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REALIZATIONS OF A SINGLE VOLTERRA KERNEL 

par 

Peter E . CROUCH 

-:-:-:-:-:-:-

ABSTRACT. - The input-output map of a nonlinear analytic system can be expan­

ded in a suitable domain as a Volterra se r i e s . The Volterra kernels ,each of which 

defines a term in the ser ies ,can be expressed in terms of the system data. In this 

paper these express ions are used to realize a single term in the ser ies , again di­

rectly in terms of the system data. This will lead in later work to a synthesis a l ­

gorithm for systems with finite Volterra se r ies . 

I. - INTRODUCTION. - It has been shown in BROCKETT [ l ] , BROCKETT and 

GILBERT U J , KRENER and LESIAK l_7j , that the input-output maps of a large 

c lass of nonlinear analytic system have convergent Volterra se r ies expansions. 

In the linear and bilinear cases the Volterra kernels have well known express ions 

in terms of the system mat r ices . KRENER and LESIAK [7] have provided similar 

formulas for the Volterra kernels in terms of the vector fields and functions de­

fining the system. 

Generalizing to the bilinear case P. d 'ALLESSANDRO e t a l . [ 5 ] provided an 

algorithm which synthesised bilinear realizations of Volterra ser ies from the 

Volterra kernels . Another method was given in BROCKETT [ l ] for the case of 

finite Volterra se r ies . 

In GILBERT [3] and CROUCH [ 4 ] , it was shown that a finite Volterra ser ies 

has a nonlinear realization in the form of a cascade of linear systems with poly­

nomial link maps. In CROUCH [4] it was shown that the state space of a minimal 

realization (in the sense of SUSSMANN [6] ) of a finite Volterra ser ies has a vector 

space structure, and can also be written as a cascade of linear sys tems. However 

to date no algorithm has been given which syntheses cascade realizations of finite 

Volterra ser ies , in general. 
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The purpose of this paper is to provide a cascade realization of a single term 

in a Volterra se r i e s expansion of a non-l inear stationary system, directly in terms 

of the sys tem data. In conjunction with the previous wo rk in CROUCH [4 ] , this 

will provide the necessa ry structure for the synthesis algorithm above. 

II. - PRELIMINARY DEFINITIONS AND RESULTS. 

The following non-linear analytic system will be considered : 

(i) 
x = f(x) + u g(x) , x(o) = x , x6JRn 

Y = h(x) 

where f and g are analytic vector fields on ]Rn (column n-vec to r s ) and h 

is an analytic function. 

THEOREM. - KRENER + LESIAK [ 7 ] , BROCKETT [ l ] , BROCKETT+ GILBERT [ 2 ] . 

If the equations with u~0 , have a solution on [0, T ] then for all integrable 
T 

u , satisfying f |u I ds < t , and t sufficiently small, the input-output map of 
"o 

non-l inear analytic sys tem can be written as a uniformly convergent Volterra 

ser ies on [0, T ] : 

(2) Y(t) = WQ(t) (XQ) + 
oo 
2 
i=l 

/ Z 1 . . . / 1 " 1 W i ( t , a l . . . a i ) ( x o ) u ( a 1 ) . . . u ( a . ) 
o o o 

da. . . . da, 
i 1 

Since the Vol terra kernels W. not only depend on the real parameters 

t , Q, . . . o\ , but also on the initial condition x they are viewed as real 1 1 o 
valued functions on IR 

x > W (t, a . . . a. ) (x) . 

To express these kernel functions in terms of f , g and h , some conve ­

nient notation is introduced. 

If a and b are analytic vector fields on IRn , define a covariant der i ­

vative V b as the vector field : 

x — (Va b) (x) = 7 b 
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whose i " component is given by : 

(V I \ b)- = a(x) 'i 
n ö b. 

l 
Ox. 

J 

( x ) a . ( x ) . 

When b is an analytic function simply represents the directional der iva­

tive of b in the direction a . An easy computation shows : 

(3) V b - V, a - [a , b] = 0 
a b 

for arbitrary vector fields a and b , where [ , ] is the Lie bracket. The 

Lie derivative of a vec tor field b by a vector field a well be denoted by : 

L b = [a , b] 
a 

and higher order derivatives by : 

Lk b = Lk_1 [a , b] ; L° b = b . 
a a a 

If a is a vector field, let Y denote the flow of a . Thus on some maximal 
a 

neighborhood of 0£]R depending on x € H 

d 
dt 

Ya(t)(x) =a(Ya(t ) (x)) , Ya(0)(x) = x . 

Let Y (tL denote the differential of the local diffeomorphism y (t) : lRn «* IRn . 
a * a 

Fo r t sufficiently small the one parameter vector field Y (-t)„ b(Y (t) (x)) is 
a a 

given by the convergent ser ies : 
CO 
2 
i =o 

i 
t i ! 

L1 b (x) 
a ' 

and sometimes denoted by exp t ^ ( b ) (x) . 

In the case where a = f and b= g set : 

g(a)(x) = Yf(-a)# g(Yf (a)(x)) 

and also define inductively the n-parameter vector fields 

(4) gn(ar . . = vg(a } V i {oi. . . V l ) , gl(ap = ^ . 

The kernel functions are now descr ibed in the following result : 
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THEOREM. - K R E N E R + LESIAK [ 7 ] . 

W (t, a . . a ) (x) = v (x) v 7 x . . . ? , x ( h o Y r ( t ) ) 
n 1 n; g ( 0 J g(cr _) g a . ) f W / 

11 n-l n- Z 1 
WQ(t)(x) = ho Yf(t) (x) . 

COROLLARY. -

W (0,o -t, . . . , a -t) (Yf(t)(x))= W (t,a . , a ) (x) . 
n l n I n 1 n 

Proof : Let a be a vector field, b a function, and Y a local diffeomorphism, 

then by definition of the differential : 

( 7 a b o Y > « = V a ( x ) b o Y = V ( x ) b = ( 7 Y . a b > o Y W 

where (V»a) (x) = Y*a(Y (x)). Since 

(Yf(t)# g(a.)) (x) = g(o . - t ) (x) 

the coro l l a ry now follows by applying the theorem. QED. 

The main aim of this paper is to find a realization of the p' th term 

of the Volterra ser ies expansion in equation (2) where the sys tem is stationary, 

that is f(x ) = 0 . By appealing to the coro l l a ry this amounts to finding a rea l iza­

tion of the following input-output map when x = x^ . 

(5)f y (t) (x ) = 
' CT1 

n 
o o 

a 
pp-1 

'Jo 

W (a -t, . . . , a -t) (x) u(cr). . . u(a ) da . . . da p i p i p p 1 

whfe re 

(6f) W » ( a , . . . a ) (x) = 7 v . . . v h . 
PV 1 PM ' g ( ° ) ( x ) g ( a , ) g ^ ) 

In fact the realization constructed is valid for all x€lRn . The key obse rva ­

tion in obtaining such a realization is the following result. 

LEMMA. - Let a, b,a^,. . . , a^ be analytic vector fields and define a differential 

operator on vector fields by : 

d - * V d = V 7 . . . 7 7 d . 
c a a a_ a, 

r r-1 Z 1 

Then the following identity holds. 

(7) 
r 

LL(V a) + (V b- V 7 b) = V ( L a ) + £ 7 7 . . . 7 . . . 7 a . 
bv c ' v 7 a c a 7 cv b ' . , a a , L a . a. 

c i=l r r-1 b i 1 
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P r o o f : By using equation (3) the identity reduces to : 

7 v a = 7 7 a + b e c b 
r 

i=l 
7 7 . . . VT , . . . . V a 
a a L u a ) ai r r-1 b l 1 

However this simply follows from the identity. 

(8) V b V - 7 d V - 7 [ b , d ] a = ° 

which is valed for any vector fields a, b and d . Q. E. D. 

§3. - The first stage in obtaining a real izat ion is to isolate the dependence 

of W on h . Let x h(r)(x) denote the r'th derivative of h , where 
P / r \ / r \ 

for each x , h (x) is a symmetr ic r- l inear map (v^, . . . , v ) -* h (x)(v^. . . v ) 
Hnx . . . x ]Rn -* IR . It is clear from the definition of W in equation (6) that 

it has an expansion of the form : 

W^(a r . . ap) (x) = h(1)(x) (gp(ar . . ap) (x))+. . . + h(p)(x) ( g ^ x ) . . . ^ (a )(x)). 

Denote this expansion by : 

(9) W ' ( a . . . a ) = H ' ( g . . . . g ) 
p i P P 1 p 

where H' is a linear function in the components of the vectors g^ (^ ) (x ) , • • • > 

g^(cr )(x), . . . , g (Oy . . 0^) (x) , with coefficients depending on x . 

The terms in this expansion are grouped in the following way. For each s 

1^ s ^ p , consider those terms involving the s'th derivative of h only, 

and in which g. te rms 1 ^ j ^ q , appea r r. time s, q = p - ( s - l ) . It is easi ly 
J r 9 r 

shown that will be p |/(r | . . . r I ) (2 !) . . . ( q!) ^ terms in this group spec i -
q q q 

fied by the intege rs (q, r . . . r ), which must satisfy H r = s , £ , i r. = p . 
1 q I-1 I i =1 I 

By introducing the control dependent vector fields 

(10) 
t a a 

^ ( t ) (x) = J J . . . J1 g . ( a r t a . - t ) ( x ) a ( a 1 ) . . . a (a.) da. . . . 
o o 

it is easily verified that y (t) (x) is a sum of terms of the f o r m 
i — r, > < r > 

1 / ( r i l . . . r !)hV8;(x) (x1(t)(x)...x1(t)(x) x2(t)(x) . . .x2(t)(x) . . .x 1 (x)) 

where each term is due to the contribution of a group of terms as descr ibed above, 

and is therefore specified by a set of integers (q, r^. . . r^) . This sum of terms 
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will be denoted by setting 

(a ) y (t) = H (Xl(t) . . . x (t)) 

where H is a polynomial function in the components of the vec tors 
P q P 

x. (t) . . . x (t) . Notice that since for each q , X , i r. = p , X H (x,. . . x ) = 
1 p i=l i p i p 

H ((\ x, ) . . . (X^x )) for 0 / \ € IR . The coefficient of a term in H specified 
p i p P 

by ry • • rq ) ^s simply related to those of H'^ through the division by 

r^j . . . r ! of the coefficient of any term in the group specified by the same 

in tegers . 

The realization of the input-output map given in equation (5) is now equivalent 

to realizing the vector fields x.(t) 1 ^ i ^ p , and applying as in equation (11). 

§ 4. - In this sec t ion the identity appearing in the lemma is used to provide a set 

of non-linear differential equations for the vector fields g. , which are then 

solved using a variation of parameters formula. 

Recall ing the definition of g(cr) and g.(<3y . . o\) it is easi ly verified that 

^/d€g(cr + e) - L g(a + e) and hence 

d/d€gr+1(cr + e, ai+e, . . . ,crr+8) = 
r 

i=l 7 g ( V 0 - - - \ g ( a i + £ y V 1 + e ) g ( C T + e ) 

g(crr+e) g(a+e) g(a1+e) fgv ; 

Setting a = g(a +e) , b = f , a.^- g(cĴ  + e) in equation (7) gives 

d / 
r +1 (a + e, o\ + e , . . . , a + e) 

1 r 
f gr+1 ( o +e ,o1 +e ..........,,, or +e+ 

+ v 
gr+] 

f-V 7 V f 
(a+e, . . . ,a +s) g(a +e g(a.+e)" ' g(a+e) 

r r 1 

The last two terms on the right hand side of this equation yield terms involving 

second and higher derivative of f . Letting 

F' r ( g1........gr-1 )= A (g or).......A (g or)f -A (g or) rry=A (g or)fA (g y 

the above equation can be written as 

(12) -d /d€gr+1(aH1oi+6 ar+e)="L£gr+l (a+E,""5r r t )+Fr+ l (g l gr} ' 

Notice that the resulting set of equations for g. 1^ i < p can be solved 
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inductively using the variation of parameters formula. In fact 

/ d € expe - Lf gr+1 (a + e, c^+s, . . . , a^e) = exp e-Lf ^ + 1 ^ 1 * • • gr) 

and hence by integrating with respect to t , between 0 and -a 

g (c , CT. . .a ) = exp-a - L , g ,, (0, a - a, . . . , a - a ) + 
&r+lv 1 r' ^ f 6r+lv 1 r 7 

expe - Lf F^+1 (g]/ . . g^) de . 

The "initial condition" can be reformulated as a sum of derivatives of g 

(as H' and F ' ) since 

g , (0, Œ . . . a )= 7 . . V . . V g . 
ër+lv 1 r7 g(ar) g (a.) g(a1) * 

Thus letting 

(13) g ,(0, a . . . a )= G1 , ( s , . . . g ) 
ër+lv ' 1 r; r+lv&l * V 

the express ion for g can now the written in the form 

-g , (a-t, a -t, . . . , a -t) = exp(t-a)-Lr G' , (g,. . . g ) + 
(14) 6r+lv 1 v ' tFV ' f r+rBl * V 

+ J exp( t - s ) -Lf F^+i(gr . . g r ) ds . 

§ 5. - Equation (14) is now reformulated in terms of the vector fields x.(t) in 

o rde r to obtain the desired set of equations. 

Using the definition of x (t) equation (14) can be written in the form 

Xr +1 (t) 
t 

I exp(t-a) - Li 
a 1 -l 

(J J' Jr G;+1(gr . . g r ) u ( a 1 ) . . . u ( a r ) ) d a r . . . d ^ M a J d a 
o o o 

f J* J exp(t-s)-Lf(J,CTJ1...Jr-1Fi;+l(g1. . . g ) u(a1)...u(a )u(a) da 

da^. . . do^)u(cr) ds da . 

The second term on the right hand side of the equation can be reexpressed, by 

interchanging the order of integration between s and G to give 

t s ° r I 
J exP( t - s ) -Lf ( J J . ^ + i ( g r . . g r ) u(a) u (a i ) . . .u(ar) da.. . . d^dcjjds. 
o o n o 

By making the obvious definitions of the vector valued polynomial functions 

G and F the following expression for x , (t) is obtained 
r+1 r+1 o r - r+1 
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xx+1 = -Lf()15 xx t 
Í 
o 

exp( t -s ) -Lf(Fr+l (Xl(s ) , . . . , x r ( s ) ) + u ( s ) G ^ f x ^ s ) . . . x ^ s ) ) ) ds . 

This is easi ly recognised as the solution to the equation 

*r+l(t) = -Lfxr+1(t)+F+1(x1(t). . .xr(t)>u(t) Gr+1(x1(t)...xr(t)) . 

The main result now follws. 

THEOREM. - The input-output map of equations (5) has the following realization 

xx = -Lf xx + u g Xl(0) = 0 

X2= "Lf X2+F2(xl) + u G 2 ( x l ) x 2 ( 0 ) = ° 

x = -Lr x + F (x . . . x )+ u G (x1# . . x ) x (0) = 0 p f p p 1 p - l ' p 1 p - r pv 

y = H (x.. . . x ) . 
P P 1 P 

F. , G. and H are (vector valued) polynomials in the components of the state 

vec tors x^. . . x^ , satisfying the homogeneity relations (0 / X 6IR ) 

^ F i ( V . . x i . 1 ) = F i ( X x r . . X i - 1 V l ) r 1 G i ( i 1 . . . i . 1 ) = G . ^ . J - 1 V l ) 

\P H (x,. . . x ) = H(XXl. . . XP x ) . 
P 1 P 1 P 

Note that F , G. and H are related to f , g and h via the kernel i i p 

functions g. defined in equation (4) and F.' , G'. and H' defined in equa­

tions (12), (13) and (9) respect ively . The solutions of the above equations are 

expressed direct ly in terms of the kernel functions g. via equation (10). 

The techniques involved here can easily be extended to multi-input, mult i-

output non-l inear systems using a generalization of the express ion for the Volterra 

kernels given in equation(4) (see CROUCH [4] ) . Moreover since all the analysis 

per formed is of a local nature these results apply equally as well to non-linear 

sys tems defined on manifolds. It is noted however that the covariant derivative 

defined here satisfies the equations (3) and (8). That is the torsion and curvature 

tensors vanish identically 
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0= T(a, b) = 7 b - 7 a - [a , b] v ' a b 

0 = R(a, b) c = v V, c - v V c . 7r c . 
v ' a b b a La, bj 

Both these propert ies are used in the analysis and so other choices of covariant 

derivative cannot be used. 

-:-:-:-:-:-:-:-:-:-:-
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