if TyZl + TyEz = TyM and there is a subspace H of Tyzl such that

dim H = dim M- dim TyE2 and *(H’Tyzl) > c. We say that 21 and 22 are
c~transverse (or meet c-transversely) if they are c-transverse at every

point of their intersection. Similarly, if Zl = UDa and ).".2 = UDé
a B

are unions of submanifolds, we say that Zl is c-transverse to 22 if
each Da is c-transverse to each Dé. For a point ye FcM, let C(y,F)
denote the connected component of y in F. Also write Be(y) for the set
of z's in M with d(y,z) <E€.

The next proposition is a generalized version of the A-lemma [20].

(2.3) Proposition. Suppose A is a hyperbolic set for a ct diffeomorphism

f: M-+>M. Choose €>0 so that each w:(x) and W:(x) are closed disks in M.
Let x ¢ A and let I be a smooth disk such that dim I = dim Hu(xo) and

L is c-transverse to W:(xo) at a point y with ¢>0. Then given §>0,
there is an integer n0>0 (depending only on ¢, f, and 6) such that for

nzng, C(E' (), £7(2) n B(£(x))) 1s a disk §-c” close to W (£"(x)).

The proof of (2.3) is obtained by noting that if z € Uf“(z)
nz0

and f‘1 (z) remains near fj (xo) for 0<j <N with N large, then T n L is
f(z)

pressed toward T wu(fN(x ))‘
n € 0
£ (xO)

Now let f ¢AS. Then, from Smale [32], we know that Q(f) =

l\l vu. ..U I\k where each I\1 is a closed isolated invariant set and
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fll\i has a dense orbit. The Ai's are called basic sets for f. Moreover,

there are no cycles, so one has a filtration Mk > Mk-l 5. . .02 Ml > Mo =0

n
with f(Mi) c int Mi and O f (Mi-Mi_l) = Ai for all 1.

From the {i-stability theorem [33] (see [15] also), we know that

if g is near f, then §(g) = m gn(Mi—Mi_l) is hyperbolic with
1<i<k n

periodic points dense, so g satisfies Axiom A. Hence we need to show that
any g near f satisfies the strong transversality condition also. For this
purpose it is convenient to introduce some more terminology.

For the following, g is always assumed c’ close to f. Set
A (g) = m M, -M
1'8 n 8 i

Fix € >0 so that for x,yeAi(g) with g near £, W:(x,g) and W:(y,g)

1_1), Wu(Ai.g) = {yeM: gn(y)"/\i as n+-»}, etc.

meet in at most one point, and at such a point they make an angle greater
than < >0 independent of x, y, and g.

For 6 >0 we will say that x is §-g-related to Ai if x lies in a
c’ disk in WY(x,g) which is 6-c* close to W:(y,f) for some yeAi.

We prove by downward induction on 1<1i<k the following assertion:

H,:

1 Given 6> 0, there are neighborhoods Uy of Ai in M and ni of f in

,@r(M) such that if ge ‘ﬂ.i and xeUy, then x is §-g-related to Ai(f)'

Once this is done the transversality condition is obtained as

o o
follows. If g is near f, We(Ai(g),g) i8 near we(Ai(f)’f) for o=s,u [8].
The assertion Implies that if x is in wz(l\i(g),g) and is near Ai(g), then
w“(x,g) contains a disk near some W:(g,f), for some y ¢ Ai(f)’ and hence

near some w:(z,g) with z ¢ Ai(g). Thus Wu(x,g) will be transverse to
wﬂ(x,g) at x. Since the orbit of every point enters some W:[Ai(g),g)

we conclude that g ¢ AS.
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To begin the proof of the assertion, note that Ak must be a

source, that is, w‘é(/\k) is a neighborhood of I\k in M. Thus, l-lk follows

from the smooth dependence on f of the stable manifolds W:(y,f), ye Ak
(Theorem (7.4) of [8]).

Now assume that Hj has been proved for i+l <j<k. We prove Hi’

Let F = WZ(Ai) - f(wz(l\i)). By the generalized A-lemma (2.3) and part (d)
in the proof of Proposition (2.2), it suffices to show that there are a
constant c > 0 and neighborhoods V of C1F and 7). of f with the following
properties. If xeV and ge h, then x lies in a C* disk in wu(x,g) which
meets F and is c-transverse to Wz(Ai).

It will be convenient to define beh(Aj |AR,)’ 322, to be the

maximal length of a sequence A, = A, , A, , . . . , A

= A, such that
h | jO 3 £

]

au(Aj ) ﬂﬁs(/\j ) 2@ for 0st<s.
t t+l

First, suppose that A, is a basic set for f with beh(Alei) =1,

3

N
Then there is an integer N, > 0 such that Wu(Aj,f) nFcf j(w"é(l\j,f)).

i
N
The transversality of Wu(l\j,f) and Ws(Ai,f) implies that f j(w:(l\J,f))

is c,-transverse to Wz(Ai,f) for some c2>0. Smooth dependence of the
N
stable manifolds gives that for g near f, g J(WE(AJ (g),g)] is c,-transverse

to WZ(Ai,f). From H, ., we know that for g near f and x near A, x is

1+1 ]

dj—g—related to Aj with Gj >0 small. This implies that if x is near

N N
f j(wz(/\j’f)) and g is near f, then x lies in a disk g j(Z) S wu(x,g)

with LCF close to some Wg(y,g) with ye A, (g). Thus we have neighborhoods

3

N
U of Aj’ V of F, and mof f such that if ge nand xeV n f j(U), then
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w(x,g) is c,-transverse to wz(l\i,f). Let BJL(Ai) = U {Aj: beh(l\lei) <2}

for £21. Proceeding as above we may choose an integer Nl >0 such that

N
W (Bl(Ai)’f) nFcf 1(w:(Bl(Ai))) and neighborhoods U of Bl(Ai) and V

N
of F so that for g near f and xeV n £ 1(U), Wu(x,g) is cy-transverse to
F with c;>0. Now if beh(Aj |Ai) = 2, there is an integer N, >0 such that

N N
wu(/\j,f) nFcf 1(U) v f Z(W‘é(l\j,f)). Thus, we may repeat the above

arguments to get that for x near Wu(Aj,f) n F, g near f, Wu(x,g) is
c,~transverse to F with c,> 0. Continuing this way for all Aj with
beh(l\j lAi) >0 completes the proof.
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§3, We begin here our work on bifurcation theory. Let I = [0,1],
and for k21, r=1, let ¢k,r = Ck(I,lgr(M)) denote the space of Ck
mappings of I into iD‘(M) with the uniform Ck topology. An element
£e ¢k’r is a Ck curve of C* diffeomorphisms. For £¢ @k’r, let B(§) =
{ter: & ¢ AS} and let by = by(€) = inf B(E). B(E) 1is called the
bifurcation set of £ and bo(E) is the first bifurcation point of £.

We will assume throughout that b0(€)< 1.

Our first goal in this section is to complete the proof of (2.6)

in [18]. We restate this as the following:

(3.1) Theorem. Fix k21, r25. There is a residual set B - ¢k,r such
that the set of curves £ in 63 such that Eoe MS and L-(Eb ) 1is finite

0
is open in Qk’r.

Recall that if L™(f) is finite, fe OT (M), a j-cycle is a

sequence o(pi_), e ey o(pij) with o(pi ) = o(pi ) and
0 0 h]

ﬁu(o(pi )] n ﬁs(o(pi )) # @. The proof of the theorem has been given
k 1

k+
in (18] when L—(Eb ) is not hyperbolic or when there is a j-cycle, j>1.
0

It has also been completed when L_(Eb ) is hyperbolic and there 1is a
0

l-cycle for which condition (4.7) of [18] holds. Any of these conditions

implies that, generically, L(Eb ) is finite. However, in section 7 of
0

[18] we gave an example of an open set of arcs £ in which condition (4.7)

failed and L+((;b ) was infinite.
0

llere we will prove Theorem (3.1) in the remaining case--when

L—(Eb ) is finite hyperbolic with a l-cycle but condition (4.7) is
0
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violated. As a consequence we will see that the phenomena present in
the above mentioned example are essentially the only ones which can
occur generically if (4.7) fails. It should be pointed out that we will
obtain a fairly complete description of the orbit structures of many of

the diffeomorphisms Eb which occur. When convenient, we restrict to
0

residual sets in @k’r without further mention. Since L_(Eb ) is
0

hyperbolic, we need only assume r 2 2,
First, let us give the definition of a quasi-transversal inter-

section of two submanifolds. We thank H. Levine for a helpful conversation
n, m-n,
regarding the following. Let R =, R be the Euclidean spaces of
ny m-n, m-n,
dimensions nys B, and let m: R =~ XR +R be the natural

projection. Let dJi: N,+*M, 1 = 1,2, be two smooth embeddings into M

i

with dimNi = ng, dimM = m, and let ye ¢1(N1) n ¢2(N2). Say that y is

a quasi-transversal intersection of ¢1(N1) and ¢2(N2) if the following

n, m-n,
statement is true. There is a diffeomorphism Y mapping R =~ X R

onto a neighborhood U of y in M such that

n
M) YR x0) < 4 M), V0,0 =y

_ m-n,
(2) the linear map A =T my ¢2: T -1 N2 +R
M ¢ o,

has rank m- n:l -1

(3) 1if L = ker Ay # (0), then the intrinsic second derivative

m-n

map from L®L to R 1/

Image Ay ~R 1is non-degenerate.
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For the definitions in (3), see pages 151 - 152 of the book '"Stable
Mappings and their Singularities," by M. Golubitsky and V. Guillemin.

Now we turn to the proof of Theorem (3.1). Assume L_(€b ) is
0

finite, hyperbolic, has a l-cycle, and condition (4.7) of [18) does not

hold. We may suppose that L-(Eb ) = o(p) uT with {p}uT a finite set of
0

hyperbolic periodic points, and that ﬁu(o(p)] n ﬁs(o(p)) consists of
one orbit o(x) of quasi-transversal intersections. By Theorem (2.2)
of [18], we may assume that all other intersections of stable and

unstable manifolds are transverse. For simplicity, assume p is fixed

by Eb » the arguments being similar in the general case. Let f = Eb
0 0

and {Al, e e Au, Hys o v 0 s us} be the eigenvalues of Tpf with
gl fug_q 1= oo 5'”1"1""1"“2" e slxul. It will be

assumed that all eigenvalues have multiplicity one, and that
lug 1> luy| and |2 ] <2,

(3.2) Lemma. For a dense open set of £'s, the weakest expanding

eigenvalue Al of Tpf 1s real and positive.

Proof. Openness is obvious, so we need only prove density. Let p°
and D" denote the closed unit balls in R® and Ru, respectively. We
may choose a neighborhood U of p in M and a ct diffeomorphism

¢: U > D® x D' such that the positive orbit o+(x) c U, ¢(p) = (0,0),

o L@® x {0}) « W), and ¢ L({0} x D%) c Wi(p). Let D° = ¢ 1(@° x {0})

and D" = ¢—1({0] x DY) and identify U with p® x . Let m®: U -+ D® and
ats U » p" be the natural projections. We may suppose x ¢ Ds. Since

x 18 a quasi-transversal intersection of w“(p) and w“(p),

dim(Tx1ﬁ'wap(p)) = u-1. Assume Al is not real and positive. From
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this and the other properties of quasi-transversal intersectioms, it
follows that

(@) {0} x p¥ < Blwu(p) where 81Wu(p) = m {CLF: F < W)

and Wu(p) -F is compact}

and (b) 1if yeDY, there are a subdisk Dg of D" = {0} x D" containing

y and an infinite sequence D‘;, D;, .+ . of disks in Wu(p)

u

0 uniformly in the Cl sense.

which accumulate on D

Assume for the moment that (a) and (b) have been proved. Then,

u

since Uf“(n“) = w(p), (b) implies that if D,

nz0
u

Di is also accumulated upon in the Cl sense by u-disks in Wu(p). The last

is small, then each

mentioned u-disks have the same property so that we may find a disjoint

family of u-disks {D:} satisfying the following.
() Dy < W (p)
(d) there is a positive number § >0 such that diam D:> § for all a.
(e) each D: is a 1limit in the Cl gense of other u-disks in {D:}
(f) y is a limit point of ka)D;.

These properties imply that CI(UD:) will have uncountably many components
a
near y, and hence there are points in [Cl Wu(p) - Wu(p)] n U,

Let I‘l be the set of periodic points q in I' such that
c1wi(q) n w“(p) + @. Standard filtration arguments give that Wu(I‘l)

and w“(I‘l) u wu(p) are open sets in M. In fact, one may construct a
filtration ordering (see §2 for definition) of the orbits in L-(f) such

that orbits in I‘1 precede {p}, and {p} precedes orbits in L (f) - I‘l u o(p).

Then Proposition (2.1.2) implies that M - Wu(Fl) and M - Wu(l"l) u Wu(p)
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are closed sets in M. If U is small enough, then U c Wu(l"l) 1] Wu(p).

But then [Cl w“(p) - w“(p)] n U would have to meet Wu(I‘l) which is
impossible and Lemma (3.2) is proved.

Now we sketch the proofs of (a) and (b). Consider first (a) when
)\1 is real and negative. We know }‘1 has multiplicity one and

. Let D" be a (u=-1)-dimensional subdisk of D% c R%. The

<

gl <,

coordinates ¢: U - p° x D may be chosen so that Y ﬁ ¢-1({0} x Buu)
e

is an f-l—invariant manifold tangent at p to the sum of the eigenspaces

of {)‘2’ e e )\u} {10]. D" is called the (local) strong unstable

manifold of p in D" and it consists of the set of points y in p" such
that d(fn(y),p) ‘k "+ 0 as n+® where ‘)‘1| <k< |A2|.
Let ™': U-+D" be the projection. Residually, we may suppose that

T w"(x) > Tp D" as n+ in the Grassmann sense. The following

£ (x)
figure illustrates the situation in dimension three.

N
1 x
p f(x
&« | W(x) = w(p).
v
/

Fiqure 3.1.

DS
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Now since )‘l is negative, and x is a quasi-transversal intersection,
(a) is clear.

1f Al is not real, (residually) we may assume that A, = |A1| e:le

1

where 5 is irrational. Then TTUT n Wu(x) rotates densely in Tp p¥

2 £ (x)
as n*°, Here (a) follows easily, as well.
For the proof of (b), observe the following. If yeDu and

en® x Dg is a small product disk about y in U, and I is a small
u -n, u s
neighborhood of x in W (p), then for large n, f (D0 XxeD)nl
u s ~-n, u
contains u-disks Zn whose boundaries lie near int D° X bd f (DO).

For n large enough, fn(Z:) will be Cl near D The estimates

u
o
required to make this precise are analogous to those in the proofs of
(3.9) and Theorem (4.2), so they will be left to the reader. The

next figure illustrates this for the diffeomorphism described in

Figure (3.1).

Fiqure 3.2,

This completes the proof of lemma (3.2).
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Since )\1 is real and positive, we may construct the disk p"Y as
in the preceding proof. Moreover, residually we may assume that
o(x) n D" = g, Let D_l:_ be the closure of the component of p" - p*

containing o(x), and define D‘: = c1(" - D_':).

If we only wish ¢ to be Cl, we may assume the eigenspaces Hl of

Al and H2 of U, are invariant by f near p in the coordinates ¢.
(3.3) Lemma. Restricting £ to a dense open set, we have lull)\l< 1.

Proof. The property is clearly open. We will show that it is dense
among the & for which |u1|>\1 # 1. The proof consists of showing that

has infinitely many periodic pointsl which
0

contradicts the fact that L (f) is finite. Choose C:l coordinates

if |u A;>1, then f = &

l| b

-n

¢: U > D° x D" as above. Let yeo(x) n ¢-1({0} x DY), Say y = f O(x).
-1

Let €>0 be small, and let D, = ¢ [¢(y) +e(D° x 'D“)),

=8

DZE = ¢-l d(x) + t-:(ﬁs X 3“)] Here, of course, ¢(y) +e(D X D)=

{9(@y) + e(z,w), zess, wesu} and ¢1>(x)+e(l_)-s x Bu) is similar. We may

assume that o_(y) does not meet " so that o_(y) approaches p near H

1

Similarly, assume o+(x) approaches p near HZ‘ Now if Iul')‘l >1, € is
= ¢ m -3

small, and n 1is large, then D3ne = f (Dle) n 0<1n fYUn D2€ is

diffeomorphic to D° x D" and is very near Dy N df'l(f)'s x {0}). Since
condition (4.7) of [18] is violated, we have either ul 18 not real and

positive, or, 1if it is, x¢€ 31W8(p). In the first case we may assume

1.A.ft:er this was written, we became aware that the two-dimensional
version of this observation is related to results in the paper of
Gavrilov and Silnikov [5].
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|\
WE_T is not a root of unity. Then in either case there is a sequence
1

-=n-n

{xn}, n large, such that x is near X, x e f 0 ) nD, , and

(D3n€ 3ne

ﬂuxh approaches p 1in a small sector about H1 in DY. The last

u uu
m = X
statement means that 1f X (xnl’an) € H1 D, then

srall.
n0+n
It follows that, for n large, f (D3n€) n D3n€ has two
n_+n

0 D3ne behaves like Smale's well-known horseshoe

components and f

diffeomorphism [31], [32]. The following figures illustrate the

situation in dimension two.

D)5 |
4
\\\;T:'J //D3ns
/
~ -
X \\
N
DZe
\
D3n€
/?4?;====§§L n0 *n
=z N f D
77 3ne
Figure 3.3. /////,
N\
/ \
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n.+n
Thus, f 0 D3n€ will have infinitely many periodic points. Actually,

n,+n

for our purposes here, it suffices to find one fixed point of f DBne

for each n large since D3ne nD =@ for n*m large. This may

3me

be accomplished using Lemma (2.10) in [15]. Lemma (3.3) is proved.

(3.4) Lemma, Restricting to a dense open set of £'s, if y € Wu(p) -o(x),

then w(y) c I‘2 where 1‘2 = {q ¢ I..-(Eb )t q#p and Wu(p) n Ws(q) z 9},
0

Proof. As before let f = Eb . We first show that the property of
0

Lemma (3.4) is an open condition on & with & suitably restricted.

Generically, we may assume that T " Tx Wu(p) approaches p" in D

as n*®, Then there is a small u-disk I about x in Wu(p) such that
o+(Z) n DuCD':. Indeed, if this were not true, then o+(2) >5p% for every
such disk I and the arguments in the proof of Lemma (3.2) would yield
a contradiction. Assume that Lw(wu(p) -om) < T2. We may construct

a filtration ordering of L™ (f) in which {p} precedes the orbits in I‘2.

Thus, there are compact submanifolds with boundary M1CH2 of M such

that f(M;) < intM;, T, < intM,, and {p} v o(x) < O f“(nz—nl).
Note that Lw[wu(p) -o(x)) < 1"2 implies that we actually have

{p} v o(x) = m fn(Mz-Ml). Now there is an integer n, >0 such that
n
-n

u 1

D_ - f’l(Df) < int f (Ml). Also, if L is small, then any point y in

I - {x}. has the property that its positive orbit leaves U near

-n
u

-1, u -n 2 u
D_ - f "(D)), so it enters f (Ml). Let n2>0 be such that f (Z) <D

-n

Adjusting ), we may assume f 2()I) cp® - f-l

(Du). Further, we may

"y -1,u By
choose n3>0 so that f [D -f (D) -f£ (Z)) c intMl.
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Now for N near &, t near bo, let P, be the unique hyperbolic
fixed point of nt near p. Similarly, denote its unstable manifold by

w“(pt). The structures Du, Df, L, etc. vary continuously in the ct

u

topology with f and those defined for N, will be denoted by D:, D—t’

Zt, etc. Given 1N, let to(n) denote the first time t for which 2:

ueets WS (pt), say at X, . This will be a quasi-transversal intersection.

We will show that
u
@ L W) - x) T, for tsty(n

) L (n ) is finite and hyperbolic
to (M

(3) ty(n) 1is the first bifurcation point bo(n).

n
First of all, it is clear that nta[D"I -n lpu

-n,
e~ Me D - M TCY)

-1 u
- N, D—t) < intMl for n near £ and t near bo. Moreover,

L (L) < intM for t<to(n) and Lw(Zt - {xt}) < intM, for t=t0(n)

1

gince the positive orbits involved go near D‘_"t - n;lD‘:t. This proves (1).

To prove (2) and (3), first note that the usual

proof that MS is open shows that L-(nt (Y'I)) n Ml and L—(nt (ﬂ)) n M-Mz
0 0

are finite and hyperbolic, and the transversality condition holds on

orbits which do not pass near {p} u o(x) = m fn(MZ—Ml). The
n

conclugion of Lemma (3.3) for f = § implies that negative orbits which

b0
pass npear x always return farther and farther from x and then they

eventually get captured in M-Mz. This also holds for n and X with
t Sto(n), thus proving (2). Since bO(E) was the first bifurcation point

of &, XE never has a non-transversal intersection with a stable manifold
t

69



§. NEWHOUSE - J. PALIS

of Et for t<bo(E). Also, the unstable manifolds of periodic points

in M-M2 of Et, tSbo, pass near x containing disks near Zg .
t

Since analogous results must hold for N with n near £, t sto(n),
this proves (3).
Now we prove the density of the condition in Lemma (3.4). That is,

(3.5) for a dense set of &'s, Lw(wu(p) -o(X) ¢ I'2.

Before doing this, let us remark that (3.5) and the preceding
proof yield

(3.6) for a dense open set of &'s, Blwu(p) n ¥ c Df.

Indeed, we have shown that if Lw(wu(p) -o(x)) c I’Z, then any

point in alw“(p) n D" 1s a 1imit of the forward orbit of I. Also,

these limits lie in D:‘ since Lw(w“(p)) c Wu(p) U l’z.
To prove (3.5) it suffices to show that Lw[wu(p) - o(x))

n w“(p) = @ with a dense set of restrictions on f = Eb .
0

Assume, by way of contradiction, that Lw(wu(p) - o—@ n Nu(p) z 0.
It will be shown that, restricting f suitably, this implies the existence
of a transversal intersection of ﬁu(p) and ﬁs(p). Since L (f) 1is finite,
this is ridiculous.

The proof has two main parts.
Part 1. Assuming there is a point 1y € Wu(p) - o(x) with

w(y) n w“(p) # @, one can find a point v, € Wu(P) such that w(yl) = o(x).

Part 2. If ¥ € w“(p) is such that w(yl) = 0(x), then there is a

point of transversal intersection of Qu(p) and ﬁs(p).
Whenever necessary we will restrict to dense conditions on f

without further mention.
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Proof of Part 1. Let y € W“(p) - o(x) = w“(p) - Ws(p) be such that

w(y) n W'(p) # @. The fact that Lw(w“(p)) cwp) v F2 implies that

w(y) < w“(p). Suppose, by way of contradiction, that
3.7) there is no point v, € Wu(p) - o(x) with m(yl) = o(x).
Let H = {6 < W(p): G is closed, f-invariant, and

L, () s @1
—

Since w(y) < Wu(p), pew(y). But yéWs(p), and hence w(y) contains
points in o(x), so w(y) 2 o(x). Since w(y) # o(x), w(y) € gand

g is non-empty. Define a relation > on ﬂ by Gl>G2 if and only if

Gljc2 and there is a point z € G, with w(z) > G This relation
-’-

1 2°

is transitive and not reflexive, so it defines a strict partial ordering
on B.
We assert that (3.7) implies

(3.8) there is a totally ordered subset Nl c g such that

m:;-m.

Ge ﬁl

If (3.8) were not true, then for any totally ordered subset Hl

of g, we would have m G e g Thus, by Zorn's lemma, we would be
Ge Y
1

able to find a minimal element G e H Then GOD o(x) and for any
ik

vz e (10 - :)—(—x_), we have w(z) = CO. Thus Go has a point whose forward

orbit is dense. This implies GO has a point zy whose backward orbit

Is dense, that is, G, = Ot(zl). To see this, observe that if z ¢ G

0 0

and w(z) = GO‘ then for any relatively open set V c GO’ U fn(V) is

nz0

[
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Letting {Vi} be a countable basis for the topology of G,, the Baire

0’

Category theorem gives that m (U fn(Vi)] is dense in GO' If
i nz20

z, is in this latter set, then a(zl) = G,. The last fact says G, has

0 0

to be contained in L (f) n W'(p) = {p} c o(x) which is a contradiction.
Thus (3.7) implies (3.8). However, (3.8) cannot hold for the

following reasons. Since |u1|)\1<1, there is a neighborhood U1 of

o(x) such that for any z € U, - o(x), 0(z) n U, = @. But if (3.8) were

1 1
true, then U1 would necessarily contain closed f-invariant subsets, and
hence their a-limit sets. Thus assuming (3.7) leads to a contradiction
and Part 1 is proved.

7 x DY

Proof of Part 2. Let ¢: U-+D be as in the proof of Lemma (3.2).

Let D° = ¢-1 p° x {0}), pY = ¢-1({0} x 3“). We may assume that f 1is
Cm, and (using Sternberg [38]) that £|U and f-llu are linear via the

coordinates ¢. Assume also that xeD® and f'-“(x)eDu for nzno.
Let n': D% x D" >0p% 7% D% x "%, Al DV omw, w:: p® + H

1 2

l{n“, ws = n: n° . (Recall

18 the eigenspace of ul.)

be the natural projections and set wu =T

that H, is the eigenspace of )\1 and H

1 2

We may arrange that wu f-n(x) >0 in the real coordinates on Hl for

1 1
(Trsz) and D: = Tru- (ﬂuz).

nzno. For z ¢ U = p% x Du, let D: = ns-
If U is small enough, and z e¢U, then lpulfno(D:) has a unique critical
point c¢(z) near x. Also, c(z) 1is a C® function of z. Given yeM,
let E; = {veTyM: |T fn(v)l + 0 as n+®}, Part two is a consequence

of the next assertion.

(3.9) Assume there are a constant k>0 and an integer No> 0 such that

|10g 18" £ ()1 - 1og I¥" et 1] > &
n

T2
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for n=N m=N_., and w“ cfm(x) >0 in Hl Then E; is an

0’ 0
s—-dimensional subspace of TyM, and if w(y) = o(x) and )_'.y is a

smooth u-disk through y which is transverse to E;, then Ufn(Zy)
n20

has non-empty transverse intersections with V,;Is(p).

Before proving (3.9), we show that it implies Part 2. We first
verify that the hypotheses of (3.9) are true for a dense set of f's.
Then, for one of these f's, suppose that y € w"‘(p) and w(y) = o(x).
It follows that there is a small neighborhood U of y such that
£ "(y) ¢ U for n21. Thus, we may perturb f in f-l(U) to get a small

disk Zy c ﬁ“(p) n U transverse to E;. Hence, (3.9) implies Part 2.

Let us verify that the hypotheses of (3.9) are satisfied by a

dense set of f's. Since Xlull <1, there is an integer No> n, such that

ozwl L

(3.10) (a) e <

Njw

(b) 1if either W' £ 2@)| < [V ¢ £(x)| or

u _-n
||wuf-n(x)' - Iwu Cfm(x)ll <_.I.'P__£_.S§)J.

2 , then n>m.

Also, assuming o(x) does not meet any eigenspace of Tpf, we

i)

u .-n " ou M
have that ¢ f (x) = A Y £ (x) for n2n

0 Fix 0<k<1l and

consider the set of real numbers a, such that

(3.11) |(n—n0) log )\..1 + o — log Iwu cfm(x)ll <-% for some n>m2No,
n
and ¢ ¢ M(x) > 0.

For fixed n -NO, cach such o is in an interval of length 3—% about
n

73



S. NEWHOUSE - J. PALIS

log lbu c fm(x) - (n—no) log )\_1. Since m<n, there are at most n- N0

such intervals. Thus, this set of 0's has measure less than

2(n- NO) k 29k
3 < =5 Allowing n to vary gives a set of ¢'s of measure
n n
2k ’
less than ) =5+ The set A of a's for which (3.11) holds for
n2N_ n
0

all k, therefore, has measure zero. We claim that if the hypotheses
-n

of (3.9) fail, then 1log |wuf 0(x)| € A. As A has measure zero,

this won't hold for a dense set of f's. To prove the claim it suffices

to show that if 0<k<1l 1is such that there are integers n,m 2 No

with |10g IllJu f-n(x)l - log Ilbu cfm(x)|| < -%, then n>m. But th:
n
follows from (3.10) and the definition of No.

Now we turn to the proof of (3.9). An embedded disk D c U will

be called a product disk if there is a diffeomorphism ¢: u=p° x D" + D
] 8 u u
such that the maps T |D° x {z,} and = ¢l>|{z1} x D° are embeddings for

s u
each zleD . zzeD .

Given an embedding I: Ds + U with ‘nst; also an embedding,
8,)"* ITgnu0£2v| 8
define pu(C(D ) = sup 3 : |vl=1, v e TD°). For an
|T(n" o g)v|

embedding C: p" -+ U with ’rrul; also an embedding, define
B

ps(r,(Du)] = sup Jﬂ’l‘_l_o_gll. T Vv TDu, |v]=1). pu(ps) is called
IT(TI Ot;)vl

the u-slopc (s8-slope) of CDB(C Du). If ¢&: U+ D is a product disk,

define pu(D) = sup {OU(NDB x {zz}): z, € Du} and
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u s
ps(D) sup {ps[ﬂ{zl}xD ): zleD } Also, set

w, (D) max {diam({zll xp% n D]} and ws(D) = max {diam p® x {zz} n D)} .
s u
z,€D z,eD

1 2¢

wu(D) (ws(D)) is the u-width (s-width) of D.

In what follows the quantities €15 Cgs » o - will denote
constants independent of n which are defined in the first equation in
which they appear.

There is a small neighborhood Ul of x in M such that if
n-n
fn(y)eUI, and fj(y)EU for OSan—no, nZNo, then f 0(y)
— '“o —
is in a product disk Dny about f (x) such that pu(Dny) <cy and

yeu,

_ n-n, n,-n _

diam Dny < c2|u1| . Thus, if we set Dny = f (Dny), then yeDny,
n,-n n-n n,-n n-n
0 0 0 0

pu(Dny) <egd) Iull , and wu(Dny) Sehy Iull . Also,

D may be chosen so that TlsD =D
ny ny

8, Similarly, if yeUl, fj (y) eU

-n

for -n<j <-n, and f-n(y) € Ul, then £ o(y) is in a product disk

0

n-=n n,-n n-n

0 u u 0 0

Ey €U such that f (x) e B, ™ L Pg(Ey) < cghy |u1| ,
n.-n n-no

0 ——
and ws(Eny) <cg )y |u1| . Now let yeU, be such that w(y) = o(x).

Choose an increasing sequence of positive integers n1<n2< . . . s8such

n n

that f 1(y)e U1 and f i(y) + x as ni-*“’. As n, >, ni—n_

1 -1 " 8°

we may assume, starting far along the orbit of y, that ni-ni_1>N0 for

122,

For €>0, zeU, define the €-sector Se(D:) about D: by

SE(D:) = {(vl,vz) € TzDB x pY; |vl| <€ |v2|}.
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s
Also, define Se(Dz) = {(vl,vz) € ']?zl)B x p¥: |v2| <€ Ivll}. For 121,
3
n k/n
-1/2
let vy = f i(y) and e, = [e i-1)|lll“yi[| / .

Since x is a quasi-transversal intersection of Wu(p) and W’s(p),

n
(3.12) there is a constant c, >0 such that if 2z, €U nf 0

u
7 171 (Dz)

2
-n n

0 0, u u
for zzef (Ul), then 'l’zl(f (Dzz)) c sc7h(Dzl) where

h= (12| - W ez )2

We will show

(3.13) (a) given A>1, there is an integer N>0 such that for

n -n
128, 1 £ (s, o! cs, "  and
Yy €% Yy €7%141 Y141
n -n
m(r £ 1 1g ¥ ) > aA.
A 2cpey Yy
n,-n
(b) diam Tf 3 iszce D! +0 as j-1+
71 Y1
Here, m(B|L) = inf |Bv| where B is a linear map of a vector
v|=1
vel

space containing the subset L.
ni—nj
Similar arguments will show that diam Tf (Lj) + 0 as
n -0
j-1 > o and m(Tf lej) >A for 1i,j >N, some N where
-n

L, =CL(TM -5, _ D'). Thus, m e ™ j(Lj) is a single
1 RACTRS j2N

n
s-dimensional subspace E; . Also, ITf jIE; | + 0 exponentially as
N N

76



CYCLES AND BIFURCATION

n

j +%, Further, if v € Ty M-E; , then for j large, Tf j(v) € SZc e D;
N N 773 73

which means that |T fn(v)l + ® ag n+*, Thus

ES = {veT M |T f‘{(v)l + 0 as n+®}. One may take EE=1Tf nN(Es )

yN }’N y yN

for (3.9). If I 1is a c* u-disk through y transverse to E;, then

n u nj-no
Tf '1('1‘ L) ¢ 8§ D for large j. Increasing j will make f ()
y 2<:7e‘_l yJ

contain disks C' near subdisks of D". Moreover, these disks will

n A
become large enough so that their images by £ 0 will meet Ws(p)

transversely. Thus, we only need to prove (3.13).

For izNo, choose product disks D s, E as above. Then

ngYy M4Yy
the properties of D and E , the assumption of (3.9), and (3.12)
nyYy 24y

imply that for large 1,

3

n,-n,_ k/n 1/2
ou(Ty ¢t 1031 1)) 2 cg [(e o 1)|W“yi|]

i

S W 5 B
where p ~1is defined in the obvious way. Thus '1'y (f D )

1 Vi1
3
cs, D! where h, = c-l[( /ni - 1)y )]-1/2 Note that
hy oy, 1 g |l® Yy :
n_-n, .-n n,, .-n,-n
|y yil > ¢y )\10 1-1 1 nd thae Tf 1 1 0 yocreases the u-slope

n, .-n_-n n -n.-n
of any vector (VI’VZ) e TD® x DY by a factor of c10A11+1 1o lull 01 i+1.

Now the last expression dominates h1 exponentially. Thus, the sector

n,, .-n,-n
Sh (D; ) 1is exponentially decreased by f #1710 as i-+»; i.e.
i i
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n,,.-n -n
diam ({ves D : |v| =1} <c, v 1710 Uith v<l as 1w,
hi Yy 11

From this, (3.13) follows easily, so the proof of Part 2 is completed.

Remark: Under the assumptions of (3.9), it can be shown that Ws(o(x))
is a union of C© injectively immersed submanifolds each diffeomorphic

to RS, Moreover, Wslo(x), = Ws(p) and Wslo(x)i is locally the

product of an s-disk and a Cantor set. However, if y € Wsm -w’(p),
then Ws(y) is not a manifold. It is also only locally the product of
a Cantor set and an s-disk. Nevertheless, we do have a clear picture
of the total orbit structure of f. When the assumptions of (3.9) no
longer hold, the structure of "sm is more complex, and it is not

yet well understood.

Completion of the proof of Theorem (3.1). If the arc £ satisfies the

residual set of conditions necessary for the conclusions of Lemmas (3.2),
(3.3), and (3.4) to hold, so does any nearby arc n. But, (2) and (3)

in the proof of Lemma (3.4) imply that L—(nb ) will be finite for any
0

such n, thus completing the proof of Theorem (3.1).
Our second goal in this section is to remove the asymmetry of the

assumption that either L (E, ) or L+(E ) is finite. Notice that as a
by b0

consequence of [18] and the proof of Theorem (3.1) here, we have that,

generically, if either L.'(Eb ) or L+(£b ) 1is finite, then L(f;b )—l’(E;b )
0 0 0 0

has at most one orbit. Thus L(t:b ) has a finite number of orbits. The
0

converse 1s also true.

(3.14) Theorem. There is a residual set 0)) = d>k’r, k21, r25, such

that 1f e @), F,OeMS, and L(l';b ) consists of only finitely many orbits,
0

then either L‘(F’b ) or L+(£b ) 1is finite.
0 0

78



CYCLES AND BIFURCATION

Proof. As above, let Eb = f. By (2.2) and (2.4) in [18], we may
0

assume that P(f) 1s finite and that one of the following situations
arises.

(1) P(f) has one quasi-hyperbolic orbit, and all stable and
unstable manifolds of periodic orbits meet transversely.

(2) P(f) 1is hyperbolic, and there is exactly one orbit of
qu:si-transversal intersections of stable and unstable manifolds of
P(f), the other intersections being transverse.

Consider the case when L (f) ¢ P(f), and let v, € La(f) -P(f).
Suppose y, ¢ a(y). Then y ¢ w'(P(f)) since y, ¢ P(f). Define the
relation < on M by x<z if and only if x € a(z). This is clearly
transitive. Also, x<z and z<x imply that o(x) = o(z) < P(f), for
otherwise 0(z) would be uncountable. Similarly, all minimal sets of f
are orbits in P(f) since minimal sets are either finite or uncountable.
We claim

(3) there are a hyperbolic periodic point x. ¢ a(y) and an

1
orbit o(x) ¢ Clu(o(xl)) n ﬁs(o(xl)] n ay).

w 1) = pee).

Assume L(f) has N orbits. Then any sequence {xl, [ xk}

with x <x2< ce <xk and o(xi) z o(x,) for 1izj necessarily has

1 h|

at most N+1 elements. Choose a sequence x1<. .. <xk of maximal

length with X, € a(y). Taking a minimal subset of a(yl) we may find

a point x € P(f) which 18 also in a(y,). Then x<y <y, so the
1 1

length k of the maximal sequence above is greater than 2, and x, € P(f).

1
From the local structure of quasi-hyperbolic and hyperbolic periodic

points, we have x, € ﬁu(o(xl)), for otherwise we could find another

2
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' R <x'<
point X with X € W (o(xl)) and Xy <x) <x,. Suppose that o(xl) is

quasi-hyperbolic. Then there is a point x'2<x3 in the strong stable

manifold (i.e. Bws(o(xl))) of o(xl) with x;eo(xl). Now x; ¢ Wu(o(xl))
because this would contradict the fact that Wu(o(xl)) meets Ws(o(xl)]

transversely. Choose x;. € P(f) with xi<x'2. Since the sequence

l< l< ) ] ’ Hu [
X <Xy <X <L <% also has maximal length we have X, €W (o(xl)).

Using this new sequence of maximal length we may assume

x1<x2< I <xk chosen such that x, 1is a hyperbolic periodic point and

1

2 If

X, € ﬁu(o(xl)]. Choose a point x, € ﬁs(o(xl)) such that x'2'<x

3°
x'z' € Qu(o (xl)), (3) is established. If not, reasoning as above, we may

find another hyperbolic periodic point x)

with x;<x'2'. Continuing in
this manner, and using the fact that La(f) has finitely many orbits, we

either establish (3) or we obtain sequences {pl, e e pj} c P(f) and

{z } ¢ M such that

ORI
(5) olp)) = o(p)), z; € Wor)) 0 Wlotoyyy)),
O(Pi) ‘0(pk) for l<i<f<j.

(6) {pl, e e e, pj} v {zl, . e e zj-l} c a(y).

We first note that no p, can be quasi-hyperbolic for if p, were,
i i

the above construction would give z2i € Bwe(o(pi)). Also, in this case,
all the manifolds would meet, so one would get transversal homoclinic
points for f which is impossible. Thus all the pi's are hyperbolic, and

80 some z, must be a quasi-transversal intersection of Wu(o(pi)) and

i

Qs(o(pﬁ_l)). Moreover, all other z, 's are points of transversal inter-

i
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sections. Assume zy is the quasi-transversal intersection. If all the
o(pi)'s are the same (i.e. (o(pl), « o os o(pj)) is a 1-cyc1e), then
(3) is established. So, we may assume we have a j-cycle, j >1. The
proof of (4.7) in [18] applies here, so we conclude that the weakest

expanding eigenvalue )\1 of Tp f 1s real and positive and so is the
2

weakest contracting eigenvalue ] of Tp f. Also, one may find a
1

neighborhood U2 of o(pz) so that 31Wu(o(p1)] n Wu(o(pz)) n Uz is in

a finite union of half spaces away from WS(U o(pi)). A similar fact
122

holds for 31 we (o(pz)) n we (o(pl)). But then there is a small neighbor-

n n
hood V of z, such that if f l(y) and f 2(3,7) are in V with n

1 10

2’

n n
then f 1(y) is near WS(U o(pi)) and f 2(y) is near W“(U o(pi)).
1=2 1<i<j

That is, the analog of (4.7) in [18] holds here also. From the geometry
of this situation it follows that z, cannot be in La(f) which is a
contradiction. Thus (3) is established.

Let x,x. be as in (3). Since P(f) is finite, the orbit o(x

1

must consist of quasi-transversal intersectionms.
Assume now that (4) is false so that L (f) D P(f). Repeating
w
.+
the above argument with £ 1 in place of f would give a hyperbolic

periodic point q and an orbit o(z) < au(o(q)) n ﬁs(o(q)) n Lw(f)'
Since f has at most one orbit of quasi-transversal intersections, it

follows that o(xl) = 0o(q) and o(x) = o(z) c La(f) n Lw(f)‘ Assume

fn(xl) = x. Let Al(ul) be the weakest expanding (contracting)

eigenvalue of Tx ', We may assume )\1 and M have multiplicity one
1
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and |ul||)\1| =1, If |u1||>‘1| <1, there is a neighborhood V of z

such that if we V - o(z), then a(w) nV = @, But this fact and the
assumption that L(f) has finitely many orbits lead to a contradiction

as in the proof of Part 1 of Lemma (3.4). Similarly, |u1| lkl' >1 is

impossible by repeating the argument for f-l. This proves (4) and

Theorem (3.14).
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84, In this and the next section we will study the structure of Et

>
for t b0 and near b0 where

(4.1) L_(Eb ) is finite, hyperbolic, and has an equidimen-
0

sional cycle.

Let ak,r denote the set of arcs & € ¢%*T guch that €0 € MS

and ¢ satisfies (4.1). Our main goal is to prove the following. For

§>0, let U(S = [bo,bo-HS).

(4.2) Theorem. There is a residual subset @ c &k,r’ k21, r22, such
that if § € B , the following facts are true. Given € >0, there are

§> 0 and an open subset BG c U6 such that
(a) the Lebesgue measure of By is less than €s.
(b) 1if t e UtS-BG’ then Et € AS and Q(E,'t) is infinite
and zero-dimensional.
It turns out also that for t e UG-BG’ the attractors of Et

are all near those of 50' Moreover, b0 is a limit point of UG-BG’

and as t approaches b_ in UG-BG' the diffeomorphisms assume

0
infinftely many different topological conjugacy types.

To begin the proof of the theorem, let us first observe that we

"

may assume k = r = ®, Indeed, let Q:’; be the set of § in &k,r such
’

that for ¢ = there are a § < ;1\_ and a set B6 c U6 satisfying (a) and
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(b). Then, since AS 1is open, a:’; is open in &k,r for all
’

T

m,n,k,r > 1, and the theorem for k=r =% would imply that 0’2 n is
’

dense in &k,r for myn,k 21, r 2 2. Thus, the theorem would follow

vith B = ﬂ@ii

m>1
nx1

00 _ 0o
Now let £ ¢ (B ° and let f = E We first consider the case

b,

in which there is a j-cycle, j >1. Then there are periodic points Py»
Py in a cycle such that o(pl) # o(pz) and Wu(pz) n Ws(pl) is a single

orbit o(x) of quasi-transversal intersections. Because all other
intersections of stable and unstable manifolds are transverse, we
conclude that all cycles are equidimensional.

Let o(pl) = o(ql), o(q2), e e ey o(qv) = o(pz) be the distinct
periodic orbits in the cycles containing o(pl) and o(pz). For

simplicity of notation, we assume all the qi's are fixed points of f.
The proof without this assumption is similar.

v-1 \Y
Let A, = o(p,) v U Wu(q )n U Ws(q )|, and let
1 2 1 i 1 i

l\2 = {ql, e ey qv}. Since points of I\1 are transverse intersections
of stable and unstable manifolds of elements in /\2, and dim Wu(qi) =
dimwu(qj) for 1<1, 15V, it is easy to show that A, 1s a hyperbolic
set for f"]. Moreover, by [18, p. 335], we may assume, restricting to a

residual set in @,m’w, that Q(f) = A2 v o(x) v Pl where Pl is a finite

set of hyperbolic periodic points not meeting Al.
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Now let V. be a compact neighborhood of Al v o(x) - {x} not

1

so that L(f) n V., = A,. If ye m f'“(vl), then

meeting {x} u P
1 2 n20

1

w(y) ¢ V., s0o y € W), Similarly, if y € m fn(V ), then
1 1 n20 1

aly) < V;, so y e w“(Al). Thus, m fn(Vl) = A,
neZ

Let V2 be a compact neighborhood of x such that V2 n (Vlu Pl) = @,

Using filtrations as in 52, we may comstruct two compact neighbor-

hoods M.,M, ¢ M such that f(Mi) c int M

1M, M, < int M, V, UV,

i)

< int (MI_MZ)’ and Ofn(vl v V2) - Al v o(x).

For t near b there is a set Plt of hyperbolic periodic

0’

points for Et near P., and Q(Et) will be contained in

1’
n
Q‘:’t(vl v "2) v P1t:'

The proof of Theorem (4.2) will be obtained by

showing that for t in an appropriate set BG’
(4.3) m E:(Vl v V2) is a zero-dimensional hyperbolic
n

topologically transitive set for Et
and

(4.4) Ct satisfies the transversality condition; i.e., for

each yeM, wu(y,Et) is transverse to Ws(y,f;t) at y.

Before proceeding to the proof of (4.3), we pause to establish a

lemma which will be considered with more generality.
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If F = E1 ® l:‘.2 is a direct sum decomposition of a vector space
F with norm |*| and €>0 1s a positive number, let Ss(El) = se(El’F‘Z)

denote the €-sector of El by EZ which is defined by se(El’EZ) =

{(vl,vz): |v2| <€ |v1| where v, € Ei’ 1i=1,2}. If A: F+F is a

linear map, |A| = ISTP |Av| 1s its norm and m(A) = 1inf |Av]| 1s its
vi|=1 v|=1

minimum norm. We define |A|S| and m(A|S) for subsets S<V 1in the
-1|-1

obvious way. If A 1is an isomorphism, m(A) = |A . Let Al c M be

a compact f-invariant hyperbolic set with continuous splitting

TxM = E; ® E:, x €M, and adapted riemannian norm |'|

A compact neighborhood V1 of Al will be called an adapted
neighborhood of Al if

(4.5) mf“(vl) - A
n

(4.6) there are a continuous splitting T M = E

®E, a
Vl 1 2

constant A>1, and a continuous real function E€: Vl + R

such that
@) Txf(SExEZx) < sef(x) E2f (x)

and

-1
m(TxfISEXEZx) 2A, x €V 0 f (V)
-1
() T £ (IM-S_E,)cT ., M-S . E _
x x €x 2x £ l(x) f l(x) 2f l(x)

and

-1
m(Txf lTxM - SExEZx) 2 A for x € vy 0 £(vy).

86



CYCLES AND BIFURCATION

It is clear that the splitting El ® EZ for an adapted

neighborhood V.1 of Al is an almost hyperbolic splitting for Vl as
defined in [18]. The only known practical way of showing a set is
hyperbolic is to find an almost hyperbolic splitting on a neighborhood
of it.

Now suppose V. is an adapted neighborhood of Al and V2 is a

1

compact subset of M with V2 n Vl = @, but fv2 n Vl z @ and

£ly av

2 1

z @. Assuming m fn(Vl u Vz) # @, we want to know when
n
this set i1s hyperbolic. With the present applications in mind, we assume
vV, n£(V,) =V_n fz(V )=V, n f-l(v Y=V, n f_Z(V ) = @ although this
2 2 2 2 2 2 2 2

is not actually necessary.

(4.7) Lemma. Suppose there is a compact subset V; c V2 such that

n m fn(vl u Vz) c V;, and the splitting El ® E2 and function €
n

may be extended to V; so that there are constants A1>1, and an

integer N> 0 satisfying the following. For each x € V. there are

2
integers -N<2(x) <0<k(x) <N such that
(@ T £%(s, <Eg) ( s
ef (x) 2f (x)
kx -1 kx
(x) <V, 0 £(V;) n £ (V) and m(Txf |sex 2x) 2 A

®) T E*(T M-5_E )( T M-S

x x €X 2x lx !Lx( ) 2£ ( )
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%) e V. n £(V;) 0 f‘l(vl) and

1

2x
m(T £ |1, M- sexEZx) 2 1.

Then m fn(Vl u V2) is a hyperbolic set.
n

Remark: Without further hypotheses, the proper containment in (4.7a)

and (4.7b) is necessary for the lemma to be true. The essential fact
which is needed is that for large n, if y € V; n f-j (V2') n fj (V;),
k (]
for j2n and f (y) ¢ V2 for 0< |k| <j, then m(Tyfjlseylzzy) > )\2 > 1
_j _
and m(Tyf ]TyM Sey E2y] >, > 1 where ), is independent of y and n.

The proper containment assures this.

We defer the proof of Lemma (4.7) to the next section.

Now beginning the proof of (4.3), let us consider some more
detailed structure of f. All additional assumptions may require the
restriction to residual sets in &w’w, and we assume this without further
mention. From [18], we may assume the weakest expanding eigenvalue A of
Tplf and the weakest contracting eigenvalue u of szf are each real and
positive with multiplicity one. Also, using Sternberg [37], we may

assume that f is linear on its stable and unstable manifolds for 2] and

P, via Cm coordinates near Py and Py Thus there are neighborhoods

U, of pl,U

1 of Py in M and Cm diffeomorphisms ¢1: U, + Rm and

2 1

<p2: 112 > R" satisfying the following. Let w = (ul, c e ey us),
v=(,, «. .., Vv) be coordinates Rs and Ru with u+s = m = dim M.
1 u

Let DS < ]Rli and D" c R" be the closed unit balls. Let
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W= (upy oo ., u), V= (W o .., V). Then ¢1f¢;1(0,v) -

- -1 8
(O,le,Blv), veDu, and ¢1f¢1 (w,0) = (Alw,O), weD , where Al and

-1,-1
B, are linear isomorphisms with |A1| <1 and |B 1 = m(Bl) >A > 1,

1 L

Also, ¢2f¢;1(0,v) = (0,8,v), veD®, and ¢2f¢;1(u1,3,0) = (Mu;,A,5,0),

we Ds, where A2 and B2 are linear isomorphisms with lAzl <u<1l and

m(Bz) >1.

Remark: We actually could assume that fIU1 and f|U2 are linearizable,

but this isn't necessary. On the other hand, we could continue with the
-1, .u ws
proof if we were to assume only that £ |W (pl) and f| (PZ) are

linearizable near 12 and Py respectively, and we only need C2

linearizations. These assumptions would guarantee that we may find C2

invariant curves tangent to the eigenspaces of A at Py and Y at Py

Our present proofs require this fact very strongly.

nu, =@,

as above so that Ul 2

We may choose Ul and 02

x ¢ U1 u U2, fn(x) e U, for n21, and fn(x) € U2 for n < -1. For

1

i=1,2, let bt = ¢-1(0 x Du), and let D° = tb-l(Ds X 0). We identify
i i i i

s u s u -1 —
D, * Dl with U1 and D2 x D2 with 02. Let Hl =¢ l(w 0,v=0),

= -1 = = = -1 = = = -1 = =
II2 = rpz (w=0,v=0), J1 = ¢1 (w 0,v1 0), and J, = ¢2 (|.|l 0,v=0).

2

- u -1
I'hen Hi’ .li are f-invariant for 1=1,2. Let Dl+ = ¢1 (v120,w=0),

u -1 . _ s -1 " - 8 _ -1 -
1- 1 (Vl 0,w=0), D2+ ¢2 (ul 2 0,v o)s D2— ¢2 (UISO,V 0).

In view of [18], we may assume that Al n D' < Du+ and Al n D; cD

8
1 1 2+°

We have the following figure.
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s
1

in the second picture f—l of a part of it is a two-dimensional surface.

In the first picture we represent the s-disk D] as a line and

u
i

u
1+

]
2+°

is in a very small sector about Hl in D;

Also, the x, are points in Al nD and the x: are points in l\1 nD

u
We may assume that l\1 n D1+

and I\2 n D;+ is in a small sector about H2 in D;. Also, the A-lemma

[20] implies that if Ul and U2 are chosen narrow enough, each component

of wS(Al) n U1 is an s-disk C2 near D: and each component of

2 is a u-disk 02 near D;.

u
w (Al) nu
For n large, mfj(v vV, nV, is near Wu(A ) nV,, and
1 2 2 1 2
0<j<n

m £ (V, uVy)) nV, is near Hs(Al) nV,. For t near b

’
0<j<n 0

m&:(vl) = Alt is a hyperbolic set near Al’ Part of the proof of
n

(4.3) is involved with showing that, for appropriate t near bo, the

angles between ws(Alt) nV, and W“(Alt) n V, are bounded away from

2 2

zero. This is not enough, however, because these sets will intersect

in a countable set, and E:(Vl u V2) n V2 will contain points off
n

this set. We will show that for n large one may enlarge WS(AI) n V2

to a set V: and wu(l\l) nvV, toa set V: for which the corresponding

2

sets V:t and V:t are also defined for t near bo and satisfy

(a) v® 15 a union of s-disks near ws(l\l) nv

and V!
nt nt

2’

is a union of u-disks near Wu(l\l) n V2

91



§. NEWHOUSE - J. PALIS

k] s u
(b) (jwit(vl UV NV, eV v

(¢) for certain numbers U, if t-bo = un uys then the
angles between the s-disks in V:t and the u-disks in

V:t are bounded away from zero by a number which depends

on n.

The bounds on the angles mentioned in (c¢) will determine the

sectors which will enable us to apply Lemma (4.7) to prove (4.3).

Now we proceed to describe the sets V: and V:.

Let c1> 0 be a constant. For each integer n> 0, let Ar; be a
n/2 n
disk about x in Ul of the form x + clu Ul, and let A2 be a disk
-1 -1 n/2
about f “(x) in 02 of the form f "~ (x) + ¢ M Uz. Here, the addition

means vector addition in the appropriate coordinate systems. These

sets look something like those in Figure (4.2).

Y

A\
A
&<

Figure 4.2.
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u s u u s S u 8 u u
Let 7T1. Di XDi*Di, TTi. D1 XD1+D1, 1[11. Dl"Hl,
% : b > H, be the natural projections, and let Y . = ™ 1 and
21 2 2 ’ 11 11 1

wu =% 7%, Let d be one plus the maximal length of a sequence

Pp 9 »dy 5 - - -4 =P with Wu(qi ) having a non-empty transverse
1 2 k 3

intersection with Ws(qi ) for 1<j<k. For a positive integer k>0,
j+1

let A" denote the set of points y in A" m f-j (V, uV,) such
1,k 17 Geyex 1% "2

that for some £ <k, fz(y) ¢ Vl, and if L(y) is the least such £, then
fly—l(y) € A;. Similarly, let A‘Z‘ " be the set of points y in

’
A% n ﬂ fj (V, u V,) such that for some £ <k, f-!'(y) ¢ V., and if 2(y)
2% gegae 172 1

-2(y)+1

is the least such £, then f (y) € A;l

(4.8) Lemma. Let Kl >0 be a positive number. There are a real
number 0<T<1, an integer N>0, and integral polynomials

£, (2 - Zaizi, g,(z) = Ib, 2} of degree d satisfying the following.

For each integer n - N and each integer 8 >0, there are Cl(sn)

intervals Xni < H, centered at x

1 ni® 1<ic< Cl(sn), and Cz(sn) intervals

Y ¢ H centered at y 1 siscz(sn), such that

ni ni’
(@) A7 v ﬂ W) e U VI )
1,sn 0-j<sn 1 lSiSCI(Bn) 11ni
®) A v ﬂ v, e U Vo)
2,80 cy<en 1 1<1<g, (sn) 217nd
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n
LY
2 -sn
<
(c) diam X =7 Ixnil’ for Ixni‘ > Kl)\ and
n
2™ -en -sn
<
diam xni <T KIA for Ixnil < Kl)\ , lsiscl(sn)
n_
2 2n
<
(d) diam Y =T lynil for Iynil > Klu and
2N

2n
<
diam Yni < T Klu for |yni| < Klu , lsiscz(sn).

Let s>0 be such that A ° <y where we assume < T

U2 )\—1 the proof is similar.

The sets Vs, v¥ above will be V® =V, 0 U w'l(x )
n n n 2 11 "'ni
1515C1(sn)

u -1
V.=V, nf U VoY ).
n 2 ISiscz(sn) 21 'ni
We will also defer the proofs of Lemmas (4.8) and (4.9) below

to the next section. Of course, |x

ni[ (Iynil) refers to the norm in

the ¢1 (¢2) coordinates. This may be identified with x4 (yni) itself.

It will follow from the proof of Lemma (4.8) and the previous

Y A, u, etc., may be

definitions that all of the structures X ,, ,
ni ni

Y A

defined for Et for t near bo. Denote these by Xn nit’ e ut’

it’
etc. Moreover, all of these structures vary differentiably or
continuously with t in naturally associated topologies. We record an

especially important case of this as
4.9) Lemma. There is a constant K, >0 such that for 0 < t-b_ small

2 0

and n large,
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(a) Ix - xn

-3 (u -1, u
"ot © Osjsanf (Dl T (Dl))
®) vy = vyl < Klygyle-bp)  for
Y€ U £ (Dg - f(D‘;‘)).

0<j<sn

Now given € >0, we will define the sets BG required in the

proof of (4.3).

Fix coordinates (ul, R . vu) on D% x D% ¢ Rs—f-u.

1’

Let “1(u1, » Ugs Voo , vu) =v and ﬂz(ul, S UL Vi e, vu)=
u,. For each y ¢ U,, let p¥ = ¢_l(0 x Du) and D° = (i’-]'(Ds x 0).
1 i’ iy i iy i

Since x 1is a quasi-transversal intersection of Wu(pz) and Ws(pl),

it is a non-degenerate critical point of l#nlf(D"zlp ). Thus, for Ul
2

and L'2 small, and y € U2, the u-disk f(Dlzly) contains a unique critical

u
point cl(y) of the mapping wlllf(Dzy). Similarly, for y € Ul’ the
1

s-disk f_ (D?y) contains a unique critical point cz(y) of the map

-1, s
! |
Vo B

.l
Moreover, the maps y + cl(y) and z * cz(z) are both C ,
(Actually, we only need that they are Cl.), and they are defined for

L near l)()' Denote these by e and e respectively.

Conslder the mappings Yl(t,ul) = 5143 0,0) and

-1
1 S1¢ 92¢ (g

i — -1
Yz(t,vl) = 1'2¢2t e ¢1 ©, .., o0, Vi 0, .., 0) defined for t near

')0 in I and ug, vl near 0 in R.
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ay
We may assume, by small perturbation, that -s—t]—" (bo,O),

vy o, M,
—a-q(bo,o), TS (bO,O), and E(bO,O) are all non-zero.

From the choice of the coordinates (bl, ¢>2, it follows that

6! My b
al = W(bO,O) >0, a, = TE-(bO,O) >0, bl g E(bo,()) < 0, and

Y
9 F Wz(bo,O) < 0. (al, 82 not being zero is just the statement
1

o
|

that & is transverse to the set Q in Theorem (2.2) of [18]

at bo.)

Thus, for t near b we have

0’
(4.10) Yl(t,ul) = al(t-bo) + bl uy + ..
Yz(tQVl) = az(t—bo) + b2V1 + . .

where the dots refer to higher order terms.

Recall we are assuming O0<u< )\-1 <1 and s>0 1is such that

(6.11) A% <

Let €>0 be given. Let d1 >0 be half the length of HZ'

Choose 61 = (l—u)edl. Given K1 as in Lemma (4.8), and K, as

in Lemma (4.9), choose K3 >0 small enough so that

(¢y (sm) * C,(em)) 4K K d) 8

. 23% %1
(4.12) (@) ) a7 <5
m—‘.l m
. )~ sm 61
®) ) (zy(em) c Ty(em)) 2K Ky S < F
m21l al "
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2K l(3 n cSl
H <T-

© [ (o) (sm) * g, (sm))
m21 2

Note that (a) and (c¢) are possible since l;l and C2 are

polynomials of degree d, and (b) is possible since A8 < M.

n
-y 0 _.n
Let § = p dl' For any t € U(S’ we may write t b0 H vy

where u € ¢2(H2 - f(Hz)) and nZnO.

Define B; to be the set of points t 1in UtS such that for some

nZn0 and some 1< iicl(sn), 1<]j St;z(sn), we have

n
(4.13) t-by=w u with u € ¢2(H2 - f(HZ)]

and, at least one of the following four conditions holds.

|« S2f Iy |
(4.14) (@) faj(t=bg) + by o - x 232

. -sn n
if Kl)\ < 'xnil < 2a1u dl

-=8n
(b) |al(t—b0) +b -xni| < K KyA

lynj
-=sn
if ]xni| < KA

K_ K

3
(@ fay(e-bg) +byx ;- vyl < 28+ Y041

2n n
1 K < lynj] <2ayud)

(d) Ja,(t-by) + b, x -y|<KKu2n
2 0 2%n1 ~ 7nj 13
2n

if |ynjl < Kpuo
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We will prove that for n_ large

0

n
(4.15) if nZn0 and t ¢ UG-BG’ then 1\t = O Et(Vl u VZ)
is hyperbolic for Et.

First, we show the measure of Bd is less than € 6.

It t satisfies (4.13) and (4.14a), then

K K, |x |
n 2 3 '"ni
- <% 3 ni
laj u¥uy + by Ynj ~ *a1 23%2
or
ot K KRl 2K K4
a un a un a " 2d+2 2d+2 ¢
1 1 B "
4 Kz K3 dl x4 bl y .
So u, is in an interval of length —5>— around n = - ——nﬁ]- ,
n 3, H a, H

and there are at most Cl(sn) . CZ (sn) such points. The set of all

such u, has measure less than

1

(Cl(sn) . ;z(sn)) 41(2 K3 dl . i
n2d+2 4

!

nx1

by (4.12a).

Similarly, all u

8

measure less than —} by (4.12b), and all such uy for which t satisfies

1 for which t satisfies (4.13) and (4.14b) have

(4.13) and (4.14c) or (4.14d), have measure less than il. Thus, the set of
2

u; e ¢2(H2— f(Hz)] for which t satisfies (4.13) and (4.14) for some n >.n0

has measure less than 61. Hence the measure of B’5 is less than
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Now we proceed to show that At is hyperbolic if t ¢ BG with

§ small—that is, 1f t-b, = T

0 where u, ¢ ¢2(H2—f(H2)), n 1is

1
large, and t does not satisfy (4.14). This will prove (4.15).
We wish to apply Lemma (4.7). First note that the neighborhoods

Ul’ U2 may be chosen so that they are contained in the adapted neighbor-

hood V. of A, and the splitting E, @ E equals TD° @ TDY while
1 1 1% %2y 1 1
1
E, ® Ezl = TD‘;’ ® TD‘Z’. Let e=e(y), yeV,, be as in Lemma (4.7).
U
2

Recall VS = v, U Vi1 (o gp)s Vo = Yy 0 6y Ve oy

We begin by obtaining lower bounds on the angles between s-disks

s u s u
in Vnt and u-disks in Et(Vnt) at points in vnt n vnt' The bounds at

-1 -1
points in wllt(xnit) and Et(ll)nt(Y )) will depend on n, i, and j.

njt

They will be used to define sectors on V:t n Vu so that Lemma (4.7)

nt

. v ou s
may be applied with V2 = Vnt n Vnt'

We first claim

(4.16) there is a constant Kz. >0 such that if n is large and

t-b =unu

0 does not satisfy (4.14), then for all

1
lSiSCI(Bn) and 1sjsc2(sn) we have

|xnit I

-1 -1
(8) dist wllt(xnit)’ Clt(wz (Ynjt)) > Kl# 2d+2
1t n
=sn
for [x o[> 2K A
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-1 -1 -sn
(b) dist [wllt(xnit)’ clt(wZIt(Ynjt))] > KA
-8n
for Ixnitl < 2K1 )‘t

1 1 Ynje !
(c) dist [w21t(Ynjt)’ th('JJut(Xnit)]] > K, _2d+2

2n
for Iynjtl > 21(1).1t
-1 -1 . 2n
(@ dist [‘pzlt(Ynjt)’ czc(‘”ut(xm:))] Ky My
2n
for Iynjtl < 2K W

Let us assume for the moment that (4.16) has been proved. Then

s

ltw’ yeUz, weUl, there are

u

since at the tangencies of Ct (DZty) and D
u

curves Yy in Et(DZty) for which “’me has a non-zero second

derivative at clt(Y), we conclude

(4.17) there is a constant K5 >0 such that for

L@ . yne vt

N -1
s e wllt nit t 21t njt)’ Y1 7 E;t (y), the angle

8

between Dlty

u
and Et D2ty1 is greater than

1/2
Ixnitl

Nt
5 2d+2 ’
n

> 2K

for Ixnitl 1

(a) K

and greater than

1/2

) k. (A7) for

-sn
5 Vg IxnitI :

$2K1 ¢

u
5 and D is greater than

-1
Also, the angle between Et Dlty 2t:y1
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ly . | |2
njt 2n
K5 | 2d+2 for |y sl > 2K
and greater than
1/2
2n 2n
<
Kg [Ut ] for Iynjtl < 2K W
' u s
Now we will define the sectors on V, =V nv, =

2 nt nt

U v;it(xnit) n Et[ U ‘1’_1 (Y . )| for Lemma (4.7).

l‘i'(l(sn) lstCz(sn) 21t "njt

u -1 -1
Define the sector §S (Dlt) on wllt(xnit) n Et \Uzlt(Y

e(n,i,j) )

njt

as tollows. For 'xnit| 2 Iynjtl’ Ixnit[ > ZKlkzsn, set

x I -1/2
Loy L -1 nit -sn
e(n,i,j) = 2K, [n2d+2] . For 2K, A 2 lxnitl 2 Iynjt" set
_1 [ -sn -1/2
» 1.3 = < .
v(n,i,3) = 2K [Xt ] If ixnitl |ynjt|’ define e(n,i,j) so
that T£ Ls DY =TM-S DS where r(n,i,j) =
't e(n,i,j) 1t r(n,1,j) "2t i
-1/2
ly . | -1/2
-1 njt 2n _ -1 . 2n
ZKS [n2d+2 for |ynjtl > 2K1ut and r(n,i,j) = 2K5 lut ]

2
for lynjt‘ £ 2!(1 Utn

Let us proceed to verify the hypotheses of Lemma (4.7).

For LS let R = B(xnit) be the least integer greater than

3
zero such that f,(t(x ) eU

nit - & 7U,, . Then, for n large,

1t t 1t

Bl u u B u
gt(se(n,i,j)(olt)) ( SC(Dlt) and gtlse(n,i,j)(Dlt) is an expansion.
—
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That is, m[ESIS v )) > )\1 >1 for some )\1 independent of

e(n,i,j)(Dlt

n, i, and j. Actually, )\1 may be made arbitrarily large for large n.

This holds because a vector in S (D ) will have its slope

e(n,i,j)
A
increased by approximately c. — where a<1l (A-lemma) and |x__ |is
1a8 nit
approximately XZB ¢y where ¢y and c, are constants. Similarly, if

_EU

-0
o= U(ynjt) is the least positive integer such that Et (y .,) €U ¢ Uges

njt 2t
-0 u u -0
then Et (v - Se(n,i,j)(Dlt)) < ™ - Se(DZt) and £~ {is an

expansion there.
For the final hypothesis of Lemma (4.7), we show
(4.18) V0 At < U wiit(xnit) n gt U w;it(Ynjt) =V
lsiszl(sn) 1<j SCZ(sn)
After this, (4.15) follows from Lemma (4.7).

Since x is a quasi-transversal intersection of w“(pz) and

ws(pl), there are el >0, a constant < >0, and an integer n, >0 such

that if n2n, and t-b, = unul, then

0 0
st s uyt n/2 n
= A .
£ (1) Doy 0 (1) (Se (Wy3y) 0 D) < x e tuy = 8]
Thus, letting V ﬂ Ej (V vV ), we have V nv, c A" for
2 1t
—n5j<n

-1 n
large n. Similarly, Vnt n Et V2 c A2t for some (possibly larger)

h]
c, and n large. Now, 1f y ¢ V2 n vsn,t’ either f-(y) € V1 for

1

1€j<sn, or y ¢ A" , so Lemma (4.8) gives that

1,sn,t
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y € U w—l (X_,.). Analogous reasoning shows that
11t “'nit
1siscl(sn)

-1 U -1
Et (VZ) n Vsn,t c let(Ynit) for large n. This proves (4.18).
lﬁiSCz(sn)

It remains to prove (4.16).

Note that if t—b0 =t uy does not satisfy (4.14), then for any

1<1ic< Cl(sn) and 1<j< Cz(sn), we have the following inequalities.

(-19) (=) |al(t_bO) - b1 ynj - xniI : KZ :gdl-:(;il
1 Ky ATSt < x| < 2"1“““1
(b) |a1(t—bo) A xnil 2 K Ky \-sn
1if |xn1| < le-sn
(c) |32(t-b0) +byx . - ynj| > Kz—:g’dl_:’_znj_l

2n n
1f Ky U < |ynj| < 2a,ud;

2n
(d) |az(t-b0) + b2xni - ynjl > K1K3u

2
1f Iynj| s KM ",

Now (4.16) is a consequence of (4.19) and Lemmas (4.8) and
(4.9). We will indicate the proofs of (4.16a) and (4.16b), leaving
the analogous proofs of (4.16¢c) and (4.16d) to the reader.

First we have the geometrically evident fact that there is a

constant K >0 such that
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(4.20) (a) dist (w;it( X 100 €1 Opge)) * Kdtst (U}th(y (

njt €2t xnit))

§ -1
(b) dist (wZIt(ynjt) Cpe (Rgg)) 2 Kdtst (V7 Gy )ee) G0)

for n large and all 1, j.
This is proved via the facts that
u s
> >
(@) 1f T C1eVnge ” Faier MO Toe Soe Xaie 7 Ynge

and the distance on the left of (4.20a) may be expressed

in terms of the smallest angle between D;x and
nit
Et D‘;y while the distance on the right may be
njt

expressed in terms of the smallest angle between

-1_s u
ETD and D .
tolxg, 2 Y04t

and

@ 1if ™ ¢y . <x_, , them T

<y
1t "1t 'njt nit

2t “2¢ *nit njt
and the respective distances may be obtained as the
infimum of the lengths of piecewise differentiable

curves joining appropriate points.
For convenience, set ©n |a (t-by) - yj - xni‘ and
®n = Iaz(t-—bo) - b2 X4~ ynjl' From Lemma (4.9a) and the
differentiable dependence of )‘t on t, we see that to establish (4.16a)

and (4.16b), it suffices to show

(4.21) dist (wﬁt(xnit). e (w;lt(Ynjt)) > 13’n

for large n and all i, j.
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Also, since

-1 -1 -1
dist b)) Kpge)s g (wZIt(Ynjt))] = dist (V) (s e, (Opyy))

-1 -1
> dist (wllt(xnit)’ clt(Ynjt)] - diam (wllt(xn:lt))

3 -1
> dtst (U1, G s € Opge)) - diam (e Tpge)) = ddam (b7, X, 0],

(4.21) will follow from

-1 ®1,n

(4.22) (a) diam (Y17 (X ;) 2
®1,n

(b) diam (clt(Ynjt)) s ==

(c) dist (wﬁt(xnit)’ Clt(ynjt)) 2 %e

provided n 1is large.
Now, Lemmas (4.8c), (4.9a), and (4.19) imply that

diam (w;it(xnit)) . eIln + 0 as n+®, which gives (4.22a). Analogously,
’

-1
diam (Clt(Ynjt)) eZ,n + 0 as n*%®, so (4.22b) follows since e, <Ke

by (4.20).

~1
For (4.22c), observe that dist (‘pllt(xnit)’ clt(ynjt:)) =

u
dist (xnit’ nlt e ynjt) is well approximated by lal(t—bo) + b1 ynjt - xnitl

since this is the absolute value of the first terms of Y, (t,y ) - x
1 n

jt nit’
rurther Ial(t_bo) B bl yn.‘]t - xnitl z el,n - |bll |ynjt—yn_‘ll - lxnil:"xnil’
o te wutfices to show Iy vl e and g <l e >0
as n*>.  But, (4.19) and Lemmas (4.8) and (4.10) give that Iynjt-ynj| <

K, Iynjl It-bol £ KyA (t=b)) and |"n1:”‘n1| < K, Ixni||t-b0| < K, B (t-b))

105



§. NEWHOUSE - J. PALIS

where A = max K—3 e2,n;

Since t-bo = un uy is exponentially small for large n, and

e < Ke

2.n 1.0’ we obtain the required facts. This completes the proof
’ ’

of (4.16a) and (4.16b).
We have now completed the proof that At is hyperbolic.
Using the methods in [31], one shows that At is zero-dimensional.

Moreover, Wu(pZt) n Ws(pZt) will be dense in At’ so /\t is transitive,

and (4.3) has been proved.

Observe that as t approaches bo in UG'BG' the minimum period

of periodic points of F’t in V2 goes to ©. Thus, there are many

different topological conjugacy types among these Et's. Moreover,
using the methods in [42], one can describe explicitly the orbit structure

of Et A in terms of non-negative integer matrices.
t

At this point, we indicate how to enlarge 36 to obtain (4.4).

As it stands, for t € UG-BG’ y € V2, Wu(y,éjt) contains a u-disk C2
near f(Du ), and W (y,E ) contains an s-disk ¢? near D° .
2 f—l(y) ¢ t lyt

First, consider the set Qlt of periodic points q of Et such
that W' (p. ,£) n W(q,E ) * @, dim W>(q,E,) = dim W(p, ,E ), and
plt’ ’t q’ t » ’ t lt’ t ’

u U s
Enlarging {xni} we may assume Dlt m W (q,éjt)

qéVvV. uVv
1 Q
LT

2°

-1
U wllt(xnit)' Similarly, enlarging the collection {Ynj}’ assume

106



CYCLES AND BIFURCATION

s U u -1
D2 n B \ (q,gt) c wllt(Ynjt) where Q2t is the set of periodic
2t

s u s
points q of Et with W (p,.,E. ) n W (9,€,) # @, dim W (P2t’€t) =

dim ws(q,Et), and q ¢ Vl uv This can be done with at most El(sn)

2°

X .'s and Zz(sn) Y

i 's where Zl and EZ are polynomials of degree

nj
bounded by the number of periodic points of f.

Let Q3t be the set of periodic points q of Et with
ws(q.it) n Wu(plt,it) z @ and dim ws(q,ﬁt) > dim Ws(plt,it)-

If yeV

p N ws(q,Et) for q € Q3t and Ws(y,Et) is not transverse

to w“(y,gt), there is a one-dimensional direction near Hly which is not

in Ty Ws(y,Et) + Ty w“(y,st). This means that the angle between

s u u u
W (q,Ct) n Dlt and Hlt near Trlt(y) is very large. Thus wlt(y) 18 nearly

u
a critical point of u . Make all the critical points
11t|Ws(q,§t) n Dy,

of TV u non-degenerate for p € Q3 = Enlarge the

T s Q .
11|W7(q,f) n Dl 3bo

-1
collection {xni} so that these critical points are in lel(xni).
Analogously, define Ql‘t to be those periodic points q of §t such that
wi(p, ,6.) 0 wW(q,t,) # @ and dim W' (q,E, ) > dim W' (p,, ,E, ). Incr

Poerby 9,6, an m 9,6, Py.»6,). Increase

8
X T
the set of intervals {Ynj} so that all critical points of 21 Wu(q,f) n D;

for q ¢ Q are in tp_l(Y ). Again, the cardinality of the sets
4b0 21 'nj

of Intervals {xni} and {Ynj} can be bounded by Cl(sn), Cz(sn) where
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El and EZ are polynomials with degree less than the number of periodic

points of f. Now one may enlarge BG so that for t € UG—BG, and

-1 -1, s u
y € U Y11:Faie) " & U ¥oreVnie)» Dyt is transverse to £, D2 g1 (y)t.
t

This will guarantee transversality of Ws(y) and Wu(y) at y in V2.
Further, the methods which prove that MS is open (see §2 or [20])
will insure transversality at points whose orbits don't meet V2 for
t-bo small. This proves (4.4).
The proof of Theorem (4.2) for the case in which there is a

l-cycle is similar. In this case, the weakest contracting eigenvalue

n of Tp f may be complex, but generically we will have |u| < L
2

The constructions in Lemmas (4.8) and (4.9) may be imitated, and the
same general methods may be used. The essential fact is that the norm
of an element in HZ (which may be two-dimensional) is contracted by

the constant |u| in coordinates for which le is linear.
2
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§5. Here we give the proofs of Lemmas (4.7), (4.8), and (4.9).

This will complete the proof of Theorem (4.2).

Proof of Lemma (4.7). The proof consists of showing that one may

redefine E1 ® E2 to give an almost hyperbolic splitting [18, §3] on a

' e
subset V, <V, u V, such that . f (Vl ] V2) <V,

For 0<k, L<N, let V,, = {y ¢ v;: k(y) = k, &(y) = &}.

k

Given yeM and j an integer, write y:l = fj (y). For y e kaL and

- =7 ¢
L£<j<k, let F Tyf (Ely)’ and let F2y

- 3
lyj Ty f (EZy) .

3

Take V,, = U f"i (sz) and define the function o: V., + R

ki -2<j<k K

so that if y € Vk!?.’ we have

- ]
dej F2yj Ty f (Sey) E2y for 0<j<k,

J
T M-S F =T f'(T M-S_ E for -2<4<0
vy oy, 2y, y (y €y 2y) 1<0,

and a=€ on sz'

Note that Vkll n vmn =@ if k#m or L =n.

Proceeding similarly on U Vkl and taking the function € on
O<k, L<N

V] - U Vkl’ we obtain a (possibly discontinuous) splitting and
0<k, <N

sectors on a subset V, of M containing m fﬂ(V1 u V2). Relabeling,
n
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we call this new splitting El ® E2 and the function alvkl we call €.

Set Ez(y) = €(y) and El(y) = e(y)—l. Then the invariance properties

of (1) and (2) of section 3 in [18] hold. To conclude that

mf“(vl v V2) is hyperbolic, we have to prove
n

n
(5.1) (a) m('ryf |s€2y32y) Y

and

s ) 2 A, with A > 1.

(b) m(Ty £ L

E
€Y 1y

if n is large and y € Vn'

We will show there is an integer n >N such that if

m fj (V uv ), then (5.1a) holds. Similarly, (5.1b) is
-n<j<n

obtained and Lemma (4.7) will be proved.

For n >3, set Vn = fj (Vl u V2).
-n<j<n

Our first goal is to prove

(5.2) there is an integer no>N such that if y € Vn , there is
0

an integer k(y) with 0 <k(y) Sno such that

m('r s g ) >0,

€,y 2y 1

Indeed, once (5.2) is established, let Kl = inf {m(T fj): 0<4 ’no},

n
and let n1> n, be such that All Kl > )\1. Then for any integer j >0,

in

we have m(T f c'| . Thus (5.1a)

) > A K2 provided that y € V n

2y2 In,

follows with n = jno and j 2 n, n(;l. From now on always assume n 2N.
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Note that (4.7b) gives that for z = £+ (y), T 20 (g )

€z EZZ

< S (E, ). Thus, we may change the Riemann metric on a neighborhood
= %

vV, of Vé so that for er4

4

-2(y)-1
(5.3) (a) m(Tf_l £lT, £ e, Byp)) > 2

)
and
-1 -k (y)+1 _
(b) m(Tf(y)f |wa (T M SWEZW)) >\
where w = fk(y) (y).

Actually, only (5.3a) is needed for (5.la), but (5.3b) is needed
for (5.1b). In this new metric (extended to M) we will show that (5.2)

holds to obtain (5.1a).

Remark: Our definition of hyperbolicity appears to depend on the
Riemann metric, but as is well known one can give a definition

equivalent to ours which is independent of the Riemann metric [8, (3.1)].

Now, 1f y € Vn nv!

2 then (4.7a) guarantees that

m(Ty fk(y)Is 2 A; > 1 for some 0<k(y)<N. Also, if in addition

y ¢ V; n f-J(V;) for some j >N with fi(y) ¢ V; for 0<i<j, then

, i L dk(HL 2
(5.3a) glves m(Tyf 'Sezy EZy) > Al > )\l. Furthermore,
y € Vn - v Vkl?, implies that m(TyfISEzy EZy) 2 )\1.
To prove (5.la), we need only worry about y ¢ uﬁu - V2' if we

choose n>N. Let K2 = inf ‘[m(’l‘y fj): yeV, u V2, -N<j<N}. Choose

1

-N
2 5\ and >\12 K, > A,. Set

n2-N
n, >n, large enough so that )\1 1(1 1 1 1

2 1
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then

n, = nz. We claim that if y € V n (UV V'),
n, kL 2

S E, )2\

for some O0<k<n
y €,y 2y

1 3°

To prove this, let y e V. n (6 0" v') for some 0<k, L£<N.
ng k 2

n
£2%s E )=

i [}
<is
First suppose f (y) ¢ V2 for 0<i<n £,y 2y

3° Then m(Ty
ny~N 1 '
A K 2 )‘1‘ Now suppose f7(y) € V, for some 0<i<n,. Let

0= jO <j1 < j2 <. <_-]1_Sn3 be the distinct integers such that

3

i [}
(y) € Vz. Set jr+1 n If ji-j < n, for all i, then

3 1-1 5™
n~-j_ 3_-J 3-3, 3
) =m(r £3 Tl 271

n
3
anz, and m(Tyf lsezyEZy y

J;-N _
> K >\2...>\2A1 K1>A2r 2#1¢2 5 X.. On the other hand if
1'd 1 "1 1 1 1
there is a least integer 1i>1 such that ji - j:l-l > n,, then
3 J,-3 Jj;-N
1 1774 1
m(T £ lsezy Ezy) 2 KA CoA K
s g2y 27 e it
R A | R |
n2-N 2

This completes the proof of (5.1a).

Proof of Lemma (4.8). Let Py =45 - -5 9, =P be the distinct
periodic points in Al and assume, to simplify notation, that f(qi) =q

for all 1. There is no difficulty in extending to the general case.

8
Let D1 X i def w be a neighborhood of q1 in which
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f u is linear in some Cm coordinates ¢1 on Wi. Take
D5x0u0XxD
i i
5w, +»0p° m% w, +>D" to be the usual projections, and for y € W
i i i’ i i i ’ i’
let D} =n“-1(n“ ) and D =n°-l(ﬂs ). Pick 0<T<1 such that
iy i 1 ¥ and Oy %0y i Y-
1
2 s -1,_u
< : = “ e <
ue < T, max{lTyleiyl, ]Tyf lniyl yew, i=1, , vV} < T, and
min{(n(T £30%), m(t £[0%): yew, 4=1, . .., v} > 7L
y iy » y iy i’ ’ H]

For 1<i<v, define beh (qi,q\)) to be the largest length of a

sequence q; = q; , .« . ., 9 =4, such that Wu(qi ) n Ws(qi )= @
1 j k k+1
for 1<k ~j.

Relabeling, assume i<j implies beh (qi,qv) > beh (qj,qv).

For a subset D of W recall from section 3 that its u-width,

i’
wu(D), is sup (diam (Di"ly n D)). Also, if £® 1s an s-disk in Wi, its
yew
i

TTuV
|y vl

u-slope, pu():s), is sup Py € Es, vV e Ty).'.s, 18y 2 Q).

72l :

Given an integer k>0, we say a set D is k-disconnected if D

has at most k connected components.

c, > 0 be constants. A subset DcW, will be called

Let c 2 1

1’
(cl,cz,k)-controlled (in Wi) if

(@) w () < clT“

(b) D is a union of s-disks whose u-slopes are less than c,y

and whose boundaries lie in ﬂis (B(Dis X 0)).

13
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We will first prove by downward induction on 1 that for 1sis<v,

there are a neighborhood Vi' of {q\’} u U Ws(qj) n U W(q

),
i<jsv isj<v 3

constants €410 40 > 0, an integer Ni>0’ and a polynomial Ci(z) of

degree less than or equal to beh (qi,q\)) such that

m f"“(vi') nw

0<8<k

-k
(5.4) for k,n2N,, MR (AZ“) is

Ci(k)—disconnected, each of its components is contained

in a (cil,c k) controlled set in Wi, and

i2°

-2, 8 ' k
dist(mf(V),W(A)nV)<c‘t.

0<2<k i 1 i 11
First, by several applications of the A-lemma [20], we may assume

each Wi is chosen so that 1f y € Wi n WS(AI), the connected

component of Ws(y) n Wi containing y is an s-disk whose boundary is in

-1

a(nis (DiS X 0)) and whose u-slope is less than c, for some constant

2

¢,y independent of y and 1.

' n
Let V\) = W\) and choose N0>0 so that for nZNo, A2 c wv.

From the definition of Azn, we have that wu(A;) < cBTn, n ENO’ for
some constant c3 >0 since u1/2 <T<1. By the A-lemma, there are a

constant c4>0 and an integer N(;'>N0' such that for kZN",

y € ﬂ rm(w ), the connected component of f_k(y) in f_k(Dsy) is
0<0<k v 1

2k
an s-disk whose u-slope 18 less than c4‘t . Observe that f|Diuy and
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s s -1, u
d £
£ |Diy expand by at least T while leiy an ]Diy contract by at

least T on each wi. Thus there are an integer N0>N(;' and a constant

, each set m f-g'(V\;) n f-k(Azn) is an

Cg >0 such that for k2N
0<f<k

0

(s +u)-disk whose u-width is less than c¢ Tk and which is a union of

5
s-disks whose u-slopes are less than c TZk. Thus, m f-g'(V ') n f-k(A n)
5 v 2
0s2<k
is in a connected (c5, ¢ Tzk, k)-controlled set in W\) for n,kZNo. So
2N
we take €o1 = C50 Co2 T S5 T , and the polynomial Co(z) to be the

constant 1.

Assume now, inductively, that there are a neighborhood V:'l’ ap

polynomial Ci(z) of degree <beh (qi,q\)), an integer N1>0 and constants

> > >
Cil,ciQ as in (5.4). We assume that €41 2 Cp1® S42 2 Sa? Ni Nk for

i<k,
Consider 9 The u-slope of each component of W‘B(Al n Vi') n

W - f-l(wi-l) is bounded by c,>0. Choose N>0 such that

N -1 s '
- >
f [w f ("1-1) nw (Al)) c Vi . Choose cy 0 such that if y € Vi ,

dist (y,ws(/\l)) “eg and f-j(y) €W for some 0<3j <N, then the

i-1
s-disk through y In Vi' given by (5.4) pulls back by f_j to an s-disk

{n whose u-slope 1is less than Cye Choose N' >0 such that

wi—l

dist (m Wy, W) n v < cy- Choose N'>0 such that
0<LeN’' 1 1 1

N s -1 -2
f [w”(/\l) nW T (”1-1)) c m £,
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) A et
Let V1-1 U"f [ f (Vi)] v "1-1' Set

L]
0<J<N 0<2<N

Ni—-l =N+N +N' + N:L‘ Then for n,k > Ni-l’ consider

1 —2: Al —k n 1]
vi-l,nk ot m f (V:I.-l) n wi_l n f (Az). For y € vi—l,nk’ let
0<2<k
k k

k, be the least integer such that f 1(y) € Vi'. Then f l(y) €

ﬂ -2 _k+k1 n
f (Vi') nf (A2 ). Notice that by increasing N' (and
Oszsk-kl

hence Ni-l)’ we may insure that k—kl 2 Ni. Therefore, by induction,

k
£ 1(y) is in a (cgq7¢4p+k~k;) controlled set which is at most L(k-k)

disconnected where C 1is a polynomial with deg { < beh (qi-l’qv) -1.

k _N"
Thus f 1 (y) is in a (cl',cz,k-kl) controlled set in "1-1 which is

at most N" ;(k-ki) disconnected where cl' is some constant depending on

(3, 0<j<N'}. Thus, y is in a (ci,cz,k-k1+kl-N") controlled set

which is at most (kl -N") N" T(k- kl) disconnected. Let Ci—l (z) be

defined so that Ci-l(z) 2 zN"¢(z). Then (5.4) is proved for 1-1.
A similar proof works for m f-l(Vi') n wi, 1<i<v, Thus,
0s<k

there are a neighborhood V, of I\l U o(x)-x with x ¢ Vl, constants

1

€12¢y > 0 an integer N>0 and a polynomial 7(z) of degree < beh (pl,pz)

such that for k,n>N, m f-l(vl) n Wl n f-k(An) u ﬂ f-l(Vl) nw

0-%<k 27 p<psk 1
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is Z(k)-disconnected and each of its components is in a (c k)-

1’c2'
controlled disk in Wl. From the definitions of A]Tl and T, we have
that, for n large, fj (Aln) c Vl provided 0<j S%; that is,

Aln c ﬂ f-:i (Vl)' Thus there is an integer N>0 so that for

n
o<y

-«
k2o, AP c U m 4w )W, nf T@aM|.  setting
2 Lk n 0<2<k 1 1 2
B, <k (0stsky

2717
l;l(z) = z5(z) and taking N large, we have, for k2n2N, that

AM | | f-j (V,) is £, (k) disconnected and each of its components
Lk gejek 1 1

n =
is in a (cl,cz,i)-controlled set in Wl. For k2n2N, let vlnk

A“k u m £ (V)), and let V, =V, nW - f‘l(wl). Then

Lk Y eyek 1
n
V2nk c lsg(k) D.‘i where D_1 is a (cl,cz,i)-controlled disk in Wl

and degZ < beh (p),p,).  Let Xa50 be an interval in H, n W, - f'l(wl)

whose diameter is twice that of Dj n Dlu and whose center is ﬂl‘;. of

u -k
the center of Dj n Dl' For 1<k<sgn, 8>0, let ank f (ano).

There 1s a constant K> 0 such that diam nﬁ[ m £ (wl)] < kA S®

0<j<sn
for n N. Let Xn be an interval in Hl centered in P1 with diameter
less than 3KA°" guch that dist "1ul ﬂ f"j(wl) , X >12(-A'5“.
0<j<sn n

7



§. NEWHOUSE - J. PALIS

Then, the desired collection of intervals {xni} in Hl for Lemma (4.8) is
{Xn} U {ank: 1<j=szg(k), %Skssn}. Clearly, there are at most Cl(sn)

such intervals where deg t;l < beh (pl’Pz) +1, and, if wl 18 chosen small

to begin with, A® u m £ ) < U w-l(x ) so (4.8a)
1,80~ ocy<en 1 1<i<g, (sn) 11 "ot

holds. On the other hand, since f_1|D1u is linear, we have for

u ~1_u - - -2
Y€ Vg 0Dy £ @), A(ET AT () s eyA Tyl for 220 where c,

is a constant, A<)\1, and |y| denotes the norm of y in Dlu. This, and

the definition of the intervals Xn, X give (4.8c). Parts (4.8b) and

njk’
(4.8d) are established similarly.

Proof of Lemma (4.9). We prove (4.9a) and leave the analogous proof of

(4.9b) to the reader.
First we claim
u ~1, u
(5.5) For t bo small, X4€ Dl -f (Dl)’

lxnit - xnil < Kl' |t—bo||xni| where l(l' is a constant.

(5.5) is a consequence of the fact that x

1s a differentiable
nit

function of t for t near b,. Using this, there is a constant l(l

0

such that |x -x
ni

. nil‘ 4 Kl" |t-b0| for |t-b0| small.  Then (5.5)

u -1,u
follows since |xn1| 18 bounded below for X4 € D1 -f (D1 ).

The differentiable dependence of x on t may be proved by

nit
induction on the number of periodic points {ql, e e ey q\)} or as

follows. One may construct an arc nt of diffeomorphisms of M such that
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-4 s
@ Gt = i o [}Sjo £, (DZSyt) v WA )1} where y, is

the point in w“(p ,E,.) associated to E-l(x).
1t’°t bo

(b) the set D n [U 6 ) v W (A )] is contained in a
j<o

hyperbolic set A(nt) for n,.

(c) n =¢

. ¢ ona neighborhood of V

1t°

(d) there is a homeomorphism ht: 1\(r‘|b ) » A(nt) such that
0

x = ht (xni) and the map t +—* ht is differentiable

nit

from a neighborhood of b

o linto co(A(nbo),M).

Fact (c) is proved in the well-known manner of proving that the conjugacy
in the Q-stability theorem is a differentiable function of the diffeo-

morphism (see [4]). Now we prove (4.1la).

Let x , « Dl"‘- f'l(Dl“), k>0. We need to show that, in local

coordinates, |E:k(xnit) - f-k(xni)| < K|f-k(xn1)||t-b0| for some

constant K> 0.

We may assume that ¢1t Et ¢ is linear on ¢1t e = R and is
equal to the map VIH A:lvl with X: varying differentiably with t
near bo.
Now, )\;1 =27 4 o) with 1im T'ff—‘gil- = 0. Thus,
0

t"'bo
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- - - k -
£ ) - £ = 107 4 o) ) - A7)

IA'k(1+ol(t)) (xn1+x

-k
nit-xni] -2 (xn:i.)I

-k - -k
|)‘ (xni) +A k(xnit-xni) +A [ol(t) (xni))

+ rk(°1(“) CHREE I )‘-k(xni)l

-k -k -
e, mx )+ A oy (6) (x )] + X “(ol(:) - x )

IA

K' |t =bg| )\-k(xni) A7) 0, ®) + X7 (o, ) K' [e=by| =)

lo, ()]
where K' >0 and 1lim S Dk

5 = 0. This gives (4.1la) since the x _ 's
t>b, |t =bo]

ni
in the statement of (4.lla) are of the form X-k(xni) with

u -1, u
xni€D1 - f (Dl).
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§6. In this final section we make some concluding remarks about the
theorems already described, and we discuss briefly the possible extension
of the results to bifurcations of general Axiom A systems.

The first question concerns the possibility of extending

Theorem (4.2) to the case when Eb has a non-equidimensional cycle, or,
0

equivalently, when dim Wu(pl) = dimwu(pz) + 1 1in the notation of §4.

Let us mention that one can give rather strong conditions
analogous to those in (5.2) of [18] to insure that structurally stable
£, appear for infinitely many t's with t-b, > 0 small. While these

conditions hold for an open set of E's, they are far from dense among

those for which L"'(Eb ) is finite and hyperbolic.
0

In general, several new phenomena appear in the non-equidimen-
sional case, and we may illustrate these with the following 2-cycle

on a three dimensional manifold.

W (p,)

Figure 6.1
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The figure describes parts of W”(pl), Ws(pl), w”(pz), and Ws(pz)

for Eb . D;ﬂ H, D;, and H, are defined as in §4. 1In this example
0

Ws(pz) n Wu(pl) is a countable union of disjoint circles, and

w“(pz) n Ws(pl) is the orbit of a quasi-transversal intersection x.

For t3>b0, Wn(pz) ie raised near x as in the next figure.

S

Figure 6.2

Under certain conditions all the pieces of Wu(pz) v Wu(pl) may
be raised to miss small neighborhoods of those of Ws(pz) ] ws(pl) and
the resulting diffeomorphism will again be Morse-Smale. On the other hand
if the pieces of w“(pz) ] Wu(pl) are raised to meet those of Ws(pl) v Ws(pz)

transversely in an appropriate way, the resulting diffeomorphism will be
in AS and will have an infinite non-wandering set. In the latter case,

there are two infinite hyperbolic sets near x corresponding to the
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closures of the homoclinic points of Py, and Pyyo respectively, and
wu(Plt) n WS(pZt) contains wandering points. It is clear that this

situation is more complicated than the equidimensional case in which a
single topologically transitive hyperbolic set appeared. Moreover, while
we have some specialized results as indicated above, we have not yet
obtained the proof of a general theorem analogous to Theorem (4.2).

The next question relates to the possible extension of Theorem

(4.2) to the case when Cb has a quasi-hyperbolic periodic point in a
0

cycle. As a simple example consider a Morse-Smale diffeomorphism f onmn
52 having a single invariant smooth circle C which contains a fixed
sink Py and a fixed saddle point Py Assume f 1is normally hyperbolic

to C [10], and L(f) - {pl,pz} consists of two sources as in Figure 6.3.

Figure 6.3
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With a smooth curve of diffeomorphisms Et, 0<t<1, slide Py
and P, together leaving C invariant for all t. Do this so that £t
always remains normally hyperbolic to C. It may be arranged that at

the time t = bo(E) when p, becomes equal to P,y P=P =P, is a

quasi-hyperbolic fixed point for Eb , and Wu(p) = Ws(p) = C as in
0
Figure 6.4.

Figure 6.4

It is not hard to see that the rotation number of Eth (see [7]) will

vary through an interval for b, <t <b,+€, sgo any perturbation of £

(1 0
will necessarily have infinitely many bifurcation points near bo. Now,

uging Peixoto's theorem and arguments in (18] one may show that for most

arcs N near &, there are neighborhoods Un of bo(n) in I for which

B(n) n U(n) is nowhere dense. Thus, this situation is pretty well

understood. However, in contrast to Theorem (4.2a), one might not expect
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meas (B(n))/diam U(N) to be small with diam U(N). This is because the
arc N restricted to the invariant circle induces a curve ¢t of diffeo-
morphisms of the circle Sl. Generic arcs of diffeomorphisms of the
circle do not necessarily have bifurcation sets of measure zero. For
instance, one could choose a (non-generic) CS curve ¢t such that the

rotation number varies as C!(t-bo) for b <t<b0+€ with & a monotone

0

positive function. Then the map (u,t) (¢t(u),t) for (u,t) € Slx [bo,b0+€)

is a twist mapping [11], (12, p. 227]. Any lI}5 perturbation Y of the

map (u,t) '—-’¢>t(u) gives a map (u,t) > (W(u,t),t) whose invariant circles
corresponding to strongly irrational rotations have measure close to the
measure of S‘.l x [bo.bo+e). While generically, there are many Morse-Smale

diffeomorphisms Et for t arbitrarily near b it seems unlikely that

0’
meas B(£)/diam U() will be small even if diam U(§) is small.

Now, suppose that before bringing 12 and P, together to p one

pushes in w“(pz) to the left of P, as in Figure 6.5.

Figure 6.5
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This will cause w“(pz) to oscillate as it approaches 12} and Wu(pz) u {pl}

is no longer contained in a smooth circle. Now bring Py and P, together
via an arc E"t as before. In certain cases, this procedure gives
infinitely many different Morse-Smale diffeomorphisms Et for t> b0 &)
while in other cases Et can have hyperbolic periodic points with
transversal homoclinic points. Which of these cases occurs depends on

the structure of &b on w“(p) away from a small neighborhood of p.
0

Of course, one may enlarge the situation to produce cycles of any given

length containing a quasi-hyperbolic fixed point as in Figure 6.6.

&

AV

Figure 6.6

If the cycle for & has length greater than 1, then one always has
bo

transversal homoclinic points for Et, t >b0.
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It should be pointed out that while these statements give some
qualitative information about the structure of Et for t > bo, we do
not yet have a general theorem about the existence of structurally

stable diffeomorphisms near b That is, we do not have a proof of a

o
theorem analogous to Theorem (4.2) when Eb has a quasi-hyperbolic
0

periodic point contained in a cycle. Nevertheless, we expect such a
result to be true.

Consider now an arc § € d?k'r with 60 any diffeomorphism
satisfying Axiom A and the transversality condition. Assume bO(E) <1.

Generically, what can be said about the structure of Et for t near bo?

As an example, let us look at Smale's horseshoe diffeomorphism on 82
(see [32]). A square Q 1s mapped by a diffeomorphism f as in

Figure 6.7 below with f£(A) = A', £(B) = B', etc.

F(Q)
//
0
A n
L d
Al I’)l Cl B|
Figure 6.7
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There will be a hyperbolic fixed point p in the left component of

f(Q) n Q whose stable and unstable manifolds enclose A = m fn(Q)
nez

as in the next figure.

Yy
/

Figure 6.8

With a suitable modification of f off Q through a curve Et one may

introduce a quasi-transversal intersection x of Wu(p) and Ws(p)

for F’b off A as in Figure 6.9,

0
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N
x

Figure 6.9
Then one has Q(Eb ) = Q(f) u o(x) and the general orbit structure of £b
0 0

is easily described. 1Indeed, there is a small neighborhood U of x so

that if vy, fn(y) are in U for n>0, then y lies above x and fn(y)

lies below x. Using this, one sees that L(Eb ) = Q(Ejo) remains
0

hyperbolic. However, the structure of Et for t>b, 1is quite complicated.

0
For example, If the appropriate Cantor sets in Vl“(f) and Ws(f) are
thick (see [l4] for definitions and notation), none of the Et will be
structurally stable, and indeed many may have infinitely many sinks [16].
On the other hand, if the Cantor sets are thin, then there will exist

infinitely many structurally stable diffeomorphisms among the E.t's,

t)bo.
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For the next example, compose the horseshoe diffeomorphism f

with an arc of downward translations for Et so that £(Q) 1s moved
downward with t. Let P, denote the hyperbolic periodic point of Et

near p for t near bo. Then W"'(pb . Eb ) will have a quasi-transversal
0 "0
intersection x with Ws(pb , &b ) which lies in the closure of

ﬂ E: (Q) as in Figure 6.10.
nez 0

L
N

Pboy U

Figure 6.10

Here ﬂ C: (Q) will be a non-hyperbolic Eb -invariant topologically
n 0 0

transitive set with periodic points dense. Also, all the periodic

points will be hyperbolic. In this example, Eb Im E: Q) 1is
0/ ' n 0

topologically conjugate to the quotient space obtained by identifying
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two orbits in the shift automorphism on two symbols. Moreover, the

remarks in the preceding example for t >b0 are applicable here too.

For our next example one may introduce a quasi-hyperbolic

periodic point near some periodic point of le so that for t >b0,

g

¢ is in AS and Q(Et) becomes modified. In the figure below, we

introduce a quasi-hyperbolic fixed point near p.

f\\ /\
P 2 140

4

Figure 6.11

All of these bifurcations may be generalized to higher dimensions, and
the other kinds of generic bifurcations of periodic points (see [36])
may be incorporated into basic sets (i.e. isolated invariant topologically

transitive hyperbolic sets) in the obvious manner.
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Also, the diffeomorphisms Eb in the above examples lie in
0

smooth codimension one submanifolds of ,Brm). These periodic point
bifurcations may radically change the non-wandering sets of a given
Axiom A diffeomorphism. For example, R. Williams pointed out to us that
one may pass from an Anosov diffeomorphism on the two torus to the DA
diffeomorphism [41] after the introduction of one quasi-hyperbolic fixed
point (see [17] for a description of this in the context of flows).

Other bifurcations may be obtained by introducing non-transversal
intersections of stable and unstable manifolds of different hyperbolic
basic sets. For example, in a four dimensional manifold consider an AS

diffeomorphism with two basic sets Al’ A2 which are two-dimensional
tori such that flAi is Anosov and a“(Al) n ﬁs(l\z) z @. Modifying
f off Al qu through a curve Ec’ one may introduce an intersection
between ‘:'!u(AZ, Ejbo) and ;la(Al, Ebo). If one first modifies f on Al

so that /\1 ceases to be smooth (see [12, 86]) it appears that one may
get non-smooth parts of the boundary of AS. This would be in contrast

to the situation for MS. For in our open set of £'s with L(Eb )
0

having finitely many orbits, Eb lies in a smooth condimension one
0

submanifold.
The main question 1s: are the examples so far described the

only kinds of bifurcations which occur generically at F,b for Eo « AS?
0

To be more precise, we state the following problems. We feel that even

partial answers to these questions would be interesting.

1. 1Is it true for most & with Co ¢ AS that L(Eb ) is a
0
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finite union of closed invariant topologically transitive
sets at most one of which is not hyperbolic?

2. Describe the set of arcs £ with EO € AS such that Eb is
0

in a smooth submanifold of codimension one.

3. Suppose f and g are in AS, dim Q(f) = dim R(g) = 0, and f
is isotopic to g. 1Is there an arc from f to g with a
zero-dimensional bifurcation set?

4. Is the topological entropy h(Ct) (see [7]) a continuous

function of t for t near bO for most & with EO € AS?

5. Describe B(E) for most & with EO € AS, El € AS and

dim Q(El) = 0. In particular, assume Eo is Anosov.

In closing, we make some comments about the use of the methods
given here for flows (vector fields). The results carry over with the
obvious changes for flows without critical points. Also, it does not
appear difficult to determine the variations necessary to handle the
cases when critical points occur. On the other hand, recent develop-
ments indicate that flows allow considerably more freedom for modifications
of the non-wandering set with isolated bifurcations. For instance,
Sotomayor showed us an example of an arc of flows with a single generic
bifurcation joining a gradient-like Morse-Smale flow to an AS flow
having infinitely many periodic orbits. The structure of these vector
ficlds near the non-trivial basic sets was also discovered independently
by Silnikov [29].

The example may be described as follows. Consider an MS
gradient vector field X on a three dimensional manifold M having

different saddle points p and q with dimwu(p) = 2, dimws(q) = 2,
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and Wu(p) n Ws(q) consisting of three (one-dimensional) orbits Yl’ YZ’

and Y3. See Figure 6.12.

Figure 6.12

Moving X through a curve of MS vector fields one may make
Y, U Y {p,q} and Y3 U YU {p,q} 1into two curves tangent along

YU {p,q} as in Figure 6.13.
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N

&L
<<

Figure 6.13

The double arrows indicate sharper rates of attraction or repulsion
than the single arrows.

Now with a curve Et of vector fields bring q and p together
to create a quasi-transversal critical point. Immediately afterward,
one will have an AS vector field Y such that f(Y) contains a closed
invariant transitive hyperbolic set which 1is topologically equivalent to
the suspension of a shift automorphism on two symbols. If one starts
with Wu(p) n ws(q) having n+1 orbits, the same construction yields a
basic set equivalent to the suspension of a shift on n symbols. The
same phenomena may be obtained on a manifold of arbitrary dimension
using critical points p and q with dim W'(p) = dim w“(q)+1 and

w"(p) n w"(q) consisting of n+1 orbits. Note that if Wu(p) n ws(q)
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consists of only two orbits, the procedure produces a single hyperbolic
closed orbit. If the intersection is a single orbit, the critical
points cancel out as is familiar in Morse theory.

This example is actually a part of a general situation for
flows. More precisely, with our methods transcribed to flows one may
prove the following.

Let I = [0,1] and let )Cr(M) be the space of ¢’ vector fields
on M, r>2. For most § ¢ Ck(I,X‘r(M)), k21, r2>2, such that Eo € MS,

L(Eb ) has finitely many orbits, and L(Eb ) contains a quasi-hyperbolic
0 0

critical point, there is a neighborhood U of b, in I so that

0

B() nU = {bo}. If the quasi-hyperbolic critical point of Eb is
0

contained in a cycle whose stable and unstable manifolds meet in more
than two orbits, then Q(Et) will have infinitely many periodic orbits
for t>b

in U. Otherwise, §, ¢ MS for t € U-{bo}. Observe that

0 t

here we permit Eb to have cycles of arbitrary length.
0

In another direction, it is proved in [19] that any two MS flows
may be joined by a stable arc with finitely many bifurcations. 1In [17]
it is shown that this is true for a large class of AS flows with one
dimensional non-wandering sets. Also, it holds for any AS flows on a
manifold of dimension less than four. These last results have no
analogs In the bifurcation theory of diffeomorphisms. Indeed,
Proposition (2.4) of [18] shows that generally an arc of diffeomorphisms
beginning In MS and ending in AS with an infinite non-wandering set
necessarily has an Infinite bifurcation set.

As a final remark, it is worthwhile to observe that all known

examples of open sets of non-Q-stable systems may be obtained near the
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boundary of AS. That is, all the relevant phenomena in these examples

already appear in Et with t near b0 for certain arcs & having
&O ¢ AS. Thus aside from being interesting in their own right, it seems

that a good understanding of the problems in this section (and the
analogous ones for flows) would contribute much to the theory of generic

properties of non-parametrized dynamical systems.
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