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ONE-DIMENSIONAL SWIMMERS IN VISCOUS FLUIDS:
DYNAMICS, CONTROLLABILITY, AND EXISTENCE

OF OPTIMAL CONTROLS

Gianni Dal Maso1, Antonio DeSimone1 and Marco Morandotti2

Abstract. In this paper we study a mathematical model of one-dimensional swimmers performing
a planar motion while fully immersed in a viscous fluid. The swimmers are assumed to be of small
size, and all inertial effects are neglected. Hydrodynamic interactions are treated in a simplified way,
using the local drag approximation of resistive force theory. We prove existence and uniqueness of the
solution of the equations of motion driven by shape changes of the swimmer. Moreover, we prove a
controllability result showing that given any pair of initial and final states, there exists a history of
shape changes such that the resulting motion takes the swimmer from the initial to the final state. We
give a constructive proof, based on the composition of elementary maneuvers (straightening and its
inverse, rotation, translation), each of which represents the solution of an interesting motion planning
problem. Finally, we prove the existence of solutions for the optimal control problem of finding, among
the histories of shape changes taking the swimmer from an initial to a final state, the one of minimal
energetic cost.
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1. Introduction

In this paper we study the self-propelled planar motions of a one-dimensional swimmer in an infinite viscous
three-dimensional fluid. We are interested in the swimming strategies of small organisms that achieve self-
propulsion by propagating bending waves along their slender bodies (such as, for instance, sperm cells and
Caenorhabditis elegans). At these length scales, viscosity dominates over inertia: accordingly, we ignore all
inertial effects in our analysis.

The study of the self-propulsion strategies of microscopic living organisms is attracting increasing attention,
starting from seminal works by Taylor [26], Lighthill [21], Purcell [24], and Childress [8]. We refer the reader to
the recent review [20] for a comprehensive list of references. Among the recent mathematical contributions we
quote [2, 4, 5, 7, 14, 19, 25]. Many of these papers approach swimming problems within the framework of control
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theory, and this is exploited in [1, 3] for the numerical computation of energetically optimal strokes. While the
connection between swimming and control theory is very natural, only recently has this point of view started
to emerge and become widely appreciated, see [11] and the other chapters in the same volume.

When inertial forces are neglected, and external forces such as gravity are not present (neutrally buoyant
swimmers), the equations of motion for a swimmer become the statements that the total viscous force and
torque exerted by the surrounding fluid vanish. In order to take advantage of the simplifications deriving from
the special one-dimensional geometry of our swimmers, we adopt here the local drag approximation of Resistive
Force Theory, first introduced in [15], then also used in [23], and further discussed in [18]. It is a classical
and popular theory widely spread among biological fluid dynamicists, which has recently been proved to be
accurate and robust in the study of the motion of one-dimensional bodies in the length scales and regimes we
are interested in, as it is shown, e.g., in [13]. According to resistive force theory, the external fluid exerts on
the swimmer a viscous force per unit length which, at each point of the swimmer, is proportional to the local
tangential and normal velocities at that point, through positive resistance coefficients denoted by Cτ and Cν ,
respectively.

For every t in the time interval [0, T ], let s �→ χ(s, t) be the parametrization of the swimmer position with
respect to an absolute external reference frame (lab frame), where s ∈ [0, L] is the arc length parameter. It is
possible to factorize this function as χ(s, t) = r(t) ◦ ξ(s, t), where r(t) is a time dependent rigid motion and
s �→ ξ(s, t) describes the shape of the swimmer at time t with respect to a reference system moving with the
swimmer (body frame).

We suppose that the shape function ξ is given. The first problem we address in this paper is to determine
the rigid motion t �→ r(t) that results from a prescribed time history of shape changes t �→ ξ(s, t). This is
obtained by imposing that χ = r◦ξ satisfies the equations of motion (the resultant of viscous forces and torques
generated by the interaction between the swimmer and the fluid vanish for every t) and solving the resulting
force and torque balance for r in terms of the given ξ.

Our main result on this first problem is that, if ξ satisfies suitable regularity conditions which are listed in
the hypotheses of Theorem 3.3, then the rigid motion r(t) can be determined as the unique solution of a system
of ordinary differential equations in the independent variable t. Therefore, for every initial condition r0, there
exists a unique r(t) such that the resulting function χ(s, t) = r(t) ◦ ξ(s, t) satisfies the force and torque balance.
In other words, Theorem 3.3 states that looking for a motion that satisfies the force and torque balance is
equivalent to assigning the shape function and solving the equations of motion.

The second problem we address in this paper is that of controllability. Given a time interval [0, T ] and arbitrary
initial and final states of the swimmer described by the arc length parametrizations s �→ χin(s) and s �→ χfin(s),
can we find a self-propelled motion χ(s, t) in the lab frame such that χ(s, 0) = χin(s) and χ(s, T ) = χfin(s) ?
By a self-propelled motion we mean one such that the equations of motion are satisfied which, in the case of
self-propulsion, reduce to the vanishing of the total viscous force and torque. The answer is affirmative and
is contained in Theorem 4.1. Our proof is constructive. Indeed, we exhibit an explicit procedure to transfer
χin onto χfin based on the composition of elementary maneuvers: straightening of a curved configuration and
the corresponding inverse maneuver (i.e., how to map a straight segment onto a given curved configuration),
rotation of a straight segment around its barycenter, translation of a segment along its axis. Solving the motion
planning problem for these elementary maneuvers is interesting in its own right, independently of the general
controllability result, and this is done in Section 4.

More in detail, given two configurations χin in χfin, we show how to straighten them in a segment-like
configuration, say Σin and Σfin, respectively, thanks to Theorem 3.3. Then we show how to transfer Σin into
Σfin, by explicitly constructing a way to make a rectilinear swimmer to translate (without rotating) along its
axis, see Section 4.1, and a way to make it rotate (without translating) about its barycenter, see Section 4.2.
These constructions use suitable bending wave forms that propagate along the body of the swimmer.

It is interesting to notice, and this will be clear in Section 4, that a very convenient way to describe such
transformations is by using the angle that the tangent of the swimmer makes with the positive horizontal axis.
This angle is given as a function of the time t and of the arc length parameter s. This agrees with the traditional
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approach of prescribing the curvature function, since the latter can be recovered by differentiating the angle
with respect to s (see Rem. 3.2). This classical approach is motivated by the fact that the swimmers we are
interested in accomplish the shape changes required for force and torque balance by relative sliding of filaments
along their “spine”, hence inducing local curvature changes.

The last problem we address is the existence of an energetically optimal swimming strategy. Here again
we rely crucially on the simplification yielded by Resistive Force Theory since obtaining a similar result when
the fluid-swimmer interaction is modeled by the Stokes equations is much more involved. In Theorem 5.1 we
prove that, under suitable conditions, there exists a self-propelled motion χ(s, t) minimizing the power expended.
The key hypothesis is a sort of non-interpenetration condition for the enlarged body obtained by thickening the
curve describing the swimmer to a tube of constant thickness. This condition rules out self-intersections of the
swimmer and yields an a priori bound on its curvature.

2. Mathematical statement of the problem

In this section we describe the mathematical setting for studying the swimming problem by adapting to our
specific case of a one-dimensional swimmer with a local fluid-swimmer interaction the framework introduced
and described in [10, 22].

Throughout the paper we fix L > 0 to be the length of the swimmer and T > 0 so that [0, T ] is the time
interval in which the motion occurs. We study planar motions in three dimensions, and therefore the position
of each material point of the swimmer will be described by a function χ : [0, L]×[0, T ] → R

2, where s ∈ [0, L] is
the arc length parameter; this request means that for every t the map s �→ χ(s, t) is Lipschitz continuous from
[0, L] to R

2 and |χ′(s, t)| ≡ 1, where χ′ := ∂χ/∂s. As for the derivative with respect to t, χ̇ := ∂χ/∂t is intended
in the distributional sense as the object that makes the following equality hold true∫ L

0

∫ T

0

χ̇(s, t)ϕ(s, t) dsdt = −
∫ L

0

∫ T

0

χ(s, t)
∂ϕ(s, t)

∂t
dsdt,

for every ϕ ∈ C∞
c ((0, L)×(0, T )).

We now introduce the local expressions for the line densities f(s, t) and m(s, t) of viscous force and torque,
as dictated by resistive force theory. Since f(s, t) lies in the plane of the motion, m(s, t) is orthogonal to it and
is identified with a scalar. They are given by

f(s, t) = − [Cτ χ̇τ (s, t)χ′(s, t) + Cν χ̇ν(s, t)Jχ′(s, t)] = −Kχ(s, t)χ̇(s, t),
m(s, t) = 〈f(s, t), Jχ(s, t)〉 = −〈Cτ χ̇τ (s, t)χ′(s, t) + Cν χ̇ν(s, t)Jχ′(s, t), Jχ(s, t)〉

= − 〈Kχ(s, t)χ̇(s, t), Jχ(s, t)〉 . (2.1)

Here, Cτ and Cν are positive constants, χ̇τ and χ̇ν are the tangential and normal components of the velocity χ̇,

i.e., χ̇τ (s, t) = 〈χ̇(s, t), χ′(s, t)〉 and χ̇ν(s, t) = 〈χ̇(s, t), Jχ′(s, t)〉, while J =
[

0 −1
1 0

]
is the counter-clockwise

rotation matrix of angle π/2 and

Kχ(s, t) := Cτχ′(s, t) ⊗ χ′(s, t) + Cν(Jχ′(s, t)) ⊗ (Jχ′(s, t)), (2.2)

where for any two vectors a, b ∈ R
2 the matrix a⊗ b is defined by (a⊗ b)ij = aibj . The force and torque balance

can be written as

0 = F (t) :=
∫ L

0

f(s, t) ds = −
∫ L

0

Kχ(s, t)χ̇(s, t) ds, (2.3a)

0 = M(t) :=
∫ L

0

m(s, t) ds = −
∫ L

0

〈Kχ(s, t)χ̇(s, t), Jχ(s, t)〉 ds, (2.3b)

for a.e. t ∈ [0, T ].
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Remark 2.1. An important remark on the structure of the viscous force and torque is in order, leading to a
rate independence property. Let ϕ be a C1 strictly increasing function with ϕ′(t) > 0 for every t ∈ [0, T ]. Then a
rescaling in time by ϕ has no consequences on the equations of motion. Indeed, we prove that if χ(s, t) satisfies
the force and torque balance (2.3), then also (χ ◦ ϕ)(s, t) := χ(s, ϕ(t)) does. Let us rewrite the force (2.3a) as
Fχ(t) = − ∫ L

0
Kχ(s, t)χ̇(s, t) ds. Then we have

Fχ◦ϕ(t) = −
∫ L

0

Kχ◦ϕ(s, ϕ(t))χ̇(s, ϕ(t))ϕ̇(t) ds

= − ϕ̇(t)
∫ L

0

Kχ(s, ϕ(t))χ̇(s, ϕ(t)) ds = ϕ̇(t)Fχ(ϕ(t)) = 0,

since Fχ(ϕ(t)) = 0 for a.e. t ∈ [0, T ]. The same can be obtained for the torque Mχ◦ϕ(t).
This rate independece character is at the root of the celebrated Scallop Theorem, see [24].

We conclude this section by introducing a function space X containing our state functions, as well as the
shape functions:

X := {χ : [0, L]×[0, T ] → R
2 : χ ∈ L∞(0, T ; H2(0, L)), χ̇ ∈ L2(0, T ; L2(0, L))}, (2.4)

endowed with the norm

‖χ‖X := ess sup
0�t�T

‖χ(·, t)‖H2(0,L) +

(∫ T

0

‖χ̇(·, t)‖2
L2(0,L) dt

)1/2

, (2.5)

which makes it a Banach space. It follows from the definition that

X ⊂ H1(0, T ; L2(0, L)) with continuous embedding. (2.6)

Since every function χ in H1(0, T ; L2(0, L)) can be modified on a negligible subset of [0, T ] so that t �→ χ(·, t) is
strongly continuous from [0, T ] into L2(0, L), we shall always refer to this modified function when we consider
the properties of χ(·, t) for some t ∈ [0, T ]. With this convention we have

X ⊂ C0([0, T ]; L2(0, L)) with continuous embedding. (2.7)

The following proposition shows the main properties of the space X .

Proposition 2.2. Let χ ∈ X. Then for every t ∈ [0, T ] we have χ(·, t) ∈ H2(0, L) and

‖χ(·, t)‖H2(0,L) � ‖χ‖X . (2.8)

Moreover, the function t �→ χ(·, t) is continuous with respect to the weak topology of H2(0, L). Finally,

χ ∈ C0([0, T ]; C1([0, L])), (2.9)
‖χ‖C0([0,T ];C1([0,L])) � C ‖χ‖X , (2.10)

where the constant C is independent of χ.

Proof. To prove the first claim, let us fix t ∈ [0, T ] and let N be a zero measure set up to which the es-
sential supremum in (2.5) is actually a supremum. Consider a sequence tn /∈ N converging to t, so that
‖χ(·, tn)‖H2(0,L) � ‖χ‖X . Since χ(·, tn) → χ(·, t) in L2([0, L]) by (2.7), we have that χ(·, t) ∈ H2(0, L). Moreover,
since the H2 norm is lower-semicontinuous, we have also

‖χ(·, t)‖H2(0,L) � lim inf
n→+∞ ‖χ(·, tn)‖H2(0,L) � ‖χ‖X ,
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which proves (2.8). Thanks to this inequality, the strong continuity of the function t �→ χ(·, t) in L2([0, L])
implies the weak continuity in H2(0, L). Then the compact embedding of H2(0, L) into C1([0, L]) implies that
the function t �→ χ(·, t) is continuous with respect to the strong topology of C1([0, L]), which gives (2.9).
Finally, (2.10) follows from (2.8) and from the continuous embedding of H2(0, L) into C1([0, L]). �

Note that, by (2.9), for every χ ∈ X we have

χ, χ′ ∈ C0([0, L]×[0, T ]). (2.11)

We are interested only in functions χ ∈ X such that s �→ χ(s, t) is the arc length parametrization of a curve;
this leads to the following definition

X1 := {χ ∈ X : |χ′| = 1 in [0, L]×[0, T ]}. (2.12)

3. Equations of motion

In this section we derive the equations of motion for the swimmer. It is convenient to factorize the function
χ ∈ X1 as the composition of a time dependent rigid motion r, which represents the change of location, with a
function ξ ∈ X1, which represents the change of shape. We write

χ(s, t) = x(t) + R(t)ξ(s, t), (3.1)

where x(t) ∈ R
2 is the translation vector and R(t) ∈ R

2×2 is the rotation corresponding to the rigid motion r(t).
If we assume that

∫ L

0 ξ(s, t) ds = 0 for every t ∈ [0.T ], then x(t) coincides with the barycenter of the
curve χ(·, t), which describes the swimmer at time t with respect to the absolute reference system, while the
function ξ(·, t) will be regarded as the deformation seen by an observer moving with barycenter of the swimmer.

Proposition 3.1. Let ξ ∈ X1 and let x : [0, T ] → R
2 and R : [0, T ] → R

2×2 be functions such that R(t) is a
rotation for every t ∈ [0, T ]. Then the following properties are equivalent:

(i) the function χ defined by (3.1) belongs to X1;
(ii) the functions x and R belong to H1(0, T ).

Proof. (i)⇒(ii). For every t ∈ [0, T ] we define

ξ(t) :=
1
L

∫ L

0

ξ(s, t) ds and χ(t) :=
1
L

∫ L

0

χ(s, t) ds.

Since ξ, χ ∈ X1 ⊂ H1(0, T ; L2(0, L)) we have that ξ, χ ∈ H1(0, T ). By averaging (3.1) with respect to s we
obtain

χ(t) = x(t) + R(t)ξ(t). (3.2)

Subtracting this equation from (3.1) we obtain

χ(s, t) − χ(t) = R(t)
(
ξ(s, t) − ξ(t)

)
. (3.3)

Let us fix t0 ∈ [0, T ]. Since |ξ′(s, t0)| = 1 for every s ∈ [0, L], there exists s0 ∈ [0, L] such that ξ(s0, t0) −
ξ(t0) 
= 0. By the continuity of ξ there exist ε > 0, an open neighborhood U of s0 ∈ [0, L], and an open
neighborhood V of t0 in [0, T ] such that |χ(s, t) − χ(t)| =

∣∣ξ(s, t) − ξ(t)
∣∣ � ε for every s ∈ U and every

t ∈ V , where the equality follows from (3.3). Let χ∗(s, t) :=
(
χ(s, t) − χ(t)

)
/ |χ(s, t) − χ(t)| and ξ∗(s, t) :=(

ξ(s, t) − ξ(t)
)
/
∣∣ξ(s, t) − ξ(t)

∣∣. By (3.3) we have

χ∗(t, s) = R(t)ξ∗(t, s)
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for every s ∈ U and every t ∈ V . By elementary Linear Algebra we have

R(t) =
[ 〈χ∗(s, t), ξ∗(s, t)〉 − 〈χ∗(s, t), Jξ∗(s, t)〉
〈χ∗(s, t), Jξ∗(s, t)〉 〈χ∗(s, t), ξ∗(s, t)〉

]
. (3.4)

By (2.6) and (2.9) the functions χ∗ and ξ∗ belong to H1(V ; L2(U)) ∩ C0(V ; C1(U)), so that the entries of the
matrix in (3.4) belong to H1(V ; L2(U)). Since the matrix does not depend on s, we obtain R ∈ H1(V ). The
conclusion R ∈ H1(0, T ) follows now from a covering argument.

Since χ, R, and ξ belong to H1(0, T ), we deduce from (3.2) that x ∈ H1(0, T ).
(ii) ⇒ (i). This implication follows easily from (2.4) and (3.1). �

Remark 3.2. The purpose of the function ξ(·, t) is to describe the shape of the swimmer as a function of time.
For each t we can choose the most convenient reference system. Of course, different choices are compensated by
different rigid motions in (3.1).

In many cases it is convenient to describe the shape of the swimmer by means of the (oriented) curvature
κ(s, t) of the curve ξ(·, t) at s. This is because both in living organisms and in technological devices shape changes
are usually obtained by controlling the mutual distance of several pairs of points. Prescribing the curvature can
be interpreted as the infinitesimal version of this control, whose description is easier from the mathematical
point of view.

If χ ∈ X1 and ξ ∈ X1 are linked by (3.1), then clearly their curvatures are the same. Given ξ ∈ X1, let ϑ(s, t)
be the oriented angle between the x1-axis and the oriented tangent to the curve ξ(·, t) at s. It is well known
that κ(s, t) = 〈ξ′′(s, t), Jξ′(s, t)〉 = ϑ′(s, t), so we can easily get κ from ξ by differentiation and ϑ from κ by
integration. In particular, if we assume ξ′(0, t) = e1, we have ϑ(0, t) = 0, hence

ϑ(s, t) =
∫ s

0

κ(σ, t) dσ.

Then the definition of ϑ(s, t) gives that ξ′(s, t) = (cosϑ(s, t), sin ϑ(s, t)), so that, if ξ(0, t) = 0, we have

ξ(s, t) =
∫ s

0

(cos ϑ(σ, t), sin ϑ(σ, t)) dσ.

This shows that the descriptions of the shape given by ξ(s, t) and κ(s, t) are equivalent.

By the change of reference (3.1), it is possible to rephrase the force and torque balance (2.3) and eventually
obtain ordinary differential equations governing the time evolution of x and R. Those will be the equations of
motion of the swimmer. We can write

R(t) =
[

cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

]
,

where θ(t) is the angle of rotation. We assume that ξ and χ belong to X1. Thanks to Proposition 3.1, we can differ-
entiate (3.1) with respect to time. Plugging all the terms in (2.3) and noticing that Kχ(s, t) = R(t)Kξ(s, t)R�(t),
we obtain (

F (t)
Mx(t)

)
=
[

R(t) 0
0 1

]{
−
[

A(t) b(t)
b�(t) c(t)

][
R�(t) 0

0 1

](
ẋ(t)
θ̇(t)

)
+
(

F sh(t)
M sh(t)

)}
, (3.5)

where Mx(t) := M(t) − 〈F (t), Jx(t)〉 and R(t) =
[

A(t) b(t)
b�(t) c(t)

]
is the grand resistance matrix of [17], whose

entries are given by

A(t) :=
∫ L

0

Kξ(s, t) ds, b(t) :=
∫ L

0

Kξ(s, t)Jξ(s, t) ds, (3.6a)
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c(t) :=
∫ L

0

〈Jξ(s, t), Kξ(s, t)Jξ(s, t)〉 ds. (3.6b)

It is easy to see that the functions A, b, and c are ultimately determined by the shape function ξ alone. The
terms

F sh(t) := −
∫ L

0

Kξ(s, t)ξ̇(s, t) ds, M sh(t) := −
∫ L

0

〈Jξ(s, t), Kξ(s, t)ξ̇(s, t)〉ds, (3.7)

are the contributions to the force and torque due to the shape deformation of the swimmer, and they depend
linearly on the time derivative ξ̇.

Enforcing the force and torque balance (2.3) is equivalent to setting (3.5) equal to zero and solving for ẋ
and θ̇, which eventually leads to the equations{

ẋ(t) = R(t)v(t),
θ̇(t) = ω(t),

(3.8)

where
v(t) := Ā(t)F sh(t) + b̄(t)M sh(t), ω(t) := b̄�(t)F sh(t) + c̄(t)M sh(t), (3.9)

and Ā(t), b̄(t), and c̄(t) are the block elements of the inverse matrix R−1(t). The structure of this system of
ordinary differential equations is the same as that previously obtained in [3,10]. The following result, analogous
to [10], Theorem 6.4, holds

Theorem 3.3. Let ξ ∈ X1 , x0 ∈ R
2, and θ0 ∈ R. Then the equations of motion (3.8), with initial condi-

tions x(0) = x0 and θ(0) = θ0, have a unique absolutely continuous solution t �→ (x(t), θ(t)) defined in [0, T ]
with values in R

2×R. This solution actually belongs to H1(0, T ). In other words, there exists a unique rigid
motion t �→ r(t), such that the deformation function defined by (3.1) belongs to X1, satisfies the equations of
motion (2.3), and the initial conditions x(0) = x0 and R(0) = Rθ0 , the rotation of angle θ0.

Proof. The result easily follows from the classical theory of ordinary differential equations, see, e.g., [16]. Indeed,
the coefficients b̄� and c̄ are continuous function of t, since they come from the inversion of the grand resistance
matrix R, whose entries are continuous in t. On the contrary, F sh and M sh are only L2 functions of time. This
is enough to integrate the second equation in (3.8). By plugging the solution for θ into the first equation and by
an analogous argument on the coefficients Ā and b̄, also the equation for x has a unique solution with prescribed
initial data.

The last statement follows esily from Proposition 3.1. �

Some notes on the matrix K and on the coefficients Cτ and Cν are in order. First, we assume that

0 < Cτ < Cν , (3.10)

secondly, we notice that the matrix Kχ (and therefore Kξ) is symmetric and positive definite, and defines a
scalar product in the space X1. Indeed, by introducing the power expended during the motion

P(χ) :=
∫ T

0

∫ L

0

〈−f(s, t), χ̇(s, t)〉 dsdt =
∫ T

0

∫ L

0

〈Kχ(s, t)χ̇(s, t), χ̇(s, t)〉 dsdt

=
∫ T

0

∫ L

0

[Cτ χ̇2
τ (s, t) + Cνχ̇2

ν(s, t)] dsdt, (3.11)

we find that
Cτ ‖χ̇‖2

L2(0,T ;L2(0,L)) � P(χ) � Cν ‖χ̇‖2
L2(0,T ;L2(0,L)) .

Moreover, it follows from (2.2) and (2.11) that the matrices Kξ and Kχ are continuous in (s, t).
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Finally, the strict inequality assumption Cτ < Cν cannot be weakened. Indeed, if we had Cτ = Cν , then
Kχ(s, t) would be a multiple of the identity matrix and therefore, from (2.3a), we would have

0 = F (t) = −Cτ

∫ L

0

χ̇(s, t) ds = −Cτ
d
dt

(∫ L

0

χ(s, t) ds

)
,

which is expressing that the barycenter does not move as time evolves.

3.1. The shape function

We introduce now an important assumption on the shape function ξ, called two disks condition, which rules
out self-intersections of the swimmer. This hypothesis will be crucial in the proof of the existence of an optimal
swimming strategy. The idea underlying this condition is that two distinct points of the swimmer cannot become
too close to each other during the motion.

Definition 3.4. We say that ξ ∈ H2(0, L; R2) with |ξ′(s)| = 1 for every s ∈ [0, L] satisfies the two disks
condition with radius ρ > 0 if the following conditions are satisfied (see Fig. 1):
(a) for every s ∈ [0, L] there exist open disks B1(s), B2(s) of radius ρ > 0 such that B1(s) ∩ B2(s) = ∅,

ξ(s) ∈ B1(s) ∩ B2(s), and ξ(σ) /∈ B1(s) ∪ B2(s) for every σ ∈ [0, L];
(b) there exist open half disks B−, B+ of radius 2ρ centered at ξ(0) and ξ(L), respectively, with diameters

normal to ξ′(0) and ξ′(L), respectively, such that ξ(σ) /∈ B− ∪ B+ for every σ ∈ [0, L].

Since ξ is of class C1 and |ξ′(s)| = 1, the disks considered in condition (a) are uniquely determined by ξ(s) and
ξ′(s). Indeed, they are the disks with centers ξ(s) ± ρJξ′(s) and radius ρ. In the sequel we will always assume
that

B1(s) = Bρ(ξ(s) + ρJξ′(s)), B2(s) = Bρ(ξ(s) − ρJξ′(s)). (3.12)

The following proposition proves an important consequence of the two disks condition.

Proposition 3.5. Let ξ ∈ H2(0, L; R2) with |ξ′(s)| = 1 for every s ∈ [0, L]. Assume that ξ satisfies the two
disks condition for some radius ρ > 0. Then ξ is injective on [0, L].

Proof. Assume by contradiction that there exist s1 < s2 such that ξ(s1) = ξ(s2). It is easy to see that the two
disks condition implies that ξ′(s1) = ±ξ′(s2). Assume that ξ′(s1) = ξ′(s2), the other case being analogous. Since
these derivatives have norm 1, by changing the coordinate system we may assume that ξ′(s1) = ξ′(s2) = e1, the
first vector of the canonical basis. We denote the coordinates of ξ by ξ1 and ξ2 and we set α := ξ1(s1) = ξ1(s2)
and β := ξ2(s1) = ξ2(s2). By the Local Inversion Theorem, there exist ε > 0, δ > 0, and a C1 function
g : (α−ε, α+ε) → R such that for every s ∈ (s1− δ, s1 + δ)∩ [0, L] we have |ξ1(s) − α| < ε and ξ2(s) = g(ξ1(s)).
Let

E1 :=
⋃

|s−s1|<δ

B1(s), E2 :=
⋃

|s−s1|<δ

B2(s).

By (3.12) it is easy to see that there exists an open rectangle R centered at (α, β) such that E1 ∩ R =
{(a, b) ∈ R : b > g(a)} and E2 ∩ R = {(a, b) ∈ R : b < g(a)}. By condition (a) of Definition 3.4 ξ(s) ∈
{(a, b) ∈ R : b = g(a)} for every s ∈ [0, L] such that ξ(s, t) ∈ R. Therefore, s �→ ξ(s) is locally an arc length
parametrization of the graph of g. Since ξ(s1) = ξ(s2) = (α, β) and ξ′(s1) = ξ′(s2) = e1, there exists η > 0 such
that ξ(s1 + s) = ξ(s2 + s) for |s| < η, provided 0 � s1 + s < s2 + s � L. This implies that ξ(σ− (s2− s1)) = ξ(σ)
for every σ in a neighborhood of s2 in [0, L] such that σ− (s2 − s1) ∈ [0, L]. By taking the supremum σ0 over σ,
we obtain that ξ(σ0) = ξ(L) for σ0 := L− (s2 − s1) ∈ [0, L). If σ0 > 0, we deduce also that ξ′(σ0) = ξ′(L). The
same equality holds when σ0 = 0, because in this case σ0 = s1 = 0 and s2 = L, so that the equality follows
from the assumption ξ′(s1) = ξ′(s2).

Let B+ be the half disk considered in condition (b) of Definition 3.4. By the previous equalities, ξ(σ0) is
the center of B+ and ξ′(σ0) points towards the interior. It follows that ξ(σ) ∈ B+ for some σ > σ0, and this
contradicts condition (b). �
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ξ(s,t)

B (s)1

B (s)2

B

-

+

B

Figure 1. Two disks condition: B1(s) and B2(s) are the open disks of radius ρ, B− and B+

are the open half disks of radius 2ρ. The dashed line represents the image of the map h defined
in (3.13).

Given ρ > 0 we introduce CL,ρ := ([0, L]×{0}) + Bρ(0), the cigar-like set obtained by enlarging [0, L]×{0}.
Define now a map h : [0, L]×(−ρ, ρ) → R

2 by

h(s, y) := ξ(s) + yJξ′(s). (3.13)

This map is extended to a continuous map h : CL,ρ → R
2 by defining it as an isometry mapping CL,ρ ∩ {s < 0}

into the half disk 1
2B− homothetic to the half disk B− considered in condition (b) of Definition 3.4, with the

same center and half the radius; the definition in CL,ρ∩{s > L} is similar and uses the half disk 1
2B+ (see Fig. 1).

The following proposition improves Proposition 3.5 and provides an equivalent formulation of Definition 3.4.

Proposition 3.6. Let ξ ∈ H2(0, L; R2) with |ξ′(s)| = 1 for every s ∈ [0, L], and let ρ > 0. The map h is
injective if and only if ξ satisfies the two disks condition with radius ρ.

Proof. Let us assume that the two disks condition holds and let us consider two points (s1, y1) 
= (s2, y2) in
CL,ρ. If 0 � s1 = s2 � L, then it must be |y1 − y2| > 0, and therefore |h(s1, y1) − h(s1, y2)| = |y1 − y2| > 0. If
−ρ < s1 = s2 < 0, then h(s1, y1) 
= h(s1, y2) since h is an isometry on CL,ρ ∩ {s < 0}. The same conclusion
holds if L < s1 = s2 < L + ρ.

Assume now that 0 � s1 < s2 � L. If y1 = y2 = 0, then h(s1, y1) = ξ(s1) 
= ξ(s2) = h(s2, y2), where
the inequality follows from the fact that the curve ξ(·, t) is injective by Proposition 3.5. If y1 
= 0 = y2, then
h(s1, y1) belongs to one of the disks B1(s1), B2(s1) introduced in condition (a) of Definition 3.4. It follows that
h(s2, y2) = ξ(s2) /∈ B1(s1) ∪ B2(s1), hence h(s1, y1) 
= h(s2, y2). The same conclusion holds if y1 = 0 
= y2.

Let us consider now the case 0 � s1 < s2 � L and y1 
= 0 
= y2. Define Si := {ξ(si) + yJξ′(si) : 0 <
(sign yi)y < ρ} for i = 1, 2. Let us prove that

S1 ∩ S2 = ∅. (3.14)

Let pi := ξ(si) and let Di be the open disk with center ci := ξ(si) + sign(yi)ρJξ′(si) and radius ρ. Note that
ci and pi are the endpoints of Si and that p1 
= p2 since the map s �→ ξ(s) is injective by Proposition 3.5. If
c1 = c2, then S1 ∩ S2 = ∅ because S1, S2 are radii of the same circle with different endpoints.

We consider now the case c1 
= c2. Since D1 is one of the disks B1(s1), B2(s1), by condition (a) of Defini-
tion 3.4, we have that p1 = ξ(s1) ∈ ∂D1 and p2 = ξ(s2) /∈ D1. Similarly, we prove that p2 ∈ ∂D2 and p1 /∈ D2.
Therefore, p1 ∈ ∂D1 \ D2 and p2 ∈ ∂D2 \ D1.
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Figure 2. Injectivity for 0 � s1 < s2 � L and y1 
= 0 
= y2 in the case c1 
= c2 : Two possible
situations contradicting (3.14).
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Figure 3. Injectivity for 0 � s1 � L < s2 < L + ρ. The shaded region represents the set Q;
the thick segment is the set S.

Assume by contradiction that S1 and S2 meet at some point p, which must belong to D1 ∩ D2. Let z be the
intersection between ∂D2 and the half-line stemming from c2 and containing c1; under our assumptions, we have
z ∈ D1. Since p ∈ D1 ∩D2 and p1 ∈ ∂D1 \D2, there exists a unique point q ∈ ∂D2 ∩D1 on the segment joining
p and p1. Now, the half-line through p stemming from c2 meets ∂D2 on the smallest arc Γ with endpoints q
and z. Since q, z ∈ D1 and the disks have the same radius, we have Γ ⊂ D1 (see Fig. 2). The previous argument
shows that p2 ∈ Γ , which contradicts the condition p2 ∈ ∂D2 \ D1. This concludes the proof of the equality
S1 ∩ S2 = ∅ in the case 0 � s1 < s2 � L and y1 
= 0 
= y2, and implies that h(s1, y1) 
= h(s2, y2).

We consider now the case 0 � s1 < L < s2 < L + ρ. Assume by contradiction that h(s1, y1) = h(s2, y2) =: p.
Observe that p ∈ 1

2B+. Denote p1 := ξ(s1) and S := {ξ(L) + yJξ′(L) : −ρ < y < ρ}. By (3.14) for s1 and L
the segment with endpoints p, p1 does not intersect S. On the other hand |p − p1| = |y1| < ρ. By elementary
geometric arguments we find that the set Q of points which can be connected to a point of 1

2B+ by a segment
disjoint from S and of length less than ρ is contained in the union B+ ∪B1(L)∪B2(L) (See Fig. 3). Therefore
p1 = ξ(s1) ∈ Q and this violates either condition (a) or condition (b) in Definition 3.4.

In the case s1 = L < s2 < L + ρ, we have h(s1, y1) ∈ ∂(1
2B+), while h(s2, y2) ∈ 1

2B+, so that h(s1, y1) 
=
h(s2, y2). The cases −ρ < s1 < 0 < s2 � L and −ρ < s1 < 0 = s2 are analogous.

The last case to consider is when −ρ < s1 < 0 and L < s2 < L + ρ. Assume, by contradiction, that
h(s1, y1) = h(s2, y2). Since the radius of curvature of ξ is always less than ρ, one can prove (see Lem. 3.7 below
and Fig. 4) that

D− ⊂ B− ∪
⋃

0≤s≤π
2 ρ

(
B1(s) ∪ {ξ(s)} ∪ B2(s)

)
, (3.15)

where D− := {x ∈ R
2 : d(x, 1

2B−)< ρ} and B1(s), B2(s) are the open disks defined in (3.12).
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Figure 4. The region D− of (3.15).

Since h(s1, y1) ∈ 1
2B−, h(s1, y1) = h(s2, y2), and |h(s2, y2)− ξ(L)| < ρ, we deduce that ξ(L) ∈ D−. By (3.15)

either ξ(L) ∈ B− or there exists s ∈ [0, π
2 ] such that ξ(L) ∈ B1(s)∪{ξ(s)}∪B2(s). This contradicts Definition 3.4

or Proposition 3.5, and concludes the proof in this case.

Let us now assume that h is injective, and consider s ∈ [0, L]. Let B1(s), B2(s) the open disks defined in (3.12).
It is clear that B1(s) ∩ B2(s) = ∅ and B1(s) ∩ B2(s) = {ξ(s)}. Denote by N(s) := {ξ(s) + yJξ′(s), y ∈ R} the
normal line through the point ξ(s), and let ξ̃(s) := ξ(s) + 1

κ(s)Jξ′(s) be the evolute of ξ, i.e., the curve that
contains the centers of the osculating circles to ξ. Since ξ is a curve of class H2, the curvature is well defined
almost everywhere; let s1 ∈ (0, L) be a point at which the curvature κ(s1) is defined, and let s2 ∈ (0, L) be
another point. By the injectivity of h, the normal lines N(s1) and N(s2) cannot meet at a distance less than
ρ from the curve ξ, and their intersection tend to ξ̃(s1) as s2 → s1 (see [12], Ex. 7, p. 23). This implies that
κ(s1) ≤ 1/ρ. We conclude that κ(s) ≤ 1/ρ for a.e. s ∈ [0, L]. Let Iρ(s) := {σ ∈ [0, L] : |σ − s| < ρ} ∩ [0, L] be
a neighborhood of s of radius ρ in [0, L]. By standard results in Differential Geometry, ξ(σ) /∈ B1(s) ∪ B2(s)
for every σ ∈ Iρ(s). If now σ ∈ [0, L] \ Iρ(s), then again ξ(σ) /∈ B1(s) ∪ B2(s). Indeed, assume by contradiction
that there exists σ ∈ [0, L] \ Iρ(s) such that ξ(σ) ∈ B1(s). Then there exists r ∈ (0, ρ) such that ξ(σ) ∈
Br(ξ(s) + rJξ′(s)). Then, let y1 := minσ∈[0,L]{|ξ(s) + rJξ′(s) − ξ(σ)|} < r, and let s1 ∈ [0, L] \ Iρ(s) be the
point where the minimum is attained. If s1 ∈ (0, L), then

either ξ(s) + rJξ′(s) = ξ(s1) + y1Jξ′(s1) or ξ(s) + rJξ′(s) = ξ(s1) − y1Jξ′(s1).

This violates the injectivity of h. The cases s1 = 0 and s1 = L lead to a similar contradiction, taking into
account the definition of h near the endpoints of the segment. This proves that condition (a) in Definition 3.4
holds.

To prove that condition (b) holds, we assume, by contradiction, that there exists s0 ∈ [0, L] such that
ξ(s0) ∈ B−. We first observe that, for s ∈ [0, πρ], the point ξ(s) lies on the opposite side of B− with respect to
its diameter {ξ(0) + yJξ′(0) : −ρ < y < ρ}, so that ξ(s) /∈ B− for s ∈ [0, πρ]. Then s0 belongs be the closed set
Σ of points s ∈ [πρ, L] such that ξ(s) lies in the closure of B−. Let s1 be the minimum point of

min
s∈Σ

|ξ(s) − ξ(0)|.

Since ξ(s) /∈ B1(0)∪B2(0) for every s ∈ [0, L], the point ξ(s1) does not belong to the diameter {ξ(0)+ yJξ′(0) :
−ρ < y < ρ}. Therefore ξ(s1) ∈ B− and s1 belongs to the interior of Σ. This implies that ξ(s1) − ξ(0) is
orthogonal to ξ′(s1), hence ξ(s1)−ξ(0) = yJξ′(s1) for some y ∈ (−2ρ, 2ρ). Then h(s1,− y

2 ) = ξ(s1)− y
2Jξ′(s1) ∈

1
2B−. This violates the injectivity of h and concludes the proof of the proposition. �

Lemma 3.7. Let ρ > 0 and let ξ ∈ H2(0, π
2 ρ; R2) with |ξ′(s)| = 1 for every s ∈ [0, π

2 ρ] and |ξ′′(s)| ≤ 1/ρ for
a.e. s ∈ [0, π

2 ρ]. Then (3.15) holds.
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Figure 5. The absurd situation in the proof by contradiction. The circle is B1(s0), while the
curve is not shown.

Proof. Let ξ1(s) and ξ2(s) be the coordinates of ξ(s) and let ϑ(s) be the oriented angle between e1 := (1, 0)
and ξ′(s). It is well known that |ϑ′(s)| = |ξ′′(s)| ≤ 1/ρ. Assume, for simplicity, that ξ(0) = 0 and ξ′(0) = e1.
By standard results in Differential Geometry the curve ξ does not intersect the open disks Bρ(±ρ e2), where
e2 := (0, 1). By integration we obtain

ξ1(s) =
∫ s

0

cosϑ(σ) dσ.

Let us prove that
ρ sin(s/ρ) ≤ ξ1(s) (3.16)

for every s ∈ [0, π
2 ]. Since the inequality is true for s = 0, it is enough to show that cos(s/ρ) ≤ ξ′1(s) = cosϑ(s) =

cos |ϑ(s)| for every s ∈ [0, π
2 ]. Since ξ′(s) = (cos ϑ(s), sin ϑ(s)), we have |ϑ′(s)| ≤ 1/ρ, hence |ϑ(s)| ≤ s/ρ, so that

cos(s/ρ) ≤ cos |ϑ(s)| by the monotonicity of cos in [0, π
2 ]. This concludes the proof of (3.16).

Let S be the segment with endpoints (ρ,±ρ), which belong to the circles ∂Bρ(±ρ e2). Inequality (3.16) implies
that the curve ξ intersects the segment S. Since the bound on the curvature implies that ξ cannot have a vertical
tangent, except when ξ is contained in ∂Bρ(±ρ e2), the intersection point is unique. Let s0 ∈ [0, ρπ

2 ] be the
value of the arc length parameter of this intersection point and let N(s0) := {ξ(s0) + yJξ′(s0), y ∈ R} be the
corresponding normal line to ξ.

If ξ(s0) = (ρ,±ρ), then the bound on the curvature implies that ξ is contained in ∂Bρ(±ρ e2) and the
statement of the lemma is easily checked. So we may assume that ξ(s0) 
= (ρ,±ρ). We may also assume that
ξ′2(s0) ≥ 0. If not, we just reverse the orientation of the x2-axis.

Let B1(s0) be the tangent disk to ξ at ξ(s0) defined by B1(s0) := Bρ(ξ(s0) + ρJξ′(s0)). We claim that

(ρ, ρ) ∈ B1(s0). (3.17)

If ξ′2(s0) = 0, then (ρ, ρ) ∈ N(s0) and its distance from ξ(s0) is less than length(S) = 2ρ, which implies (3.17).
If ξ′2(s0) 
= 0, we argue by contradiction. Assume that (3.17) is not satisfied. Then ∂B1(s0) intersects S in ξ(s0)
and in another point ξ̃ between ξ(s0) and (ρ, ρ). Therefore the center c1 of the disk B1(s0) is the vertex of an
isosceles triangle with basis contained in S and equal sides of length ρ. Elementary geometric arguments show
that this vertex must belong to the astroid obtained by removing the four disks Bρ((±ρ,±ρ)) from the square
(−ρ, ρ)× (−ρ, ρ) (see Fig. 5). Therefore the distance from the origin of the center of B1(s0) is less than ρ. This
implies that 0 ∈ B1(s0). On the other hand, since ξ is tangent to this disk at ξ(s0), the bound on the curvature
implies that ξ(s) /∈ B1(s0) for every s ∈ [0, π

2 ]. This contradicts the assumption ξ(0) = 0 and concludes the
proof of (3.17).

Let C be the curvilinear triangle obtained by removing the disks Bρ(±ρ e2) from the rectangle (0, ρ)×(−ρ, ρ).
Let C+ and C− be the parts of C weakly above and strictly below N(s0) and let p be the intersection of N(s0)
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and ∂Bρ(ρ e2) contained in the closure of C. Since the distance between p and ξ(s0) is less than 2ρ, we deduce
that p ∈ B1(s0). Since (ρ, ρ) ∈ B1(s0) and ξ(s0) ∈ ∂B1(s0), we obtain that C+ is contained in B1(s0).

Let us prove that
C− ⊂

⋃
0≤s≤s0

(
B1(s) ∪ {ξ(s)} ∪ B2(s)

)
Let us fix x ∈ C− and let s1 be a minimizer of

min
0≤s≤s0

|x − ξ(s)|.

Since 〈x, ξ′(0)〉 > 0 and 〈x − ξ(s0), ξ′(s0)〉 < 0, we have s1 ∈ (0, s0), hence the orthogonality condition

〈x − ξ(s1), ξ′(s1)〉 = 0.

Since |x − ξ(s1)| < |x| < 2ρ, the point x belongs to B1(s1) ∪ {ξ(s1)} ∪ B2(s1), which concludes the proof. �

We now prove a result stating that a bound on the angle ϑ formed by the tangent with the first axis implies
the non self-intersection of the swimmer.

Lemma 3.8. Let ϑ ∈ C1([0, L]), let κ0 := max {|ϑ′(s)| : s ∈ [0, L]}, and let

ξ(s) =
∫ s

0

(
cosϑ(σ)
sin ϑ(σ)

)
dσ.

Assume |ϑ(s)| < π/4 for every s ∈ [0, L]. Then, ξ satisfies the two disks condition with radius ρ, for every
0 < ρ � 1/κ0.

Proof. Notice, in the first place, that |ξ′(s)| = 1 for every s ∈ [0, L], so that ξ is a regular curve parametrized by
arc length. The condition |ϑ(s)| < π/4 for all s ∈ [0, L] implies that ξ is a graph with respect to the x1-axis. Given
ρ, with 0 < ρ � 1/κ0, we define the open disks B1(s) := Bρ(ξ(s)+ ρJξ′(s)) and B2(s) := Bρ(ξ(s)− ρJξ′(s)), as
in (3.12). Since ξ is a graph and its curvature is bounded by κ0, the disks B1(s) and B2(s) satisfy condition (a) in
Definition 3.4. Finally, the construction of B− and B+ as in condition (b) of Definition 3.4 is straightforward. �

The preceding lemma will be useful in Section 4 to check that the deformations we construct to prove the
controllability of the swimmer are admissible.

4. Controllability

In this Section we show that the swimmer is controllable, i.e., it is possible to prescribe a self-propelled motion
that takes it from a given initial state χin to a given final state χfin. More precisely, we prove the following
theorem.

Theorem 4.1. Let ρ > 0 and let χin, χfin ∈ H2(0, L; R2), with |χ′
in(s)| = |χ′

fin(s)| = 1 for every s ∈ [0, L].
Assume that χin and χfin satisfy the two disks condition with radius ρ (see Def. 3.4). Then, there exists χ ∈ X1,
satisfying the force and torque balance (2.3), such that χ(s, 0) = χin(s) and χ(s, T ) = χfin(s) for every s ∈ [0, L],
and such that for every t ∈ [0, T ] the curve χ(·, t) satisfies the two disks condition with radius ρ.

Proof. To construct χ, we divide the interval [0, T ] into three intervals [0, 1
3T ], [13T, 2

3T ], and [23T, T ]. In the first
interval we straighten χin, i.e., we construct χ, satisfying the force and torque balance (2.3) and the two disks
condition with radius ρ on [0, 1

3T ], such that χ(s, 0) = χin(s) and χ(s, 1
3T ) = Σin(s) for every s ∈ [0, L], where

Σin is the arc length parametrization of a suitable segment of length L, depending on χin.
The same construction, with time reversed, shows that there exists a segment Σfin, depending on χfin, that

can be transferred onto χfin, i.e., there exists χ satisfying the force and torque balance (2.3) and the the two
disks condition with radius ρ on [23T, T ], such that χ(s, 2

3T ) = Σfin(s) and χ(s, T ) = χfin(s) for every s ∈ [0, L].
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Figure 6. Straightening the swimmer I. The dashed line is the straightened configuration.

Figure 7. Straightening the swimmer II. The dashed lines represent the intermediate phases
of the stretching procedure.

Since, in general, Σfin does not coincide with Σin, we use the interval [13T, 2
3T ] to transfer Σin onto Σfin.

We now describe the construction of χ on [0, 1
3T ]. First of all, it is possible to find ξ ∈ X1 such that

ξ(s, 0) = χin(s) for every s ∈ [0, L] and s �→ ξ(s, 1
3T ) is affine on [0, L]. It is also possible to obtain that ξ(·, t)

satisfies the two disks condition with radius ρ > 0 for every t ∈ [0, 1
3T ].

The last requirement can be fulfilled in the following way. If at one end of the swimmer there is enough
room, we pull it along the tangent and unwind it from its original shape obtaining a straight configuration, as
illustrated in Figure 6.

If this is not the case, then we operate as in Figure 7: the unwinding is achieved by pinching a point with
maximal x1-coordinate and pulling it to the right respecting the two disks condition.

We now compose ξ with a time dependent rigid motion and define χ on [0, L] × [0, 1
3T ] by (3.1). Clearly

the curve χ(·, t) continues to satisfy the two disks condition with radius ρ for every t ∈ [0, 1
3T ]. Moreover the

function Σin(s) := χ(s, 1
3T ) is affine and |Σ′

in(s)| = 1 for every s ∈ [0, L]. The vector x and the rotation R
are chosen so that the equation of motion (3.8) is satisfied (this is possible thanks to Theorem 3.3), so that χ
satisfies the force and torque balance (2.3) in [0, 1

3T ].
Note that, while the affine map ξ(·, 1

3T ) can be chosen freely, the corresponding map Σin depends on the
superimposed rigid motion, which, in turn, depends on the data of the problem. Therefore, in this construction
the location of the segment Σin cannot be prescribed.

On [23T, T ] the function χ is defined in a similar way. To transfer Σin into Σfin in the time interval [13T, 2
3T ]

we show that, for a straight swimmer, it is possible to produce self-propelled motions achieving any prescribed
translation along its axis and any prescribed rotation about its barycenter.

To summarize, the whole control process is organized as in Figure 8.

χin(·) straightening−−−−−−−−→ Σin(·) rotation, translation, rotation−−−−−−−−−−−−−−−−−−−→ Σfin(·) straightening−1

−−−−−−−−−−→ χfin(·).

4.1. Translation

In this subsection we describe how to translate a straight swimmer along its axis: since the problem is rate
independent (see Rem. 2.1), it is not restrictive to work in the time interval [0, 1]. The motion of the swimmer
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χfin

χin

Σfin

Σin

↓
−→

−→

Figure 8. Sketch of the control process.

is obtained through the translation along the swimmer itself of a localized bump. In order to get a rectilinear
motion, we have to assume that the bump satisfies some symmetry properties (4.10).

We can assume that the swimmer lies initially on the x1-axis and that the initial parametrization is Σin(s) =
se1. Given a ∈ R, we describe a self-propelled motion that transfers the segment Σin(s) = se1 into the segment
Σfin(s) = (a + s)e1, s ∈ [0, L]. It is not restrictive to assume a > 0.

As before, the motion will be first described through a function ξ ∈ X1 satisfying the two disks condition
with the prescribed radius ρ. Then, ξ will be composed with a time dependent rigid motion in order to obtain
χ satisfying also the force and torque balance.

For simplicity, we assume ξ(0, t) = 0 for every t ∈ [0, 1]. The function ξ(s, t) will be better described by means
of the angle ϑ(s, t) between its tangent line and the positive x1-axis. This leads to the formula

ξ(s, t) =
∫ s

0

(
cosϑ(σ, t)
sinϑ(σ, t)

)
dσ. (4.1)

The function ϑ(s, t) will be defined using a smooth function ϑ0 : R → (−π/4, π/4), with maxs |ϑ′
0(s)| � 1/ρ

and support
sptϑ0 = [−�, �], where � ∈ (0, L/2). (4.2)

Given two Lipschitz continuous control functions u1 : [0, 1] → [−1, 1] and u2 : [0, 1] → [�, L − �], we define

ϑ(s, t) := u1(t)ϑ0(s − u2(t)), (4.3)

for every (s, t) ∈ [0, L]×[0, 1]. Notice that for all t ∈ [0, 1] the function ϑ(·, t) has support contained in [u2(t) −
�, u2(t)+ �], which in turn is contained in [0, L], and the curve ξ(·, t) satisfies the two disks condition with radius
ρ (see Lem. 3.8). The parameters u1(t) and u2(t) represent the amplitude of the bump and the location of its
midpoint at time t.

It is convenient to introduce the function

ξ0(s, u1, u2) :=
∫ s

0

(
cos(u1ϑ0(σ − u2))
sin(u1ϑ0(σ − u2))

)
dσ,

so that
ξ(s, t) = ξ0(s, u1(t), u2(t)). (4.4)

It follows that
ξ′(s, t) = ξ′0(s, u1(t), u2(t)),

where

ξ′0(s, u1, u2) =
∂ξ0

∂s
(s, u1, u2) =

(
cos(u1ϑ0(s − u2))
sin(u1ϑ0(s − u2))

)
. (4.5)

Therefore,

Kξ(s, t) =Cτ ξ′(s, t) ⊗ ξ′(s, t) + Cν(Jξ′(s, t)) ⊗ (Jξ′(s, t))
=Cτ ξ′0(s, u1(t), u2(t)) ⊗ ξ′0(s, u1(t), u2(t))

+ Cν(Jξ′0(s, u1(t), u2(t))) ⊗ (Jξ′0(s, u1(t), u2(t))).
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Figure 9. Image of the function ξ0(s, t) for the translational motion.

It is convenient to introduce

K0(s, u1, u2) := Cτξ′0(s, u1, u2) ⊗ ξ′0(s, u1, u2) + Cν(Jξ′0(s, u1, u2)) ⊗ (Jξ′0(s, u1, u2)), (4.6)

so that
Kξ(s, t) = K0(s, u1(t), u2(t)). (4.7)

We also have
ξ̇(s, t) = ξ0,1(s, u1(t), u2(t))u̇1(t) + ξ0,2(s, u1(t), u2(t))u̇2(t),

where
ξ0,i(s, u1, u2) :=

∂ξ0

∂ui
(s, u1, u2).

A simple computation leads to

ξ0,1(s, u1, u2) =
∫ s

0

(− sin(u1ϑ0(σ − u2))
cos(u1ϑ0(σ − u2))

)
ϑ0(σ − u2) dσ, (4.8)

ξ0,2(s, u1, u2) =
∫ s

0

(
sin(u1ϑ0(σ − u2))

− cos(u1ϑ0(σ − u2))

)
u1ϑ

′
0(σ − u2) dσ

= −
∫ s

0

d
dσ

(
cos(u1ϑ0(σ − u2))
sin(u1ϑ0(σ − u2))

)
dσ

=
(

1 − cos(u1ϑ0(s − u2))
− sin(u1ϑ0(s − u2))

)
, (4.9)

for every s ∈ [0, L], u1 ∈ [−1, 1], and u2 ∈ [�, L − �]. Note that in the previous computation we have used the
fact that ϑ0(−u2) = 0, since spt ϑ0 ⊆ [−�, �].

Finally, we make the following symmetry assumption on the angle function ϑ0:

ϑ0 is odd in [−�, �]; (4.10a)
ϑ0 is even in [−�, 0] and in [0, �]; (4.10b)

ϑ0 is odd in [−�,−�/2], [−�/2, 0], [0, �/2], and in [�/2, �]. (4.10c)

We say that a function u : [a, b] → R is said to be even (resp. odd) in [a, b] if u(x) = u(a + b − x) (resp.
u(x) = −u(a + b − x)) for every x ∈ [a, b].

Figure 9 shows an example of a bump ξ0(s, t) whose angle function ϑ0 enjoys the properties listed above;
notice that the parity of the vertical component of ξ0 is reversed with respect to that of ϑ0.

To exploit these symmetry properties, we repeatedly use the following lemma, whose elementary proof is
omitted.

Lemma 4.2. Let u : [a, b] → R be an even (resp. odd) function and let c := (a + b)/2 be the middle point of
[a, b]. Then, the integral function U(x) :=

∫ x

c u(s) ds is odd (resp. even) in [a, b].
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We now compose ξ defined in (4.4) with a time dependent rigid motion and define χ on [0, L]×[0, 1] by (3.1).
The vector x(t) and the rotation R(t) are chosen so that x(0) = 0 and R(0) = I and the force and torque
balance (2.3) is satisfied by χ at every time. We want to prove that this is possible with

x2(t) = 0 and R(t) = I, for all t ∈ [0, 1], (4.11)

by a suitable choice of x1(t). We shall see that this result follows from the symmetry assumptions (4.10) and
does not depend on the particular choice of the control functions u1(t), u2(t).

Note that for every t ∈ [0, 1] we have sptϑ(·, t) = [u2(t)−�, u2(t)+�]. Since ϑ(s, t) = 0 for s ∈ [0, u2(t)−�], we
obtain from (4.1) that ξ(s, t) = se1 for s ∈ [0, u2(t)−�]. Similarly, since ϑ(s, t) = 0 for every s ∈ [u2(t)+�, L], (4.1)
implies that in this interval ξ(·, t) is the arc length parametrization of a segment parallel to the x1-axis. Therefore,
the curve ξ(·, t) is the union of two segments and a connecting bump, corresponding to the restriction of the
curve ξ(·, t) to the interval [u2(t) − �, u2(t) + �].

Notice that (4.10a) yields
∫ �

−�
sin(u1(t)ϑ0(s)) ds = 0, therefore, (4.1) and (4.3) imply that for every t ∈ [0, 1]

the curve s �→ ξ(s, t), s ∈ [u2(t) + �, L], parametrizes a segment lying on the x1-axis. Moreover, by a change of
variables we have

ξ(u2(t) + �, t) − ξ(u2(t) − �, t) =
∫ �

−�

(
cos(u1(t)ϑ0(s))
sin(u1(t)ϑ0(s))

)
ds =

(∫ �

−�

cos(u1(t)ϑ0(s)) ds

)
e1.

These two remarks imply that

ξ(s, t) =

(
s − 2l +

∫ �

−�

cos(u1(t)ϑ0(s)) ds

)
e1, for u2(t) + � � s � L.

Using (3.1) and (4.11), the expression for χ reads χ(s, t) = x1(t)e1 +ξ(s, t). From this we get χ′(s, t) = ξ′(s, t)
and χ̇(s, t) = ẋ1(t)e1 + ξ̇(s, t). It follows that the matrix Kχ defined in (2.2) satisfies

Kχ(s, t) = Kξ(s, t) = Cτ ξ′(s, t) ⊗ ξ′(s, t) + Cν(Jξ′(s, t)) ⊗ (Jξ′(s, t)).

The linear densities of force and moment (see (2.1)) are then given by

−f(s, t) = Kχ(s, t)χ̇(s, t) = ẋ1(t)Kξ(s, t)e1 + Kξ(s, t)ξ̇(s, t)
−m(s, t) = ẋ1(t)〈Kξ(s, t)e1, Jξ(s, t)〉 + ẋ1(t)x1(t) 〈Kξ(s, t)e1, e2〉

+ 〈Kξ(s, t)ξ̇(s, t), Jξ(s, t)〉 + x1(t)〈Kξ(s, t)ξ̇(s, t), e2〉
By plugging this information in (2.3), we get

ẋ1(t)
∫ L

0

Kξ(s, t)e1 ds = −
∫ L

0

Kξ(s, t)ξ̇(s, t) ds, (4.12)

where the right-hand side is F sh(t) defined in (3.7), and

ẋ1(t)
∫ L

0

〈Kξ(s, t)e1, Jξ(s, t)〉ds + ẋ1(t)x1(t)
∫ L

0

〈Kξ(s, t)e1, e2〉ds =

−
∫ L

0

〈Kξ(s, t)ξ̇(s, t), Jξ(s, t)〉ds − x1(t)
∫ L

0

〈Kξ(s, t)ξ̇(s, t), e2〉ds. (4.13)

To solve simultaneously these equations for the unknown ẋ1(t), we will show that the second components of the
integrals in (4.12) are zero, that the first component of the integral in the left-hand side in (4.12) is non zero,
and that all integrals in (4.13) are zero.
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Let us start from the second components of (4.12). For the left-hand side, we have

〈Kξ(s, t)e1, e2〉 = 〈K0(s, u1(t), u2(t))e1, e2〉
= (Cτ − Cν) cos(u1(t)ϑ0(s − u2(t))) sin(u1(t)ϑ0(s − u2(t)))

so it suffices to show that for every u1, u2∫ L

0

cos(u1ϑ0(s − u2)) sin(u1ϑ0(s − u2)) ds = 0. (4.14)

By (4.2) and by changing variables σ = s − u2, (4.14) becomes∫ �

−�

cos(u1ϑ0(σ)) sin(u1ϑ0(σ)) dσ = 0,

which holds true since the integrand is an odd function in [−�, �], thanks to (4.10a).
For the second component of the right-hand side of (4.12), we have

〈Kξ(s, t)ξ̇(s, t), e2〉 = Cτ u̇1(t) sin(u1(t)ϑ0(s − u2(t)))

×
[
− cos(u1(t)ϑ0(s − u2(t)))

∫ s

0

sin(u1(t)ϑ0(σ − u2(t)))ϑ0(σ − u2(t)) dσ

+ sin(u1(t)ϑ0(s − u2(t)))
∫ s

0

cos(u1(t)ϑ0(σ − u2(t)))ϑ0(σ − u2(t)) dσ

]
− Cν u̇2(t) cos(u1(t)ϑ0(s − u2(t))) sin(u1(t)ϑ0(s − u2(t))).

Therefore, we need to prove that for any u1, u2∫ L

0

sin(2u1ϑ0(s − u2))
[∫ s

0

sin(u1ϑ0(σ − u2))ϑ0(σ − u2) dσ

]
ds = 0, (4.15)

∫ L

0

sin2(u1ϑ0(s − u2))
[∫ s

0

cos(u1ϑ0(σ − u2))ϑ0(σ − u2) dσ

]
ds = 0. (4.16)

Again by (4.2) and by changing variables as before, (4.15) and (4.16) reduce to∫ �

−�

sin(2u1ϑ0(s))
[∫ s

−�

sin(u1ϑ0(σ))ϑ0(σ) dσ

]
ds = 0, (4.17)

∫ �

−�

sin2(u1ϑ0(s))
[∫ s

−�

cos(u1ϑ0(σ))ϑ0(σ) dσ

]
ds = 0. (4.18)

Since sin(2u1ϑ0(s)) is odd in [−�, �] by (4.10a), equation (4.17) is equivalent to∫ �

−�

sin(2u1ϑ0(s))
[∫ s

0

sin(u1ϑ0(σ))ϑ0(σ) dσ

]
ds = 0. (4.19)

By (4.10a) and by Lemma 4.2 the function s �→ ∫ s

0 sin(u1ϑ0(σ))ϑ0(σ) dσ is odd in [−�, �], therefore (4.19) is
equivalent to ∫ �

0

sin(2u1ϑ0(s))
[∫ s

0

sin(u1ϑ0(σ))ϑ0(σ) dσ

]
ds = 0, (4.20)
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since its integrand is even in [−�, �]. Since sin(2u1ϑ0(s)) is even in [0, �] by (4.10b), we have∫ �

0

sin(2u1ϑ0(s)) ds = 2
∫ �/2

0

sin(2u1ϑ0(s)) ds = 0,

where the last equality follows from the fact that sin(2u1ϑ0(s)) is odd in [0, �/2] by (4.10c). This equality implies
that (4.20) reduces to ∫ �

0

sin(2u1ϑ0(s))

[∫ s

�/2

sin(u1ϑ0(σ))ϑ0(σ) dσ

]
ds = 0. (4.21)

By (4.10b), sin(2u1ϑ0(s)), and sin(u1ϑ0(s))ϑ0(s) are even in [0, �], hence the function s �→ ∫ s

�/2

sin(u1ϑ0(σ))ϑ0(σ) dσ is odd in [0, �] by Lemma 4.2. This implies that (4.21) holds, since its integrand is odd in
[0, �]. This concludes the proof of (4.17).

To prove (4.18) we notice that in the function s �→ cos(u1ϑ0(s))ϑ0(s) is even in [−�, 0] by (4.10b). Hence,∫ 0

−�

cos(u1ϑ0(σ))ϑ0(σ) dσ = 2
∫ 0

−�/2

cos(u1ϑ0(σ))ϑ0(σ) dσ = 0, (4.22)

where the last equality follows from the fact that the function s �→ cos(u1ϑ0(s))ϑ0(s) is odd in [−�/2, 0]
by (4.10c). This implies that (4.18) is equivalent to∫ �

−�

sin2(u1ϑ0(s))
[∫ s

0

cos(u1ϑ0(σ))ϑ0(σ) dσ

]
ds = 0. (4.23)

By (4.10a), the function cos(u1ϑ0(σ))ϑ0(σ) is odd in [−�, �], and therefore the function s �→ ∫ s

0

cos(u1ϑ0(σ))ϑ0(σ) dσ is even in [−�, �] by Lemma 4.2. Since also sin2(u1ϑ0(s)) is even in [−�, �] by (4.10a), (4.23)
is equivalent to ∫ �

0

sin2(u1ϑ0(s))
[∫ s

0

cos(u1ϑ0(σ))ϑ0(σ) dσ

]
ds = 0,

which, by (4.22), is equivalent to∫ �

0

sin2(u1ϑ0(s))

[∫ s

�/2

cos(u1ϑ0(σ))ϑ0(σ) dσ

]
ds = 0. (4.24)

By (4.10b), the function cos(u1ϑ0(σ))ϑ0(σ) is even in [0, �], and therefore the function s �→ ∫ s

�/2

cos(u1ϑ0(σ))ϑ0(σ) dσ is odd in [0, �] by Lemma 4.2. Since also sin2(u1ϑ0(s)) is even in [0, �] by (4.10b), (4.24)
holds because its integrand is odd in [0, �]. This concludes the proof of (4.18). Therefore, we have proved that
the second component in (4.12) vanishes.

By the results just proved, (4.13) reduces to

ẋ1(t)
∫ L

0

〈Kξ(s, t)e1, Jξ(s, t)〉ds = −
∫ L

0

〈Kξ(s, t)ξ̇(s, t), Jξ(s, t)〉ds (4.25)

To prove that the left-hand side is zero, by (4.6) and (4.7) it is enough to show that∫ L

0

〈ξ′0(s, t), e1〉 〈ξ′0(s, t), Jξ0(s, t)〉 ds =
∫ L

0

〈Jξ′0(s, t), e1〉 〈Jξ′0(s, t), Jξ0(s, t)〉 ds = 0,

which in turn is valid if we prove that, for any u1, u2 (after recalling (4.2) and performing the usual change of
variables s − u2 → s) ∫ �

−�

sin(2u1ϑ0(s))
[∫ s

−�

cos(u1ϑ0(σ)) dσ

]
ds = 0,
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−�

sin2(u1ϑ0(s))
[∫ s

−�

sin(u1ϑ0(σ)) dσ

]
ds = 0,

∫ �

−�

cos2(u1ϑ0(s))
[∫ s

−�

sin(u1ϑ0(σ)) dσ

]
ds = 0.

To prove these equalities we can argue as in (4.17) and (4.18).
To prove that the right-hand side of (4.25) is zero, besides the equalities already proved, we have to show

that ∫ �

−�

cos(u1ϑ0(s))
[∫ s

−�

sin(u1ϑ0(σ)) dσ

]
ds = 0,

∫ �

−�

sin(u1ϑ0(s))
[∫ s

−�

cos(u1ϑ0(σ)) dσ

]
ds = 0,

∫ �

−�

cos2(u1ϑ0(s))
[∫ s

−�

sin(u1ϑ0(σ))ϑ0(σ) dσ

][∫ s

−�

sin(u1ϑ0(σ)) dσ

]
ds = 0,

∫ �

−�

sin2(u1ϑ0(s))
[∫ s

−�

sin(u1ϑ0(σ))ϑ0(σ) dσ

][∫ s

−�

sin(u1ϑ0(σ)) dσ

]
ds = 0,

∫ �

−�

sin(2u1ϑ0(s))
[∫ s

−�

sin(u1ϑ0(σ))ϑ0(σ) dσ

][∫ s

−�

cos(u1ϑ0(σ)) dσ

]
ds = 0,

∫ �

−�

sin(2u1ϑ0(s))
[∫ s

−�

cos(u1ϑ0(σ))ϑ0(σ) dσ

][∫ s

−�

sin(u1ϑ0(σ)) dσ

]
ds = 0,

∫ �

−�

sin2(u1ϑ0(s))
[∫ s

−�

cos(u1ϑ0(σ))ϑ0(σ) dσ

][∫ s

−�

cos(u1ϑ0(σ)) dσ

]
ds = 0,

∫ �

−�

cos2(u1ϑ0(s))
[∫ s

−�

cos(u1ϑ0(σ))ϑ0(σ) dσ

][∫ s

−�

cos(u1ϑ0(σ)) dσ

]
ds = 0.

This can be done as in the previous proofs, using the symmetry assumptions (4.10) together with Lemma 4.2.
We still need to verify that the first component in the left-hand side of (4.12) does not vanish. Indeed, by

using (4.5), (4.6), and (4.7),∫ L

0

〈Kξ(s, t)e1, e1〉ds =
∫ �

−�

[Cτ cos2(u1ϑ0(s)) + Cν sin2(u1ϑ0(s))]ds,

which is clearly greater than zero. Therefore, (4.12) can be written in the following way

ẋ1(t) =
F sh(t)
b(u1(t))

= a1(u1(t))u̇1(t) + a2(u1(t))u̇2(t), (4.26)

where we have set

ai(u1) := −bi(u1)
b(u1)

, (4.27a)

b(u1) :=
∫ L

0

〈K0(s, u1, u2)e1, e1〉ds, (4.27b)

bi(u1) :=
∫ L

0

〈K0(s, u1, u2)ξ0,i(s, u1, u2), e1〉ds, (4.27c)
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since the right-hand sides in (4.27) are in fact independent of u2. Indeed, an easy computation recall-
ing (4.6), (4.8), and (4.9) leads to the following expressions

b(u1) = 2Cτ � + (Cν − Cτ )
∫ �

−�

sin2(u1ϑ0(s)) ds, (4.28a)

b1(u1) = −Cτ

∫ �

−�

[∫ s

−�

ϑ0(σ) sin(u1ϑ0(σ))dσ

]
ds

−(Cν − Cτ )
∫ �

−�

sin2(u1ϑ0(s))
[∫ s

−�

ϑ0(σ) sin(u1ϑ0(σ))dσ

]
ds (4.28b)

+
Cτ − Cν

2

∫ �

−�

sin(2u1ϑ0(s))
[∫ s

−�

ϑ(σ) cos(u1ϑ0(σ))dσ

]
ds

b2(u1) = 2Cτ � − Cτ

∫ �

−�

cos(u1ϑ0(s))ds+(Cν − Cτ )
∫ �

−�

sin2(u1ϑ0(s))ds. (4.28c)

Notice that from (4.12) and (4.26)

F sh(t) = [b1(u1(t))u̇1(t) + b2(u1(t))u̇2(t)]e1. (4.29)

Assume that u1(0) = 0. Since x1(0) = 0 and ξ(0, 0) = 0 (recall that we have assumed x(0) = 0 and ξ(0, t) = 0
for all t ∈ [0, 1]), the initial condition χ(·, 0) = Σin(·) is satisfied.

Assume also that u1(1) = 0. Since ξ(0, 1) = 0, the final condition χ(·, 1) = Σfin(·) is satisfied provided
x1(1) = a. Therefore we have to show that we can choose the Lipschitz controls u1: [0, 1] → [−1, 1] and
u2 : [0, 1] → [�, L − �] in such a way that the corresponding solution of (4.26) satisfying the initial conditions
x1(0) = 0 satisfies also the final condition x1(1) = a.

Equation (4.26) shows that x1(1) is the integral of the differential form a1(u1)du1 + a2(u1)du2 along the

oriented curve t �→
(

u1(t)
u2(t)

)
.

We shall prove that there exists δ ∈ (0, 1) such that

da2

du1
(0) = 0 and

da2

du1
(u1) < 0, for 0 < u1 < δ. (4.30)

For every γ � δ, let us consider the rectangle Rγ := [0, γ]×[�, L−�]. If (uγ
1(t), uγ

2 (t)) is a clockwise parametriza-
tion of ∂Rγ with uγ

1(0) = uγ
1(1) = 0, then the corresponding solutions xγ

1 to (4.26) with initial condition
xγ

1 (0) = 0 satisfy the condition
0 < xγ

1 (1) � xδ
1(1).

If 0 < a � xδ
1(1), by continuity there exists γ ∈ (0, δ] such that xγ

1 (1) = a. If a > xδ
1(1), then we can write

a = nb, with n ∈ N and b ∈ (0, xδ
1(1)], and fix γ such that xγ

1 (1) = b. We then extend u1 and u2 by 1-periodicity,
and we achieve the equality x1(1) = a by choosing as control (u1(t), u2(t)) = (uγ

1(nt), uγ
2 (nt)).

We remark that this elementary argument, based on the non-integrability of the differential form a1(u1)du1 +
a2(u1)du2, is a particular case of a well know result in Geometric Control Theory, namely Chow’s Theorem,
see, e.g., [9], Theorem 3.18.

We now prove (4.30). By (4.28a) and (4.28c) it is easy to compute

db

du1
(u1) =(Cν − Cτ )

∫ �

−�

sin(2u1ϑ0(s))ϑ0(s) ds,

db2

du1
(u1) =Cτ

∫ �

−�

sin(u1ϑ0(s))ϑ0(s)ds + (Cν − Cτ )
∫ �

−�

sin(2u1ϑ0(s))ϑ0(s)ds, (4.31)
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b(0) = 2Cτ �, b2(0) = 0,
db

du1
(0) = 0,

db2

du1
(0) = 0, (4.32)

which implies the first equality in (4.30), since

b2(u1)
da2

du1
(u1) = −db2(u1)

du1
b(u1) + b2(u1)

db(u1)
du1

· (4.33)

To establish the result on the sign of da2
du1

(u1), it is enough to study the derivative of the right-hand side of (4.33),
which is equal to

−d2b2

du2
1

(u1)b(u1) + b2(u1)
d2b

du2
1

(u1). (4.34)

From (4.31) we obtain

d2b2

du2
1

(u1) =Cτ

∫ �

−�

cos(u1ϑ0(s))ϑ2
0(s)ds + 2(Cν − Cτ )

∫ �

−�

cos(2u1ϑ0(s))ϑ2
0(s)ds,

and therefore
d2b2

du2
1

(0) = (2Cν − Cτ )
∫ �

−�

ϑ2
0(s)ds.

Evaluating (4.34) at u1 = 0 gives (recall the second equality in (4.32))

sign
(

d2a2

du2
1

(0)
)

= sign

(
−2Cτ�(2Cν − Cτ )

∫ �

−�

ϑ2
0(s)ds

)
< 0,

which proves the second part of claim (4.30).

4.2. Rotation

In this subsection we describe how to rotate a straight swimmer about its center in the time interval [0, 1].
This will be obtained in three steps. In the first one we deform symmetrically the initial segment into the shape
in Figure 10, with two parallel straight terminal parts; by symmetry the deformation process will produce a
rotation of an angle ϕ0 (that we will not estimate) about the midpoint. In the second step we propagate bumps
on the rectilinear parts as described below in order to achieve a rotation of a prescribed angle ϕ. In the third
step, we straighten back the now rotated configuration in Figure 10 into a straight one by reverting the process
in step one: this will produce a rotation of angle −ϕ0 about the midpoint, so that at the end of the process the
segment will be rotated by the angle ϕ.

Without loss of generality, in this section it is convenient to assume that the length of the swimmer is 2L
and to parametrize all curves in the interval [−L, L]. We take Σin(s) = se1 and Σfin(s) = se(ϕ), for s ∈ [−L, L],
where e(ϕ) = (cosϕ, sin ϕ), ϕ being the angle of rotation. As before, the motion will be first described through
a function ξ ∈ X1 satisfying the two disks condition with radius ρ. Then, we will consider the function χ(s, t)
defined by (3.1), where x(t) and R(t) satisfy the equation of motion (3.8). The initial and final conditions
on χ are

χ(s, 0) = se1, χ(s, 1) = se(ϕ), (4.35)

for all s ∈ [−L, L].
We also assume that ξ(s, 0) = se1 and that ξ satisfies

ξ(s, t) = −ξ(−s, t) (4.36)
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Figure 10. Rotation: the configurations ξ(s, 1/3) = ξ(s, 2/3).

for every s ∈ [−L, L] and for every t ∈ [0, 1]. It follows that

ξ′(s, t) = ξ′(−s, t), ξ̇(s, t) = −ξ̇(−s, t), (4.37)

which implies that the force density f(s, t) in (2.1) is odd with respect to s, so that F (t) =
∫ L

−L f(s, t) ds = 0
for all t ∈ [0, 1].

The quantities introduced in (3.6), (3.7), and (3.9) are now defined by integration over the interval [−L, L].
The symmetry properties (4.36) and (4.37) imply also that the vector b(t) introduced in (3.6a) and the vector
F sh(t) defined in (3.7) vanish. As a consequence, the vectors b̄(t) and v(t) introduced in (3.9) are zero and
c̄(t) = 1/c(t). Therefore, the equations of motion (3.8) read ẋ(t) = 0 and

θ̇(t) = ω(t) :=
M sh(t)

c(t)
, (4.38)

where θ(t) is the angle of the rotation R(t). Together with the initial conditions at time t = 0, this implies that
x(t) = 0 for every t ∈ [0, 1], θ(0) = 0, and

χ(s, t) = R(t)ξ(s, t).

Therefore, the final condition in (4.35) is equivalent to

θ(1) ≡ ϕ mod 2π.

The first step will take place in the time interval [0, 1/3]. The curve ξ(·, 1/3) is the one represented in
Figure 10. The main feature of this curve, besides being odd, is that ξ(s, 1/3) = p+(s−L/2)e1, for s ∈ [L/2, L],
where p = ξ(L/2, 1/3) and p2 > 0. The angle ϕ0 mentioned at the beginning of the section is then defined by
ϕ0 = θ(1/3).

The second step will take place in the time interval [1/3, 2/3]. As in the case of pure translations, the overall
rotation of angle ϕ will be achieved by iterating the cyclic motions described below.

During each cycle, we deform the rectilinear parts of the swimmer with the same bumps we used for the
translation, see Figure 11. They will be created at the ends of the swimmer, will travel towards its center, and
will be destroyed before entering the curvilinear part.

To describe the geometry of the bumps, we use the angle function ϑ(s, t) considered in (4.3), where now the
Lipschitz controls u1 and u2 take values in [−1, 1] and [L/2+�, L−�], with � ∈ (0, L/4). The corresponding func-
tion ξ(s, t) is defined by ξ(s, t) = ξ(s, 1/3) for s ∈ [0, L/2] and t ∈ [1/3, 2/3], and by ξ(s, t) = ξ0(s, u1(t), u2(t)),
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Figure 11. Rotation: the right half of the swimmer is shown, s ∈ [0, L].

where

ξ0(s, u1, u2) := p +
∫ s

L/2

(
cos(u1ϑ0(σ − u2))
sin(u1ϑ0(σ − u2))

)
dσ.

Using (4.29), the force F sh(t) generated during the translation of the bumps is given by

F sh
right(t) = [b1(u1(t))u̇1(t) + b2(u1(t))u̇2(t)]e1, for every t ∈ [1/3, 2/3].

By the symmetries introduced in (4.36), the global torque defined in (3.7) can be computed as

M sh(t) = − 2
∫ L

L/2

〈J(ξ(s, t) − p), Kξ(s, t)ξ̇(s, t)〉ds + 2
〈
Jp, F sh

right(t)
〉

= − 2p2[b1(u1(t))u̇1(t) + b2(u1(t))u̇2(t)]

where the integral, which represents the torque with respect to the point p, vanishes, as explained in Section 4.1.
To compute θ̇(t) in (4.38), it is convenient to write

c(t) = b∗(u1(t)),

where, by (3.6b), (4.36), and (4.37)

b∗(u1) := 2Cτ

∫ L

L/2

〈ξ′0(s, u1, u2), Jξ0(s, u1, u2)〉2 ds + 2Cν

∫ L

L/2

〈ξ′0(s, u1, u2), ξ0(s, u1, u2)〉2 ds;

it is easy to see that the right-hand side above is independent of u2. Equation (4.38) becomes now

θ̇(t) = a∗
1(u1(t))u̇1(t) + a∗

2(u1(t))u̇2(t),

where

a∗
i (u1) :=

bi(u1)
b∗(u1)

.

Now, with the same strategy used for proving (4.30), we can show that there exists δ ∈ (0, 1) such that

da∗
2

du1
(0) = 0 and

da∗
2

du1
(u1) < 0, for 0 < u1 < δ.

We can now conclude step two as in Section 4.1 and we get θ(2/3) = θ(1/3) + ϕ = ϕ0 + ϕ.
The third step will take place in the time interval [2/3, 1]. We now define ξ(s, t) = ξ(s, 1−t) for s ∈ [−L, L] and

for t ∈ [2/3, 1]. Since this motion is the same as in step one with time reversed, the rotation angle θ(1)− θ(2/3)
will be equal to −ϕ0, hence θ(1) = ϕ. �
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5. Existence of an optimal swimming strategy

In this section we prove Theorem 5.1 about the existence of an energetically optimal swimming strategy. The
result is achieved by proving that a minimum problem for the power expended (3.11) has a solution.

Let us recall the definition of power expended:

P(χ) :=
∫ L

0

∫ T

0

〈−f(s, t), χ̇(s, t)〉 dsdt =
∫ L

0

∫ T

0

〈Kχ(s, t)χ̇(s, t), χ̇(s, t)〉 dsdt. (5.1)

Up to a change of coordinates, it is possible to represent Kχ(s, t) in diagonal form, with entries Cτ and Cν .
Since 0 < Cτ < Cν , the matrix Kχ(s, t) is positive definite and its lower eigenvalue is Cτ . It follows that

P(χ) � Cτ

∫ L

0

∫ T

0

|χ̇(s, t)|2 dsdt. (5.2)

For every ρ > 0 let Xρ
1 be the set of all functions χ ∈ X1 (see (2.12)) such that for every t ∈ [0, T ] the curve

χ(·, t) satisfies the external disks condition with radius ρ (see Def. 3.4).

Theorem 5.1. Let ρ > 0 and let χin, χfin ∈ H2(0, L; R2), with |χ′
in(s)| = |χ′

fin(s)| = 1 for every s ∈ [0, L].
Assume that χin and χfin satisfy the two disks condition with radius ρ (see Def. 3.4). Then the minimum problem

min{P(χ) : χ ∈ Xρ
1 , (2.3) holds, χ(·, 0) = χin(·), χ(·, T ) = χfin(·)} (5.3)

has a solution.

Proof. We first observe that the set of motions χ on which we are mimimizing is nonempty by Theorem 4.1.
Let us consider a minimizing sequence (χk)k. By (5.2) there exists a constant M < +∞ such that,∫ L

0

∫ T

0

|χ̇k(s, t)|2 dsdt � M (5.4)

for every k. Notice that the external disks condition with radius ρ gives the estimate

|χ′′
k(s, t)| � 1/ρ (5.5)

for every t ∈ [0, T ] and for a.e. s ∈ [0, L].
We now show that χk(·, t) is bounded in L2(0, L) uniformly with respect to k and t. Since χk(·, 0) = χin(·),

for every s ∈ [0, L] we have

|χk(s, t)|2 � 2 |χin(s)|2 + 2T

∫ T

0

|χ̇k(s, t)|2 dt.

From this inequality and from (5.4) we get

sup
t∈[0,T ]

‖χk(·, t)‖2
L2(0,L) � 2 ‖χin‖2

L2(0,L) + 2TM. (5.6)

By an elementary interpolation inequality we deduce from (5.5) and (5.6) that

sup
t∈[0,T ]

‖χk(·, t)‖H2(0,L) � C, (5.7)

for a suitable constant C < +∞ independent of k.
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By (5.4) and (5.6) the sequence (χk)k is bounded in H1(0, T ; L2(0, L)). Therefore there exist a subsequence,
not relabeled, and a function χ : [0, L]×[0, T ] → R

2 such that

χ ∈ H1(0, T ; L2(0, L)), (5.8)

χk ⇀ χ weakly in H1(0, T ; L2(0, L)). (5.9)

Since H1(0, T ; L2(0, L)) is continuously embedded into C0([0, T ]; L2(0, L)) and for every t ∈ [0, T ] the function
ξ �→ ξ(t) is continuous from C0([0, T ]; L2(0, L)) into L2(0, L), from (5.9) we deduce that

χk(·, t) ⇀ χ(·, t) weakly in L2(0, L)

for every t ∈ [0, T ]. Then (5.7) gives that

χ(·, t) ∈ H2(0, L) for every t ∈ [0, T ], (5.10a)
χk(·, t) ⇀ χ(·, t) weakly in H2(0, L) for every t ∈ [0, T ], (5.10b)

sup
t∈[0,T ]

‖χ(·, t)‖H2(0,L) � C. (5.10c)

By (5.8) and (5.10c) we have χ ∈ X . Since the embedding of H2(0, L) into C1([0, L]) is compact, from (5.10b)
we deduce that χk(·, t) → χ(·, t) strongly in C1([0, L]) for every t ∈ [0, T ]. This allows us to pass to the limit
in the equalities |χ′

k(s, t)| = 1, χk(s, 0) = χin(s), χk(s, T ) = χfin(s), and in the external disks condition with
radius ρ. We conclude that χ ∈ Xρ

1 and that χ(s, 0) = χin(s), and χ(s, T ) = χfin(s).
Let us verify that also the force and torque balance (2.3) passes to the limit. Equality (2.3a) for χk reads∫ L

0

Kχk
(s, t)χ̇k(s, t) ds = 0. (5.11)

Since χ′
k(·, t) converges to χ′(·, t) strongly in C1([0, L]) for every t ∈ [0, T ], by (2.2) and (5.10c) we can apply

the Dominated Convergence Theorem and we obtain

Kχk
→ Kχ strongly in L2(0, T ; L2(0, L)). (5.12)

By (5.9) we have also
χ̇k ⇀ χ̇ weakly in L2(0, T ; L2(0, L)). (5.13)

By (5.1) and by the Ioffe–Olech semicontinuity theorem (see, for instance, [6], Thm. 2.3.1) we have

P(χ) � lim inf
k→+∞

P(χk). (5.14)

Let now ϕ ∈ C0
c (0, T ) be a test function. By (5.11)−(5.13) we have

0 =
∫ T

0

∫ L

0

ϕ(t)Kχk
(s, t)χ̇k(s, t) dsdt →

∫ T

0

∫ L

0

ϕ(t)Kχ(s, t)χ̇(s, t) dsdt.

Since this equality holds for every ϕ ∈ C0
c (0, T ), we conclude that∫ L

0

Kχ(s, t)χ̇(s, t) ds = 0

for almost every t ∈ [0, T ]. This proves (2.3a). The proof of (2.3b) is analogous. Since (χk)k is a minimizing
sequence, we deduce from (5.14) that χ is a minimizer of (5.3). �
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