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MAGNETIC SPECTRAL BOUNDS ON STARLIKE PLANE DOMAINS

R.S. LAUGESEN! AND B.A. SIUDEJA?

Abstract. We develop sharp upper bounds for energy levels of the magnetic Laplacian on starlike plane
domains, under either Dirichlet or Neumann boundary conditions and assuming a constant magnetic
field in the transverse direction. Our main result says that > 7, ®(X\jA/G) is maximal for a disk
whenever @ is concave increasing, n > 1, the domain has area A, and A; is the jth Dirichlet eigenvalue
of the magnetic Laplacian (iV + %(—mg,xl))z. Here the flux 3 is constant, and the scale invariant
factor G penalizes deviations from roundness, meaning G > 1 for all domains and G = 1 for disks.
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1. INTRODUCTION

1.1. Overview

The energy levels of a charged quantum particle are difficult to understand analytically. We aim for insight
into the behavior of these energy levels on a two dimensional region by proving they are maximal for a disk,
when normalized by a certain geometric factor depending on the boundary shape of the original confinement
region.

Specifically, we develop sharp upper bounds for energy levels of the magnetic Laplacian on starlike plane
domains, under either Dirichlet or Neumann boundary conditions, assuming a constant magnetic field in the
transverse direction. The spectral functionals we consider include the ground state energy, sums and products
of energy levels, the spectral zeta function, and the partition function.

For the special case of the ground state energy, our upper bound complements a lower bound of Faber—Krahn
type due to Erdos [6], which says that the first eigenvalue A\; of the magnetic Dirichlet Laplacian is minimal for
the disk of the same area. Combining these upper and lower bounds gives a pair of inequalities:

1<
- )\1(9*) -

when 2 C R? is a starlike plane domain, £2* is the disk of the same area, and the computable geometric factor
G(2) measures how far the domain is from being circular (with G = 1 for a disk; see the definition in the
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next section). Note that the upper estimate in this paper requires starlikeness of the domain, whereas the lower
estimate due to Erdos holds whenever the domain is merely bounded. The upper estimate has the advantage,
though, of applying under Neumann boundary conditions too.

Our results apply to a huge class of spectral functionals beyond the ground state energy. Theorem 2.1 shows

that
7 <G<fz>> = ;W%(ﬂ )

whenever n > 1 and ¢ : R — R is concave and increasing, and A; is the jth eigenvalue of the magnetic
Dirichlet Laplacian

J

1.2. Formulating the problem

Imagine a uniform, vertical magnetic field passing through a cylinder 2 x R in which a charged, spinless
quantum particle is confined. The particle moves freely in the vertical direction, and so its wavefunction can
be written as a plane wave in the xz-variable multiplied by a wavefunction of the horizontal coordinates x1, x5.
We aim to study the quantized energy levels of this horizontal motion, which are eigenvalues of a Schrodinger
operator known as the magnetic Laplacian; see for example Erdos [7], Helffer et al. [9,12].

To formulate the problem mathematically, consider a bounded plane domain (2 with area A, and fix 5 > 0.
The magnetic Laplacian on {2 is the symmetric operator

(iV + F)?

where the vector potential

F(z) —9,71) (1.1)

_ By
24
is chosen to generate a transverse magnetic field V x F' = (0,0, 3/A) of strength B = (§/A. The constant /3
represents the magnetic flux through the domain. The magnetic Laplacian reduces to the usual Laplacian when
B =0, because then F = 0.

The magnetic Laplacian has discrete spectrum, assuming Dirichlet boundary conditions on 9f2, with eigen-
values {)\;} satisfying

D<A << <...

Gauge invariance guarantees that these eigenvalues are unchanged if we replace the vector potential F' with
any other vector field having the same curl (and thus generating the same magnetic field). For a leisurely
treatment of this and other invariance properties of the spectrum of the magnetic Laplacian (see [17], Sect. 2
and Appendix A). For the purposes of this paper, the “rotational” vector potential (1.1) is a convenient choice.
We denote by {u;} a corresponding sequence of L?-orthonormal eigenfunctions, with
{(iV + F)?u; = \uy in £2, 12)

uj =0 on 02

The magnetic Laplacian (iV + F)? on the left side of the equation scales like 1/(length)?, and hence the
eigenvalues scale the same way. Thus the area-normalized eigenvalue A\;A is invariant under scaling of the
domain.

Assume (2 is a Lipschitz-starlike plane domain, by which we mean

N={re? . 0<r <R}

where the radius function R(-) is positive, 2m-periodic, and Lipschitz continuous. Just as in our earlier work on
the Laplacian [18], Section 10, we define two scale-invariant geometric factors in terms of the radius function,
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FIGURE 1. A starlike domain with radius function R(6).
by

1 27 , 9
Go=1+ %/0 (log R)'(0)* d6,

1 2m
% 0 R(9)4 dd 271—101‘igin
S 2

<2ﬂ ) d9>

where Ioigin = [, [2|* dz is the polar moment of inertia of £2 about the origin. Obviously
Go Z 1 and G1 Z 1

with equality if and only if the domain is a disk centered at the origin (R = const.).
Take the maximum of the two geometric factors, and call it G:

G = max{Gy,G1} > 1.

We interpret G as measuring the deviation of the domain from roundness. Deviation can occur in two ways:
an oscillatory boundary would make R’ large and hence Gy large, whereas an elongated boundary (such as
an eccentric ellipse) would force R* to vary more than R? and hence would make G large. Calculations are
generally required in order to determine which of Gy or Gy is larger (see [18], Sect. 10).

2. MAIN RESULTS

2.1. Dirichlet boundary conditions

Our main result says that the disk maximizes eigenvalues of the magnetic Laplacian under suitable geometric
scaling normalized by area and G.

Theorem 2.1 (Dirichlet magnetic Laplacian). Suppose 2 = {re'’ : 0 <r < R(0)} is a Lipschitz-starlike plane
domain. Fiz 3 >0 andn > 1.

If @ : Ry — R is concave and increasing then Z?Zl D(N\;A/Q) is mazimal when 2 is a disk centered at the
origin.

When @ is the identify function, the theorem maximizes the sum Ay + ...+ \,,, which represents the energy for
filling the first n quantum states when at most one particle can occupy each state (the Pauli exclusion principle).
This special case is central to proving the theorem, as we will see in Section 5.
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FIGURE 2. A linear-on-rays transformation from a domain {2 of area 7 to the unit disk. To
insure that the mapping preserves area locally, we require R(0)% df = d¢.

As a consequence of the theorem, we extremize several interesting spectral functionals:

Corollary 2.2. Fiz >0 and n > 1. Each of the following scale invariant functionals achieves its maximum
value when the Lipschitz-starlike domain §2 is a centered disk:

MA/G, A+ X)) A/aG, YN A\ AJG,

for each exponent 0 < s < 1.

Equality statement: if >\1A/G’Q = )\1A/G|disk then §2 is a centered disk.

Furthermore, each partial sum of the spectral zeta function and of the trace of the heat kernel is minimal
when §2 is a centered disk. That is, the functionals

n

S (NA/GE and > exp(—X;At/G)
j=1

j=1
attain their smallest value when (2 is a centered disk, for each s <0 < t.

The eigenvalues for the disk, which is the extremal domain in the Corollary, can be computed in terms of zeros
of certain Kummer functions. We will not need that fact in our proof of the theorem or corollary, but readers
who are interested may consult the detailed treatment by Son ([23], Chap. 3), which includes informative plots
of the eigenvalues as functions of the flux 3.

Theorem 2.1 can be strengthened by replacing G, which is the maximum of Gg and G, with certain convex
combinations of Gy and G;. Further improvements involve choosing a “good” location for the origin so as to
reduce the values of Gy and G;. See our discussion in the case of zero magnetic field ([18], Sects. 9 and 10).

We prove Theorem 2.1 by adapting our method from the non-magnetic case ([18], Thm. 1.1). Just as in that
earlier work, we transform (2 into a disk while controlling angular information in the relevant Rayleigh quotient.
The transformation is linear on rays and has constant Jacobian, as indicated in Figure 2. Note that wherever the
transformation stretches radially it must compress angularly, in order to preserve area. This constant Jacobian
condition guarantees that when we transplant orthogonal eigenfunctions from the disk we will obtain orthogonal
trial functions on (2.

One cannot know in general which orientation of the trial function in §2 will yield the smallest value for the
Rayleigh quotient. The optimal orientation typically differs for each index j, in any case, and so we aim instead
for the average case — we consider all possible orientations of the trial function, by employing the arbitrary
rotation U of the disk in Figure 2.

2.2. Perturbations of the disk

Let us apply the theorem to the ground state energy of a nearly circular domain. Suppose P(#) is a Lipschitz
continuous, 27-periodic function with Fourier series

P(Q) _ aneme’

neEZ
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where p_,, = P, since P is real-valued. Define a plane domain 2. = {rel’ : 0 <r < 1+ eP()}, and assume ¢
is small enough that the radius 1 + eP(6) is positive for all . Obviously (2. is a perturbation of the unit disk,
when ¢ is small. Write

Ae = M (82:)

for the first Dirichlet eigenvalue of the magnetic Laplacian on (2.. Let A. be the area of the domain, and
remember that the flux through each domain (2. is the same, namely (3. Denote the unit disk centered at the
origin by D.

Corollary 2.3 (Nearly circular domains). The first magnetic eigenvalue of the domain (2. is bounded above
and below in terms of the boundary perturbation, with

1<

AA > >
efle <1 22 2 n24 n2 3y — Qe
e <t me S P Y Il b+ 06 - Gt

n=1 n=1
as € — 0 with P fized.

The lower bound in the corollary is the Faber—Krahn type inequality due to Erdés [6]. The upper bound follows
from Theorem 2.1 with n = 1, as we show in Section 6.

Next we carry out a formal perturbation analysis on the ground state energy of a nearly circular domain,
in order to investigate whether the estimate in the corollary is best possible. We will adapt to the magnetic
case a method developed for the Laplacian (the case § = 0) by Rayleigh ([24], Sect. 210) and simplified by
Pélya and Szegé ([21], pp. 132-134). The resulting asymptotic formula (2.1) below should be understood as
“the expression resulting from a formal analysis” — we do not claim that it holds in the literal sense. Note
the corresponding asymptotic formula for the Laplacian can be proved rigorously by Hadamard-type boundary
variation techniques (see Henry’s treatment [14], p. 35), but the effort required for a rigorous proof seems out
of proportion to the reward, in the magnetic case.

In order to state the formal perturbation result, write

1 2
M(a7b,z):1+gz+a(a+ )z

w2 T

for the Kummer function ([20], Chap. 13), which is known also as the confluent hypergeometric function.
Denote its z-derivative by M'. Assume py = 0, which is harmless since it essentially amounts to a rescaling of
the perturbed domain. Fix 8 > 0 and let

ag = ao(ﬁ) = %(1 — )\07‘(’/5)

Then perturbation analysis yields an asymptotic approximation to A: A as ¢ — 0 (with P fixed):

AA = /\1(D)7r + <Z C|pn|QQn> g? + 0(63) (2'1)
n=2
where
=L
2’
~ —M'(ap, 1, 2) %
B 83_]\(14(0'03172) ™ ’

qgn=1+n—2z+ z(logM) (ag,n +1,2) + z(log M) (ap + n,n + 1, 2).
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We establish (2.1) in Section 6, and show there that ¢, = n+O(1) as n — oco. Thus the £2-term in the formal
asymptotic series (2.1) involves the H'/2-norm of the boundary perturbation, while the second order term in
Corollary 2.3 is essentially the H'-norm. Hence the asymptotic formula is in that sense sharper, although on
the other hand we have proved it only formally and so have no control over its error term. It is an open problem
to prove an inequality (or error estimate) that holds for each e > 0 and which captures the asymptotic series to
second order as ¢ — 0. This problem is open even for the Laplacian.

Remark 2.4. The summation in (2.1) begins with n = 2, which leads one to ask: might the first eigenvalue
actually decrease under boundary perturbations of type n = 1, that is, cosf or sin# perturbations? No! The
ground state energy increases under such perturbations, as follows from the magnetic Faber—-Krahn result of
Erdos (the lower bound in Cor. 2.3). This observation highlights the subtlety of Erdés’s result, and of the
original Faber—Krahn theorem in the nonmagnetic case.

2.3. Neumann boundary conditions

Assume the magnetic field is nonzero in what follows, meaning 5 > 0. (The zero field case was treated in
the earlier paper [18]). Write {y;} for the Neumann eigenvalues of the magnetic Laplacian on {2, so that the
corresponding L2?-orthonormal eigenfunctions u; satisfy

(iV + F)?uj = pju; in 2
n-(iV+F)u=0 on 0f?

where as before, F(z) = %(—.’Eg,(ﬂl). The boundary condition arises naturally from minimization of the
Rayleigh quotient, and it plays no role in our proofs. The eigenvalues satisfy

O<pr <par<pug <.

where we note that positivity of the first eigenvalue holds because the field is nonzero (see, for example, [17],
Lem. A.8).

Theorem 2.5 (Neumann magnetic Laplacian). Assume 8 > 0. Then Theorem 2.1 holds with the Dirichlet
eigenvalue \; replaced by the Neumann eigenvalue ji;.

The proof mimics the Dirichlet case. The needed changes are indicated in Section 5.

The Neumann magnetic eigenvalues on a disk can in principle be computed in terms of Kummer functions,
although in practice the equations become rather complicated. The eigenvalue branches display fascinating
behavior. For example, a numerical study by Saint—James [22] reveals that the Neumann ground state is non-
radial when the flux f is large enough; indeed, the ground state appears to have angular dependence e'?(%)
for some positive integer n(5) that increases to infinity as 3 increases to infinity. Incidentally, this non-radial
property of the Neumann ground state means that our proof of the equality statement for the first Dirichlet
eigenvalue in Corollary 2.2 does not extend to the Neumann case.

Despite these complications, Helffer and Morame [12] were able to prove monotonicity of the lowest Neumann
eigenvalue of the disk for large values of 3 (corresponding to small semi-classical constants). For domains with
corners, oscillatory behavior of the low eigenfunctions was observed both numerically and theoretically by
Bonnaillie—Noél et al. [5], again for large values of 3. See the references in that paper for other semi-classical
results.

2.4. Relevant literature, and the contributions of this paper

Few isoperimetric type inequalities are known for magnetic eigenvalues. This paucity stands in stark contrast
to the rich body of work developed for the nonmagnetic Laplacian over the past century, for which one may
consult the surveys by Ashbaugh and Benguria [2] or Benguria and Linde [4], and the monographs of Bandle [3],
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Henrot [13], Kesavan [15] and Pélya—Szegd [21]. The main contribution of this paper is to prove the first known
sharp upper bounds for magnetic spectral functionals on more-or-less general plane domains.

This paper generalizes our earlier work on eigenvalues of the Laplacian [18], that is, on the case of zero
magnetic field. Specifically, Theorem 2.1 in this paper is the magnetic analogue of Theorem 1.1 from that
earlier work. (The result for \; is slightly stronger in that earlier work, because when 8 = 0 one finds a; = 0
in (5.5) below, and hence one may use Gy instead of G on the first eigenvalue.) Those earlier results hold in
all dimensions [18], Theorem 3.1, with balls as the maximizers. We restrict in this paper to two dimensions,
though, because in three dimensions and higher, introducing a magnetic field creates a preferred direction in
the problem, which breaks the symmetry and thus renders our proof invalid.

It is much simpler to work in the plane than in higher dimensions. The proof of our main result, Theorem 2.1,
relies on the special fact that rotations commute in two dimensions: we exploit this fact to construct a proof
that is both shorter and easier to understand than in our earlier work on the Laplacian. Thus for readers who
are new to this subject, we recommend beginning with the proof of Theorem 2.1 in the zero-field case, taking
G = 0 throughout the proof, and only then turning to the magnetic case (8 > 0) or to the higher dimensional
case in our earlier paper [18].

Another work to which this current paper owes a debt is that of Laugesen, Liang and Roy [17]. They
treated a restricted class of domains, namely linear images of rotationally symmetric domains such as regular
polygons, and obtained sharp upper bounds on magnetic eigenvalue sums with the maximizing domains being the
original rotationally symmetric domains. For example, the centered equilateral triangle was shown to maximize
the eigenvalue sum (A + ...+ A\,)A/G; among all triangles. (The authors could have subsequently invoked
majorization to pass to spectral functionals such as the partition function, like in this paper, but did not do so.)

One difference between the work of Laugesen et al. and the current paper is that here we average over the
full group of rotations instead of over discrete subgroups such as the 3-fold rotations for the equilateral triangle.
Thus we avoid the tight frame theory that was needed in the earlier paper [17]. Another difference is that the
transformations in that paper were rather simple (in fact, globally linear), whereas in the current paper we must
use more complicated linear-on-rays transformations such as shown in Figure 2, in order to map the disk to
general starlike domains. This additional complexity forces the inclusion of the boundary oscillation factor Gy in
our theorems; it was not needed in the earlier work, since a linear transformation stretches without oscillation.

Lastly we mention some “asymptotically sharp” inequalties, for which equality holds for every domain in
the limit n — oo. (In contrast, the results in this paper can be called “geometrically sharp” because a single
extremal domain exists for each fixed n.) An inequality of Berezin—Li—Yau type holds for sums of magnetic
eigenvalues, by work of Erdos et al. [8], extending results of Laptev and Weidl [16]. See also a later work of
Frank, Laptev and Molchanov [10]. On the other hand, the magnetic Pélya conjecture, which would claim that
the Weyl asymptotic formula provides a lower bound for each individual magnetic eigenvalue, was disproved by
Frank et al. [11] by constructing a counterexample from square domains.

2.5. Open problems

Erdos proved under Dirichlet boundary conditions that the magnetic ground state energy is minimal for a
disk of the same area [6]. In scale invariant terms, he proved A; A is minimal for the disk. This result suggests
several open problems.

Is the scale invariant magnetic partition function Z;’;l e %4 maximal for the disk, for each ¢t > 07?
Luttinger [19] proved the result for the Laplacian (8 = 0). Note that letting ¢ — oo would recover the minimality
of the first eigenvalue.

Next, for the Neumann spectrum does one have minimality of uq A for the disk? This conjecture holds trivially
for the Laplace operator, because there py; = 0 for all domains. Thus one should begin by investigating the
conjecture for weak magnetic fields (small S-values) by means of a perturbation analysis. Even if the conjecture
holds for weak fields, it might fail for strong fields because the nature of the ground state changes: the Neumann
ground state of the disk is radial for small values of 3 but has angular dependence when [ is large (see comments
above).
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3. RESULTS FOR THE PAULI OPERATOR

To study a charged particle with spin 1/2, we investigate the energy levels of the Pauli operator Hp =
(a - (iV + F))2 (see [7], for example). Here o = (01,02, 03) is the 3-tuple of self-adjoint Pauli matrices:

01 0—i 10
Gl (R U R (R

The Pauli operator acts on spinors, that is, on 2-component complex vector fields of the form v = <1£+> . For
planar motion with a perpendicular magnetic field (0,0, 3/A), we may assume the wavefunction v is independent
of z3 and that the gradient V = (91, 02) and vector potential F' = (Fy, Fy) = (—x2,21)5/2A have only two

components. Thus the planar Pauli operator is the formally self-adjoint operator

2 2
Hp = (Z O (1O + Fm)>

m=1
with corresponding Rayleigh quotient

_ Jo| Yoo O (10 + Fm)w’2 d

RaYPW] fQ |,(/J|2 dr

(3.1)

The numerator is known to be elliptic for ¢ € HE(£2; C?), meaning it is bounded below by a constant times
Jo |V9|? dz minus a constant times [, [¢)|? dz. (A brief demonstration of ellipticity is included in Sect. 7).
Hence the Dirichlet spectrum of the Pauli operator is discrete, by the spectral theorem for quadratic forms. We
place the eigenvalues in increasing order, so that

0< AP <A <a\P < .

where “P” stands for Pauli. Positivity of the first eigenvalue will be justified in Section 7.
The next theorem provides sharp upper bounds on shifted Dirichlet eigenvalues of the Pauli operator.

Theorem 3.1 (Dirichlet-Pauli operator). Theorem 2.1 and Corollarly 2.2 hold with the Dirichlet eigenvalues
of the magnetic Laplacian replaced by shifted Dirichlet eigenvalues of the Pauli operator; namely, replace A;
with \f + B/A.

We do not have an analogous result for the Neumann eigenvalues of the Pauli operator. Indeed, the Pauli
operator does not have discrete spectrum on H', because its null space is infinite dimensional; see the discussion
in Section 7.

4. THE CONSTANT JACOBIAN TRANSFORMATION

In Figure 2 we showed how to construct a mapping from a starlike domain of area m to the unit disk: we
choose the map to be linear on each ray, with the angular deformation of rays determined by requiring that the
mapping should preserve the area of each infinitesimal sector.

For a general starlike domain {2, we simply rescale the formula from Figure 2 as we did already in our work
on the Laplacian [18]. More precisely, we determine the angular deformation ¢(6) by integrating the initial value
problem



678 R.S. LAUGESEN AND B.A. SIUDEJA

Notice ¢ increases by 27 as 6 increases by 27, since fo% R(6)?>df = 2A. Then we define a transformation
T : (2 — D from the starlike domain to the unit disk by working in polar coordinates:

T:(r,0) — (r/R(9),¢(0)) .

Obviously the transformation is linear with respect to 7, on each ray, and one easily checks that the Jacobian
is constant, with Jac(T) = w/A.

5. DIRICHLET EIGENVALUES — PROOF OF THEOREM 2.1 AND COROLLARY 2.2

(Throughout the section, the changes needed for the Neumann case in Theorem 2.5 will be indicated in
parentheses, like this.)

It suffices to prove the theorem for the identity function ®(a) = a, because then Hardy—Littlewood—Pdlya ma-
jorization extends the result to all concave increasing @. (For references on majorization, see [18], Appendix A).

Thus we must investigate the partial sum of eigenvalues, that is, 22‘;1 Aj.

In order to get upper bounds, our task is to choose suitable trial functions in a variational characterization
of the eigenvalue sum. We will construct trial functions on {2 by transplanting eigenfunctions from the disk
with the help of the area-preserving map 1" constructed in the previous section. This method does not require
explicit formulas for the eigenfunctions on the disk. Then we average with respect to all pre-rotations of the
disk.

The Rayleigh quotient associated with the Dirichlet spectrum (1.2) of the magnetic Laplacian is

- Jo |(ZV + %(—$2,$1))U|2 dzx

Ray[v] = TP dz for v € Hy($2;C).

(To handle the Neumann spectrum in Theorem 2.5 one would simply replace Hi with H'.) To express the
numerator in polar coordinates we write e, and ey for the radial and angular unit vectors, and write v, and vy
for the derivatives of v with respect to r and 6. Then

fo ’ivrer +ir lugey + %vregf dzx
Ray[v] = 3
Jo [v? da

N Jo {lon? + lir~vg + Lrv]?) rdrdf
Jo lv]? rdrdé

(5.1)

The Rayleigh—Poincaré Variational Principle ([3], p. 98) characterizes the partial sum of the Dirichlet eigen-
values as:

A1 4 -+ 4+ A, = min { Ray[v] 4 - - - + Ray|[vy,] :
Viy...,Up € H(}((Z; C) are pairwise orthogonal in L?(£2; (C)}

(Again, for the Neumann eigenvalues one would replace Hd with H'.) To apply this principle, we let uq, us, ug, . . .
be orthonormal eigenfunctions on the unit disk I corresponding to the eigenvalues A1 (D), A2(D), A3(D), ... Let
7 € R and use U to denote rotation of the plane by angle 7. Then define trial functions on {2 by

v; =u;oU “loT

where the transformation 7T : 2 — D was defined in Section 4. Thus in polar coordinates we have

03(r,8) = u; (r/R(6), 6(6) — ). (5.2)
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One can show that v; € H' N C(£2), by using that R(6) is Lipschitz and ¢(6) is continuously differentiable.
Further, v; = 0 on the boundary of {2 because u; = 0 on the boundary of the disk, and thus v; € H}(2).
(This last step is unnecessary for the Neumann case, since no boundary condition need be imposed on the trial
functions in H*.)

The functions v; are pairwise orthogonal, since

/vjﬁdx:Jac(T_l)/uju_kdx (5.3)
fo)

D
=0

whenever j # k, using here that u; and uy are orthogonal and 7! has constant Jacobian. Thus by the
Rayleigh—Poincaré principle, we have

n

Jo lvj|? da

J

n . 2
yi) <y Lol ] dr (54)
1 j=1

The denominator of this Rayleigh quotient is [, [v;|* dz = Jac(T~') = A/7 by (5.3) with j = k, since the
eigenfunctions are normalized with [j |u;|? dz = 1.

To evaluate the numerator of the Rayleigh quotient, we develop some lemmas. Write u = u; and v = vy, to
simplify notation in what follows, and express u and v in polar coordinates as u(s, ¢) and v(r, ), respectively.
These functions are related by (5.2).

Lemma 5.1.
|or(r, 0)PR(0) = |us(r/R(6), $(0) — n)|*.
Proof. Simply differentiate (5.2) with respect to r, and square the result. O

Lemma 5.2.

2

R(9)*

ir*1119 + %rv

= |us(r/R(6), ¢(6) — n)|* (log R)'(0)* + 2Re us(r/R(0), () — 1)

- (‘@w/me), 6(6) =) + %%uwmw, o(0) - n>) ZRO)R(0)
T 2 2 4
i o/ R6).006) = ) + 5= grsulr/RE).60) )| T

Proof. Differentiating (5.2) with respect to 0 gives that

vo(r,0) = —rus (r/R(0), §(0) — ) R'(0)/R(0)* + uy (r/R(0), () — ) &' (6).

Substituting this formula into the left side of the lemma yields an expression of the form |a+ b+ c|?, which we
expand as |a|? + 2Re@(b+ ¢) + |[b+ ¢|?, hence obtaining the right side of the lemma. In the final simplification
we use also that ¢'(6) = R(6)*r/A. O

Lemma 5.3. The numerator of the Rayleigh quotient for v is

J,

2

(iv + %(—1‘2,1‘1))1} de=Q1 +Q2+ Q3
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where

= 7 1u5 —n)|? sds o "(9)2
Ql_/o /0\s<,¢<9> ) sds [1+ (log R)'(6)?] o,

@:=2re [ [ wteemm

< (=50l 000) ) + Losu(s,600) - 1)) sds TROR(0) a0,
B

2

2 2

2 4
sds T B0

oo

Qs =

5, 0(0) — 1) + 5—suls, p(0) —n)

Proof. Start with the numerator in polar coordinates as in (5.1), then substitute using Lemmas 5.1 and 5.2,
and make the radial change of variable r = sR(6), so that 0 < s < 1. O

Lemma 5.4. The averages of Q1,Q2, Q3 with respect to n are:

1 27
2 [ @dn=G(@) [ ju.fda.

™ Jo D

1 27
7 Q2dn =0,

™ Jo

1 27 ﬁ 2
o/, Qszdn = G1(~Q)/D is™ tug + 25U dz.

Proof. For Q1, we integrate the definition in Lemma 5.3 with respect to 1 and interchange the order of integra-
tion. Then making the substitution n +— ¢(6) — n allows us to separate the n and 6 integrals, which completes
the proof when we recall the definition of Gy from the Introduction. The argument 1s analogous for Qs.

With Q2 we proceed similarly, and then observe that fo% R(O)R'(0)do = R(H) = 0 by periodicity. O

Remark 5.5. Our proof that the cross-term Q2 vanishes after averaging with respect to n seems like a trick
since it relies on the quantity RR’ being a derivative of a periodic function. To avoid using this fact, one may
include a reflection as well as rotations when constructing trial functions, as follows. Write II for reflection in
the horizontal axis, and consider the additional trial functions

w; :u_jOHonl oT

)

which in polar coordinates can be written

w;(r,0) = u;(r/R(0),1 — $(0)).

Now carry out the proof as above, except using w; instead of v;. The resulting quantities @ and Q3 are the
same as for v;, but Q2 acquires a negative sign in front. Hence by averaging the numerators of the Rayleigh
quotients for v; and w; we eliminate Q2 and obtain simply @1 + Q3. Then one averages with respect to n by
the formulas in Lemma 5.4.

Now we return to the proof of the theorem. The left side of (5.4) is independent of the rotation angle 7.
Hence by averaging (5.4) with respect to n € [0, 27] we find

n "(Q1+ Q2+ Q3)dn

2 0
> a(e <z T
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Ky N

where we must remember that “u” means uj, in the quantities @1, Q2, @3. Thus Lemma 5.4 shows that

n

n Ous 2 8 ﬁ 2
) < 77 -1 S
;)\J (A< ’R'; GO((Z)/D Ep dz + Gl((Z)/D is 8¢ —|— —5U; dx}
n ﬁ 2
:w;[(l—aj)GO(())—i—aJGl((Z)]/D (zV—l—%( $2,$1)> dx
where )
s
Io 15*181(5 + %sua dx
;= 5, i=12...,n. (5.5)

fD (zV + %(—m,m)) U dx

The coefficient «; € [0,1] measures the “angular component” of the magnetic energy of the jth mode;
see (5.1).
We may estimate Gy and G; from above with their maximum, G, so that

zn: N (R)A(R)/G(22

Jj=1

d.T—?TZ)\

Since A(D) = 7w and G(D) = 1, Theorem 2.1 is proved for the case when @(a) = a is the identity function,
as desired. (We have proved the theorem with a unit disk on the right side, but then it holds for any centered
disk by scale invariance.)

(ZV + — xz,xl)) u;j

5.1. Proof of Corollary 2.2

The function @(a) = a® is concave and increasing, when 0 < s < 1, and this choice of ¢ in Theorem 2.1 gives
maximality of (A + ...+ A\%)'/* A/G for the centered disk. Choosing ¢(a) = loga shows maximality of the
centered disk for the functional

Zlog()\jA/G) = nlog ( VAL LA, A/G).
j=1

The function @(a) = —a® is concave increasing, when s < 0, and so we obtain minimality of the centered disk
for Z?Zl(/\jA/G)s. Lastly, for t > 0 we consider #(a) = —e~*" to prove minimality of Z?:1 exp(—A\;At/G) for
the centered disk.

Dirichlet equality statement.

Assume equality holds for the first eigenvalue, that is,
MA/G|, = MA/G,.

By enforcing equality in the proof of Theorem 2.1, with n = 1, we see that the trial function v; on {2 must
attain equality in the Rayleigh characterization of A;({2), and hence must be a first eigenfunction for 2. In
particular this holds when 7 = 0 (no rotation), so that the function v(x) = ui(T'(x)) satisfies

(iV + F)?v = A\ (2)v
classically, where F(z) = %(—xg, z1). That is,

—Av + 2iF - Vo + |F[*v = M\ (). (5.6)
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The ground state of the disk is real-valued and radial, for the magnetic Laplacian with Dirichlet boundary
condition, by work of Erdés ([6], Appendix), or see the more explicit treatment by Son ([23], Thm. 3.3.4). Hence
uy(x) = J(Jz|) for some real-valued function J. (The precise form of J is unimportant here. As it happens, J
for the Laplacian is simply the zeroth Bessel function, whereas for the magnetic Laplacian it turns out to be
a confluent hypergeometric or “Kummer” function.) Observe that J'(rg) # 0 for some ry € (0,1) because J
cannot be identically zero and J(1) = 0 by the Dirichlet boundary condition.

Taking imaginary parts in (5.6) shows that F - Vv = 0, so that Sug = 0. Suppose 5 > 0. Since v(z) =
uy(T'(x)) = J(r/R(0)), we have

0=vg=—J(r/R(0))rR(0) >R (0).

Choosing r = roR(0), we deduce that R'(0) = 0 for almost every §. Hence the radius function is constant,
which means {2 is a centered disk.

For the equality case when § = 0, see our earlier work ([18], Thm. 3.1). That earlier work assumes R(f) is
C?-smooth, but in fact that smoothness follows from inverting the formula v(x) = J(r/R(#)) to solve for R,
using smoothness of the first eigenfunction v and the radial function J.

6. PERTURBATION ANALYSIS

6.1. Proof of Corollary 2.3

Start by applying Theorem 2.1 to the first eigenvalue (n = 1) and then substitute R = 1 + P into the
definitions of Gy and G1. One obtains the following expressions:

27 2 p/ 2 27
Go(£2.) =1 +/ % 40 _ 14¢? P'(6)? o +0(e?)
0 (1+eP(h))” 27 0 2m

=142 Z n?pn|® + O(?)

n#0
and
27 4
1+eP(0)) do/2 2 de f
Gr() = b UELO) WPpr 112 [ (PO) - ) 5 +OE)
[ J;7 (1 +eP(h)) do/2n] 0 2m

=144 |pal® + O(%).
n#0

The upper bound in the corollary now follows once we use the symmetry of the coefficients (p—,, = 7).
6.2. Proof of formal asymptotic (2.1)
The Kummer function M (a,b, z) satisfies the differential equation
M"+(b—2)M' —aM =0 (6.1)
with initial condition M (a,b,0) = 1. (Recall that primes indicate derivatives with respect to z.) Define

falr X) = (2 fm)m 2P0 ((1 +[n| = n = A/B)/2.In| +1, g—f)

for n € Z and r, A > 0. We rescale f,, by area, then modulate by e’ and form a series combination as follows:

u(r,0) = fo(rv/m/A, NA) + ¢ Z Cofu(r/m /A, NA)e™?

n#0
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where the coefficients ¢,, are undetermined for now. Assuming that the series converges suitably, one computes
that u formally satisfies the eigenvalue equation (iV + F)?u = Au in the plane, by expressing the eigenvalue
equation in polar coordinates as

2.2
. T
- (urr + Tﬁlur + T—2u60) + ’Lﬁue + 5 U= Au

A 4A2
and then substituting the series for u and using the Kummer differential equation.

The goal of the perturbation analysis is to choose the parameter A and coefficients ¢,, so that u = 0 on the
boundary of the perturbed domain (2., to second order in e. (The resulting analysis is only “formal”, since we
neglect terms of third order and higher.)

Recall (2. is a nearly circular domain defined in polar coordinates by r < R(#) = 1 + ¢P(f), where P is
expressed in a Fourier series as before. We assume the constant term vanishes: pg = 0. Let

27
v = lenl2= P(0)*do
n#0
so that the domain has area )
1 T
A:§ R(0)? do (1+¢%y)
0

and hence
,/E =1—¢e%y/24+0(h)
A )
% =1+¢eP(0) —e’y/2+ 0 (&%)

Denote by Ay the lowest magnetic eigenvalue of the unit disk, with Dirichlet boundary condition. The corre-
sponding ground state on the disk is the radial function fo(r, \g7), satisfying

= 527"2
_(urr +r u'r‘) + W’u = >\Ou (62)
with the boundary condition
Jo(1, A7) =0, or  M(ag,1,2) =0 (6.3)

where z = /27, This claim that the ground state arises from the radial case n = 0 can be found in work of
Erdss ([6], Appendix), or later Son ([23], Thm. 3.3.4). The formula fo(r, Aom) for the radial ground state comes
from ([23], Eq. (3.5.9)) with n = 0, except with [ there replaced by (/27 to match the vector potential in this
paper, and using that E in that paper equals the eigenvalue A when n = 0 (see [23], Sect. 4.2).
To carry out a perturbation analysis, we assume that the lowest eigenvalue of the perturbed domain varies
with ¢ according to
A = XMm + pe+ 72 + 0 (%),

for some coefficients p and 7 to be determined. For the Dirichlet boundary condition on {2, we require
0=u(R(0),0), 0 € 10, 2m],
so that we want
0= fo(L+eP(0) —e®y/2+ O(e®), Ao + pe + 7% + O(£?))

+e Z enfn (L+eP(0) — 27/2+ O(e3), o + pe + 762 + O(e%)) e™.
n#0
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Denote the partial derivatives of f,, using superscripts, so that f1:0 = df,/0r. Then the Taylor expansion of
the above boundary condition says to second order in & that

0= fo(1, o) +¢ Z cn (1, Nomr)e™?
n#0

2
+ <5P(9) - %’y) 321, Mom) + (ep 4+ 7€2) £ (1, Aomr)
+ed cn (eP(0) 3 (1, o) +epfi (1, Aor)) €7
n#0

+%52P2(9) 201 Mom) + £2pP(6) f1 (1, o) + €2p2f 2(1, Ao) + O(%).

The zeroth order term vanishes by (6.3). We want the first and the second order terms to vanish also.
Vanishing of the first order term requires

Z en fn(l, Aom)e ind anean (1, Aom) + pfo (1, A7) = 0.
n#0 n#0

The constant term in this equation tells us that p fg ’1(1, A7) = 0, and hence
p=0

(assuming for now that fg’l(l, Xo7) # 0, which we justify below). For n # 0, we get

(1 )\0’/T)
C’/’L = 7- 6.4
fn(l /\07‘(’) ( )
If we average the second order term over § and put p = 0, we get
CH 1 Aom) + Y eupon fEO(L, Aom) + %fgvou, AoTr) — % 1001, Agmr) = 0.
n#0
Note that fo'°(1, \o7) = —f37°(1, Aom) by evaluating the eigenvalue equation (6.2) at r = 1. Hence using (6.4),
we may solve for the coefficient 7 as
1 )\07‘1’ ]. )\07‘1’
(1 /\0 n;éO fn(l /\071')
O(1,\ 1A 1A
_ oo (L dom) Z‘ 2 (1 (L, Aom) 4 Lo (1 Aom) (6.5)
1 )\0 (17A07T) 2f—n(1a)‘0ﬂ-)

by symmetry, since |p,| = [p_n].
Let us simplify these expressions. The ratio before the infinite sum in (6.5) evaluates to

0'(Ldom) _, M'(ag,1,2) - B/

STxom)  B(ag 12)- (-1/20)

by definition of fy and ¢ and remembering that M (ag, 1, z) = 0 from (6.3).
Next, write ¢, for the factor (...) in (6.5). By substituting the definitions of f, and f_, into (6.5) we see
that

)

qn = 1 +n—-z+ Z(logM)’(ao,n + 1,Z) + Z(logM)/(ao + n,n + 1,2), (66)
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where the derivatives are evaluated at the specific value z = /27 and we recall the definition ag = (1—Xo7w/3)/2.
Thus ¢, has the form claimed in the theorem.
We will show the first coefficient vanishes: g; = 0. Start with the definition

@ =2—z+ z(log M) (ag,2,2) + z(log M) (ag + 1,2, 2).

First observe that ag < 0, since A9 > /7 (either by domain monotonicity and comparison with the first Landau
level on the plane, or else by [23], Thm. 3.3.4). Then note that

1
M(ao + 17 2a ) = a_M/(a’Ov 1a )
0

by the identity ([20], Eq. (13.3.15)). Further,

M(a0,2,~) = L 1(M/(a/0,17')_M(a’071a'))

ag —

by expanding ([20], Eq. (13.3.20)). Substituting these last two formulas into the expression above for ¢; shows

that M"(ap,1,2) — M'(ap, 1, 2) M"(ap, 1, 2)
ql — 2—Z+Z ) ) ) ) +Z ) .
M'(ag,1,2z) — M(ao, 1, z) M'(ag,1,z2)

Since M (ao, 1,2) = 0 by (6.3), we may simplify to obtain

2M"(agp, 1, 2)

— 99,402 100 L2
N a0 1,2)

The Kummer differential equation (6.1) allows us to substitute for M”, leading to

(z — 1)M'(ao, 1, 2)

=2-2 2
n T T M (a0, 1, %)

=0

as we wanted to show.
Finally we show ¢, = n + O(1). First, for any fixed a,b,{ € R we have

M(a,n+b,{) -1 and  M'(a,n+b,()—0
as n — 00, by the series definition of the Kummer function [20], [13.2.2]. Second,
M(n+a,n+b,¢) — e and  M'(n+a,n+0b,¢) — e

as n — 00, again by using the series for the Kummer function. Hence the definition (6.6) implies that ¢, =
n+14o(l) as n — oc.

7. PAULI EIGENVALUES

7.1. Ellipticity of the numerator
The numerator of the Pauli-Rayleigh quotient (3.1) decouples as follows.

Lemma 7.1 (Decoupling of numerator). For ¢ = (ﬁi ) belonging to Hg(£2;C?) we have

/,

2

dx:A(|<¢v+F>w+2—§w+2) dx+/n(

2

> omli0m + Fo)tb

m=1

(iV + F)y_|* + %wZ) dz.
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Proof. We have by direct calculation (using the definition of the Pauli matrices) that

2

2
> 0w (i0m + Fn)| = [(i01 + Fi)ypy +i(i02 + Fa)py|” + (00 + F)p— —i(ide + B)y_ . (7.1)
m=1
Expand the squares to obtain
9 2
> om(i0m + Fn)tb| =|(iV + )4 |* + 2Re(idr + F1 )by i(i0z + Fo)ty
m=1

+ iV + F)p_|> — 2Re(i0 + Fi)p_ i(i02 + Fa)_.

Then integrate the first cross-term as follows. One has

2Re/n(i81 Ry 005 + Fa)uy de = zRe/Q (00 oty + Db BTy — Py Bty — iy Bofo )
(7.2)

The fourth term in (7.2) is purely imaginary, and so can be discarded. For the first term, we note 9114 dathy
has real integral because

/81¢+82’L/1+d1’=/ 82’1/1+81¢+ d.T:/ 81’1/1+82’L/J+d1'
0 o 0

by integration by parts (using the Dirichlet boundary condition). Thus the first term in (7.2) can be discarded
too. We are left with the integral of the second and third terms, so that

2Re/ (0, + F\ )4 (105 + Fo)grs dz = / (F261\¢+\2 . F162\¢+\2)dx
2 (9]

- / (—OnFs + 0o Fy) iy |* d
0

p / 2
=—= d
A/, [y |” da,
where once again the boundary terms have vanished in the integration by parts thanks to the Dirichlet boundary
condition. The analogous formula holds for ¥_, and so the lemma follows. O

Lemma 7.2 (Ellipticity of the numerator). For ¢ = (Zﬁf) belonging to HE(£2;C?),

/,

where Vi = (g;ﬁf) and the constant can be chosen as C' = ||FH%00(Q) + G/A.

2

2
Zam(i8m+Fm)w| dz > 1/ |w\2dx—o/ |2 da
2 (9] (9]

m=1

Proof. Combine Lemma 7.1 with the elementary inequality |a + b|*> > $|a|* — [b]2. O
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7.2. Proof of Theorem 3.1

This theorem treats the spectrum of the Pauli operator shifted up by /A, that is, it treats the spectrum of
Hp + 3/A. The Rayleigh quotient for this shifted operator is

. [ |GV + Fyyy [2da + [, (\(N+F)w,\2+%|¢,\2)dm
AY shift W} - f_Q |,(/J|2 dx )
as we see by adding (/A to the definition (3.1) of the Rayleigh quotient for Hp and then substituting the
expression for its numerator from Lemma 7.1.

Now one may prove the theorem by adapting straightforwardly the proof of Theorem 2.1, using in the course
of the proof that 3/G < f3. The equality statement for the first eigenvalue follows immediately from the equality
statement in Corollary 2.2, since the lowest Pauli eigenvalue is connected to the lowest eigenvalue of the magnetic
Laplacian by A’ + 3/A = \; (see (7.6) below).

7.3. Complex form of the Rayleigh quotient
By substituting F} = —x2(/2A and F; = x13/2A into (7.1) we obtain the complex form of the Rayleigh
quotient, which remains valid no matter what boundary conditions ¥ might satisfy:
= 2 _ 2
. Jo |0+ Bz/4A) 04 |" + |(0 — Bz/4A)y_|" da
Jo l¢P? dz

where 0 = 0/0z is the complex derivative. Hence the Rayleigh quotient vanishes if and only if

Ray p[1]

gy =e A ) and yl = PTG (7.3)

for some holomorphic functions f1 and f_. We deduce that the zero modes form an infinite dimensional subspace
of H', and so the numerator of the Rayleigh quotient is definitely not elliptic on H'. To learn about zero modes
on the whole plane, readers can consult the Aharanov—Casher theorem [1].

7.4. Positivity of the first Pauli—Dirichlet eigenvalue

The first Dirichlet eigenvalue is nonnegative, since the Rayleigh quotient is nonnegative. If the first eigenvalue
were zero then the Rayleigh quotient of the first eigenfunction ¢ would equal zero, implying (7.3). The holo-
morphic functions fi and f_ would then be forced to vanish identically, by the Dirichlet boundary condition,
and so ¢ = 0, which is impossible. Hence the first eigenvalue must be positive.

7.5. Splitting of the spectrum, and an alternative Proof of Theorem 3.1

The decoupling of the Rayleigh quotient in Lemma 7.1 implies a decoupling of the eigenvalue equations into
separate equations for each component of the spinor:

(iV + F)?y — (B/A) g1 = My (7.4)
(i + F)*0_ + (3/A)p- = Mo (7.5)

Hence the introduction of spin into the quantum system splits the spectrum of the Dirichlet magnetic Laplacian
into two copies, with one copy shifted up by 3/A and another shifted down by the same amount. More precisely,
if we write Hyag = (iV + F)? for the magnetic Laplacian two dimensions, then the Dirichlet spectrum of the
Pauli operator is

spec(Hp) = [spec(ng) - %} U [Spec(Hmag) + g] : (7.6)

with multiplicities being respected by the union.
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One obtains this same result at the level of operators, of course: first expand the definition of the Pauli
operator to show that Hp = (iV + F)?I — o - B, and then use that the magnetic field is vertical to find
o-B = (#/A)os, which gives (7.4)—(7.5).

We could have proved Theorem 3.1 by using this splitting of the spectrum, as we now explain. Shifting the
spectrum up by 5/A and multiplying by A/G to obtain a scale invariant expression gives

(ot +£) 2~ vt ] ettt + 2]

Note that the first spectrum on the right is not shifted, and the second is shifted by an amount 23/G that is
maximal for the disk (since G is minimal for the disk). Hence one can prove Theorem 3.1 by starting with the
magnetic Laplacian result Theorem 2.1 and extending the Hardy—Littlewood—Pdlya majorization technique to
handle the union of a sequence and a shifted copy of the same sequence. We omit these proofs.

We chose to follow a more direct approach to proving Theorem 3.1, in the hope that it might help some
future researcher to treat non-Dirichlet boundary conditions.
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