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AN EXTENSION OF PIZZETTI'S FORMULA TO RIEMMANIAN MANIFOLDS 

T.J. Willmore 

This note summarizes joint work of Alfred Gray and myself. Let Mm(r,f) denote 

the mean-value of a real-valued integrable function f over a sphere with centre m 

and radius r in n-dimensional eucldean space Rn. Then the formula of Pizzetti 

[PI.l], [PI.2], [CH,P.287] states that 

(1.1.) Mm(r,f,) = r 
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Formula (1.1) can be written more compactly as a Bessel function in V-A [ZA] . 

We have 

(1.2) Mm(r, f) = [j(n/2)-l (rV-A)f] (m) 

where 

jt(z) = 2*r(d + l)JJl(z)/z£ 

and is the Bessel function of the first kind of order 

In this paper we generalize (1.1) to arbitrary Riemannian manifolds. Our formula 

also generalizes the mean-value theorem for harmonic spaces JWIJ. Complete proofs 

will appear elsewhere. In the Riemannian case we define M (r,f) as the mean-value, 

of f over a geodesic sphere with centre m and radius r in an n-dimensional Rieman­

nian manifold M. More precisely we have 

(1.3.) Nm(r>f) = f fù0 /V(expm(Sn_1(r))) 
expm(Sn-1(r)) 

where expm is the exponential map of M at m. 

The exponential man expm can be used to transfer formulas from M to the tangent 

soace M . Let q.. be the comDonents of the metric tensor with resnect to a system m > .1 
of normal coordinates, (x-|,...,x ) and put 

e = /det(gi 7J > Am = 2 
a2 
9 

ax*-. 
i 

Both 8 and A are independent of the choice of normal coordinates at m. m 
We have 

Theorem 1. 

(1.4) 
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J(n/2)-l(r/À)[feim 

J(n/2)-l<r/-V[6Jm 

The operator Am is of some interest in itself. We prove that there is a global­

ly defined differential operator L^^ of degree 2k which coincides with the 

power of Am at m. For example we find that 

C1-5) (Amf)m = (Af)m V ' V M YM X 'm 

(1.6) (Am2f)m = (A2f + -< df ,dx > + |-<V2f,p>)m 
V 1 V M 'M V 3 3 'M 

where A denotes the ordinary LaDlacian, T is the scalar curvature, p the Ricci cur-

vature and V2 f the Hessian of f. Usino (1.4 ), (1.5) and (1.6) we prove 
Theorem 2. 

Mm(r,f) = f(m) + A(m)r2 + B(m)r4 + 0(r6) 

_as r -> 0, where 

A = 
1 

2n 
Af 

B = 1 

24n(n + 2) 
(3A2f - 2 < V2f,p > - 3 < Vf,VT > + 

4T 

n 
Af). 

We have also computed the coefficient of r^ but it is too complicated to write 

down here. 

2. A CHARACTERIZATION OF EINSTEIN MANIFOLDS. As an immediate corollary to theorem 

2 we have 

(2.1) Mm(r'f) = f(m) + °(r4) as r 0 
if and only if f is harmonic near m. We prove 

Theorem 3. 

Let M be an Einstein manifold and let m 6 M. Then for small r > 0, every function 

harmonic near m has the mean-value property 

(2.2) Mm(r>f) = f(m) + °(r6) £1 r - 0 

Conversely, we have 

Theorem 4. Let M be can analytic manifold and let m 6 M. If for small r > 0, every 

function harmonic near m has the mean-value property 

(2.3) lVr'f) = f(m) + °(r6) *1 r + 0. 

then M is Einstein. 

The analyticity is required in theorem 4 because our proof depends upon the 

Gauchy-Kowalewski existence theorem for elliptic operators. We thus obtain a charac­

terization of Einstein manifolds by the mean-value property (2.2). A similar but 

more complicated characterization of Einstein manifolds is given in [FR] . 
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3. A CHARACTERIAZATION OF SUPER-EINSTEIN MANIFOLDS. We denote by R the symmetric 
tensor field given by 

R (x,y) = 
n 
z 

i ,j,k=l 
R(eî,e.,ek,x)R(ei,e.,ek,y) 

for x,y M , where e-,,...,e is an orthonormal basis of Mm„ We define a manifold to J m I n m be super-Einstein if it is Einstein and in addition satisfies the condidition 

(3.1) R(x,y) = 1 n R 2 < x,y > for n > 4, 

2 = constant for n = 4. 
This definition is suggested in [BE, p.165]. It is easy to see that an irreducible 
symmetric space is super-Einstein . There exist metrics on spheres of dimension 
4n + 3 which are Einstein but not super-Einstein. 
We prove 
Theorem 5. Let M be a super-Einstein manifold, and let m 6 M. Then for small r > 0 , 
every function harmonic near m has the mean-value property 

Mm(r,f) = f(m) + 0(r8) as r -> 0. 
The proof depends upon the explicit calculation of the coefficient of r in the 

expansion of M (r,f). Conversely, we have 
Theorem 6. Let M be an analytic manifold, and let m 6 M. If for small r 0, every 
function harmonic near m has the mean-value property 

V r » f ) = f(m) + 0(r8) r °' then M is super-Einstein. 
Again we make use of the Gauchy-Kowalewski theorem to prove theorem 6. We thus 

obtain a characterization of super-Einstein manifolds. 
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