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VEHICLE ROUTING PROBLEM WITH LIMITED
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OPTIMIZATION WITH GREEDY MUTATION OPERATOR
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Abstract. Route planning and goods distribution are a major com-
ponent of any logistics. Vehicle Routing Problem is a class of problems
addressing the issues of logistics. Vehicle Routing Problem with Lim-
ited Refueling Halts is introduced in this paper. The objective is to
plan a route with an emphasis on the time and cost involved in re-
fueling vehicles. The method is tailored to find optimal routes with
minimal halts at the refueling stations. The problem is modeled as a bi
objective optimization problem and is solved using particle swarm op-
timization. A new mutation operator called greedy mutation operator
is introduced. Experiments are conducted with available data sets and
MATLABR2011a is used for implementation.
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mization.
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1. Introduction

Logistics plays a vital role for any distribution management. Many variants that
deal with the real life problems in logistics are addressed under the topic Vehicle
Routing Problem (VRP). It is a NP-hard Combinatorial Optimization Problem.
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Hence many heuristics are developed to solve the problem. It is an important area
of research in Operations Research Community. Of the many variants Capacitated
VRP (CVRP) and Vehicle Routing problem with time windows (VRPTW) are
the major topics of discussion. A general VRP aims to find low cost tour for
geographically distributed customers by vehicles. The route begins and ends with
the central distribution center serving each customer once and returning to the
depot. As VRP provides real time solution for many problems, many researchers
have contributed different solutions for solving the problem.

Different variants on VRP like Stochastic VRP, Multi Depot Vehicle Routing
Problem, VRP with Pickup and Delivery etc. are developed using additional con-
straints along with VRP. A detailed review on classical and advanced methods
on VRP can be found in the works of Golden et al. [12], Laporte et al. [18] and
Toth et al. [28]. Classes of exact and heuristic methods are developed to handle
the problems on VRP. Many heuristics are developed to solve the problem and
can be observed in the works of Gendreau et al. [11], Pisinger et al. [26], etc.

Along with the traditional variants, a category of VRP evolves that deal with a
variety of real time issues with the introduction of new objectives and constraints.
These include problems that arise with environmental issues along with routing,
harmful gas emissions and their hazard, hazardous materials transportation, pol-
lution VRP to name a few. Sbihi et al. [27] demonstrated the impact of environ-
mental issues with logistics in their work. They also emphasized special concern
for transporting hazardous materials. Xiao et al. [31] in their work stated that,
fuel cost accounts for significant increase in the overall total cost of the tour. They
developed a model that tries to reduce the fuel consumption by vehicles. Pollution
VRP aims at finding a low cost tour with minimal CO2 emissions. Bektas et al. [4]
addressed the pollution routing problems and the impact of harmful gases on the
environment. Kuo et al. [17] described the fuel consumption as an important crite-
rion for vehicle routing. They proposed a model for calculating fuel consumption
for time dependent VRP and solved using simulated annealing.

Since most organization is working towards reducing the consumption of fuel or
looking for alternate fuel usage, designing a VRP with fuel usage as a constraint has
become an important consideration for designing Vehicle Routing Problem with
Limited Refueling Halts (VRPLHS). It is a subset of VRP and is also NP-hard.

VRPLHS has a set of geographically distributed customers served by a limited
fleet of vehicles stationed at a depot. Each vehicle has a limited fuel capacity. This
limited fuel level is considered for redirecting vehicle to nearby Refueling Stations
(RF ), when a vehicle is engaged to make long tours. Along with the route cost,
this additional cost is also accumulated. This work concentrates in minimizing the
overall cost of tour and number of halts made to RF for refueling. This will aid
organization to plan the tour, which minimizes the cost of tour and the number
of refueling halts.

There are few papers that address the issue of fuel usage as a constraint.
Some papers are found towards fuel consumption and its impact on the environ-
ment. Green VRP (GVRP), VRP with battery capacity, flow refueling location
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based model for VRP are some of the VRP variants on fuel usage constraints.
Wang et al. [30] proposed Vehicle Scheduling Problem with route and fueling time
constraints for routing electric buses. It concentrates in finding an economic so-
lution for locating a refueling station. Aviral et al. [10] in their work addressed
the usage of alternative fuel and optimum erection of alternative fuelling stations
and modeled the problem as flow interception facility location problem. Artmeier
et al. [2], proposed an extension of shortest route problem to find an energy opti-
mal routing for electric cars. A multi depot unmanned vehicle with fuel constraints
was proposed by Levy et al. [19] The unmanned vehicles have heterogeneous fuel
capacity and the objective is to route the vehicle, so that each target is visited
at least once and refueled in the fueling stations. Erdogan et al. [10] formulated
a Green VRP (GVRP) with alternative fuel powered vehicle, with the impact of
reducing the pollution due to combustion. They concentrated in routing vehicles
with alternate fuel to reduce environment pollution employed with Alternate Fuel
Stations (AFS) to route the vehicle. They used Modified Clarke and Wright Sav-
ings Algorithm (MCWS) and Density Based Clustering Algorithm (DBCA) to find
the total cost of the route with trips to AFS.

In contrast to the model GVRP proposed by Erdogan et al. [10] where the main
objective is to find low cost tour along with trips to AFS, the proposed VRPLHS
aims to calculate low cost tour with trips to refueling stations and also strives
to reduce the total number of halts made at the refueling station. G-VRP does
not specify any constraint on the upper bound of the number of refueling halts.
In VRPLHS, it is included as one of the objective functions. The objectives of
VRPLHS are, to minimize cost of tour and minimize the number of halts made at
RF. Hence VRPLHS is modeled as a Bi-objective Optimization Problem (BOP).

The problem of single objective optimization with all constraints is a direct
method that yields a single optimal solution. Since BOP is also a Multi objective
Problem (MOP), there is not a single optimal solution that optimizes the objective
function. A compromising solution that satisfies both objectives is said to be a
Pareto optimal solution. Pareto optimality (efficient, non-dominated) is defined
as, to arrive at a solution with an objective that cannot be improved by worsening
the other objective. It is not possible for a single solution that optimizes both the
objectives hence a trade-off is established to arrive at an optimal solution. Recently,
emphasis is built on solving MOP with evolutionary methods. Traditional methods
like genetic algorithms are already used for solving MOP.

In this work, the problem is solved using Particle Swarm optimization (PSO).
PSO is a stochastic search algorithm and is well suited for MOP as stated by
Kennedy and Eberhart [16]. The advantages of PSO are, it has better exploration
capabilities, it can retain best solutions achieved so far and it has too few parame-
ters to tune for better performance. Moreover, all particles will interact with each
other exhibiting the co-operative behavior that enhances the sharing among the
particles, eventually leading to the solution improvement. Also the exploratory be-
havior of PSO is improved, by introducing a new mutation operator called Greedy
mutation operator (GMO).
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When deciding the evolutionary algorithm for MOP two goals are to be ad-
dressed: to guide the search towards Pareto efficient set and to keep track of
the set of non-dominated solutions. The first goal can be achieved using velocity
that guides the swarm towards better positions and to achieve the second goal an
archive of best solutions found is maintained using PSO.

The contribution of this paper is threefold that is, it aids those organizations
with limited vehicle fleet to plan a route that limits the number of halts made for
refueling along with minimum cost of tour. Second, modeling the problem as a
BOP and the use of PSO as an efficient method of solving the problem and third,
the introduction of Greedy Mutation Operator (GMO) that makes PSO escape
from local minima.

2. Bi Objective optimization (BOP)

Multi objective optimization problems are defined with more than one objective
function. As specified in Caramia et al. [5], it is defined mathematically as,

min(f1(x), f2(x), . . . , fn(x)),

x ∈ S, (2.1)

where n > 1, S is the set of constraints defined as S = x ∈ Rm/h(x) =
0 and g(x) � 0

A bi-objective optimization problem is a MOP with only two objectives and it
is defined as,

min[f1(x), f2(x)],

x ∈ S, (2.2)

where f , a scalar and S is the feasible region. Since there are two objectives,
minimizing an objective will affect the other objective and hence a trustable trade
off should be established to arrive at a compromising solution that minimizes
both the objective functions. There is not a single optimal solution found, that
optimizes all the objective functions, hence the concept of Pareto optimality as
given by Pareto [23] is to be introduced.

The concept of Pareto optimum or Pareto efficiency is defined for arriving at
these compromising solutions as the optimum solution obtained for a MOP is
different from the Single objective optimization.

Definition 2.1 (Pareto Optimum or Pareto efficiency). A point X is said to be
Pareto optimum or an efficient solution for a multi objective problem if and only
if there is no x ∈ S (S is the set of all constraints) such that fi(x) < fi(X) for all
i = 1, 2, . . . , n for a minimization problem.
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Definition 2.2 (Pareto Front). Pareto front are the set of all solutions that are
Pareto efficient.

The Pareto front has all Pareto efficient solutions i.e. the set of all non domi-
nated points in the objective space. There are many approaches available for solv-
ing MOP to find these Pareto efficient solutions. Hwang et al. [15], mentioned three
approaches for solving any multi objective problems, they are a priori method,
interactive method and posteriori/generation method. In a priori method, a goal
is set before the solution process and the method strives to arrive at the goal. In in-
teractive method, a solution is achieved through interaction with the program, and
hence it makes the convergence to a specified goal easier. In posteriori/generation
methods, all efficient solutions to the problem are generated and the user decides
one among them. In general, posteriori methods are preferred over all other meth-
ods, since it finds all solutions for the problem and then derives the best among
them.

There are two well-known methods available under posteriori/generation meth-
ods as specified in Mavrotas [20]. They are weighted sum method that was initially
found in the works of Zadeh [32] and ε constraint method. Both the methods
convert the MOP into single objective problem and work towards it. Weighted
sum method designates scalar weights and optimizes the set of objective function
given as,

n∑
i=1

wi(fixi), where
n∑

i=1

wi = 1 and wi > 0. (2.3)

There are many ways for determining the suitable weights to optimize the so-
lution. By varying the weights all non dominated points can be obtained. The
disadvantage of the method is the selection of suitable weights.

In ε constraint method, one objective is optimized using the other objective
function as constraints. According to Chankong et al. [6], and Cohon [9], the
model in (2.1) can be written as,

min(f1(x))

Such that f2(x) � ε2

f3(x) � ε3

. . .

fn(x) � εn,

and x ∈ S. (2.4)

Given a BOP as in (2.2) with two objectives, out of the defined objectives one
is taken for optimization and the remaining objective is taken as a constraint
converting (2.2) as,

min f1(x).
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Such that f2(x) � ε,

and x ∈ S. (2.5)

The ε constraint method has several advantages over weighted sum method.
As stated in the work of Mavrotas [20], for a weighted sum method appropriate
choice of weights are needed for a better solution range. An advantage with ε
constraint method is its ability to achieve efficient solution in a non convex region
Pareto curve. Moreover, it is well-suited for bi objective optimization problems. A
disadvantage is that the solution to the problem is dependent on the ε value. A
proper choice of ε is required for a better Pareto optimal solutions.

3. Vehicle routing problem with limited refueling halts

(VRPLHS)

VRPLHS is defined on a graph G = (V, E) as an undirected connected graph
with vertices V , named as customer locations, and edges E connecting the cus-
tomers. The vertex set V is defined as V = C ∪R∪ V0 where C = {C1, C2, . . . , CN}
are the set of customers, R = {R1, R2, . . . , RM} are the set of RFs and V0 is the
depot. The depot has a set of homogenous vehicles K for serving the customers.
Each vehicle should start from depot, serve the customer and return to the depot
within the specified maximum time T . Customers are visited only once for ser-
vicing and RFs can be visited any number of times by a vehicle. The vertex set
is distributed in 2-D space with X and Y coordinates. The vertex set includes N
customer vertices, M refueling vertices and a single depot V0.

Let ti be the time taken to reach ith vertex. pi is the service time taken at i,
which is the time for serving a customer or fueling a vehicle and is kept a constant.
The edge set is associated with cij , the distance or cost of travel from i to j and
time ttij , the time taken to travel from i to j, where i, j ∈ V . Let L denote the
total fuel level of a vehicle. Let zi be the fuel level available on reaching the ith
vertex. Let r be the constant fuel consumption rate along the distance travelled.

Let us assume that the vehicle starts its tour with full fuel capacity from the
depot for serving a set of customers and the fuel level decreases at a constant
fuel rate as it travels. Also it is assumed that, a minimum fuel level is maintained
to reach the RF s/depot for refueling, so no vehicle is left stranded in the middle.
When it is not possible to serve the next customer, the vehicle needs to be refueled.
The tank is filled to its entire capacity either in RF s or in depot. Along the tour
the vehicle is expected to halt for refuel a limited number of times given by ε.

VRPLHS is defined with the following objective and constraints.
Objective

• Minimize the total route cost.
• Minimize the refueling halts for the entire tour.
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Constraints

• Each customer is serviced exactly once.
• Each vehicle route starts and ends at depot.
• The vehicle should visit the customer and return to the depot within a specified

time.
• Vehicle is directed to the nearby fueling station/depot and not left stranded.

A decision variable xijk is introduced to know the customers who are served by a
particular vehicle.

xijk =
{

1, if vehicle k travels from i to j, i, j ∈ V
0, otherwise.

The mathematical formulation of the problem is,

min
∑

i,j∈V,k∈K,i�=j

cijxijk , (3.1)

min
∑
i∈V

yir � ε ∀ r ∈ R, (3.2)

where

yir =
{

1 if vehicle travels from i to r,
0 otherwise.

Subject to ∑
i∈V, i�=j

xijk = 1, ∀j ∈V, k ∈ K, (3.3)

∑
j∈V \{R},i�=j

xijk = 1, ∀ i ∈ R, k ∈ K, (3.4)

∑
i,h∈V,h �=i

xihk −
∑

j,h∈V,h �=j

xhjk = 0, ∀ k ∈ K, (3.5)

∑
j∈V \{V0}

xV0jk � K, (3.6)

∑
j∈V \{V0}

xjV0k � K, (3.7)

ti + (ttij + pi)xijk − T (1 − xijk) � tj , ∀ i ∈ V, j ∈ V \{V0}, i �= j, (3.8)

tj � T − (tj0 + pj), ∀ j ∈ V \{V0}, (3.9)

tV0 = pV0 = 0, (3.10)
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0 � zj � zi − r.(cijxijk) + L(1 − xijk), ∀ j ∈ C, i ∈ V, i �= j, (3.11)

zj = L, ∀ j ∈ V0, j ∈ R, (3.12)

zj � L − r.(cijxijk), ∀ i ∈ C, j ∈ V0, j ∈ Ri �= j. (3.13)

The objective function of VRPLHS is given in (3.1) and (3.2). The objective of (3.1)
is used to minimize the overall tour cost, (3.2) is used to minimize the number of
refueling halts taken in a tour. The vehicle can travel from any vertex to any other
vertex in V is given by (3.3). From a RF, either a customer or depot can be visited
is specified in constraint (3.4). Constraint (3.5) is flow constraint to check that
the same vehicle enters and leaves a vertex. The number of vehicles entering and
leaving the depot is given in (3.6) and (3.7), and it should be within the specified
maximum number of vehicle K. The total time taken to reach any j ∈ V \{V0}
is given through constraint (3.8). The total time taken to reach the depot from
j is within the maximum time T , is checked with constraint (3.9). Initially, the
time taken and the service time is kept as 0 in depot as given in constraint (3.10).
Constraint (3.11) tracks the fuel level to reach vertex j that gets reduced at a
constant rate r from vertex i. The refueling level upon reaching the RF or depot
on route is specified through (3.12) and finally there is enough fuel to reach the
depot or RF is guaranteed by (3.13) that prevent the vehicle being stuck in the
middle of the tour. Some of the constraints of the model follow the model proposed
by Erdogan et al. [10].

4. Particle swarm optimization (PSO)

PSO is an inspirational algorithm derived from the social behavior of birds, fish,
etc. It is an evolutionary computation technique. It is a collective and iterative
method with the emphasis on cooperation. Each potential solution (particle) to
the problem is identified as a point in the search space of the PSO. Each point
strives to achieve the best point obtained. Each particle has a velocity that can
accelerate or decelerate depending on the current position of the point to reach the
best position. Each point updates its position with its own experience (pbest) and
experience gained by its neighbors (gbest). Each point is a particle and a vector
and has dimension d. Let the ith particle X is defined as (xi1, xi2, . . . , xid) and is
updated by velocity as,

vid(t + 1) = ω.vid(t) + Cpr1[p id (t) − xid(t)] + Cgr2[pgd(t) − xid(t)], (4.1)

xid(t + 1) = xid(t) + Vid(t + 1), (4.2)

where vid(t+1) is the velocity of the particle at time (t+1) and vid(t) is velocity of
particle at time t. If previous velocity is not updated, the particle will not move.
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ω is the inertia factor and is used to balance the exploration and exploitation
capability of a particle. Cp and Cg are cognitive and social (learning) parameters
and are also called as trust parameters. Cp express the confidence of a particle on
itself, Cg express the confidence of a particle on its neighbors. These parameters
push the particle towards the best position. To have the stochastic behavior two
random numbers r1 and r2 in the interval [0, 1] are generated. pid(t) and pgd(t)
are the particle’s personal (pbest) and global best (gbest), respectively. (4.1) is used
to find the velocity of the particle and (4.2) finds the new position of the particle
as a result of the velocity update.

The potential of PSO make it suitable for solving many MOP. A detailed review
of PSO for MOP can be seen in the works of Parsopoulos et al. [25] and Coello
et al. [8]. Vector Evaluate Particle Swarm Optimization (VEPSO) was proposed
by Parsopoulos et al. [24] in line with multi objective genetic algorithm. Gener-
ally, there are two approaches available for handling MOP using PSO. In the first
approach, each objective is taken separately and a solution is found, then a proper
choice is made to select a Pareto optimal solution from among them. In the second
approach, all the objectives are taken together and a solution is obtained. But,
the determination of the best particle is difficult and hence calls for an external
archive for storing the non dominated solutions. Several approaches in literature
describe the proper selection and use of archive for storing non dominated solu-
tions. Coello et al. [7] in their work MOPSO (Multi Objective Particle Swarm
Optimization) introduced an external archive to store the Pareto optimal solu-
tions, and for particle’s diversification, mutation operator is used. They were the
first to use the Pareto based PSO approaches. Agarwal et al. [1] described a fuzzy
clustering based PSO, where a fuzzy clustering was used to maintain the archive
and a mutation operator was used to diversify the population. A Multi Objective
Comprehensive Learning PSO (MOCLPSO) was proposed by Huang et al. [14],
where all the best particles are stored and used for velocity update, guiding the
particle towards the best. Mousa et al. [21] suggested a local search method to
improve the Pareto solution generation, by concentrating in less crowded areas.
They are used for the archive update. A Time variant multi objective PSO was
given by Tripathi et al. [29], where a time variant inertia and acceleration was
used to maintain the exploration and exploitation capabilities and a mutation op-
erator is used for divergence of the particle. The archive is updated with the non
dominated solution using the combined population of swarm and the archive. If
archive exceeds the maximum limit, then it is truncated and the more sparsely
spread solution are retained.

4.1. PSO for BOP

A swarm of particles are initialized along with ε and a feasible solution is found.
The fitness of each solution is calculated, and pbest, gbest is updated. The swarm
has S members and the fitness function is ffij where i = 1, 2, . . . , S the size of
swarm, and j = 1, 2, . . . , K are the number of ε values. For each ε, the best fitness
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is taken and stored in an archive and it is the leader for that ε. If a new solution
ff ′

ij dominates ffij then the new solution is updated in the archive. Every other
particle in the swarm follows the leader. Hence there will be K swarm equivalent
to ε that contributes a fitness value. The set of all non dominated solution found
for each ε make up the Pareto front.

4.2. PSO-GMO procedure for VRPLHS

The overall procedure of the Particle Swarm Optimization with Greedy Muta-
tion Operator (PSO-GMO) algorithm for solving VRPLHS is described below.

Step 1. Particle Representation: PSO is basically a continuous optimization
method. To make it to adapt to discrete methods certain modifications are nec-
essary. One of the key issues is the successful representation of the particle of the
problem and their corresponding mapping. Each particle is a customer sequence
(C1, C2, . . . , CN ) but finding a solution to an optimization problem consists in
finding a feasible solution that optimizes all the constraints of the problem. Since
constraint satisfaction is necessary for finding the solution, refueling halts are in-
cluded within the customer sequence obtained and the fitness is calculated. So a
solution sequence has N customers (C1, C2, . . . , CN ), a Depot CN+1(V0) and M
RF (CN+2, CN+3, . . . , CN+M+1), where (CN+2 = R1, CN+3 = R2, . . . , CN+M+1 =
RM ). This solution sequence forms the base for introducing few refueling halts.
Hence only feasible solutions are available in the swarm. The introduction of refu-
eling halts after the customer sequence formation also aid in using limited refueling
halts.

For example, consider a set of 5 customers {1, 2, 3, 4, 5}with a depot {6} and
2 RF {7, 8}with 2 vehicles. A particle is a customer sequence {2, 4, 1, 5, 3}. A
solution sequence is the introduction of depot and RF s as {6, 2, 4, 7, 1, 6, 5, 8,
3, 6}where 6 represents the depot and 7, 8 are RF s. The routes formed from the
solution sequence are Route 1: {6, 2, 4, 7, 1, 6} and Route 2: {6, 5, 8, 3, 6}. The
sequence with RF and depot is not taken for velocity update.
Step 2. Swarm Initialization: The initialization of swarm is a crucial step for faster
convergence. Initializing the swarm with some preprocessing towards promising po-
sitions in the search guides to global best position. Around 75% of particles are
generated using nearest neighbor heuristic (NNH). To select a seed customer three
approaches are used namely (1) customer nearer to the depot and (2) customer far-
thest from the depot and (3) random selection. To have diversification of particles
a random customer sequence is generated for the remaining 25% of swarm.

Step 3. Transforming the particle to solution: The swarm has S particles. Each
particle is a customer sequence of dimension N . If the Fuelremaining is not suffi-
cient in the vehicle to serve another customer then it is refueled. Fuelremaining is
calculated using (4.3). Then a RF/depot is included in the solution sequence that
is closer to the customer.

Fuelremaining = Fueltotal − (distance travelled∗Fuel consumption rate),
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Algorithm 1: Nearest neighborhood heuristic

Initialize the seeds
for i = 1 to N

Calculate Euclidean distance distij =
√

(xi − xj)2 + (yi − yj)2,
where (xi, yi) is the co-ordinates of customer i and (xj , yj) is the co-ordinate
of the seed.
choose a customer with minimum distance from the seed and mark as visited Cvisited

Repeat
Find the customer Cknearest to Cvisited using distvisited,k

Mark Ck as visited and update Cvisited = Ck

until all the customers are visited

where
Fuelremaining � 0. (4.3)

To introduce a new vehicle to the sequence, the travel time is checked. If the time
is not sufficient to serve other customer, then the vehicle is redirected to the depot
and a new vehicle is introduced. Time taken by a vehicle is calculated using (4.4)

T ime takenvehicle = T ime takenso far + (distance travelled/Average speed) + P.
(4.4)

P is the service time. Initially, time taken by the vehicle is zero at depot.
T ime takenso far is the time taken by the vehicle starting from the depot till
it reaches a specified customer or RF. A new vehicle is introduced, if (T −
T ime takenvehicle) is not sufficient to serve another customer, where T is the total
time taken by a vehicle.
Step 4. Fitness Function: With the introduction of vehicle and RF, a solution
sequence is obtained using Step 3. As stated earlier, a solution sequence is the
route that is followed to serve the customer with trips to refueling stations. The
fitness function for a PSO is the total cost of the route. To calculate the cost of
route (fitness), the total cost incurred by all the vehicles to serve every customer
along the tour, with the RF is considered. The cost of travel for a vehicle is
calculated using (4.5), and the overall cost for the entire route for k ∈ K vehicles
is calculated using (4.6).

Total Costroute = Costdepot, i +
∑

i,j∈V/{V0}
Costi,j + Costi,depot ∀ i ∈ V \{V0}

(4.5)

Total Cost =
∑
k∈K

Total Costroute (4.6)

Step 5. pbest and gbest update: Initially, pbest of a particle xi in iteration i = 1
is, its calculated fitness value obtained using Step 4. During subsequent iterations,
if the particle moves to an improved solution space, then the previous best position
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available in pbest is updated, with the new best position of the particle, as specified
in (4.7). Here, i is the iteration number.

pbest =
{

Total Cost(xi), i = 1
Total Cost(xi), if Total Cost(xi) < pbest for i > 1.

(4.7)

Each particle has its own pbest. To obtain the global best fitness gbestfor the entire
swarm, the best of pbest is chosen, and stored as given in (4.8). Over the iterations,
if the new gbest obtained is better than the current gbest, then it is updated.

gbest = min(pbest)∀ i, 1 � i � S (4.8)

Step 6. Particle Encoding and Decoding: The solution sequence obtained with
the inclusion of RF and depot is in the feasible region and is used for fitness
calculation. Each solution sequence has varied dimension with the inclusion RF.
The inclusion of RF, in the solution sequence is dependent on the customer se-
quence under consideration. Hence, velocity update is made only for the customer
sequence, which influences the addition of RF en route. Also, it eliminates the
complexity that arises, with the varied dimension sequence. Since the problem is
of discrete optimization, a conversion of the particle to particle’s position in Multi
Dimensional (MD) space is necessary, so each particle is converted to particle
position using (4.9),

xij = xmin + (xmax − xmin)/n ∗ ((yij−1) + rand()), (4.9)

where rand() is a random number in the interval [0, 1]. yij is the ith particle (cus-
tomer sequence) with jth dimension that is to be converted to particle’s position
in MD space. n, is the total number of customers. xmin and xmax are the minimum
and maximum boundary values, to make particles fall into a specified range. xij

is the jth dimension of the ith particle encoded from particle yij . This procedure
encodes the particle from a given customer sequence to particle’s positions in the
MD space.

To decode the particle position back to customer sequence, Rank of Value (ROV)
method is used. It is used to rank the positions obtained through encoding. ROV
uses smallest position value of a particle as rank 1, and incrementally ranks the
successive position values. For example, for the 5 customer particle {2, 4, 1, 5,
3}, the encoded position value as calculated using (4.9) is {0.76, 1.25, 0.37, 1.85,
0.84}, where xmin and xmax are assumed as 0.0 and 2.0, respectively. Using ROV
the position values are decoded back to customer sequence as {2, 4, 1, 5, 3}.
Step 7. Velocity Update: Each particle is made to search the solution space with
the position update. It is achieved using velocity update. Each particle’s new
position is found by adding velocity as specified in (4.1) and (4.2). Generally,
emphasis is given in varying the parameter of PSO, to make it work for challenging
problems. In that perspective, inertia coefficient ω is added to PSO, to improve
the performance. Inertia can be of two types, fixed and varying inertia. By the
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study made by Han et al. [13] it is established that linearly decreasing inertia
weight along with simulated annealing are found to be the best choice. Hence for
ease and effectiveness, varying inertia weight is used. Generally, if varying inertia
is used exploitation will be good. For a particle, an initial exploration guides a
promising search space, and a local exploitation guide faster convergence. Usually,
small values of inertia encourages local exploitation and large value increases global
exploration. Hence inertia is kept a large value at the start and decreases during
the iterative process to encompass a refined search in promising areas as given in
equation (4.10)

ω(t) = ωmax + (((t − I)/(1 − I)) ∗ (ωmin − ωmax)), (4.10)

where t is the current iteration number, i is the total number of iterations. ωmin

and ωmax are the initial and final inertia values.
For each particle, the feasibility is checked, if infeasible, a new particle is gener-

ated by controlling the velocity and inertia to make particle fall in the feasibility
region.
Step 8. Archive Update: An external archive (A) is maintained to store the best of
gbest values and is updated. The archive is used to store non dominated solutions.
For each ε the archive gets updated with non-dominated solutions. If the current
solution is better than the previous solution the archive is updated.

Algorithm 2: Archive Update

Let xcurrent be the solution in A and xnew be the new solution obtained

If xcurrent ∈ A such that xcurrent <xnew then A is not updated

Else if xcurrent ∈ A and xcurrent > xnew then A = A − xcurrent ∪ xnew

Else if no xcurrent with xcurrent < xnew in A then A = A ∪ xnew

Step 9. Greedy mutation operator (GMO): One of the main problems with any
evolutionary algorithms is premature convergences. In Genetic Algorithm (GA),
it can be avoided by introducing the genetic operators. Since PSO does not have
any genetic operators, to reach an optimum value PSO should interact with the
particles. Since the problem to be solved involve many constraints, conventional
approach of including an extra parameter will not work towards better optimum.
To avoid local minima, a trajectory is expected that requires a transition of the
particles from the current state to the next state. To achieve this, new mutation
operator is introduced called as Greedy Mutation Operator (GMO).

To strengthen the search ability, many variations are defined in a PSO. In
general, these variations made to PSO are problem dependent. Some work con-
centrates on introducing the crossover and mutation operator in PSO. To explore
new areas in the search space, mutation operator of Genetic Algorithm (GA) can
be used. The objective of mutation is, to increase the diversity of the swarm and
to escape from local minima.
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A Greedy Mutation Operator (GMO) is introduced that works as a local search
technique. GMO is used to transform a particle X to another particle X∗, which
tries to minimize the objective function i.e. f(X∗) < f(X). Let {t ∈ T/t � N},
where t is the number of transitions required to transform from X → X∗ and there
can be N such transitions possible. A transition is defined as the change of position
of a customer from positions i to j. The transition from X → X∗ is successful, if
X moves to an improved search space IS. To effect this transition, there should be
an interaction with the particles yielding the solution. The transition Probability
X → X∗ is defined as,

probability (X → X∗) = X∗(pm)X(1 − pm).

To be more problem specific, if meaningful transitions are high there is a better
chance of a particle to move to the improved search space. To get the maximum
effect on the transitions, a trajectory with the nature of the problem is desired.
According to GMO, two random cut points σ1 and σ2 are chosen. Let the particle
P be represented as (x1, x2, . . . , xn), where it is cut at xl and xk, let (x′

1, x
′
2, . . . , x

′
g)

be the string within xl and xk. From xl, nearest neighbor is chosen from the list
and it is repeated till x′

g. If the number of transitions is more, then there is much
chance of a particle to get into IS. For the probability of the particle X ∈ IS is,
Xj(pm)XN−j(1− pm), where j < N , where pm is the mutation probability. If the
search falls into a local minimum with j transitions resulting in X → X , then a
transition q is used with q > j to enable X → X∗ where X∗ ∈ IS. The probability
of the transition is,

probability (X → X∗) = pq
m(1 − pN−q

m ), where q > j

This transition made on the particle using this is more meaningful than a swap or
inverse mutations.

The choice of the mutation parameter pm plays a crucial role to escape from
local minimum. Generally it is kept a constant. Since mutation is considered as a
repairing technique a time varying mutation probability is introduced. The muta-
tion rate is defined as pm = i/I, where i is the current iteration number and I is
the total number of iterations. During the initial iterations, mutation is required
to have good transitions than in the later part, as all particles converges to the
optimum.

Then, the obtained particles are crossed over with gbest, using a single point
cross over operation. This further improves the solution.

After GMO and cross over, the particles are ready to be converted to solutions
by inserting the RF s en route. This enhances the quality of the solution as RF s
are introduced only if necessary achieving the second objective. Hence it is possible
to reduce the number of refueling halts.
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Algorithm 3: Greedy mutation operator (GMO)

Let the customer sequence be (x1, x2, . . . , xn)
Set pm = i/I
If rand() > pm then

Find the cut points σ1, σ2 using �no of customers ∗ rand()�
Let σ1 and σ1 cut (x1, x2, . . . , xn) at xl and xk, respectively
Let (x′

1, x
′
2, . . . , x

′
g) be the string within xl and xk

Repeat
Call NNH from xk to each of (x′

1, x
′
2, . . . , x

′
g) and replace the string

Until no further change
Get the new sequence (x′′

1 , x′′
2 , . . . , x′′

n)
End
End

Algorithm 4: PSO-GMO for VRPLHS

Initialization Step
Initialize swarm S
Initialize the position of particle X = (X1, X2, . . . , Xn)
Initialize velocity to zero and set ε values
Insert RFs according to (4.3) and append depot
Calculate fitness of particles

Set pbest1 = X1, pbest2 = X2, . . . , pbestm = Xm

Set gbest as best of pbest

Update the archive with gbest

Iterative Step
Repeat till max iterations

For i = 1 to S
Reframe the solution and eliminate the refueling halts
Encode each solution to particle’s position values using ROV method
Update the velocity of each particle Xi using (4.1) and (4.2)
If rand() < pm then

Apply Greedy Mutation Operator
End
If rand() < pc then

Perform single point cross over with gbest

End
Decode the particle’s position to solution sequence
Insert the refueling halts and depot
Calculate fitness
If Xi > pbesti then

Update pbesti as Xi

End if
If pbesti > gbest then

Update gbest as pbest

End if
Update the archive

End
End repeat
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Table 1. Parameter setting.

Parameter Value
Cognitive acceleration parameter Cp 2.0
Social acceleration parameter Cg 2.0
Initial inertia weight ωmin 0.9
Final inertia weight ωmax 0.2
Particle’s position xmin and xmax 0.0 and 2.0
Swarm size S 30–45
Cross Over probability pc 0.9
Number of iterations 1000–5000

5. Experimental results

The proposed PSO-GMO algorithm is executed on a computer with Intel Core
i5-2400 processor with 3.10 GHz and 1.94 GB of RAM. The algorithm is imple-
mented in MatlabR2011a. The obtained results are compared with the data sets
of Erdogan et al. [10] used for solving Green Vehicle Routing Problem (GVRP).

The data set of Erdogan et al. [10] is divided into four categories. There are 4
groups of 10 different data sets created with 20 customers each. First 10 data sets
have uniformly distributed customers (S1), next 10 for clustered customers (S2);
Third data set is a combination of randomly distributed customers and clustered
customers (S3). Fourth data set is to study the impact of fueling stations (S4).
First two data sets have 3 fixed fueling stations, whereas third has 6 randomly gen-
erated fueling stations and fourth data set increments the fueling stations from 2 to
10. In their work they implemented two well-known algorithms namely the Modi-
fied Clark and Wright Savings Algorithm (MCWS) and Density Based Clustering
Algorithm (DBCA). Now the proposed algorithm is targeted to solve the problem
as a bi-objective optimization problem with two objectives using PSO-GMO. The
parameter setting of the algorithm is given in Table 1.

These are the parameters that are influential to guide the solution in the search
space. When the value of cognitive acceleration Cp increases, particles are attracted
to pbest, similarly, when social acceleration Cg increases the particles are attracted
to gbest. A legitimate choice followed in literature is to prefer Cp = Cg = 2.0 as
specified in Ozcan et al. [22]. A linearly decreasing inertia weight is used with the
initial inertia weight ωmin = 0.9 and final inertia weight ωmax = 0.2. xmin and xmax

are the boundary values of the particle’s position. The swarm size is kept at 30 for
smaller size instances and based on size of instances proportionately incremented
till 45. The crossover probability of particle is set at 0.9. As specified in Table 1,
the number of iterations is from 1000 to 5000. For smaller instances the maximum
number of iterations is kept as 2000 and for large instances the maximum iteration
is kept as 5000 iterations.

As specified in Erdogan et al. [10], the fuel tank capacity is fixed as 60 liters
and the fuel consumption rate is assumed to be 0.2. The average vehicle speed is
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40 miles per hour; the total duration is 11 h. Service time at customer location
and at refueling station is 30 min and 15 min respectively. In each instance, all the
locations are given with their latitude and longitude values. For calculation they
are converted to points in Euclidean space. Each instance specifies the distribution,
namely uniform (U) or Clustered (C), total number of refueling stations available
and the total number of customers. For example, in 20c3sU1 it is 20 customers,
3 fueling stations with uniformly distributed customers and instance number 1.
S1 10i6s indicates S1 data set, 10th instance with 6 fueling stations.

The results obtained by PSO-GMO with a sample of 10 runs are shown in
Tables 2 to 6. These tables depict the values got for the Number of Routes (NR),
Number of Customers (NC), Cost of route (Cost), the Number of Refueling Halts
(NRFH) and the Run Time (RT) in seconds obtained for the maximum number
of iterations for an average of 10 sample runs. The data set is run with traditional
PSO and with PSO-GMO. The results show that, when PSO is aligned with GMO,
the results are good. With GMO, the particles are triggered to move into a new
search space and hence there is more possibility of obtaining an optimal solution.
It is observed that the results obtained for the small data sets produce better cost
of tour as compared to the published results using MCWS and DBCA algorithms.
Also, with a restriction placed on the number of times a visit is made to the RFs
using ε, a few RFs are visited by the vehicle over the entire tour. In most cases,
ε is taken as the number of fueling stations as specified in the data sets. In the
following tables, the effect of a reduced number of refueling halts, and their impact
on the overall tour cost is concentrated and the results are tabulated. The results
in bold indicates the same or best solution got by PSO-GMO than MCWS/DBCA
and the (**) is used to indicate the best solution got using PSO-GMO.

Some of the observations from the results show that, almost 4 instances did
not stop for refueling. About 17 instances have used refueling stations only once.
For 19 instances new best solution is produced using the PSO-GMO. About 5 of
the instances have reduced the usage of the number of vehicles. The algorithm is
stringent in producing the feasible solution with the limited number of refueling
halts. As observed from Table 2, in most of the instances the vehicle used 1 or
2 refueling halts. In cases where the vehicle stopped once, stresses the necessity
of only one refueling station. In case of Table 5 though the number of fueling
stations are incremented from 2 to 10, the tour completed with at most 2 refueling
halts and produced good results. In some cases, with the restriction placed on the
constraints, it is not possible to serve all customers.

Figures 1 to 4 show the routes obtained for some data sets. Some of the in-
stances show positive correlation i.e. as the refueling halts are increased the cost
also increases. Some data set has shown the negative correlation, as observed in
20c3sU9, S1 4i4s, as the number of halt increases the cost decreases. For most of
the instances, a single best solution is obtained.

Table 6 shows the comparison obtained on the average total cost by each in-
stance using the PSO-GMO algorithm, and is an indicative of the performance
improvement obtained by the proposed method PSO-GMO.
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Table 6. Comparison of the average total cost of the proposed
method with MCWS and DBCA.

Data Set MCWS DBCA PSO PSO-GMO
1 1685.2 1675.6 1679.91 1621.31
2 1962.8 1957.9 1841.69 1809.16
3 1898.8 1894.8 1852.62 1804.83
4 1583.6 1583.6 1493.09 1413.06

Figure 1. Route for 20c3sC3.

Figure 2. Route for 20c3sU1.

The proposed PSO-GMO algorithm is applied on large data sets with customers
from 100 to 500 and its performance is compared against PSO and MCWS and
DBCA algorithms. Each data set has 21 RF s. The results are tabulated in Table 7.
A new best solution was obtained for instance with 500 customers. In about 4 data
sets there is an increase in the number of customers being served.
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Figure 3. Route for 20c3sC1.

Figure 4. Route for s2 4i10s.

Compared to the small data sets where most instances obtained a single best
solution, some of the large data sets show the contradictory behavior. For example
for data set with 200, 400 and 450 customers, the cost and the refueling stops
show a negative correlation. The remaining data sets show a positive correlation
and hence a single best solution is reported. The observed Pareto front for data
sets with 300 and 400 customer data sets is shown in Figure 5 and 6, respectively.
New best solution was arrived at for data set with 500 customers. For the other
data sets there is an increase in the number of customers served. More number of
customers is served using PSO-GMO than with the existing algorithm.

The problem is concentrated on reducing the number of refueling halts and
arrived at a solution. Though there are 21 fueling stations for large instance,
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Figure 5. Pareto front of 300 customer instance.

Figure 6. Pareto front of 400 customer instance.

the instance 111 customers has stopped only 6 times for refueling, where some
stations are visited more than once. The solution trace obtained by PSO-GMO is
depicted in Figure 7 for different data sets. The route obtained for instance with
111 customers and 500 customers is shown in Figures 8 and 9, respectively.

The results obtained by the proposed method are promising and better than the
published results. This paper addresses the importance of the refueling stations
from the perspective of cost and time involved, and in the number of halts taken
by the vehicles for refueling. Additional information obtained with the implemen-
tation is, some RFs are visited frequently and some are never visited. Taking
this as a cue, the work can be further extended to include optimal placement of
warehouse/service station at that location of RFs that are frequently visited.
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Figure 7. Trace of PSO GMO algorithm for different data sets.
(a) Instance 20c3sC3, (b) instance 20c3sU3, (c) instance 111 cus-
tomer, (d) instance 500 customers.

Figure 8. Route for 111 customers.

6. Conclusion

VRPLHS is introduced in this paper. The problem is modeled as a ε constraint
bi objective problem and solved using PSO-GMO. The trajectory expected by PSO
to escape from local minima is solved through a devised mutation operator GMO.
The results obtained by PSO and PSO-GMO depict the influence of GMO in the
search space for a good solution. The algorithm is compared with the available data
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Figure 9. Route for 500 customers.

sets and proved to work better than the published results. Any organization that
plan to route vehicle with refueling option should consider a tour with minimum
refueling halts, as the cost can be substantially reduced. There are many insights
observed. It opens up many areas of research in VRP with refueling as a constraint.
This work can be extended for heterogeneous vehicles, vehicles with different fuel
types, fueling stations with limited fuel capacity level. As the support towards
green environment is adverse it may provide a different arena of research.
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