
ESAIM: COCV 22 (2016) 983–1016 ESAIM: Control, Optimisation and Calculus of Variations
DOI: 10.1051/cocv/2016047 www.esaim-cocv.org

CONTROL OF NON HOLONOMIC OR UNDER-ACTUATED MECHANICAL
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Abstract. This paper is dedicated to the control of some classes of mechanical systems, not stabiliz-
able by means of at least continuous state feedback laws. This is the case for non holonomic mechanical
systems, an example being the unicycle robot, or for under-actuated mechanical systems, an example
being the slider. The similarity between these two kinds of dynamical systems will be analyzed, with
respect to controllability, stabilizability and flatness properties. The control design for slider stabiliza-
tion could be viewed, to some extent, as an extension of the control law used for unicycle systems, but
it is not so obvious if one wants to stabilize the slider at a chosen reference position, with a chosen fixed
orientation. In fact, a new fixed point stabilization result will be given for the slider, and therefore,
a switched control strategy will be proposed for both systems, based on differential flatness property
to track moving non singular reference trajectories, and switching to periodic time-varying feedback
laws to ensure final stabilization at rest equilibrium points. The method will be illustrated with success
through simulation results and also first experimental results in the case of a terrestrial quadrotor
tracking non singular reference trajectories.
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1. Introduction

It is a great pleasure and honor to write this article in the special issue dedicated to Jean-Michel Coron. We
would like to express our gratitude to Jean-Michel for his help, when working together on stabilization problems
for nonlinear dynamical systems and also on boundary control of dynamical systems modeled by hyperbolic
PDEs.

In the present paper, we are interested in non holonomic or under-actuated mechanical systems for which point
stabilization cannot be achieved through continuous state feedback laws since they do not satisfy the necessary
condition due to Brockett’s theorem (see [5]). Thus the control design can be divided in two steps: one for non
singular trajectory tracking purposes and the other for point stabilization. This approach will be illustrated
through two examples: the first one is the so-called “unicycle” mobile robot which is a non holonomic vehicle,
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and the second one is the “slider” which is an under-actuated mechanical system. The similarity between these
two kinds of dynamical systems will be emphasized, with respect to controllability, stabilizability and flatness
properties. Control laws stabilizing unicycle robots or sliders at a fixed point or towards exciting reference
trajectories were largely investigated by the research community. Different strategies can be used to tackle the
point stabilization issue. Time-varying control laws are very popular methods but discontinuous or practical
stabilizations are alternatives. Due to their similarities, the control design for slider stabilization could be viewed,
to some extent, as an extension of the control law used for unicycle systems. This is the case if one only wants
to stop the slider, but it is not so obvious if one wants to stabilize it at a chosen reference position, with a
chosen fixed orientation. In fact, a new fixed point stabilization result will be proposed for the slider, using a
time-varying feedback law, inspired from [27] and which is similar, in some sense, to the “phantom tracking
method” developed by Coron in [12].

In Section 2 we briefly recall modeling issues for these mechanical systems and we introduce the trajectory
tracking problem. In Section 3 we study the structural controllability, stabilizability and differential flatness
properties of the two systems and in Section 4 we propose our control design, namely: flatness-based control for
trajectory tracking of non singular reference trajectories and time-varying feedback for fixed point stabilization
of both systems. This method will be illustrated through simulation results and also first experimental results
in the case of a terrestrial quadrotor tracking non singular reference trajectories. We conclude in Section 5.

2. Modeling of vehicles and trajectory control problem

The dynamical behaviors of non holonomic or under-actuated mechanical systems are recalled. Two examples
are analyzed: the unicycle robot and the slider, for which the trajectory tracking problem is presented.

2.1. Modeling

The kinematic and dynamic model of a vehicle can be written in a canonical form as follows [6, 7]:

• Kinematic equation:
q̇ = S(q)η, (2.1)

• Dynamic equation:
M(q)η̇ = −N(q, η)η + P (q, η, t) + Cτ. (2.2)

The vector q ∈ R
n contains the generalized configuration coordinates, the vector η ∈ R

n−m corresponds to the
instantaneous non constrained velocities. The dimension of η is the number of degrees of freedom of the vehicle.
The vector τ ∈ R

p contains the external forces or torques applied by the actuators to the system. The matrix
M(q) ∈ R

(n−m)×(n−m) is the invertible inertia matrix, N(q, η)η is the (n−m)vector of centrifugal and Coriolis
torques and the vector P (q, η, t) ∈ R

n−m contains other terms such as gravity or frictious terms. The matrices
S(q) ∈ R

n×(n−m) and C ∈ R
(n−m)×p have respective ranks n−m and p (n ≥ n−m ≥ p).

2.1.1. Non holonomic vehicle

Constraints linear in the velocities, which appear for example in rolling without slipping movements, restrict
the space of instantaneous velocities but not necessarily the space of configurations. This is the case when the
constraints are non holonomic, i.e. non integrable. Let us consider the following kinematic constraints:

A�(q)q̇ = 0,

where A�(q) ∈ R
m×n is of full rank m and represents a set of m independent velocity constraints. We suppose

in the sequel that all the constraints are non holonomic, if this is not the case, the integrable constraints can
be eliminated and the corresponding space configuration reduced. Let us point out that from (2.1), the matrix
S(q) ∈ R

n×(n−m) in equation (2.1) is such that A�(q)S(q) = 0. Let us denote Δ(q) the distribution spanned
by the (n −m) vector fields sj(q), sj being the jth column of S(q), and Δ̄(q) the involutive closure of Δ(q).
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Figure 1. The unicycle robot.

Since all the m constraints are supposed to be non integrable, it can be shown, due to Frobenius theorem,
that Δ̄(q) has dimension n, which means nothing but the fact that the LARC condition (Lie Algebra Rank
Condition) is satisfied for the kinematic model (2.1) (see Def. 3.6), where η is interpreted as the input control
vector; therefore the kinematic model is strongly accessible from any configuration (see e.g. [35], Chap. 6, [26]).
For a dynamical system without drift, strong accessibility implies controllability. Then, the kinematic equation
of a non holonomic vehicle is controllable. Moreover, since p = n−m, the matrix C is invertible, and the control
vector τ can be easily chosen, for example to linearize the dynamic sub-system (2.2) so that the control of the
global cascaded system (i.e. a system obtained by adding pure integrators to a previous sub-system) can then be
handled using “backstepping” techniques (see e.g. [25,40,46,51]). This is the reason why one often considers only
the kinematic model when studying non holonomic vehicles. Wheeled mobile robots satisfying both pure rolling
and nonslipping conditions along the movements are undoubtedly the most popular non holonomic vehicles, and
among them, the so-called unicycle robot which has been largely studied (for more details see e.g. [2, 3, 6, 7]).

The unicycle robot:
This robot moves on the 2D-horizontal plane. The configuration vector q = (x, y, ψ)� is of dimension n = 3
and the vector η = (v1, ψ̇)� has dimension 2. It is made of the longitudinal velocity v1 and of the angular
velocity ψ̇. The p = 2 physical control variables are the angular rotations ωR and ωL of the right and left
wheels, see Figure 1. The third wheel is a free wheel which does not restrict the robot mobility. The non
holonomic property of the unicycle comes from the fact that the robot cannot instantaneously move in the
lateral direction, so that p = n−m < n. Due to the rolling without slipping assumption, the kinematic behavior
of point G can be easily obtained from ωR, ωL, the wheels’ radius R and the distance between the wheels d:{

v1 = R(ωR + ωL)
Ω = R

2d (ωR − ωL). (2.3)

The kinematic equations of the unicycle robot can then be written:⎧⎨
⎩
ẋ = v1 cos(ψ)
ẏ = v1 sin(ψ)
ψ̇ = Ω.

(2.4)
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Figure 2. The slider.

2.1.2. Under-actuated vehicles

Moreoften, under-actuated vehicles have no restriction concerning the instantaneous velocities but are such
that p < n. The whole dynamics (both kinematic and dynamic equations) has then to be considered. Except
for wheeled mobile robots, most of the vehicles are under-actuated systems. The controls which are generally
considered are twofold: firstly a thrust vector along the longitudinal axis and secondly an actuator to modify
the orientation of the vehicle. The lateral axis is generally not directly actuated. Let us give some examples of
such under-actuated vehicles (see e.g. [16]):

• marine vehicles: surface vessels (ships without lateral propellers), underwater vehicles, hovercrafts . . .
• aerial vehicles: planes, unmanned aerial vehicles, drones . . .

The slider:
The slider is an under-actuated vehicle, similar to marine vehicles (such as hovercrafts or surface vessels see
e.g. [17]), or to terrestrial quadrotors such as the one studied in [47, 48]. It moves on a 2D horizontal plane
and has a configuration vector q similar to the unicyle’s one: q = (x, y, ψ)� and n = 3. But, the instantaneous
velocities of vector η are not restricted and η has dimension 3: η = (v1, v2, ψ̇)�, where v1 and v2 are respectively
the longitudinal and lateral velocities in the robot frame and ψ̇ the angular velocity. Therefore, the control
vector has dimension p = 2 ≤ n = 3. This vehicle is described in Figure 2. It is actuated by two propellers
producing forces FL and FR. The sum of these two forces is directly linked to the acceleration of the vehicle,
whereas the difference acts on the angular dynamics. Let us denote τ1 = FL + FR and τ2 = FR − FL, the
dynamics can be written:

⎧⎪⎪⎨
⎪⎪⎩
q̇ = S(q)η
mv̇1 = mv2ψ̇ + τ1
mv̇2 = −mv1ψ̇
Iψ̈ = τ2,

(2.5)
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Figure 3. The trajectory tracking problem.

with

S(q) =

⎛
⎝Cψ −Sψ 0
Sψ Cψ 0
0 0 1

⎞
⎠,

where Cψ and Sψ denote respectively cos(ψ) and sin(ψ), m being the vehicle mass, and I the vehicle inertia. It
should be noticed that friction terms have been neglected. Moreover, S(q) is nothing but the rotation matrix
from the inertial frame Ri to the robot frame Rb. Therefore, equations (2.5) describe the dynamic behavior of
the slider expressed in the vehicle frame and can be written as follows in the inertial frame:⎧⎨

⎩
mẍ = τ1 cos(ψ)
mÿ = τ1 sin(ψ)
Iψ̈ = τ2.

(2.6)

The similarity between these equations and the unicycle’s ones (2.4) is then obvious.

2.2. The trajectory tracking problem

The aim of trajectory tracking displayed on Figure 3 is to make the robot’s actual position and orientation
asymptotically converge to the position and orientation of a reference virtual robot satisfying similar dynamical
equations and constraints. The state variables of this reference robot are denoted with subscript r.

It is often simpler to express the error vector in the vehicle frame. Let us recall that a vector [X ]Ri expressed
in the frame Ri and the same vector [X ]Rb

expressed in the robot frame Rb are linked as follows, using the
rotation matrix Rψ given below:

[X ]Rb
= Rψ[X ]Ri , (2.7)

with

Rψ =
(
Cψ Sψ
−Sψ Cψ

)
.
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Remark 2.1. Let us remember that the inverse of Rψ is equal to the transpose matrix of Rψ and that the
time-derivative of Rψ can be easily computed as follows:

Ṙψ = ψ̇JRψ, (2.8)

with

J =
(

0 1
−1 0

)
.

The unicycle robot:
See [7, 22, 45]. In the unicycle case, the reference robot satisfies the following equations⎧⎨

⎩
ẋr = v1r cos(ψr)
ẏr = v1r sin(ψr)
ψ̇r = Ωr,

(2.9)

where v1r and Ωr are supposed to be bounded as well as their time-derivatives.
The objective is to find a control law (v1, Ω)� = k(x, xr , y, yr, ψ, ψr, v1r, Ωr) such that the errors ex = x−xr,

ey = y − yr and eψ = ψ − ψr asymptotically converge to 0 when t tends to infinity.
The projection of the errors ex and ey in the robot frame will be denoted e1 and e2. The orientation error in
the robot frame will be denoted e3 but it is unchanged: eψ = e3. The change of coordinates is then given by:(

e1
e2

)
= Rψ

(
ex
ey

)
; e3 = eψ. (2.10)

Using equations (2.4), (2.8), (2.9) and (2.10), the time-derivative of the error vector in the robot frame can be
written as follows:

⎛
⎝ ė1ė2
ė3

⎞
⎠ =

⎛
⎝ 0 ψ̇ 0

−ψ̇ 0 0
0 0 0

⎞
⎠
⎛
⎝ e1e2
e3

⎞
⎠+

⎛
⎝ 0

sin(e3)
0

⎞
⎠ v1r +

⎛
⎝1 0

0 0
0 1

⎞
⎠(u1

u2

)
, (2.11)

where u1 = v1 − v1r cos(e3) and u2 = Ω − Ωr. Solving the trajectory tracking problem is then equivalent to
finding a control law (u1, u2)� making (e1, e2, e3)� asymptotically converge to (0, 0, 0)�.

The slider:
As for the unicycle case, let us introduce the error vector (ex, ey, eẋ, eẏ, eψ, eψ̇)� = (x − xr , y − yr, ẋ − ẋr, ẏ −
ẏr, ψ − ψr, ψ̇ − ψ̇r)�, and its projection in the robot frame:(

e1
e2

)
= Rψ

(
ex
ey

)
; e5 = eψ,(

e3
e4

)
= Rψ

(
eẋ
eẏ

)
; e6 = eψ̇.

(2.12)

The virtual reference slider satisfies the following equations:⎧⎨
⎩
mẍr = Cψrτ1r
mÿr = Sψrτ1r
Iψ̈r = τ2r.

(2.13)
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As for the unicycle, using equations (2.6), (2.8), (2.12) and (2.13) leads to:

⎛
⎜⎜⎜⎜⎜⎝

ė1
ė2
ė3
ė4
ė5
ė6

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 ψ̇ 1 0 0 0
−ψ̇ 0 0 1 0 0
0 0 0 ψ̇ 0 0
0 0 −ψ̇ 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

e1
e2
e3
e4
e5
e6

⎞
⎟⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎜⎝

0
0
0

sin(e5)
0
0

⎞
⎟⎟⎟⎟⎟⎠u1r +

⎛
⎜⎜⎜⎜⎜⎝

0 0
0 0
1 0
0 0
0 0
0 1

⎞
⎟⎟⎟⎟⎟⎠
(
u′1
u′2

)
, (2.14)

with u1r = τ1r

m , u′1 = 1
m (τ1 − τ1r cos(e3)) and u′2 = 1

I (τ2 − τ2r).
The objective is to find a control law (τ1, τ2)� = k(x, xr, y, yr, ẋ, ẋr, ẏ, ẏr, ψ, ψr, ψ̇, ψ̇r, τ1r, τ2r) such that the

error vector (ex, ey, eẋ, eẏ, eψ, eψ̇)� asymptotically converges to 0 when t tends to infinity.

3. Controllability, stabilizability and differential flatness properties

The controllability properties of the two systems are analyzed, first for the tangent linearized control systems
and then in terms of STLC (Small Time Local Controllability) for the original ones. Then, stabilizability
properties are deduced. Finally, the structural “differential flatness property” is studied for both systems.

Before that, let us briefly recall some definitions and properties concerning STLC for a time-invariant non-
linear dynamical system Σ with state vector X and control input vector u:

Σ : Ẋ = f(X,u). (3.1)

Definition 3.1 ([13], p. 125). Let (Xe, ue) ∈ O (O an open subset of R
n), an equilibrium point of (3.1). This

system is “small-time locally controllable”, or STLC at (Xe, ue) if, for every real number ε > 0, there exists a
real number η > 0 such that, for every X0 ∈ Bη(Xe) = {X ∈ R

n; |X −Xe| < η} and for every X1 ∈ Bη(Xe),
there exists a measurable function u : [0, ε] → R

m such that

|u(t) − ue| ≤ ε, ∀t ∈ [0, ε],
(Ẋ = f(X,u(t)), X(0) = X0) ⇒ (X(ε) = X1).

One does not know any checkable necessary and sufficient condition for STLC for a general system Σ. However,
some powerful necessary conditions are known and will be detailed below.

Definition 3.2. Let (Xe, ue) be an equilibrium point of system Σ. The tangent linearized control system at
(Xe, ue) is the following linear dynamical system:

δ̇x =
∂f

∂x
(Xe, ue)δx +

∂f

∂u
(Xe, ue)δu = Aδx +Bδu, (3.2)

where δx = X −Xe, δu = u− ue, X(t) ∈ R
n and u(t) ∈ R

m.

The controllability property of a time-invariant linear system can be checked using the so-called Kalman
criterion (see e.g. [1], Chap. 5).

Theorem 3.3 ([1], p. 102). Let (Xe, ue) be an equilibrium point of system Σ. The tangent linearized con-
trol system (3.2) at (Xe, ue) is controllable, if and only if the rank of the controllability matrix C =(
B AB A2B . . . An−1B

)
is equal to n = dim(X), the order of the system.

Theorem 3.4 ([13], p. 128). Let (Xe, ue) be an equilibrium point of system Σ. Let us suppose that the tangent
linearized control system (3.2) at (Xe, ue) is controllable, then Σ is STLC at (Xe, ue).

If the tangent linearized control system is not controllable, one should however test the “Lie Algebra Rank
Condition” denoted LARC, which relies on iterated Lie brackets, recalled below.
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Definition 3.5. Let Ω be an open subset of R
n and F a family of C∞ vector fields in Ω. The notation Lie(F) is

the Lie algebra generated by the vector fields F , or in other words, the smallest linear subspace E of C∞(Ω; Rn)
satisfying the following two conditions:

F ⊂ E,
(X ∈ E and Y ∈ E) ⇒ ([X,Y ] ∈ E).

Let us denote A(Xe, ue) = {g(Xe); g ∈ Lie(∂
|α|f
∂uα (., ue), α ∈ N

m)}. A(Xe, ue) can be obtained by considering
the control vector fields and their iterated Lie brackets (cf. [13], Chap. 3.2).

Definition 3.6 (LARC). The system Σ satisfies the LARC at the equilibrium point (Xe, ue) if

A(Xe, ue) = R
n. (3.3)

Theorem 3.7. Let us suppose that the system Σ is STLC at the equilibrium point (Xe, ue) and that f is
analytic. Then Σ satisfies the LARC at (Xe, ue).

The converse is not true in general except for linear time-invariant dynamical systems for which the LARC
is equivalent to the Kalman controllability criterion (see Thm. 3.3) or for driftless affine control dynamical
systems, as detailed in the following theorem.

Theorem 3.8 (Rashevski–Chow [13], p. 135). Let Ω be an open subset of R
n, Ω × {0} ⊂ O. Let us assume

that there exist f1, . . . , fm ∈ C∞(Ω; Rn), such that

f(X,u) =
m∑
i=1

uifi(X), ∀(X,u) ∈ O.

Let Xe ∈ Ω such that
A(Xe, 0) = R

n.

Then, the control system Ẋ = f(X,u) is STLC at the equilibrium point (Xe, 0) ∈ O.

Remark 3.9. Except for driftless control affine dynamical systems, the LARC condition is not sufficient to
prove local controllability. Sussmann’s theorem, recalled in ([13], p. 143), gives, in addition to LARC, some
necessary conditions using so-called “Bad and Good iterated Lie brackets” as detailed in ([13], pp. 141–149).

Remark 3.10. Note that if reference trajectories are reduced to equilibrium points in the case of trajectory
tracking problems, systems (2.11) and (2.14) can be seen as time-varying linear systems, since the state matrix
depends on t through ψ̇(t). In that case, some stabilization results exist in the case of slowly varying persistently
exciting signals. Let us give the corresponding result in the following proposition which can be easily deduced
from ([24], Thm. 2).

Proposition 3.11. Let A : R → R
n×n be of class C1 and let B a real matrix of size n ×m. We assume that

for every s ∈ R
∗, the pair (A(s), B) is controllable. Let T > 0, M > 0 and ε > 0. Then there exist δ1 > 0,

δ2 > 0 such that for every T -periodic Lipschitz function φ(t) satisfying:

• (i) |φ(t)| ≤M for all t ≥ 0;
• (ii) |φ(t) − φ(t′)| ≤ δ2|t− t′| for all t, t′ ≥ 0;
• (iii)

∀t ≥ 0, ∃s : t− δ1 ≤ s ≤ t such that |φ(t)| ≥ ε,

then the system Σ is controllable on every time interval of length at least equal to 2T , where Σ is the following
linear time-varying system:

Σ : Ẋ = A(φ(t))X +Bu.

This result will be used in the context of point stabilization of the slider in Section 4.2.2.

Definition 3.12. The condition (iii) on the function φ(t) is known as “persistence of excitation condition”.



CONTROL OF NON HOLONOMIC OR UNDER-ACTUATED MECHANICAL SYSTEMS... 991

3.1. Tangent linearized control systems

The unicycle robot:
Let us consider the equilibrium point (e = 0, u = 0), the tangent linearized system (3.4) of (2.11) can be written:⎛

⎝ ė1ė2
ė3

⎞
⎠ =

⎛
⎝ 0 ψ̇r 0

−ψ̇r 0 v1r
0 0 0

⎞
⎠
⎛
⎝ e1e2
e3

⎞
⎠+

⎛
⎝1 0

0 0
0 1

⎞
⎠(u1

u2

)
. (3.4)

In our case, n = 3 and C is given by:

C =

⎛
⎝1 0 0 0 −ψ̇2

r v1rψ̇r
0 0 −ψ̇r v1r 0 0
0 1 0 0 0 0

⎞
⎠ .

This controllability matrix is clearly of full rank if and only if (v1r, ψ̇r) 
= (0, 0). In other words, the tangent
linearized system of the unicycle robot (3.4) is not controllable at equilibrium points. But, from Theorem 3.4,
it is known that the nonlinear system (2.11) is STLC if the reference trajectory is such that (v1r, ψ̇r) 
= (0, 0).

The slider:
As for the unicycle, the Kalman criterion is applied to the tangent linearized control system of the slider at an
equilibrium point (e = 0, u′ = 0) which has the following form:

⎛
⎜⎜⎜⎜⎜⎝

ė1
ė2
ė3
ė4
ė5
ė6

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 ψ̇r 1 0 0 0

−ψ̇r 0 0 1 0 0

0 0 0 ψ̇r 0 0

0 0 −ψ̇r 0 u1r 0
0 0 0 0 0 1
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

e1
e2
e3
e4
e5
e6

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝

0 0
0 0
1 0
0 0
0 0
0 1

⎞
⎟⎟⎟⎟⎟⎠
(
u′

1

u′
2

)
. (3.5)

It can be easily checked that the rank of the associated controllability matrix C is equal to n = 6 when
(u1r, ψ̇r) 
= (0, 0). Then, the tangent linearized control system of the slider is not controllable when (u1r, ψ̇r) =
(0, 0), or in other words, for trajectories such that the longitudinal acceleration and the angular velocity are zero.
As for the unicycle, the original nonlinear system is however STLC when (u1r, ψ̇r) 
= (0, 0) from Theorem 3.4.

Remark 3.13. If one had added viscous friction terms as for example in [36], a trajectory satisfying (u1r, ψ̇r) =
(0, 0) would be nothing but a fixed equilibrium point.

3.2. The STLC property

The non controllability of the tangent linearized control system at a fixed point does not necessarily imply
that the original nonlinear system does not satisfy the STLC property. In fact, we will show that the LARC is
satisfied for both the unicycle and the slider, as well as the STLC property.

The unicycle robot:
The following equations (3.6) are nothing but those of (2.11) in the particular case of a fixed point reference
trajectory (v1r, ψ̇r) = (0, 0).⎛

⎝ė1ė2
ė3

⎞
⎠

︸ ︷︷ ︸
ė

=

⎛
⎝ 0
−e1
1

⎞
⎠

︸ ︷︷ ︸
X1

Ω +

⎛
⎝1

0
0

⎞
⎠

︸ ︷︷ ︸
X2

U1 with U1 = v1 + e2Ω. (3.6)
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The Lie bracket [X1, X2] is computed as follows:

[X1, X2] =
∂X2

∂e︸ ︷︷ ︸
0

X1 − ∂X1

∂e
X2 = −

⎛
⎝ 0 0 0
−1 0 0
0 0 0

⎞
⎠X2 =

⎛
⎝0

1
0

⎞
⎠ .

Then the unicycle satisfies the LARC since

A((v1r, ψ̇r) = (0, 0)) = {X1, X2, [X1, X2]}

=

⎧⎨
⎩
⎛
⎝ 0
−e1
1

⎞
⎠ ,
⎛
⎝1

0
0

⎞
⎠ ,
⎛
⎝0

1
0

⎞
⎠
⎫⎬
⎭ = R

3.

Moreover, system (3.6) being a driftless control affine system, and the vector fields being analytic, the unicycle
is STLC for fixed point trajectories from Theorem 3.8.

The slider:
Since the slider dynamics in the case (u1r, ψ̇r) = (0, 0), with added viscous friction terms given by (3.7) is quite
similar to the one of the under-actuated surface vessel studied in [36] (d1, d2, d3 being strictly positive friction
coefficients), we conclude that the LARC is satisfied for the slider (the assumption of viscous friction terms is
not restrictive, but the heavy computation of the iterated Lie brackets is not detailed in the present paper).⎛

⎜⎜⎜⎜⎜⎝

ė1
ė2
ė3
ė4
ė5
ė6

⎞
⎟⎟⎟⎟⎟⎠ = f(e) +X1u

′
1 +X2u

′
2 with (3.7)

f(e) =

⎛
⎜⎜⎜⎜⎜⎝

0 e6 1 0 0 0
−e6 0 0 1 0 0
0 0 − d1

m e6 0 0
0 0 −e6 − d2

m 0 0
0 0 0 0 0 1
0 0 0 0 0 − d3

I

⎞
⎟⎟⎟⎟⎟⎠ e, X1 =

⎛
⎜⎜⎜⎜⎜⎝

0
0
1
0
0
0

⎞
⎟⎟⎟⎟⎟⎠ , X2 =

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎠ . (3.8)

From [36],
A = {X1, X2, [f,X1], [f,X2], [X2, [f,X1]],

[X2, [[X1, f ], f ]]} = R
6.

The vector fields f,X1, X2 being analytic, the LARC is then satisfied. Contrarily to the unicycle case, the slider
dynamics has a drift term and the LARC is not sufficient to prove the local controllability. However, it has been
shown in [36], that system (3.7) satisfies Sussmann’s theorem mentioned in Remark 3.9, which implies that the
slider is STLC at every fixed equilibrium point (see Rem. 3.13).

To conclude, STLC is satisfied for the two systems at each trajectory (v1r, ψ̇r) ∈ R
2 respec-

tively (u1r, ψ̇r) ∈ R
2.

3.3. Stabilizability properties

Since the tangent linearized systems of both the unicycle and the slider are controllable at each exciting
reference trajectory, respectively (v1r, ψ̇r) 
= (0, 0) and (u1r, ψ̇r) 
= (0, 0), it is then possible to find continu-
ous state feedback laws asymptotically stabilizing such reference trajectories. However, the elaboration of an
asymptotically stabilizing feedback law for a fixed equilibrium point is more difficult and even impossible by
means of continuous state feedback laws, as shown from Brockett’s Theorem 3.14 recalled below.
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Theorem 3.14 (Brockett [5]). If system Σ: Ẋ = f(X,u) can be locally asymptotically stabilized at the origin
(X = 0, u = 0) by a continuous state feedback law, then the image by f of any neighborhood of (0, 0) ∈ R

n×R
m

is a neighborhood of 0 ∈ R
n.

Remark 3.15. The unicycle robot and the slider are not stabilizable at fixed equilibrium points by means of at
least continuous state feedback laws. Let us consider a neighborhood of the origin of the unicycle {e = (0, ε, 0)�}
with ε > 0; it clearly does not belong to the image of {f = (U1,−e1Ω,Ω)�} defined at equation (3.6). In the
same way, the neighborhood of the origin of the slider {e = (ε, 0, 0, 0, 0, 0)�} does not belong to the image of
the slider dynamics given by (3.7).

Consequently, fixed point stabilization needs other control approaches than classical continuous state feedback
laws which allow stabilization of exciting reference trajectories. Among those control methods one can cite:
• smooth time-varying state feedback laws, moreoften time-periodic;
• discontinuous state feedback laws;
• control laws ensuring practical stabiliy, i.e. the stabilization of a small neighborhood containing the equilib-

rium point.
Concerning time-varying feedback laws, Coron has shown in [10] that global asymptotic stabilization of the origin
of a STLC driftless affine control system could be achieved through smooth time-periodic state feedback laws
(see also [13], Chap. 11, Thm. 11.14). Moreover, this result can be extended to local asymptotic stabilization
of the origin of STLC general nonlinear control system Σ: Ẋ = f(X,u) using time-varying state feedback laws
(see [13], Chap. 11, Thm. 11.28), [11]. In that context, many authors have proposed stabilizing time-varying
feedback laws, see for example [10,30,31,43,44] in the case of chained systems (see e.g. [34] for this notion) and
also [14] for fixed point stabilization of the unicycle. See also [36,37] for stabilization of under-actuated surface
vessels.

Some authors used invariant discontinuous control laws to stabilize under-actuated vehicles to a fixed point.
We can cite for example [41] where conditions on the initial state must be satisfied to ensure the convergence.
An alternative was proposed and described in [17]. In this paper, there is no constraint on the initial state but
the yaw angle is not imposed to converge to zero.

Control laws ensuring a perfect tracking of an admissible trajectory, which is of exciting type or a fixed point,
are not easy to design. This limitation leads authors to consider alternatives like practical approaches, the idea
being to stabilize the system in an arbitrary small neighborhood of the reference trajectory (see for example [38]
where the authors use averaging and backstepping techniques to obtain global practical stabilization for an
under-actuated ship). Obviously, this kind of method does not allow asymptotic stabilization but offer other
advantages. It can be possible to stabilize a vehicle on non admissible reference trajectories and in the same
time, it can also facilitate the trajectory generation process. An approach illustrating this practical concept is
for example the tranverse function method (see [32, 33] for details).

3.4. Differential flatness property

As already mentioned, differential flatness property will allow both mechanical systems to track moving non
singular reference trajectories, as it will be explained in Section 4.1. Let us now briefly recall some definitions
concerning differential flatness.

Definition 3.16 (see [19]). The system Σ, affine in the control, defined by:

Ẋ = f(X) +
m∑
i=1

gi(X)ui, X ∈ R
n, u ∈ R

m (3.9)

is said to be differentially flat if there exist an m-uple Y = (Y1, . . . , Ym), a function h : R
n × (Rm)r+1 → R

m, a
function φ : (Rm)r → R

n and ψ : (Rm)r+1 → R
m such that:

Y = h(X,u, u̇, . . . , u(r)),
X = φ(Y, Ẏ , . . . , Y (r−1)),

u = ψ(Y, Ẏ , . . . , Y (r−1), Y (r)).
(3.10)

The components Yi of Y are called the flat outputs of the system.
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It is interesting to point out that the whole system’s dynamic behavior is reduced to the behavior of its flat
outputs. Finding such flat outputs is then an easy way to generate reference trajectories and elaborate dynamic
linearizing feedback laws such that the tracking errors exponentially converge to zero. Trajectory tracking using
the flatness property will be studied both for the unicycle robot and the slider in Section 4.1.

4. Control design

As we have seen in the previous section, due to Brockett’s Theorem 3.14, it is impossible to stabilize fixed
equibrium points through continuous feedback laws for both systems. However, tracking moving reference tra-
jectories seems to be easier. So, we propose in this section to solve the posture tracking problem in two steps:
first, we design a flatness-based control law to make the robot exponentially converge to a nonsingular (i.e.
moving) reference trajectory and then we achieve final fixed point stabilization using a time-varying (periodic)
feedback law.

4.1. Trajectory tracking via a differential flatness approach

We consider successively the case of the unicycle and the slider.

4.1.1. The unicycle robot
Let us first consider the two first equations of the unicycle robot (2.4), giving the first time-derivative of x

and y. It can be seen that the only input which acts on ẋ and ẏ is v1. So, in the framework of exact feedback
linearization (see e.g. [21]), x and y can be considered as “output functions”, and the corresponding so-called
decoupling matrix Δ is therefore singular since:(

ẋ
ẏ

)
=
(

cos(ψ) 0
sin(ψ) 0

) (
v1
Ω

)
= Δ

(
v1
Ω

)
. (4.1)

We apply the idea of the so-called “dynamic extension algorithm” (see e.g. [8,15]). The principle of this algorithm
applied to system Σ is to delay some “combinations of inputs” simultaneously affecting several outputs, via
the addition of integrators, in order to enable other inputs to act in the meanwhile and therefore hopefully to
obtain an extended linear and decoupled closed-loop system of the form:

Y
(rk)
k = wk, k = 1, . . . ,m, (4.2)

where Y (i)
k denotes the ith time-derivative of the kth output Yk, rk is called the relative degree of Yk and wk

are the new auxiliary inputs. Let us recall the definition of the decoupling matrix Δ:

Δij =
∂Y

(ri)
i

∂uj
, i, j = 1, . . . ,m. (4.3)

The corresponding dynamic feedback has the following form:{
u = α(X,χ,w)
χ̇ = a(X,χ,w), (4.4)

χ being the added state and w the auxiliary input vector. To get full linearization we must have:

m∑
i=1

ri = n̄, (4.5)

where n̄ is the dimension of the extended state vector X̄ = (X,χ)�.
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Definition 4.1. If (4.5) is satisfied, the corresponding functions Yi = hi(X), i = 1, . . . ,m are called “linearizing
outputs”.

Moreover, if (4.5) is satisfied, then:

ζ = Ψ(X̄) =
(
Y1, . . . , Y

(r1−1)
1 , . . . , Ym, . . . , Y

(rm−1)
m

)�
(4.6)

is a local diffeomorphism (see [8, 9]). From the linearization point of view, the control law becomes singular
when the determinant of the square decoupling matrix is zero. Generically, this corresponds in the extended
state-space to a (n̄−1)-dimensional submanifold. From [8], we know that this submanifold contains the domain
where the diffeomorphism Ψ(X̄) is singular. Consequently, at any point where the decoupling matrix is not
singular, the diffeomorphism Ψ(X̄) exists.

When full linearization is obtained (at least generically), we can easily achieve reference trajectory track-
ing with stability. More precisely, let Xr(t) be a smooth reference trajectory satisfying the system dynamical
equations, then according to Definition 4.1 we have:

(Yr)i = hi(Xr), i = 1, . . . ,m, (4.7)

and according to (4.6) ζr(t) is defined as follows:

ζr =
(
(Yr)1, . . . , (Yr)

(r1−1)
1 , . . . , (Yr)m, . . . , (Yr)(rm−1)

m

)�
. (4.8)

This implies that:
X̄r = Ψ−1(ζr). (4.9)

The following proposition shows how to select the auxiliary control inputs wi in (4.2) in order to achieve the
tracking with stability of ζr(t) and consequently of Xr(t).

Proposition 4.2. The following auxiliary control laws wi, i = 1, . . . ,m:

wi = (Yr)
(ri)
i +

ri−1∑
j=0

αji

(
Y

(j)
i − (Yr)

(j)
i

)
(4.10)

generically ensure that the trajectory error vector ζ̃ = ζ − ζr exponentially converges to zero, provided that the
arbitrary constants αji are suitably chosen. Moreover, X̃ = X −Xr also asymptotically converges to zero.

Proof. The exponential convergence of ζ̃ to zero is easy to prove, provided a suitable choice of the constants αji
which will determine the exponential rate of convergence of the error vector ζ̃. Moreover, Ψ being a diffeomor-
phism, this implies that X̄ tends to X̄r and therefore that X asymptotically tends to Xr. �

Remark 4.3. The problem of finding sufficient conditions for dynamic feedback linearization is open, and
similar to the problem of finding flat output functions since flatness is equivalent to dynamic linearizability by
endogeneous compensators. A dynamic compensator of the form (4.4) is endogeneous if χ can be expressed as
a function of x, u and a finite number of time-derivatives of u (for details see [4, 18, 19]). Moreover, linearizing
output functions are also flat outputs. One can also refer to [42] for necessary conditions for dynamic feedback
linearization.

For the unicycle robot, considering (4.1) shows that the input v1 has to be delayed to hopefully make the
second input Ω appear in the second order time-derivatives of x and y. Let us then introduce the added state
χ1 = v1 and the new input U1 (which is nothing but the time-derivative of v1):

v̇1 = U1. (4.11)
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Then, computing ẍ and ÿ, the extended system with extended vector X̄ = (x, y, ψ, χ1)� is now fully linearizable
by means of static state feedback with new input vector (U1, Ω)� and diffeomorphism:

Ψ(X̄) = (x, y, ẋ, ẏ)�. (4.12)

More precisely, we have: (
ẍ
ÿ

)
=
(

cos(ψ) − sin(ψ)χ1

sin(ψ) cos(ψ)χ1

) (
U1

Ω

)
= Δ

(
U1

Ω

)
, (4.13)

and the new decoupling matrix Δ is generically invertible. The only singularity corresponds to det(Δ) = χ1 = 0.
It means that the longitudinal velocity of the unicycle, χ1 = v1, cannot be zero, or in other words, as expected,
that the robot must not stop. For more details see also [2, 3].

As mentioned in Remark 4.3, let us check in the following proposition that x and y are flat outputs for the
unicycle robot (2.4).

Proposition 4.4. The unicycle robot (2.4) is flat with outputs Y1 = x and Y2 = y.

Proof. Using (2.4), it can be easily seen that:

ψ = arctan
(
ẏ

ẋ

)
and v1 = ±

√
ẋ2 + ẏ2.

It results that Ω = ψ̇ can be written as a function of (ẋ, ẏ, ẍ, ÿ), which means that x and y are flat outputs and
concludes the proof. �

The important drawback of exact linearization by feedback lies in the fact that it is not applicable around
the singularities of the decoupling matrix Δ, i.e. around rest positions as we have seen for the unicycle robot.
Nevertheless, we can show that it can be implemented in practical situations. More precisely, we can give answers
to the following two questions:

(Q1) Given a reference trajectory and initial conditions, can we ensure a priori that the closed-loop trajectories
avoid the singularities?

(Q2) What can be done around the singularity, i.e. in the case of the unicycle robot, when the velocities become
very low?

The following lemma provides sufficient conditions on the reference trajectory and on the initial conditions
ensuring that the closed-loop trajectories are bounded away from the singularities, answering question (Q1).

Lemma 4.5 ([7], Chap. 8, [3]). Let system Σ defined by (3.9), be generically fully linearizable by dynamic state
feedback and diffeomorphim ζ = Ψ(X̄) given by (4.6). If:

(1) there exists an open simply connected domain D included in

S = {ζ ∈ R
n̄ such that Δ(Ψ−1(ζ)) is not singular, Δ being the decoupling matrix},

(2) the reference trajectory ζr(t) belongs to D for all t and moreover there exists a positive continuous function
M1(t) such that:

‖ ζ̃(t) ‖< M1(t) ⇒ ζ(t) ∈ D, (4.14)

where ζ̃(t) = ζ(t) − ζr(t),
(3) the initial conditions satisfy:

‖ ζ̃(0) ‖≤ min
t
F (t) with F (t) =

M1(t) − ε

K2(t)
(4.15)

for some positive constant ε and where K2(t) = K1e
−λt > 0 characterizes the closed-loop exponentially

stable dynamics (with K1 > 0 and λ > 0):

‖ ζ̃(t) ‖≤ K2(t) ‖ ζ̃(0) ‖, ∀t. (4.16)
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Then:
ζ(t) ∈ D, ∀t. (4.17)

Proof. To show (4.17), it is sufficient to show that:

‖ ζ̃(t) ‖< M1(t), ∀t. (4.18)

By contradiction, let us suppose that there exists a positive time T such that:

‖ ζ̃(t) ‖< M1(t), ∀t ∈ [0, T [ and ‖ ζ̃(T ) ‖= M1(T ). (4.19)

On [0, T [ we have from (4.15) and (4.16):

‖ ζ̃(t) ‖< M1(t) − ε, (4.20)

and by continuity of ζ̃(t) and M1(t), equation (4.20) is in contradiction with (4.19) which concludes the
proof. �

Remark 4.6. It can be easily shown that the following choice of M1(t) satisfies (4.14):

M1(t) = min
ζ

‖ ζ̃(t) ‖ when det(Δ(Ψ−1(ζ))) = 0. (4.21)

The following lemma will now characterize the singularities and the function M1(t) of Lemma 4.5 for unicycle
robots.

Lemma 4.7. For unicycle robots, we have:

M1(t) = |(χ1)r(t)| , (4.22)

where (χ1)r(t) is the reference trajectory of the longitudinal velocity of point G with coordinates (x, y)� (see
Fig. 1). Consequently, if condition (4.15) is satisfied with (4.22), then the robot will follow the reference trajectory
without singularity.

Proof. From (4.21), (4.12) and χ1 = v1 = ±
√
ẋ2 + ẏ2, we easily obtain:

M1(t) = min
∣∣(x − xr)2 + (y − yr)2 + (ẋ− ẋr)2 + (ẏ − ẏr)2

∣∣ 12 when χ1 = v1 = 0,

i.e.
M1(t) = |(χ1)r(t)| .

Moreover, the diffeomorphism Ψ(X̄) given by (4.12) is singular when χ1 = 0. Let us introduce:

S+ =
{
X̄ ∈ R × R × R

2πZ
× R

�+

}
,

and similarly

S− =
{
X̄ ∈ R × R × R

2πZ
× R

�−
}
.

Ψ can be inverted respectively on Ψ(S+) and Ψ(S−) as follows:

X̄ = Ψ−1(ζ) =
(
x, y, − arctan(

ẋ

ẏ
) + f(ẏ)π,

√
ẋ2 + ẏ2

)�
on Ψ(S+),
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and

X̄ = Ψ−1(ζ) =
(
x, y, − arctan

(
ẋ

ẏ

)
+ (1 − f(ẏ))π, −

√
ẋ2 + ẏ2

)�
on Ψ(S−),

where:

f(a) =
{

0 if a ≥ 0
1 if a < 0

and
arctan

(a
b

)
= sign(a)

π

2
when b = 0.

Therefore, Ψ−1 is well-defined as soon as the sign of χ1(0) is defined. The conclusion then holds by applying
Lemma 4.5. �

Remark 4.8. For a reference trajectory not to be singular, (χr)(t) must always keep the same sign and the
same holds for the actual closed-loop trajectory. Consequently, χ1(0) and (χ1)r(0) must have the same sign.
Provided condition (4.15) is satisfied, if (χ1)r(0) > 0 (resp. (χ1)r(0) < 0) the robot will follow the reference
trajectory with the free wheel backward (resp. forward).

Simulation results on a unicycle robot:
We have applied these results to the posture tracking problem of a unicycle robot, choosing the flat outputs, i.e.
the coordinates (x, y)� of point G (see Fig. 1). The singularity corresponds to χ1 = v1 = 0, or η1 = 0 using the
notation of the general kinematic models (2.1). We consider the following moving reference trajectory which is
not singular, i.e. such that (χ1)r(t) = (η1)r(t) 
= 0 for all t ≥ 0:

xr(t) = yr(t) =
√

2.10−2

3
(10 − 2t)3 −

√
2

2
t+

5
√

2
6
, (4.23)

such that the point G will follow a straight line, with initial conditions:⎧⎨
⎩
x(0) = xr(0) − 0.54 = 5.35m
y(0) = yr(0) + 0.54 = 6.43m
ẋ(0) = ẏ(0) = (ẋ)r(0) = (ẏ)r(0) = −3.53m/s.

(4.24)

On the other hand, the second order linear dynamics of the closed-loop error in (x(t)−xr(t)) and (y(t)−yr(t))
have been chosen with two real eigenvalues equal to −1. Therefore, by Lyapunov arguments, it is easy to show
that a possible K2(t) function in Lemma 4.5 is the following:

K2(t) = 2
√

2
(

1 +
1√
2

exp
(
−
(

1 − 1√
2

)
t

))
. (4.25)

Moreover, from (4.22) we obtain:
M1(t) = 0.04(10− 2t)2 + 1.0. (4.26)

Consequently, with ε = 10−2, it is easy to obtain the function F (t) introduced in Lemma 4.5 (see Fig. 4) and
to check that with our choice (4.24), condition (4.15) is satisfied, and no singularity will be encountered. The
simulation results showing the reference trajectory and the actual robot trajectory in the cartesian plane are
displayed in Figure 4 as well as the trajectory errors on x, y and η1.

4.1.2. The slider:
As for the unicycle robot, considering (2.6) shows that the input τ1 = χ1 has to be delayed twice to make the

second input τ2 appear in the fourth order time-derivatives of x and y. Let us then introduce the added state
χ1 = τ1 and the new input U1 (which is nothing but the second time-derivative of τ1):

χ̈1 = U1. (4.27)
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a) b)

c)

Figure 4. Tracking non singular reference trajectories for the unicycle robot using dynamic
feedback linearization.

Then, computing x(4) and y(4), the extended system with extended vector X̄ = (x, y, ẋ, ẏ, ψ, ψ̇, χ1, χ̇1)� is
now fully linearizable by means of static state feedback with new input vector (U1, τ2)� and diffeomorphism:

Ψ(X̄) = (x, y, ẋ, ẏ, ẍ, ÿ, x(3), y(3))�. (4.28)

More precisely, we have:

⎛
⎝x(4)

x(4)

⎞
⎠ =

1
m

⎛
⎝−2χ̇1ψ̇ sinψ − ψ̇2χ1 cosψ

2χ̇1ψ̇ cosψ − ψ̇2χ1 sinψ

⎞
⎠ + Δ

⎛
⎝U1

τ2

⎞
⎠ with Δ =

1
m

⎛
⎜⎜⎝

cosψ −χ1 sinψ
I

sinψ
χ1 cosψ

I

⎞
⎟⎟⎠ , (4.29)

and the new decoupling matrix Δ is generically invertible. The only singularity corresponds to det(Δ) = 0 which
is equivalent to χ1 = τ1 = ±m

√
ẍ2 + ÿ2 = 0. It means that the longitudinal acceleration of the slider cannot

be zero, or in other words, that the robot’s velocity must not remain constant.
As mentioned in Remark 4.3, let us check in the following proposition that x and y are flat outputs for the

slider (2.6).

Proposition 4.9. The slider robot (2.6) is flat with outputs Y1 = x and Y2 = y.
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Figure 5. Posture tracking of a circle by a slider using dynamic linearizing feedback.

Proof. Using (2.6), it can be easily seen that:

ψ = arctan
(
ÿ

ẍ

)
and τ1 = ±m

√
ẍ2 + ÿ2.

It results that τ2 = ψ̈ can be written as a function of (ẍ, ÿ, x(3), y(3), x(4), y(4))�, which means that x and y
are flat outputs and concludes the proof. �

Remark 4.10. In fact, to avoid too numerous time-derivatives of the outputs, we often consider ψ̇ in (2.6) as
an input v2, and then a backstepping approach can be handled to control the global cascaded system (2.6):⎧⎨

⎩
mẍ = Cψτ1
mÿ = Sψτ1
ψ̇ = v2.

(4.30)

We have applied this idea for simulation tests of posture tracking of a slider in the following simulations, as
well as for experimental validation on a terrestrial quadrotor described below.

Simulation results on a slider:
In Figure 5, the slider follows a circular reference trajectory with radius 1.1m centered at the origin, initial
cartesian position (−1.1, 0)�. The actual cartesian position of the slider is (−0.8, 0.5)� and its orientation is
ψ(t = 0) = −1.2 rad. The red dotted line represents the circular reference trajectory and triangles with arrows
represent the position and orientation of the slider at different regular time intervals. The actual longitudinal
velocity (resp. lateral velocity) is represented by red lines (resp. green lines).

Experimental results on a terrestrial quadrotor:
A recent interest in aerial mobile robotics appears and more precisely for quadrotor platforms due to their
mechanical simplicity and stability in flight. However, the energy consumption remains a major technological
limitation. This is the reason why terrestrial quadrotors have already appeared on the market since they can
move on the ground to save energy and fly to avoid obstacles. We have been interested in studying such a
platform of an hybrid terrestrial and aerial quadrotor displayed in Figure 6.
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Figure 6. The terrestrial quadrotor.

The base B1 of the drone is supported on a moving platform B0 where three omnidirectional ball casters
are fixed and allow the drone to move freely in all directions, even sideways. Another body B2 containing the
four propellers is supported by the drone base B1 through a revolute joint which can be directly actuated by a
servo-motor which controls the pitch angle θ of B2 (see [47–49] for a more detailed description).

In fact, the dynamical equations of this quadrotor are quite similar to the slider dynamics (4.30) since they
can be written: ⎧⎪⎪⎨

⎪⎪⎩
ẍ = cos(ψ)p
ÿ = sin(ψ)p
ψ̇ = v2
θ̇ = v3,

(4.31)

where p = sin(θ)u1, θ being the pitch angle. It can be pointed out that the longitudinal propulsion force
u1 = k

∑4
i=1 ω

2
i , where k > 0 and ωi denote the rotational velocities of the propellers, remains always positive

so that the propellers cannot provide forces in the opposite direction. This can be realized using the pitch angle
variable θ which is directly actuated. In fact, it can be easily shown that system (4.31) is flat using the flat
outputs (x, y, θ)�. The corresponding decoupling matrix is singular when the longitudinal acceleration p is zero
(as in the slider case) and when sin θ = 0. Therefore, fisrt experimental results have been obtained for tracking
non singular reference trajectories for our quadrotor through the flatness approach (see [47–49] for details).

More precisely, in order to test control laws in practice, a whole experimental system has been developed
to produce the drone coordinates in real time for feedback control or data recording for diagnosis. A motion
capture system with 6 Optitrack cameras placed around the tracking area allows us to track the position and
orientation of the drone at 250 Hz with a sub-millimeter accuracy. We also obtain from the system the tilt angle
of propellers owing to the orange part (see Fig. 6) where reflective markers are located. A remote computer
linked to this Optitrack system gets back the position and orientation data; a software computes the control
law algorithm and sends the controls to the drone via a ZigBee communication every 30 ms. Figure 7 shows the
experimental environment of our quadrotor.

We have applied a dynamic linearizing feedback law using the flat outputs to make the quadrotor track a
circle at a mean longitudinal velocity of about 0.3 m/s. First experimental results are displayed in Figure 8. The
cartesian reference trajectory is plotted in red, the trajectory of the drone is the blue curve and the orientation
of the drone is represented by triangles with arrows pointing in the longitudinal axis of the vehicle. During
the circle tracking, the tilting angle θ is maintained to the constant value θ = 0.8 rad. The control gains αji
(see (4.10) in Prop. 4.2) have been chosen equal to α0

x = α0
y = 0.21, α1

x = α1
y = 2, α2

x = α2
y = 0.26.
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Figure 7. The experimental environment.

Figure 8. Experimental tracking of a circle by the terrestrial drone.

In Figure 9, some curves are displayed showing different state variables of the system during the circle
tracking. Figures 9a, 9c, 9e and 9b, 9d, 9f represent respectively x, ẋ, ẍ and y, ẏ, ÿ. The red curves represent
the reference trajectories.

The result is quite satisfying despite noise disturbances and also friction effects which have been neglected in
the control design which presents in fact a certain robustness. In addition to friction, we have chosen low gains
in the control law in order to delay the slider’s trajectory regarding to the reference one. This allows to avoid the
singularity of the control law ensuring a strict positive acceleration. It must be pointed that the first and second
derivatives of the measured positions x and y of the drone, obtained through the motion capture system, have
been computed numerically and filtered. Nevertheless, due to important measurement noises, the acceleration
signals remain noisy, but their average behavior follows quite well the corresponding reference signals.

Now we have seen how to proceed to avoid singularities when asymptotically tracking non singular reference
trajectories, the question (Q2) remains, on what can be done when the linearizing control laws become singular,
i.e. when the longitunal velocity (resp. acceleration) becomes too small for the unicycle robot (resp. the slider).
Since the two systems are STLC, the idea is to elaborate time-varying (periodic) feedback laws to obtain
asymptotic point stabilization for both systems (as shown in [11]), and to “switch” to those feedback laws when
the linearizing control laws become too “high” (i.e. when the determinant of the decoupling matrix becomes
too small). This kind of “hybrid” strategy switching to a stabilizing feedback law when the trajectory enters a
sufficiently small disk centered at the origin has already been used for example in [29, 39, 50].
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a) b)

c) d)

e) f)

Figure 9. Trajectories x(t), ẋ(t), ẍ(t) and y(t), ẏ(t), ÿ(t) of the drone. The corresponding
reference trajectories are plotted in red. (Color online).
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4.2. Fixed point stabilization

As we have seen in the previous section, state feedback laws, at least continuous, have to be time-varying to
asymptotically stabilize fixed equilibrium points. For that purpose, we choose to elaborate such feedback control
laws using the approach developed in [14] for dynamical systems of the form:

Ẋ = vf(X,u), (4.32)

where the state vector X belongs to R
n, u ∈ R

m and v ∈ R are the control inputs. This method has been
successfully applied to equilibrium point stabilization of the unicycle robot (see [14]). We will extend the
approach to the slider case.
Let us first recall the main stabilization results obtained in [14], in the particular case when m = dim(u) = 1.

Theorem 4.11 ([14]). Let us consider the following control inputs:{
u(X, t) = w(X)g(t)
v(X, t) = −q(X,u(X, t)), (4.33)

where:

(1)
g ∈ C∞(R, [−1; 1])

∀t ∈ R g(t+ T ) = g(t)
∀t ∈ R, ∃l ∈ N − {0} g(l)(t) 
= 0

for example, g(t) = sin(ωt),

(2)
w : R

n → R, w ∈ C∞(Rn,R)
w(0) = 0

∀X 
= 0, w(X) = 0 ⇒ q(X, 0) 
= 0{∀X s.t. w(X) 
= 0, ∃r ∈ N s.t.

∀u ∈ [−|w(X)|, |w(X)|], ∂rq
∂ur 
= 0,

(3)
q : R

n × R → R

q(X,u) =
∑n

i=1
∂V
∂Xi

(x)fi(X,u),

where V is a Lyapunov function candidate such that:

V : R
n → R

V (X) → +∞ when |X | → +∞, V (0) = 0,
∀X ∈ R

n − {0} V (X) > 0.

If the control laws are chosen as in equation (4.33), then the origin 0 ∈ R
n is globally asymptotically stable for

the closed-loop system (4.32) Ẋ = v(X, t)f(X,u(X, t)).

This result has been obtained in [14], considering the Lyapunov function V (X) and LaSalle’s invariance
principle in the periodic case (see e.g. [20], Thm. 55.1). In fact, the result can be extended to the case m ≥ 2
as shown in [14]. Let us now first apply this result to the fixed point stabilization of the unicycle robot.

4.2.1. The unicycle robot
We first consider the reduced system from the kinematic equations (2.4) of the unicycle robot:{

ẋ = v1 cos(ψ)
ẏ = v1 sin(ψ). (4.34)
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Theorem 4.11 applies with X = (x, y)�, the controls v = v1, u = ψ, f(X,u) = (cos(ψ), sin(ψ))� and V (X) =
x2 + y2

2
. Then,

q(X,u) = x cos(ψ) + y sin(ψ), w(X) = y, g(t) = sin(ωt) (4.35)

satisfy assumptions of Theorem 4.11 and the following control laws:{
ψ = y sin(ωt),
v1 = −q(X,u(X, t)) = −x cos(y sin(ωt)) − y sin(y sin(ωt)) (4.36)

globally stabilize the origin of the reduced system (4.34). The time-derivative of the Lyapunov function V is
given by

V̇ (X, t) = −(x cos(ψ) + y sin(ψ))2 ≤ 0. (4.37)

From LaSalle’s invariance principle, it is necessary to excite the control variable ψ as long as y 
= 0, to make
the largest invariant subset included in {X s.t. V̇ (X) = 0} equal to the origin (x, y) = (0, 0). This is realized by
taking for example the suggested control ψ = y sin(ωt) in equation (4.36).

To obtain now stabilizing control laws for the complete kinematic system (2.4), we have to consider the
problem of cascaded systems using backstepping techniques (see e.g. [25, 40, 46, 51]). More precisely, a system
obtained by adding pure integrators to a previous system which can be (globally) asymptotically stabilized
by means of a smooth time-varying feedback law, can also be (globally) asymptotically stabilized by means
of a smooth time-varying feedback law. This is a straightforward time-varying formulation of a result due to
Tsinias [51]. More precisely, we recall the following lemma which has been proved in ([14], Lem. 1).

Lemma 4.12. Let us consider system Σ given by:

Ẋ = F (X,u1, u2), X ∈ R
n,

u = (u1, u2)� : R
n × R → R

m1 × R
m2 ,

(4.38)

F belonging to C∞(Rn × R
m1 × R

m2 ; Rn). We make the following assumption on system (4.38):

A1: There exists a Cr T -periodic time-varying feedback law u(X, t) such that u(0, t) = 0 for all t ∈ R, making
0 in R

n a globally asymptotically stable equilibrium point of Ẋ = F (X,u(X, t)).
Under assumption A1, the following cascaded system Σ̄{

Ẋ = F (X, v1, y), X ∈ R
n

ẏ = v2
, (4.39)

where y ∈ R
m2 , the control v = (v1, v2)� ∈ R

m1 × R
m2 , is such that 0 in R

n × R
m2 is globally asymptotically

stabilizable using a Cr−1 T -periodic time-varying feedback law v(X, y, t) such that v(0, 0, t) = 0 for all t ∈ R.

Sketch of proof. From assumption A1, using a classical converse of Lyapunov’s second theorem, we deduce that
system (4.38) admits a T -periodic Lyapunov function V (X, t). Let us consider the following Lyapunov function
candidate for system Σ̄:

V̄ (X, y, t) =
1
2
| y − u2(X, t) |2 +V (X, t), (4.40)

and the following time-varying feedback law:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
v1(X, y, t) = u1(X, t),

v2(X, y, t) =
∂u2

∂t
(X, t) − (y − u2(X, t))

+
n∑
i=1

∂u2

∂Xi
(X, t)Fi(X, v1(X, t), y) −H(X,u1(X, t), u2(X, t), y)

(
∂V

∂X
(X, t)

)�
,

(4.41)

where H ∈ C∞(Rn × R
m1 × R

m2 × R
m2 ;L(Rm2 ; Rn)) satisfies:

F (X,u1, y) − F (X,u1, u2) = H�(X,u1, u2, y)(y − u2), (4.42)
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L(Rm2 ; Rn) denoting the set of linear maps from R
m2 into R

n. Computing the time-derivative of V̄ (X, y, t), it
can be easily shown that the time-varying feedback law (4.41) makes V̄ decrease and the conclusion holds. For
details (see [14], Lem. 1). �

Applying this result to system (2.4), the augmented following Lyapunov function can be considered:

V̄ = V (x, y) +
(ψ − y sin(ωt))2

2
, (4.43)

with the following control laws:{
v1 = −K1(x cos(ψ) + y sin(ψ)),
Ω = ẏ sin(ωt) + ωy cos(ωt) −K2(ψ − y sin(ωt)), (4.44)

K1 and K2 being strictly positive constants, so that the time-derivative of V̄ can be written:

˙̄V (x, y, ψ, t) = −K1(x cos(ψ) + y sin(ψ))2 −K2(ψ − y sin(ωt))2 ≤ 0. (4.45)

Once more, the LaSalle’s invariance principle allows to conclude to the asymptotic stabilization of the origin
of the unicycle (2.4), since { ˙̄V = 0} implies that ψ = y sin(ωt) and we are reduced to the previous case of
system (4.34).

Simulation results on a unicycle robot:
The simulation experiment is displayed on Figure 10. The previous periodic control law (4.44) is implemented
with K1 = 5, K2 = 1 and ω = 3. We can see on Figure 10 that this method is able to stabilize the unicycle
robot to a fixed point (xref , yref) with an imposed orientation angle ψref .

Moreover, the simulation experiment corresponding to the hybrid control strategy is displayed on Figure 11.

When x2 + y2 =
√

2
10

, η1 is sufficiently small and we have to switch to the time-periodic feedback law to obtain

in a final step the stabilization of the robot at the origin (see also [39]). It can be seen on Figure 11 that η1 is
not zero before the commutation time.

4.2.2. The slider
We can apply the same approach to stabilize the velocity ẋ, ẏ of the slider to the origin, and therefore to

make the robot stop at a given cartesian position. As for the unicycle robot, we first consider the reduced system
from the kinematic equations (2.6) of the slider:{

mẍ = τ1 cos(ψ)
mÿ = τ1 sin(ψ). (4.46)

Theorem 4.11 applies with X = (ẋ, ẏ)�, the controls v = τ1
m , u = ψ, f(X,u) = (cos(ψ), sin(ψ))� and V (X) =

ẋ2 + ẏ2

2
. Then,

q(X,u) = ẋ cos(ψ) + ẏ sin(ψ), w(X) = ẏ, g(t) = sin(ωt) (4.47)

satisfy assumptions of Theorem 4.11 and the following control laws:{
ψ = ẏ sin(ωt),
v = −q(X,u(X, t)) = −ẋ cos(ẏ sin(ωt)) − ẏ sin(ẏ sin(ωt)) (4.48)

globally stabilize the origin of the reduced system (4.46). The time-derivative of the Lyapunov function V is
given by

V̇ (X, t) = −(ẋ cos(ψ) + ẏ sin(ψ))2 ≤ 0. (4.49)
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a) b)

c) d)

Figure 10. Time-periodic feedback for unicycle stabilization at the rest point xref = 0, yref = 0
and ψref = 0. The initial state is x0 = 0, y0 = 3, ψ = 0 and gains are K1 = 5, K2 = 1 and
ω = 3.

From LaSalle’s invariance principle, it is necessary to excite the control variable ψ as long as ẏ 
= 0, to make
the largest invariant subset included in {X s.t. V̇ (X) = 0} equal to the origin (ẋ, ẏ) = (0, 0). This is realized by
taking for example the suggested control ψ = ẏ sin(ωt) in equation (4.48).

In fact, the complete dynamical equations of the slider are given by (2.6) and we would have to apply a
backstepping approach to define the physical control input τ2 controlling the angular acceleration ψ̈. But, as
explained in Remark 4.10, we can simplify the control of the slider considering equations (4.30) where the
angular velocity ψ̇ is considered as the control variable v2 so that the backstepping method has to be applied
once, and similarly to the unicycle robot, we can consider the augmented following Lyapunov function:

V̄ = V (ẋ, ẏ) +
(ψ − ẏ sin(ωt))2

2
, (4.50)
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Figure 11. Tracking a singular reference trajectory for the unicycle robot using dynamic
feedback linearization and time-periodic feedback for final stabilization at the rest point.

with the following control laws:{
v = −K1(ẋ cos(ψ) + ẏ sin(ψ)),
v2 = ÿ sin(ωt) + ωẏ cos(ωt) −K2(ψ − ẏ sin(ωt)), (4.51)

K1 and K2 being strictly positive constants, so that the time-derivative of V̄ can be written:

˙̄V (ẋ, ẏ, ψ, t) = −K1(ẋ cos(ψ) + ẏ sin(ψ))2 −K2(ψ − ẏ sin(ωt))2 ≤ 0. (4.52)

Once more, the LaSalle’s invariance principle allows to conclude to the asymptotic stabilization of the origin
of (4.30), since { ˙̄V = 0} implies that ψ = ẏ sin(ωt) and we are reduced to the previous case of system (4.46).
This control law has been successfully applied to stop the slider as shown in Figures 12 and 13 (see also [47,48]).
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Figure 12. The slider in the cartesian plane, controlled with a time-varying periodic feedback law.

The Figure 12 shows the slider’s cartesian trajectory, with initial conditions x(0) = y(0) = −1m, ẋ(0) =
ẏ(0) = 0.6 m/s, ẍ(0) = 0.3m.s−2, ÿ(0) = 0.2m.s−2 and ψ(0) = 0.9 rad. The vehicle is represented by triangles
with arrows representing the orientation of the slider at different regular time intervals. The time-varying control
laws are known to provide low convergence rates, but we can increase the time response through the gains K1

and K2. In Figure 13, x(t), y(t), ψ(t), ẋ(t) and ẏ(t) are displayed, and it can be checked that, as expected, the
vehicle stops (ẋ(t) and ẏ(t) converging to zero) with a zero final orientation.

Let us point out that this feedback law ensures the regulation to zero of the velocities ẋ, ẏ and the orientation
angle ψ but if we want to regulate the position vector of the slider to a fixed chosen position, we have to elaborate
another control design. To that purpose, we can consider the error tracking system (2.14) in the case of a reference
fixed equilibrium point, that is with τ1r = τ2r = 0. System can then be rewritten as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
Σ1 :

⎛
⎜⎝
ė1
ė2
ė3
ė4

⎞
⎟⎠ =

⎛
⎜⎜⎝

0 ψ̇ 1 0
−ψ̇ 0 0 1
0 0 − d1

m ψ̇

0 0 −ψ̇ − d2
m

⎞
⎟⎟⎠
⎛
⎜⎝
e1
e2
e3
e4

⎞
⎟⎠+

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠u1,

ψ̈ = − d3
I ψ̇ + u2,

(4.53)

(d3, d2, d1 > 0 being the viscous friction coefficients (see (3.7)) with u1 = τ1
m and u2 = τ2

I . Let Σ1 be the
sub-system of (4.53) described by the first four equations of system (4.53), i.e. by the dynamics of the ei,
i = 1, . . . , 4. Σ1 can be seen as a time-varying linear system, the state matrix A(t) of which being time-varying
through the evolution of the orientation angle ψ(t). A first idea, inspired from [27], is to define u1 ensuring
the stabilization of the time-varying system Σ1. The second step is then to use u2, to make the yaw rate ψ̇
persistently exciting when necessary.

Stabilization of the sub-system Σ1:
The following proposition gives a stabilizing control law u1(t) inspired from [27] making the origin of Σ1 globally
exponentially stable under some conditions on ψ̇(t).
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Figure 13. The cartesian trajectory, x, y, ψ, ẋ and ẏ of the slider.

Proposition 4.13. Let us consider Σ1 in closed-loop with u1 defined as follows:

u1(t) =
1
m

(−k3e3 + k4ψ̇(t)e4 − k1e1 + k2ψ̇(t)e2), (4.54)

where the control gains ki satisfy the following inequalities:

k3 > d2 − d1,

k4 =
mk2(k2 + k3 + d1 − d2)

d2k2 +mk1
,

0 < k1 < (k3 + d1 − d2)d2m ,
k2 > 0.

(4.55)

If ψ̇(t) satisfies the assumptions of Proposition 3.11, then system Σ1 in closed-loop with (4.54) is globally
exponentially stable.

Proof. Let us suppose that the above inequalities (4.55) are satisfied and let us define λ and μ (λ < μ) as
follows:

λ+ μ =
k3 + d1

m
,

λμ =
k1

m
,

(4.56)

λ and μ are then roots of the polynomial P (x) defined by:

P (x) = mx2 − (k3 + d1)x+ k1. (4.57)

The first inequality of (4.55) allows to write:

0 <
d2

m
<
k3 + d1

m
· (4.58)
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Moreover,

P (0) = P

(
k3 + d1

m

)
= k1 > 0,

and

P

(
d2

m

)
= m

(
d2

m

)2

− (k3 + d1)
d2

m
+ k1 = (d2 − k3 − d1)

d2

m
+ k1 < 0.

The intermediate value theorem shows that the roots λ and μ are such that:

• 0 < λ <
d2

m
and P (λ) = 0;

• d2

m
< μ <

k3 + d1

m
and P (μ) = 0;

• 0 < λ <
d2

m
< μ.

These properties are useful to show the following inequalities

0 < μ− λ,
0 < d2 −mλ,
0 < mμ− d2,

0 < m2λμ+ d2k2,
0 < k2 +mλ,
0 < k2 +mμ.

(4.59)

System Σ1 in closed-loop with u1(t) given at Proposition 4.13, can then be written:

⎛
⎜⎝
ė1
ė2
ė3
ė4

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0 ψ̇(t) 1 0
−ψ̇(t) 0 0 1

−k1

m

k2

m
ψ̇(t) −k3 + d1

m
(
k4

m
+ 1)ψ̇(t)

0 0 −ψ̇(t) −d2

m

⎞
⎟⎟⎟⎟⎟⎠
⎛
⎜⎝
e1
e2
e3
e4

⎞
⎟⎠ . (4.60)

This equation can be rewritten:

⎛
⎜⎝
ė1
ė2
ė3
ė4

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0 ψ̇(t) 1 0
−ψ̇(t) 0 0 1

−λμ k2

m
ψ̇(t) −(λ+ μ)

(k2 +mλ)(k2 +mμ)
m2λμ+ d2k2

ψ̇(t)

0 0 −ψ̇(t) −d2

m

⎞
⎟⎟⎟⎟⎟⎠
⎛
⎜⎝
e1
e2
e3
e4

⎞
⎟⎠ . (4.61)

Let us now introduce a change of coordinates and let us denote (x1, x2, x3, x4)� the new state vector, linked
to e by the following transformations (4.62) and (4.63):

⎛
⎜⎝
e1
e2
e3
e4

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0
−1
μ− λ

1
μ− λ

m

d2
−m

d2
0 0

0 0
μ

μ− λ

−λ
μ− λ

0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
⎛
⎜⎝
x1

x2

x3

x4

⎞
⎟⎠ , (4.62)
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⎛
⎜⎝
x1

x2

x3

x4

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

0
d2

m
0 1

0 0 0 1
λ 0 1 0
μ 0 1 0

⎞
⎟⎟⎟⎠
⎛
⎜⎝
e1
e2
e3
e4

⎞
⎟⎠ . (4.63)

Let us point out that from the gains’choice (4.59) and by construction of the roots we have μ−λ > 0. The new
system has then the following form: ⎛

⎜⎝
ẋ1

ẋ2

ẋ3

ẋ4

⎞
⎟⎠ = A1(t)

⎛
⎜⎝
x1

x2

x3

x4

⎞
⎟⎠ , (4.64)

with

A1(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 − mμ− d2

m(μ− λ)
ψ̇(t) − d2 −mλ

m(μ− λ)
ψ̇(t)

0 −d2

m
− μ

(μ− λ)
ψ̇(t)

λ

μ− λ
ψ̇(t)

k2 +mλ

d2
ψ̇(t)

mμ(k2 +mλ)(d2 −mλ)
d2(m2λμ+ d2k2)

ψ̇(t) −μ 0

k2 +mμ

d2
ψ̇(t) −mλ(k2 +mμ)(mμ− d2)

d2(m2λμ+ d2k2)
ψ̇(t) 0 −λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.65)

The inequalities (4.59) allow to consider the following Lyapunov function candidate V :

V (x1, x2, x3, x4) =
m

2d2
x2

1 +
m(d2 −mλ)(mμ − d2)

2d2(m2λμ+ d2k2)
x2

2 +
(mμ− d2)

2(k2 +mλ)(μ − λ)
x2

3 +
(d2 −mλ)

2(k2 +mμ)(μ− λ)
x2

4·
(4.66)

Computing the time-derivative of V along the solutions of the dynamical system (4.64), we obtain:

V̇ (x1, x2, x3, x4) = − (d2 −mλ)(mμ− d2)
(m2λμ+ d2k2)

x2
2 −

μ(mμ− d2)
(k2 +mλ)(μ− λ)

x2
3 −

λ(d2 −mλ)
(k2 +mμ)(μ− λ)

x2
4· (4.67)

Let us now introduce the matrix C such that:

C =

(
0
√

(mμ− d2)(d2 −mλ)
m2λμ+ d2k2

√
μ(mμ− d2)

(μ− λ)(k2 +mλ)

√
λ(d2 −mλ)

(μ− λ)(k2 +mμ)

)
, (4.68)

then we can write
V̇ = −x�C�(t)C(t)x ≤ 0. (4.69)

The origin of system (4.64) is globally exponentially stable if the pair (A1(ψ̇(t)), C) is uniformly completely
observable (cf. [23], Chaps. 3, 3.4, 3.5). From Proposition 3.11 and by duality arguments, the pair (A�

1 (ψ̇(t)), C�)
is uniformly completely controllable if the pair (A�

1 (ψ̇(t)), C�) satisfies the Kalman controllability condition if
ψ̇(t) 
= 0 (this rank condition can be easily checked see e.g. [47], Chap. 2) and if ψ̇(t) satisfies the assumptions (i),
(ii) and (iii) of Proposition 3.11, which ends the proof. �
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Stabilization of the complete system (4.53):
The idea is now to find the control law u2(t) making the yaw rate ψ̇(t) satisfying the assumptions of Proposi-
tion 3.11 and in addition making the orientation angle ψ tend to a desired orientation ψr. In a first step, from
Remark 4.10 and using backstepping arguments, we can consider ψ̇ as the new control input. Let us introduce
the following Lyapunov function candidate:

V̄ = V +
1
2

(ψ − ψr +Ke2 sin(ωt))2 , (4.70)

where V is given by (4.66). We can prove the stabilization result for the slider in the following proposition.

Proposition 4.14. The control law u1 given by (4.54) and ψ̇ given by (4.71) solve the fixed point stabilization
problem for the slider (4.53).

Proof. Computing the time-derivative of V̄ gives:

˙̄V = − (d2 −Mλ)(Mμ− d2)
(M2λμ+ d2k2)

x2
2 −

μ(Mμ− d2)
(k2 +Mλ)(μ− λ)

x2
3 −

λ(d2 −Mλ)
(k2 +Mμ)(μ− λ)

x2
4

+
(
(1 −Ke1 sin(ωt))ψ̇ − ωKe2 cos(ωt) +Ke4 sin(ωt)

)
(ψ − ψr +Ke2 sin(ωt)) .

Then, the following control input:

ψ̇ =
−K1 (ψ − ψr +Ke2 sin(ωt)) −Ke4 sin(ωt) +Kωe2 cos(ωt)

1 −Ke1 sin(ωt)
, (4.71)

with 1 −Ke1 sin(ωt) > 0, produces:

˙̄V = − (d2 −Mλ)(Mμ− d2)
(M2λμ+ d2k2)

x2
2 −

μ(Mμ− d2)
(k2 +Mλ)(μ− λ)

x2
3 −

λ(d2 −Mλ)
(k2 +Mμ)(μ− λ)

x2
4

−K1 (ψ − ψr +Ke2 sin(ωt))2 .

(K should be chosen sufficiently small to avoid the singularity 1−Ke1 sin(ωt) = 0 (see [47], Chap. 4, Sect. 4.5.6)
for details). It is clear that ˙̄V ≤ 0. We can now apply LaSalle arguments for time-varying periodic systems. More
precisely, the trajectories of the closed-loop system converge to the largest invariant sub-system I included in
{ ˙̄V = 0}.

I ⊆ { ˙̄V = 0} = {x2 = 0, x3 = 0, x4 = 0, ψ = ψr −Ke2 sin(ωt)}.
Nevertheless, from (4.64) and (4.65), since x3 = x4 = 0, we can deduce that ẋ1 = 0. Therefore, from (4.62) and
since x2 = 0, we have e2 = m

d2
x1, and then ė2 = 0. Consequently, e2 remains constant in I which implies that

the control ψ̇ in I has the following expression:

ψ̇ = −Kωe2 cos(ωt), (4.72)

where e2 is constant. To conclude, if ω is chosen sufficiently small, ψ̇ satisfies all the assumptions of Proposi-
tion 3.11 in I and, from Proposition 4.13, x = 0 is globally exponentially stable which implies that e2 tends to
zero. Consequently, ψ̇ tends to zero and ψ tends to the desired reference value ψr, which concludes the fact that
the periodic time-varying feedback law (4.71) ensures the fixed point stabilization problem. The stabilization of
the whole slider’s dynamics (4.53) can then be achieved through backstepping techniques (see Rem. 4.15). �

This periodic control law was tested in simulation to stabilize the slider system to a fixed point, as displayed
in Figures 14 and 15. More simulation results are available and detailed in [47].
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a) b)

Figure 14. Slider point stabilization, Pref = (xref = 0.5, yref = 0.5, ψref = −0.75), Pinit =
(xinit = −1.6, yinit = 0, ψinit = −1.218), gains are k1 = 10, k3 = 3, k4 = 15, K1 = 1, K = 1,
ω = 3. (a) Slider trajectory on the x/y plane, (b) associated Lyapunov function (4.70).

Figure 15. Slider point stabilization, Pref = (xref = 0.5, yref = 0.5, ψref = −0.75), Pinit =
(xinit = −1.6, yinit = 0, ψinit = −1.218), gains are k1 = 10, k3 = 3, k4 = 15, K1 = 1, K = 1,
ω = 3.
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Remark 4.15. At that step, ψ̇ is considered as a virtual control input. Using backstepping arguments, it is
possible to derive the expression of the physical control input u2 from system’s dynamics (4.53). For details
(see [47], Chap. 4).

Remark 4.16. This control design, could be, in some sense, compared to the “phantom tracking method”
developed by Coron in [12].

5. Conclusion and perspectives

It has been shown in the present paper that the unicycle dynamics shares similarities with the slider dynamics.
Their common structure makes possible a comparison between these two systems in several fields of interest,
such as stabilizability and controllability properties. Moreover, Brockett’s necessary condition is not satisfied
for both systems and therefore limits the use of continuous state feedback laws. Indeed, those control laws can
stabilize neither unicycle systems nor sliders at a fixed point. In this paper, we have elaborated time-varying
control laws stabilizing unicycle robots or sliders at a fixed point with a chosen reference orientation, and
flatness-based feedback laws to track exciting reference trajectories. Therefore, a switching control strategy can
be applied to track moving reference trajectories and ensure final stabilization at rest equilibrium points.

Let us point out that, in our study, the time-varying control law used for the slider fixed point stabilization
can be extended to posture tracking of any reference trajectory. In that case, it has been shown in [47] that the
convergence is practical and ensured in a neighborhood of the reference trajectory. The size of this neighborhood
is highly dependent on the gains used in the control law. For non admissible trajectory, this result is not surprising
but one can ask about admissible trajectories. Unfortunately, it has been demonstrated in [28] that universal
stabilizers, even in the case of time-varying control laws, cannot stabilize systems like unicycles or sliders for
both point stabilization and exciting reference trajectories. This issue was briefly introduced in [47]. It could be
of interest to put this time-varying control law into perspective with regards to the results from [28].
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[1] B. d’Andréa-Novel and M. De Lara, Control Theory for Engineers. Springer (2013).
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[25] P. Kokotović and H. Sussmann, A positive real condition for global stabilization of nonlinear systems. Syst. Control Lett. 13

(1989) 125–133.
[26] I. Kolmanovsky and N.H. McClamroch, Developments in non holonomic control problems. IEEE Control Syst. 15 (1995)

20-36.
[27] E. Lefeber, K.Y. Pettersen and H. Nijmeijer, Tracking control of an under-actuated ship. IEEE Trans. Control System Technol.

11 (2003) 52–61.
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