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REMARKS ON FINITE DIMENSIONAL NONLINEAR ESTIMATION 

by 

R . W . BROCKETT 

I. - INTRODUCTION. 

In this paper we consider the p rob lem of estimating the values taken on by a 

random process y(t) of the f o r m 

(1) dx = f(x) dt+ g(x) dw ; dy(t) = h(x) dt+ dv 

where w and v are independent Wiener p roces se s and the differential equa

tion is to be interpreted as an Ito equation in IRn . In particular, we investigate 

the existence of " recurs ive es t imators" , i . e . differential equations of the f o r m 

(2) 

(3) 

dz = a(z) dt+ b(z) dy 

y = c (z ) 

where y may be for example, the conditional mean of y and z is finite 

dimensional . The main ideas involve the conditional density equation which, in 

unnormalized, Ito form is 

(4) dp(t ,x) = L q p(t, x) d t+L1 (5(t, x) dy 

where fi i s , apart f rom a scale factor , the conditional density for x , given 

y(s) for O ^ s ^ t . Of course conditional expectations, e tc . can be expressed 

in te rms of o as 

(5) 
y(t) = | # ( x ) £(t,x) d x [ J p d x ] ' 1 

* Partially supported by the Army Research Office under Grant D A A G 2 9 - 7 6 - C -
0139, the National Aeronautics and Space Administration under Grant NSG-2265, 
and the U . S . Office of Naval Research under the Joint Services Elect ronics 
P rog ram Contract N00014-75-C-0648. 
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Earl ier work on the relationship between Lie- theore t ic ideas and estimation 

theory appears in [ l ] . The main points of this paper involve the exploration of the 

following two ideas, both of which s e e m to be novel . 

1 2 

(a) If £ is the Lie algebra generated by the operators ~ L^ and L^ 

and 3» is the Lie algebra of vector fields generated by a- ^ b ' b , and b 

then under appropriate hypothesis 3 will be a homomorphic image of £ . 

Converse ly any homomorph i sm of <£ onto a Lie algebra of complete vector f ields 

on a finite dimensional manifold permits one to obtain some information about the 

conditional density by propagating the solution of a finite dimensional set of equa

tions . 

(b) Under appropriate hypothesis the input-output map defined by (4)-(5) is cha

rac ter ized by a Vol terra s e r i e s . This Volterra ser ies may or may not have 

kernels which are separable in the sense of [ z ] . A necessary condition for 

the existance of a finite dimensional nonlinear estimator is that the kernels 

be separable . 

Because of space limitations we can only sketch the basic ideas in this paper . 

I I . - GENERALITIES. 

Consider the following notation. If f : IR*1 -* IRn then we associa te with f 

a vector field on IRn according to 

n 

i=l 
f. 
l 

ò 

Write for the adjoint 

n 

i=l 

ò 
ò x . 

f. . 
l 

We can express equation (4) in this notation as 

(4) dp ( t , x )= L^ it+ 
1 

2 

2 
p dy 
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RECURSIVE ESTIMATION 

where 

f = f -
1 

2 

, Ò g 
Òx g 

Given an initial value for p the pair of equations (4)-(5) then define what is 

cal led in control theory, an input-output map. If for a given initial value of z 

the pair (2)-(3) generate the same input-output map then we can deduce certain 

relationships concerning a, b, and L^ . In order to facilitate these c o m 

parisons, which, for the most part involve Lie algebraic constructions, it is 

more natural to convert the two differential equations (2) and (4) to Fisk-Strato-

novich f o r m . In this way we can avoid the use of the somewhat unintuitive Ito ca l 

culus . [See , e . g . [ 3 ] ) . As is well known, in Fisk-Stratonovich f o r m equations (2) 

and (4) are ( cf distinguishes the Fisk-Stratonovich differentials f rom Ito diffe

rentials) 

(2') 
<fcc = (a-

1 ö b 

2 ò x 
b)dt+ bdy 

(4') * P = ( 4 . - K ) 2 -
1 

2 
(h(x)) p dt+h(x) pdy . 

Appending (3) to (2 ') and (5) to (4') we obtain, for each assignment of initial data, 

input-output sys tems . 

Let us suppose now that the vectors a and b entering the differential 

equation (21) are real analytic maps of IRn into ]Rn . A l s o , suppose that the 

pair (2 ' ) - (3) defines a minimal sys tem in the sense that the Lie algebra of vector 

fields generated by a 1 

2 
b» b , and b acts transitively at each point in IR and 

that no two distinct initial states for x give r ise to the same response for all 

smooth inputs. These assumptions have the effect of insuring that there is no re 

dundancy in the pair ( 2 ' ) - ( 3 ) . 

The following observat ion is now appropriate, (cf. [4] - [5] ) . 

Remark : Suppose that there exists for L -
o 

1 
2 4 

and 
Li a common set of 

analytic vec tors Jb . If for some choice of initial condition z and p(0) £ b 

the pair (2)-(3) and the pair (4 ' ) - (5) generate the same input output map for all 

smooth inputs with (2)-(3) analytic and minimal then the map 

$ : L -
o 

1 
2 

-» a -
1 
2 

b" b 
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§ : L -> b 

extends to a Lie algebra homomorph i sm f r o m the Lie algebra of operators on £ 

generated by L 
o 

1 
2 

and L to the Lie algebra of vec tor fields generated 

by a 
1 
2 

b ' b and b . 

Now of course relevance of this remark stems f r o m the fact that under sui

table assumptions it has been shown (see, e . g . [6 ] , [7] , [_8] ) the behaviour of a 

stochastic differential equation with white noise inputs can be deduced f rom its 

behaviour on smooth functions. 

Reference [1] d iscusses a context in which this p rogram is particularly easy 

to ca r ry out in detail . It is the case where the stochastic p r o c e s s x takes on 

only a finite number of values and the operators and L^ act on finite dimen

sional s p a c e s . In this case results available on the representation of Lie groups 

together with the above remark provide considerable guidance about the design 

of finite dimensional nonlinear f i l te rs . 

III .- THE LINEAR PROBLEM. 

We now illustrate these ideas in one nontrivial c a s e . Even though the example 

is a linear p rob lem our techniques give important new information about the role 

of "all pass" factors in simplifying the Kalman-Bucy f i l ter . 

The unnormalized conditional density equation associa ted with the estimation 

p rob lem desc r ibed by n simultaneous Ito equations 

dx. = Sa . , x . dt+ b. dw ; dy = c. x. dt+ dv 
1 ij J 1 1 1 

is given in Ito f o r m by 

(*) dp = L p dt+ L. p dy 
o 1 

where 

L 
o Ox. 

1 

a.. x.+ 
n 1 

1 

2 

*2 

ÔX. ox. 
1 J 

b .b . 
1 J 

and 

L. = T, c. x. . 
1 l i 
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RECURSIVE ESTIMATION 

Converting (*) into Fisk-Stratonovich f o r m we get 

** dp = LQp dt+ L^p dy 

where L = 
o is L -

1 
2 

L1 

The main point of [ l ] is the observation that the structure of the Lie algebra 

generated by L and L^ is of overriding importance in understanding the 

estimation p rob lem. (See also the work of Mitter [ 9 ] ) . 

Lemma : The Lie algebra generated by L and L. has a basis L , L. , . . . , a a c o 1 o 1 

L^ , L^ _ and commutation relations 
2n 2n+l 

L. 
l 

ad LO (L1) i = 1, 2, . . . , 2n 

[ L . , L . ] = 0 . . L9 i, j = l, 2, . . . , 2 n 

l j ij 2n+l 
[ L . = 0 i = 0,1, . . . , 2 n + l 

2n+l l 

provided that g(s) = c ( l s - A ) ^b is of Mc Millan degree n and g(s) g ( - s ) is 

of Mc Millan degree 2n . 

Remark : One easily verif ies that if one regards the Lie algebra as a complex 

Lie algebra then the derived algebra in this case is i somorphic to the Heisenberg 

algebra IHn . 

Remark : The conditions on g(s) cor responds to the requirement that the 

filter be minimal and that g(s) have no factors of the f o r m ( s - a ) / (s + a) . The 

contribution of such "all pass" factors to degeneracy in filtering problems is con

siderably clarif ied by this l emma . 

Proof : F r o m the f o r m of L and the f o r m of L, we see that [ L , L. ]  
o 1 o 1 

is < c , A x > + E 'b. 
ò 

ÒX 
(E b. c . ) , i . e . 

l l 
the sum of a linear function and a linear 

constant coefficient differential opera tor . Moreover if L is any such sum then 

one verifies easily that [ L Q , L ] is as wel l . Moreover , [L, L ' ] is a constant 

if L and L' are each the sum of a linear function and a first order differen

tial opera tor . Putting these remarks together we see that the Lie algebra 

fL , L .}_ . is at most a 2n+2 dimensional algebra and that L , L , . . . . . L0 ., 
L o 1 LA s o 1 2n+l 
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as defined above certainly contains ^ 0 1 LA in their linear span. The only 

remaining question is that of the independence of the L . . The key calculation 

is this. Write 

L 
n 
s 
i=l 

(a. 
Ò 

1 
+ ß. x.) 

Then a calculation verif ies that 

[ L , L ] 
o 

n 
E 

i=l 

ò 
ox. 

1 
+ eixi> 

where 

A 

-bb ' 

cc 

- A 

a a 

Thus the independence of L , L , . . . , L is determined by the independence 
1 l 2n 

of the vec tors 

A 

-bb' 

c c ' 

- A ' 

k 
C 

0 
; k= 0,1, . . . , 2n-l . 

Now with a little work one can verify that the following generating function identity 

co 

i=o 

C 0 , c ] 

A 

-bb ' 

cc 1 

- A ' 

i 
c 

0 
-i-1 

s 
g(s ) s ( - s ) 
l + g ( s ) g ( - s ) 

We see f r o m standard results in realization theory [10] that the Lemma holds . 

Incidentally, this Lie algebra is i somorphic to the Lie algebra which appears 

in the recent Cauchy-Riemann theory and it has the Heisenberg algebra as its 

derived algebra (see [ l l ] ) . 

The equations of motion for the conditional density in this case can be written 

in vec to r /ma t r ix notation as 

dz= ( A - P ( T ) c c ' ) z d t + P ( T ) d y ; z ( t ) € R n 

dT 
dt 

1 

Here P(T ) is an n by n matrix which satisfies the following differential 

equation 
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d 

dT 
P(T ) = A P ( T ) + P ( T ) A ' + b b ' - P ( T ) c c , P ( T ) . 

We see that 

( A - P ( T ) c c ' ) x 

1 
and g = 

Pc 

0 

are the local -coordinate descript ions of vector fields on IR . The vector fields 

in the Lie algebra which they generate are, with the exception of T itself, of 

the fo rm 

h = 

Pn1+n2 

0 

with n and n in JR . Clearly [ f, g j is then a Lie algebra of dimension 
1 Z JLiA 

2n+l or l e s s . Additional calculations, which we omit here, show that it is of di

mension 2n+l under the hypothesis of the l emma. 

To illustrate these ideas in the simple case we consider the basic example 

dx = dw ; dy = xdt + dv . 

The filtering equations for the conditional mean z , given a gaussian initial 

distribution for x with variance k are 
o 

dz = -kzdt + kdy 

k = - k + 1 . 

Introduce the vector fields 

F = -kz 
ò 
òz7 

(1-k2) 
Ò 
Ok 

G E S 
ò 

ò z 

A calculation shows that 

and that 

[ F , G ] = 
ò 

Òz 

def 
H 

C F , H ] = k 
Ò 

^ Ò z 
= G 

On the other hand, for the conditional density equation we have in this case 

dp = L o dt+ L o dy 
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where 

L = o 
1 
2 

. o2 

b z 2 
2 

z 
L1= z 

Now the Lie algebra of operators [ L , L j satisfies 
O 1 J_iA 

[ L , L . ] = 
6 

bz 
def 

L2 

[ L , L ]= z = L. o 2 1 
[L1, L2]= def= L4 

There is a Lie algebra homomorph i sm f r o m £ onto ^ which sends L^ 

into F , L^ into G and has the operator L^ in its kernel . 

The Vol te r ra ser ies re fer red to in (b) of the introduction may, in this case , 

be computed to be 

y(t)= ett(t)y(0)+ 
t 

I 
o 

t 
J 3(p)dp 

dy(p) 

which is separable and has no nonlinear t e r m s . The express ion for a and 3 

involves solving for k above . 
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