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Abstract. Modeling topologies in Wireless Sensor Networks princi-
pally uses domination theory in graphs. Indeed, many dominating struc-
tures have been proposed as virtual backbones for wireless networks.
In this paper, we study a dominating set that we call Weakly Con-
nected Independent Set (wcis). Given an undirected connected graph
G = (V, E), we say that an independent set S in G is weakly connected
if the spanning subgraph (V, [S, V \ S]) is connected, where [S, V \ S]
is the set of edges having exactly one end in S. The minimum weakly
independent connected set problem consists in determining a wcis of
minimum size in G. First, we discuss some complexity and approxima-
tion results for that problem. Then we propose an implicit enumeration
algorithm which computes a minimum wcis in a graph with n vertices
with a running time O∗(1.4655n) and polynomial space. Processing
results are given that show that our enumeration program solves the
mwcis problem for graphs whose number of vertices is less than 120.
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1. Introduction

Numerous civil and military applications use networked sensors [1,12]. Actually,
sensors can be deployed to gather meteorological measures such as temperature
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and pressure. They can also detect natural disasters such as earthquakes and con-
duct emergency response units to survivors. A Wireless Sensor Network (WSN)
generally consists in a set of autonomous composants which collect data and broad-
cast messages to a base station. The communications are achieved via a shared
bandwidth directly if the devices are close enough or through relays provided by
intermediary sensors. Unfortunately, the network performance is reduced by in-
terferences and unavoidable retransmissions can increase energy consumption. As
there is no physical infrastructure like in wired networks, a virtual backbone needs
to be created by choosing some sensors as dominator nodes. Thus, all nodes can
communicate through the selected nodes straightforwardly or via dominee nodes.

An undirected communication graph G = (V, E) [7, 12], is naturally associated
to the sensors located in the region they monitor. The node set V is the set of
sensors and an edge e = {u, v} in E is a possible transmission link between two
sensors u and v. This link depends on the euclidian distance between u and v and
the energy to deploy for this connection. Usually the size of a Wireless Sensor Net-
work is large and its nodes have very limited ressources. So the virtual backbone
should be built with low communication and computation costs. Connected Dom-
inating Sets [18] have been proposed as a solution by many authors [6, 20, 30, 32].
A node set D is a connected dominating set, or cds for short, if each vertex in G
is in D or adjacent to at least one of the vertices in D (domination property) and
if the subgraph induced by D is connected. Thus, communications are ensured
between all the vertices via the set D. As one wants to reduce the number of ex-
changed messages and to avoid useless energy consumption, D must be of small
size. But obtaining a minimum connected dominating set is an NP -hard prob-
lem [13]. Consequently, many approximation algorithms and heuristics have been
proposed for that problem [2,16,23,29,30]. A greedy approximation algorithm has
been described by Guha and Khuller [16] which gave a cds with a size of at most
(3 + ln(Δ(G))) the size of a minimum cds where Δ(G) is the maximum degree in
the communication graph G.

The cds notion can be weakened by using a weakly connected dominating set or
wcds [5,9]. A dominating set D is said weakly connected if the partial graph (V, F )
is a connected graph where F is the set of edges of E which have at least one end in
D. Yet, the problem of minimizing the cardinality of a wcds remains NP -hard [13].
In [5], a theoretical performance ratio of the approximation algorithms proposed
for finding small wcds is O(ln(Δ(G))) compared to the minimum size wcds.

An independent set is a subset of V that does not contain any edge of E.
In [31, 32], the authors use algorithms which construct a connected dominating
set by adding vertices of V \ S to a maximal independent set S. It is easy to
obtain greedily a maximal independent set in a graph G. Also it is known that
a minimum maximal independent set can be found in polynomial time for some
graph classes like interval graphs [4] and chordal graphs [10] whereas the problem
remains NP -Hard in bipartite graphs and comparability graphs [8].

In [25], Moon and Moser showed that the number of maximal independent sets
of a graph with n vertices is upper bounded by 1.443n. Johnson et al. [21] gave
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a polynomial delay algorithm to generate all maximal independent sets. In [14],
Gaspers and Liedloff present an O∗(1.357n) for solving the minimum maximal
independent set. Recently, Bourgeois et alii. [3] have improved this result by a
branching algorithm that computes a minimum maximal independent set with a
running time O∗(1.335n).

Rather than lose the independence property for the connectivity property, we
can specify conditions on an independent set to gain the weak connectivity. In-
deed, in [2], it is showed that some particular maximal independent sets can be
weakly connected. These sets of vertices are such that dominators may be con-
nected through dominees. More formally, a weakly connected independent set is
an independent set W ⊂ V such that the partial graph GW = (V, [W, V \ W ])
is a connected graph. Such a set can be used as a structural basis for a cluster
based architecture in wireless sensor networks [28]. Furthermore, the set V can
be partitioned into three subsets: slaves, masters and bridges whose function is
respectively to conduct detection activities, to collect data and to ensure cluster
communication.

The present paper deals with properties about weakly connected independent
sets, wcis for short, in a connected graph. We also describe a specific implicit
enumeration algorithm in O∗(1.4655n) for the minimum wcis and display com-
putational results. Despite its higher complexity compared to Bourgeois et al.’s
prominent algorithm, our targeted approach provides a first wcis very fast, and
finds an optimum solution on instances with more than a hundred vertices. A nu-
merical comparison using results in [22] is made with implemented mis enumeration
methods. Our results can be considered as a first theoretical and computational
step towards a deeper study of this interesting structure.

The paper is organized as follows. In Sections 2 and 3, we give some defini-
tions, notations and some basic properties of a wcis and related sets like maximal
independent sets. Section 4 is dedicated to the complexity and approximation re-
sults for the minimum cardinality wcis problem. In Section 5 we study this prob-
lem in particular graph classes such as bipartite, split and comparability graphs.
Section 6 describes an implicit algorithm for the mwcis problem and analyses
its performance. Section 7 presents some numerical results and, in particular, we
compare the running times of our procedure with the experimental tests stemming
from [22]. A conclusion is in Section 8.

2. Notations and definitions

A finite undirected graph G is denoted by G = (V, E) where V is the vertex
set and E the edge set. In the following, we assume that the graph G is con-
nected. Δ(G), (resp. δ(G)) is the maximum (resp. minimum) degree in G. For
two vertices u and v in G, the distance dG(u, v) is the minimum length of a path
connecting u and v. If S ⊂ V and u /∈ S, dG(u, S) = minv∈S{dG(u, v)}. The neigh-
borhood N(u) of a vertex u is the set of nodes at distance 1 from u whereas the
2-neighborhood of u, N2(u), contains the nodes at distance 2 from u. The closed
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neighborhood of a vertex u is N [u] = N(u) ∪ {u}. For any subset S of V , the
outer neighborhood N(S) is such that N(S) = {v ∈ V \S; ∃u ∈ S, dG(u, v) = 1}.
Given S and S′ two disjoint subsets of V , [S, S′] denotes the set of edges with
exactly one end in S and in S′. If S ⊂ V , then denote by G(S) the subgraph
induced by the vertex set S.

Definition 2.1. (is) A subset S ⊂ V is an Independent Set or a stable set in G if
there is no edge in E between two vertices of S.

Definition 2.2. (mis) An independent set S is maximal if there does not exist
an independent set in G which strictly contains S.

Definition 2.3. (wcis) An independent set W of G such that the partial graph
GW = (V, [W, V \W ]) is connected is called Weakly Connected Independent Set.

3. Basic properties of weakly connected independent

sets

Given an undirected connected graph G = (V, E) with |V | ≥ 2, let W(G) be
the set of weakly connected independent sets of G. The following Lemma is easily
seen.

Lemma 3.1. If W ∈ W(G) then

(i) W is a maximal stable set,
(ii) GW = (V, [W, V \W ]) is a connected bipartite graph,
(iii) There is a partition V1, . . . , Vp of V such that Vi ∩W = {wi}, Vi ⊆ N [wi] for

i = 1, . . . p and dG(wi,∪i−1
j=1{wj}) = 2, for 2 ≤ i ≤ p.

The next property which characterizes a wcis can be found in [2].

Lemma 3.2. Let W be a maximal independent set in G. W is a wcis in G if and
only if, for any subset A ⊂ W , there exist a vertex u ∈ A and a vertex v ∈ W \ A
such that dG(u, v) = 2.

We denote by MWCIS(G) a weakly connected independent set of minimum cardi-
nality in G. The lemma below describes bounds for the cardinality of a MWCIS(G).

Lemma 3.3. If W ∈ W(G), then

(i) |V |−1
Δ(G) ≤ |W |,

(ii) |W | ≤ (Δ(G) − 1)|MWCIS(G)| + 1,

(iii) |MWCIS(G)| ≤ |V | − Δ(G),
(iv) There do not exist a real number β, 0 < β < 1, and an integer Nβ such that

|MWCIS(G)| ≤ β × |V |, for all connected graph G = (V, E) with |V | ≥ Nβ.
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Proof. Let |MWCIS(G)| = p̄. Suppose first that p̄ = 1 and MWCIS(G) = {w̄1}. Then
w̄1 is adjacent to any vertex in V , and V = N [w̄1]. So |V | − 1 = Δ(G). Therefore
(i) holds for any W ∈ W(G). Moreover, as W ⊂ N(w̄1), for any W ∈ W(G) which
does not contain w̄1, we obtain (ii).

Assume now that p̄ ≥ 2. From Lemma 3.1 (iii), denote by V̄1, . . . , V̄p̄ the partition
induced by MWCIS(G). As V̄i ⊆ N [w̄i] for all 1 ≤ i ≤ p̄, and dG(w̄i,∪i−1

j=1{w̄j}) = 2,
for all 2 ≤ i ≤ p̄, we have that

|V̄1| ≤ Δ(G) + 1 and |V̄i| ≤ Δ(G) for i ≥ 2. (1)

(i) As V = ∪p̄
i=1V̄i, we get

|V | ≤ Δ(G) + 1 + Δ(G)(p̄ − 1).

This implies that
|V | − 1
Δ(G)

≤ p̄. (2)

Moreover |W | ≥ p̄, for any set W ∈ W(G), then the inequality (2) yields (i).
(ii) Let W be in W(G). We give an upper bound on |V̄i∩W |, for any i. If w̄i0 ∈ W ,

for some i0 ∈ {1, . . . p̄}, then |V̄i0 ∩W | = 1. Thus, |V̄
i
∩W | ≤ |V̄i| − 1 for any

i ∈ {1, . . . p̄}. By (1) we have |V̄1 ∩ W | ≤ Δ(G) and |V̄i ∩ W | ≤ Δ(G) − 1 for
all i ≥ 2. As W =

⋃p̄
i=1(V̄i ∩ W ), we obtain that

|W | ≤ Δ(G) + (Δ(G) − 1)(p̄ − 1),

and (ii) follows.
(iii) It suffices to take a wcis containing a vertex of degree Δ(G).
(iv) Suppose on the contrary that there are a real number β, 0 < β < 1, and an

integer Nβ such that |MWCIS(G)| ≤ β×|V |, for all connected graph G = (V, E)
with |V | ≥ Nβ.

Let pβ =
⌈

β
1−β

⌉
and KN = ({u1, . . . uN}, E(KN)) be a clique of order N ≥

Nβ. Define the graph H = (V (H), E(H)) by
• V (H) = {u1, . . . , uN} ∪ {vj

i : 1 ≤ j ≤ pβ, 1 ≤ i ≤ N},
• E(H) = E(KN ) ∪ {(ui, v

j
i ) : 1 ≤ j ≤ pβ , 1 ≤ i ≤ N}.

Note that the set
⋃N

i=1{v1
i , . . . , v

pβ

i } is not a wcis of H . As KN is complete,
we see that |W ∩ {u1, . . . uN}| = 1, for any node set W ∈ W(H). W.l.o.g.
MWCIS(H) = {u1} ∪ (

⋃N
i=2{v1

i , . . . , v
pβ

i }). Then

|MWCIS(H)|
|V (H)| =

1 + pβ(N − 1)
N + pβN

=
pβ

pβ + 1
+

1 − pβ

N(1 + pβ)
·

And this ratio exceeds β for large values of N . �
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MWCIS(G)
W=V\MWCIS(G)

Figure 1. An example where the bounds (i) and (ii) in Lemma 3.3 are tight.

4. Complexity results

Given a connected graph G = (V, E) and an integer k, the Weakly Connected
Independent Set problem is to ask whether there exists a set W ∈ W(G) of size k
or less in G.

Theorem 4.1. Weakly Connected Independent Set is NP-Complete.

We postpone the proof of Theorem 4.1 till paragraph 5 where it becomes a
consequence of Theorem 5.6.

Following a negative approximation result for the Minimum Maximal Indepen-
dent Set problem is extended to the Minimum Weakly Connected Independent Set
problem.

Theorem 4.2. No polynomial algorithm can approximately solve the Minimum
Weakly Connected Independent Set problem within ratio |V |1−ε, for any ε > 0,
unless P = NP .

Proof. Suppose that there exists a polynomial algorithm Aε which, given a con-
nected graph G = (V, E), constructs a wcis Aε(G) such that

|Aε(G)| ≤ |V |1−ε|MWCIS(G)| (3)

with ε ∈]0, 1[.
We also know that the Minimum Maximal Independent Set problem is very hard

from an approximation point of view [17]. But, algorithm Aε can be transformed
into a polynomial approximation algorithm B for this last problem as follows.
Define the graph G′′ = (V ′′, E′′) by

• V ′′ = V ∪ Z where Z = {zu : u ∈ V },
• E′′ = E ∪ {(u, zu) : u ∈ V } ∪ {(zu, zv) : u, v ∈ V, u 
= v}.

Note that Z is a clique of order |V |. We denote by MMIS(G) the minimum maximal
independent set in G.

Claim 1.
|MMIS(G)| ≤ |MWCIS(G′′)| ≤ |MMIS(G)| + 1.
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Figure 2. G and G
′′

in the proof of Theorem 4.2.

Proof. As MMIS(G) 
= V , we can choose a vertex zu0 ∈ Z which is not a copy of a
vertex in MMIS(G). Let S1 = MMIS(G) ∪ {zu0}, with u0 ∈ V \ MMIS(G). It is easy
to see that S1 is a wcis in G′′. Then

|MWCIS(G
′′
)| ≤ |S1| = |MMIS(G)| + 1. (4)

As Z is a clique and there is at least an edge in E, we have MWCIS(G′′)∩Z = {zu1},
for some u1 ∈ V . Let T = MWCIS(G′′) \ {zu1}. T is an independent set of G since
MWCIS(G′′) is a stable set in G

′′
. Moreover, as MWCIS(G′′) is a dominating set in

G′′, any vertex v ∈ V \ T , different from u1, has a neighbour in T . Let S be such
that

S =
{

T ∪ {u1}, if T ∪ {u1} is stable in G;
T, otherwise.

It is easy to see that S is a maximal independent set in G, and

|S| ≤ |T |+ 1 = |MWCIS(G
′′
)|.

Then, we obtain that

|MMIS(G)| ≤ |S| ≤ |MWCIS(G
′′
)|. (5)

Inequalities (4) and (5) give

|MMIS(G)| ≤ |MWCIS(G
′′
)| ≤ |MMIS(G)| + 1,

which finishes the proof of the Claim 1 (cf. Figs. 3a and 3b). �

Consider now the wcis Aε(G′′) obtained by application of algorithm Aε on G
′′
.

Necessarily we have that Aε(G′′) = W1 ∪ {za} with W1 ⊂ V and a ∈ V . As in
Claim 1, let the independent dominating set W2(G) be given by

W2(G) =
{

W1 ∪ {a}, if W1 ∪ {a} is stable in G;
W1, otherwise.
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G

G''(a)

G
MMIS(G)
MWCIS(G'')

G''(b)

Figure 3. (a)|MWCIS(G
′′
)|=|MMIS(G)|.(b)|MWCIS(G

′′
)|=|MMIS(G)|+1.

From (3), we deduce that

|W2(G)| ≤ |Aε(G′′)| ≤ |V ′′|1−ε|MWCIS(G
′′
)|.

Then, Claim 1 implies that

|W2(G)| ≤ (2 × |V |)1−ε(|MMIS(G)| + 1).

So we have that
|W2(G)| ≤ 22−ε × |V |1−ε|MMIS(G)|.

Note that
22−εn1−ε ≤ n1− ε

2 ,

when n ≥ n0, for some n0 ∈ N. Hence,

|W2(G)| ≤ |V |1− ε
2 |MMIS(G)|, (6)

if |V | ≥ n0.
Thus, we can sketch a polynomial algorithm B which produces an Independent

Dominating Set B(G) for graph G = (V, E) such that

B(G) =
{

W2(G), if |V | ≥ n0;
MMIS(G), otherwise (obtained by enumeration).

Inequality (6) implies that B is a polynomial approximation algorithm for the
Minimum Independent Dominating Set problem, which contradicts the theorem
in [17]. �

5. Weakly connected independent sets in some graph

classes

Definition 5.1. A graph G = (V, E) is bipartite if there is a partition of its vertex
set V into two disjoint sets A and B such that each edge of E joins a node in A
to a node in B.

Definition 5.2. A graph G = (V, E) is a split-graph if there is a partition of its
node set V into a clique K and a stable set I. It is connected if the set of edges
[{v}, K] 
= ∅, ∀v ∈ I.
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Figure 4. G and G′ in the proof of Theorem 5.6.

Denote by B the connected bipartite graph class. The proofs of the first two results
below are easy and will be omitted.

Theorem 5.3. A graph G = (A ∪ B, E) in B has exactly two weakly connected
independent sets, associated with A and B, respectively.

Theorem 5.4. In a connected split graph G = (K ∪ I, E), there are at most
(|K| + 1) weakly connected independent sets.

Given a connected split graph G = (K ∪ I, E(G)), we easily deduce from The-
orem 5.4, that |MWCIS(G)| = 1 + |I| − max{|[{u}, I]|; u ∈ K}.

Definition 5.5. (comparability graph) A connected graph G = (V, E) is a com-
parability graph if G has an acyclic transitive orientation.

Theorem 5.6. Minimum Weakly Connected Independent Set problem is
NP -hard for comparability graphs.

Proof. Given a comparability graph G = (V, E), let the graph G′ = (V ′, E′) be
such that (cf. Fig. 4)

(i) V ′ = V ∪ {x1, x2} ∪ Z where Z = {zu : u ∈ V },
(ii) E′ = E ∪ {(u, x1) : u ∈ V } ∪ {(x1, x2)} ∪ {(x2, zu) : u ∈ V }.
Note that Z is an independent set of order |V |.
Claim 2. G′ is a comparability graph.

Proof. Indeed, it is straightforward to deduce a transitive orientation of G′ from
an acyclic transitive orientation of G (cf. Fig. 5). �

Then, for any maximal independent set S of G, the set S′ = S ∪ {x2} is a
wcis of G′. As Z ∪ {x1} is the only wcis in G′ which does not contain x2, the
minimum maximal independent set in G can be associated to the minimum weakly
connected independent set in G′ as above. Therefore, the MMIS problem and the
MWCIS problem have the same complexity in the comparability graph class. �
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Figure 5. An orientation of G
′
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s21s

... ... Z

s

Figure 6. The graph G1 obtained from G.

We consider now the graph class B1 which is slighly broader than B defined as
follows. A connected graph G = (V, E) belongs to B1 if G is a connected bipartite
graph, or if there exists a node u0 ∈ V such that G \ {u0} is a connected bipartite
graph.

Theorem 5.7. Weakly Connected Independent Set is NP-complete in B1.

Proof. The problem of determining whether a connected bipartite graph G =
(A ∪ B, E) has a maximal independent set of size less than k was shown to be
NP-complete in [19]. We transform a connected bipartite graph G into a graph
G1 = (V1, E1) of B1 as follows (cf. Fig. 6).

(i) V1 = A ∪ B ∪ {s, s1, s2} ∪ Z, where Z = {zu : u ∈ A ∪ B},
(ii) E1 = E ∪ {(s, s1), (s, s2)} ∪ {(s1, v) : v ∈ B}∪ {(s2, u) : u ∈ A} ∪ {(s, zu) : u ∈

A ∪ B}.
Note that G1 \ {s1} and G1 \ {s2} belong to B. Any maximal independent set M
in G corresponds with a weakly connected independent set W = M ∪ {s} in G1.
Furthermore, any wcis of G1 that is included in V1 \{s}, contains the set Z and s1

or s2. And its cardinality is bigger than |A| + |B| + 1. Then, it is straightforward
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Figure 7. A partition (A,B) of S such that dG(A, B) = 3.

to verify that G has a maximal independent set M such that |M | ≤ k if and only
if G1 has a weakly connected independent set W of size k + 1 or less. �

As any wcis in a graph G is a mis in G, it can be interesting to study the
following property.

Definition 5.8. (wcis-property) A connected graph G has the wcis-property if
any maximal independent set in G is a weakly connected independent set.

Note that the cycle C5 has the wcis-property whereas P4 has not. Actually, we
have not characterized these graphs, but we have the following result.

Lemma 5.9. Let G = (V, E) be an undirected connected graph. G and all its
induced connected subgraphs have the wcis-property if and only if G is P4-free.

Proof. Let G be a P4-free connected graph. Suppose that there exists a mis S which
is not a wcis in G. From Lemma 3.2, there is a non empty subset A of S such that
l∗ = min{dG(u, v); u ∈ A, v ∈ S \A} ≥ 3 (cf. Fig. 7). As S is a dominating set, we
have l∗ = 3. Henceforth, the minimum length path {u, u1, u2, v} between A and
S \ A induces a P4, this yields a contradiction.

Now, if G and all its connected subgraphs verify the wcis-property, then G must
be P4-free since P4 does not satisfy the wcis-property. �

Obviously, in P4-free graphs, the problems of determining the minimum size mis
and of finding the minimum size wcis have the same polynomial complexity [11].

6. An implicit enumeration algorithm

In independent set problems, trivial algorithms that simply enumerate subsets
of vertices and check for feasible solutions can be applied. Thus, all the solutions
can be obtained in O∗(2n) (notation O∗(.) is used to measure the complexity of an
algorithm ignoring polynomial terms). But, it is possible to design algorithms that
are significantly faster than exhaustive search, though still not polynomial [3, 14].
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We present a O∗(1.4655n) time algorithm for solving the Minimum Weakly Con-
nected Independent Set Problem. Actually, this result can be seen as a first step
for directly obtaining the Minimum Weakly Connected Independent Set.

For an undirected connected graph G = (V, E), let n = |V | and m = |E|.
Denote by T (n) the worst case time for an algorithm to resolve an instance on at
most n vertices. If someone can prove that computing a solution on an instance
of n vertices is done in a running time which is at most the time for running a
sequence of k instances of respective sizes n − α1, . . . , n − αk, then one can write

T (n) ≤
k∑

i=1

T (n − αi) + p(n)

where p(n) is a polynomial term. Thereafter, the running time T (n) is bounded
by O∗(cn) where the branching factor c is obtained as the maximum root of the

equation
k∑

i=1

1
xαi

= 1.

Our enumeration algorithm is based on an implicit binary search tree [15].
An independent set W is said a partial wcis of G if the subgraph GW = (W ∪

N(W ), [W, N(W )]) is connected. Obviously, if W ∪ N(W ) = V , then W is a wcis
of G. A completion of a partial wcis W is a subset C of vertices in V for which
W ∪ C is a wcis in G. We have the following easy lemma.

Lemma 6.1. Any partial wcis of a connected graph can be completed.

Along the enumeration procedure, each node of the tree is characterized by a
partial solution. A partial solution L is an ordered list of vertices of V assigned
to be in a partial wcis WL or forbidden to be used in any completion of WL. A
forbidden vertex u ∈ L is written as u. Denote also by VL the set WL ∪ N(WL)
and by FL the set of forbidden vertices stemming from L. A node belonging to
V \ (VL ∪ FL) is called free. A free vertex v is accessible if v ∈ N2(u) for some
u ∈ WL. Let AL be the set of accessible free vertices of V from WL. Note that
WL ∪ {v} is a partial wcis for any v ∈ AL. Thus, at a tree node, the decision is to
add a vertex v0 in a partial wcis or not. So the right subtree of a node is formed
by all the wcis containing v0 whereas the left subtree contains all the wcis not
containing v0.

A completion L′ of a partial solution L is a list of vertices such that L is a
prefix of L′ and AL′ = ∅. Thus a partial solution L determines at most 2n−|VL∪FL|

different completions. A completion L′ is said feasible if WL′ \WL is a completion
of WL, i.e. WL′ is a wcis.

For example, let G be a graph with V = {u1, u2, u3, u4, u5}, and E =
{(u1, u2), (u1, u3), (u2, u3), (u3, u4), (u3, u5), (u4, u5)}. For L = {u1, u2}, we have
that WL = {u2}, FL = {u1} and AL = {u4, u5}. (see Fig. 8a). So, u1

cannot belong to any completion of WL and the subgraph GWL = ({u2} ∪
{u1, u3}, {(u1, u2), (u2, u3)}) is connected (see Fig. 8b). For the above example
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Figure 8. (a) G = (V, E). (b) GWL .

there are three completions, the last one is not feasible:

{u1, u2, u4}, {u1, u2, ū4, u5}, {u1, u2, ū4, ū5}.

Our implicit enumeration algorithm involves generating a sequence of partial
solutions. As the calculations proceed, feasible completions are discovered and the
best one yet found is kept. At each step of the algorithm, characterized by a partial
solution L, we try to add an accessible vertex v0 to WL, otherwise we fathom the
node L. Then we make a backtrack at every fathoming.

Let us introduce some notations. For a subset S ⊆ V and a node v ∈ V , we
define NS(v) = N(v) ∩ S and dS(v) = |NS(v)|, the S-degree of the node v.

6.1. Initialization

We choose a minimum degree vertex w0. Let N(w0) = {w1, w2, . . . , wδ(G)}. Any
wcis of G must contain w0 or a neighbour of it. Indeed, W(G) can be partitionned
in δ(G) + 1 sets. Each of them are identified by an initial partial solution of the
form:

L0 = {w0} or Lk
0 = {w0, w1, . . . , wk−1, wk}, for 1 ≤ k ≤ δ(G).

Our algorithm successively uses these δ(G) + 1 partial solutions as initial lists.

6.2. An iteration

Denote by L a current partial solution. L can be fathomed in one of the following
cases:

Fathoming condition (F1) VL = V ,
Fathoming condition (F2) AL = ∅, and VL 
= V ,
Fathoming condition (F3) ∃u ∈ FL, N(u) ⊂ N(WL) ∪ FL.

Indeed, Condition (F1) indicates that WL is a wcis, which may replace the best
known solution if it is smaller. With Condition (F2), L is an infeasible completion
of the current initial list. A forbidden vertex verifying Condition (F3) cannot be
dominated in any completion L′ of L, since WL ⊂ WL′ and FL ⊂ FL′ . So we may
backtrack.
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W N(W  )L L

FLFLFL

v0

AL

Figure 9. Branching on a vertex according to Rule (R1).

Suppose now that none of the above conditions is satisfied. We select an acces-
sible node v0 satisfying:

Rule (R1) dV \(VL∪FL)(v0) = 0,
Rule (R2) dV \(VL∪FL)(v0) = 1,
Rule (R3) dV \(VL∪FL)(v0) ≥ 2.

6.2.1. Branching on a vertex according to Rule (R1)

Lemma 6.2. Assume that an accessible node v0 is not adjacent to any free vertex.
Then we can add v0 without branching.

Proof. As v0 is an accessible node whose neighboorhood is included in N(WL)∪FL,
any wcis extending WL must contain this vertex (see Fig. 9). So the partial solution
L′ = L ∪ {v0} has no feasible completion. �

6.2.2. Branching on a vertex according to Rule (R2)

Lemma 6.3. Assume that an accessible node v0 is adjacent to exactly one free
vertex. Then we can remove at least two vertices and T (p) ≤ 2T (p − 2). Thus we
obtain a branching factor λ ≤ √

2 = 1.4142.

Proof. Given a partial solution L, let v0 be an accessible vertex such that N(v0) \
(N(WL) ∪ FL) = {x0}. So, with L′ = L ∪ {v0} we have T (p) ≤ T (p − 2). Assume
now that v0 is forbidden. Consider a partial solution L′′ which admits L ∪ {v0}
as prefix. Suppose that WL′′ cannot contain x0, e.g. x0 ∈ FL′′ or x0 ∈ N(WL′′).
As N(v0) ⊂ (N(WL) ∪ FL ∪ {x0}) ⊂ (N(WL′′) ∪ FL′′), v0 satisfies Fathoming
Condition (3) for L′′. This implies that T (p) ≤ T (p − 2). Finally, the branching
gives T (p) ≤ 2T (p− 2) (see Fig. 10). �

6.2.3. Branching on a vertex according to Rule (R3)

Consider a node v0 satisfying Rule (R3). When we take v0 in L, we must remove
at least two free vertices (see Fig. (11)). So we get that T (p) ≤ T (p−3)+T (p−1).
Here the branching factor λ is less than 1.4655. Therefore we get as an immediate
consequence of Lemmata 6.2 and 6.3 the following theorem.

Theorem 6.4. The implicit algorithm solves Minimum Weakly Connected Inde-
pendent Set problem in polynomial space and in time O∗(1.4655n).
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Figure 10. Branching on a vertex according to Rule (R2).
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Figure 11. Branching on a vertex according to Rule (R3).

7. Computational experiment

In this section, we present our graph instances and discuss experimental results.
The algorithms are implemented in C. All runs are performed on a Machine HP
8 CPU 2.7 Ghz, AMD Opteron QuadCore, with 256 Go of RAM in CentOS 5.5,
running under Linux. We have fixed the maximum CPU time to 6 h.

7.1. Description of graph instances

We use three graph classes for our tests: graphs from the TSPLIB2 library [27],
random graphs and s-grid graphs.

Regarding the first class, we used the node-coord-section proposed by the
TSPLIB library. For any node we fix a transmission range r. An edge between
two nodes u and v is generated if the euclidian distance between u and v is less
than r. For the random graphs, points are uniformly distributed in an unit square
and links are created according to a transmission threshold. The number of nodes
rises from 50 to 120 and the magnitude of the density D, given by D = 2∗|E|

|V |∗(|V |−1) ,
is 10%.

The two-dimensional s-grid graph Gm×n = (Vm×n, Em×n) is defined as follows:

Vm×n = {(i, j)|1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {s},
Em×n = {((i, j), (i, j + 1)); 1 ≤ i ≤ m, 1 ≤ j ≤ n − 1}

∪ {{(i, j), (i + 1, j)}; 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n}
∪ {(s, (1, j)); 1 ≤ j ≤ n}.

s-grid graphs are not bipartite and belong to the class B1. They can model sensors
dispersed on cultivable lands. These devices are generally arranged in the form of

2www2.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/.
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a regular grid and they communicate with a base station (i.e. the node s) outside
of the field.

Each instance is given by its name followed by an extension representing the
number of nodes of the graph.

7.2. Results: heuristic procedures, tests and analysis

For a graph instance G = (V, E), we denote by Opt the number of nodes of a
MWCIS(G) built by the exact algorithm and by �Opt the total number of optimal
solutions.
We also give the results of one heuristic, called H120s. It is a modified version of
the greedy routine of [28]. H120s gives the best solution obtained after several runs
of that greedy procedure during a lapse of two minutes. Accessible vertices are
successively added at random in the current partial wcis.

As the deep first search method builds a feasible solution very quickly, we also
keep the best wcis found after two minutes of processing time of the enumeration
algorithm. This solution is denoted by A120s(G). The other entries of the various
tables are:

D: density of the graph
(
D = 2∗|E|

|V |∗(|V |−1)

)
;

CPU: running time in hours:min:sec;
TNET: total number of nodes of the enumeration tree (in millions);
NFOS: number of nodes of the enumeration tree for finding the first optimal
solution;
NFOS
TNET : indicates the share of the whole enumeration tree for finding the first
optimal solution;
Gap: the relative error between the optimal solution (when the problem has
been solved to optimality) and the best heuristic solution, given by
Gap = min(|A120s(G)|,|H120s(G)|)−Opt

Opt ·
Tables 1–3 summarize the results for the three graph classes.

First, we have to choose a transmission radius for each graph stemming from
the TSPLIB and random graphs. Table 1 shows that the enumeration algorithm
can quickly solve instances whose number of nodes is less than 70 for any den-
sity. For higher cardinalities, the Minimum Weakly Connected Independent Set
problem becomes easier when the number of edges increases in the graph, which is
illustrated by Figures 14 and 15. Around a density of 6%−8%, instances exceeding
100 vertices are very hard to solve as it appears in Table 1 and Figure 15. The
instances indicated with “*” in the Table 1 are those whose CPU time exceeded 6
hours. With a density of 10%, our exact algorithm can treat graphs up to one hun-
dred of nodes in a reasonable time. The average size of minimum wcis in graphs
with a fixed density D ≥ 10% is relatively constant (Fig. 17). The CPU time
grows up exponentially with the number of nodes (Fig. 16).

For Table 2, we generate ten occurrences for each cardinality and solve them to
optimality with our enumeration program.
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Figure 12. Instance kroC100 with density of 10%.

Figure 13. Optimal solution of the instance kroC100.

We can see that the wcis obtained after two minutes in a running of the enu-
meration algorithm is pretty good. It outperforms the solution given by H120s

in almost all tests. The gap between the optimal solution and the best heuristic
result is within 14% at worst for graphs with less than 150 nodes. Thus, a quite
satisfying solution can be very quickly obtained as in many combinatorial prob-
lems. For s-grid graphs, the enumeration algorithm discovers an optimal solution
at the beginning of the tree, but it is facing major difficulties when the number of
nodes rises. When they have more than 100 nodes, these graphs are very difficult
examples for our algorithm (their density decreases lower than 4 %). In contrast,
for 50% TSPLIB examples, more than 60% of the enumeration tree was needed for
finding the first optimal solution. The situation for random graphs is somewhat
median.

7.3. Running time comparison with indirect approaches

As a weakly connected independent set is a maximal stable set, any maximal
independent set enumeration algorithm, combined with a connectivity test applied
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Table 1. Exact algorithm and heuristic results for TSPLIB instances.

Instances D Opt �Opt CPU NF OS
TNET

A120s Gap H120s

eil51 8% 13 2 0:00:20 16% 13 0% 13
eil76 11% 12 834 0:00:20 0% 12 0% 13
pr76 19% 8 3230 0:00:02 7% 8 0% 8
kroA100 5% 20 39672 1:03:38 68% 21 5% 21
kroB100 7% 15 52 0:41:48 74% 16 7% 17
kroC100 5% 25 1248 0:03:14 0% 25 0% 26
kroD100 6% 18 1328 0:33:14 71% 19 6% 20
kroE100 7% 16 264 0:56:29 95% 17 6% 17
kroA100 10% 11 76596 0:12:28 16% 12 9% 12
kroB100 10% 11 1954 0:10:24 37% 12 9% 12
kroC100 10% 10 60 0:15:34 87% 11 10% 12
kroD100 10% 11 21074 0:13:58 2% 11 0% 12
kroE100 10% 11 14070 0:17:20 91% 12 9% 12
eil101 10% 12 8 0:31:11 65% 13 8% 15
lin105 16% 9 12824 0:00:58 0% 9 0% 9
ch130∗ 8% 15 – 6:00:00 – 18 7% 18
ch130 10% 12 154670 5:59:50 85% 13 8% 14
pr136 20% 6 376 0:00:16 25% 6 0% 7
pr144 13% 10 1644624 0:08:39 60% 11 10% 11
pr144 15% 7 787143 0:11:54 38% 8 14% 8
ch150∗ 4% 28 – 6:00:00 – 29 4% 29
ch150∗ 10% 11 8268 6:00:00 12% 12 9% 13
ch150 15% 8 47937 1:19:45 46% 9 12% 9
kroA150∗ 4% 34 – 6:00:00 – 35 0% 34
kroA150∗ 10% 11 85608 6:00:00 13% 12 9% 13
kroA150 15% 7 1440 0:20:52 11% 7 0% 8
kroB150∗ 5% 30 – 6:00:00 – 31 0% 30
kroB150∗ 10% 11 – 6:00:00 – 12 9% 13
kroB150 15% 7 6 0:54:04 90% 8 14% 9
pr152 30% 4 924 0:00:01 8% 4 0% 4
pr226 15% 8 11075899 1:00:50 63% 9 12% 9
pr226 20% 5 842 0:14:04 83% 7 20% 6

Table 2. Exact algorithm and heuristic results for random graphs.

Graphes D Opt �Opt CPU NF OS
TNET

A120s Gap H120s

Random50 10% 11.00 378 0:00:00 62% – – –
Random60 10% 11.40 534 0:00:02 41% – – –
Random70 10% 10.75 7399 0:00:05 32% – – –
Random80 10% 10.66 4584 0:00:39 25% – – –
Random90 10% 10.50 1819 0:02:20 40% 10.75 2% 11.75
Random100 10% 11.33 34499 0:14:44 30% 12.10 7% 12.50
Random110 10% 10.88 16925 0:36:51 35% 12.10 11% 12.44
Random120 10% 10.90 7985 1:58:34 42% 12.10 11% 12.70
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Figure 14. Average number of nodes of the minimum WCIS(G)
when |V | = 120 and Dmin ≤ D ≤ 20%.

Figure 15. Average time of exact algorithm when |V | = 120 and
Dmin ≤ D ≤ 20%.

Figure 16. Average time of exact algorithm when D = 10%.
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Table 3. Exact algorithm and heuristic results for s-grid graphs.

s-Grids |V | Opt �Opt CPU NF OS
TNET

A120s Gap H120s

s-Grid6×12 73 21 802 0:00:23 2% – – –
s-Grid12×6 73 24 140 0:00:12 5% – – –
s-Grid8×9 73 21 4 0:00:21 56% – – –
s-Grid9×8 73 22 196 0:00:18 8% – – –
s-Grid5×16 81 22 396 0:02:50 0% 22 0% 24
s-Grid16×5 81 25 4 0:00:32 0% 25 0% 35
s-Grid8×10 81 24 574 0:02:04 3% 24 0% 29
s-Grid10×8 81 25 494 0:01:38 4% 25 0% 31
s-Grid8×11 89 25 12 0:11:00 23% 26 4% 31
s-Grid11×8 89 27 576 0:08:21 26% 28 4% 35
s-Grid6×16 97 27 5372 1:27:48 2% 28 4% 31
s-Grid16×6 97 32 936 0:21:29 5% 32 0% 41
s-Grid5×20 101 27 1592 4:55:38 21% 36 15% 31
s-Grid20×5 101 31 4 0:21:45 59% 32 3% 45
s-Grid10×10 101 30 1520 2:19:18 4% 32 3% 37

Figure 17. Average number of nodes of the minimum WCIS(G)
when D ∈ {10%, 15%, 20%, 30%}.

to each detected mis, can provide a way to search for a minimum wcis. We present
here a comparison of our algorithm with the Laforest and Phan’s experiments and
the tests of [24, 26] stemming from [22].

Note that, for this subsection, our program runs on a machine Intel(R) Core
(TM)2 Duo CPU at 3.00 GHz with 3.25 GB RAM.

Table 4 summarizes the running times (in seconds) on Grid Graphs from 5 × 5
to 8 × 8.

The comparison with the Laforest and Phan’s algorithm3 is given in Table 5.
These tables show that our direct approach for the minimum weakly connected
independent set problem is experimentally more efficient than an indirect method
based on the implemented mis enumeration procedures from [22].

3The authors thank Raksmey Phan for gracefully lending his examples.
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Table 4. Grid graphs: Running time comparison.

|V | 5 × 5 6 × 6 7 × 7 8 × 8

CPU 0 0 0.02 0.88
Laforest [22] 0 0 9.90 630
IEA [26] 1 254 141 242 –
Liu[24] 11 39 225 – –

Table 5. Random graphs: Running time comparison.

|V | 80 90 100 110

CPU 9.95 118.47 284.48 563.89
Laforest [22] 740.20 8049.50 38 460.00 126 985.00

8. Conclusion

In this paper, we discussed the problem of determining the Minimum Weakly
Connected Independent Set in graphs. We showed that the MWCIS problem is
NP −hard in general graphs, and studied its complexity in some well known graph
classes. We also proposed the first exact algorithm designed specifically for the
MWCIS problem whose time and space complexities are respectively O∗(1.4655n)
and O(n2).

Experimental results point out that our implicit enumeration method can sat-
isfactorily handle instances up to 120 nodes but that it has difficulty with sparse
graphs from 100 nodes.

We believe that future works should focus on a decrease in the theoretical
complexity of the wcis enumeration, and on the status of the Minimum Weakly
Connected Independent Set Problem for s-grid graphs, which are practically hard
to solve.

Acknowledgements. The authors would like to thank the anonymous referees for their
valuable comments.
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