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IMPROVING THE SOLUTION COMPLEXITY OF THE SCHEDULING
PROBLEM WITH DEADLINES:
A GENERAL TECHNIQUE*

AMIR ELALOUF! AND EUGENE LEVNER?

Abstract. The aim of this paper is to develop improved polynomial-time approximation algorithms
belonging to the family of the fully polynomial time approximation schemes (FPTAS) for a group of
scheduling problems. In particular, the new technique provides a positive answer to a question posed
more than three decades ago by Gens and Levner [G.V. Gens and E.V. Levner, Discrete Appl. Math.
3 (1981) 313-318]: “Can an epsilon-approximation algorithm be found for the minimization version of
the job-sequencing-with-deadlines problem running with the same complexity as the algorithms for the
maximization form of the problem?”
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1. INTRODUCTION

The scheduling problem with deadlines, introduced more than 30 years ago by Lawler and Moore [10], is
formulated as follows. Let there be n independent jobs Jy, Jo, . .., J,, to be processed on one machine. Associated
with each job, J;,7 = 1,...,n, are its processing time, p;, and deadline, d;, i = 1, ..., n. If the processing of job J;,
is not completed by its deadline, d;, then a penalty w; is to be paid, i = 1,...,n. The problem is to schedule the
jobs in such an order as to minimize the total penalty, that is, to find a permutation = = (7(1), 7(2),...,7(n))
of {1,2,...,n} that minimizes

W(m) = > wepten
i=1,...,n
where z,;y = [ifPr(1) + Pr(2) + -+ Pr(s) > dr(i) then 1 else 0].

Lawler and Moore [10] proposed a pseudo-polynomial exact method for the solution of this problem. However,
the problem, denoted MIN-JSDP, is known to be NP-hard [4,9]. Sahni [12,13] successfully solved the maximiza-
tion version of this problem, using a fully polynomial time approximation scheme (FPTAS) running in O(n?/e)
time, where € is the required solution accuracy. However, Sahni’s algorithm cannot be directly generalized to
solve MIN-JSDP. This is because the algorithm is based on the use of a tight bound b such that b < W* < ¢b,
with W* being the minimum value of the penalty and ¢ a small constant; in the case of MIN-JSDP, it is
nontrivial to obtain such a bound b.
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Gens and Levner [5] developed an FPTAS algorithm for the MIN-JSDP with complexity O(n?/e). The al-
gorithm is based on the e-grouping technique, which does not require knowledge of a tight bound. A similar
e-grouping technique was developed by Hassin [7], who designed an FPTAS for the restricted shortest path
problem. Gens and Levner [6] improved their FPTAS for the MIN-JSDP, obtaining a worst-case complexity of
O(n?/e +n?logn); this complexity was still greater than that of Sahni’s [12,13] algorithm for the maximiza-
tion version of the problem. This outcome led Gens and Levner [6] to ask whether it is possible to develop
an e-approximation algorithm for MIN-JSDP whose complexity is the same as that of the algorithm for the
maximization form of the problem.

The aim of this paper is to provide a positive answer to that question. In the next section we describe
the problem. In Section 4 we present the improved FPTAS algorithm and estimate its complexity. Section 5
concludes the paper.

2. PROBLEM FORMULATION

It is well-known (see [10,15] that, when seeking to identify a schedule that solves the MIN-JSDP as defined
above, it is possible to limit the search to schedules such that: (i) jobs that are to be on time are processed in
increasing order of their deadlines, with the late jobs following them in arbitrary order; and (ii) there is no idle
time between jobs. The optimal schedule is included among the schedules that meet these two criteria. In what
follows, we sort all the jobs in increasing order of their deadlines (earliest deadline first) and let

x; =[if the job J; is to be late then 1 else 0].
Then the MIN-JSDP can be written as the following integer programming problem:
minimize W(z) =3>_,_; , wiz;

subject to Z ti(l—z;) <Dj, j=1,...,n,

i=1,....j
z;=0o0r 1, 1:=1,...,n,
where x stands for (x1,...,2,).

The problem can be rewritten as follows:
MIN-JSDP:
minimize W (z) = Z w; T
=1

FRREEY L2
subject to  T(x) = Z pixi <Bj, j=1,...,n,
=1,
z;=0o0r 1, :=1,...,n,

where B; = Zi:l,m,j pi—dj, j=1,...,n.

3. A NEw FPTAS ALGORITHM

Our approach to constructing a new FPTAS for the MIN-JSDP follows a computational scheme that we
recently developed for solving the restricted shortest path problem (see [1,11]). The algorithm consists of three
main stages:

Stage A. Find a preliminary lower bound LB and an upper bound UB on the optimal solution such that
UB/LB < n.

Stage B. Find improved lower and upper bounds UB and LB on the optimal solution such that UB/LB < 2.
This step is key to reducing the complexity of the algorithm in comparison with that of [6]. Specifically,
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Gens and Levner [6] identified these bounds in O(n?logn) time; we will present a technique that
enables us to calculate these bounds with lower complexity. We will also show that this technique
can be used to improve the solution complexity of other types of scheduling problems.

Stage C. Partition the interval [LB, UB] into "n/e” equal sub-intervals, delete sufficiently close solutions in
the sub-intervals, and then find an e-approximation solution using full enumeration of the “represen-
tatives” taking only one “representative” from each sub-interval.

Let us consider these stages in detail.

A. Finding the preliminary bounds

This step is presented in Gens and Levner [6] and is executed as follows: Initialize every x; to 0. Order
(temporarily) all the jobs according to non-decreasing penalties: w;(1) < wj2) < - -+ < wj(y,). Then set x;1) = 1,
Ti2) = 1, wy3) = 1,... in that order until all the n constraints of the MIN-JSDP are satisfied.

Let k* be the smallest number of such z;’s, and let I =i(k*). As shown in Gens and Levner [6], w; < W* <
k*wy < nwy, and therefore we can take LB = wy, and UB = k*w;y. If we cannot find such an I index, the
problem has no feasible solution; then we terminate the algorithm and return “no solution”. The running time
needed to find the value of wy is clearly O(n?).

B. Improving the bounds

This step has two building blocks: a test procedure denoted by Test(v,e) (Algorithm 1) and a narrowing
procedure denoted by NARROW (Algorithm 2), which uses Test(v,e) as a sub-procedure.

Test (v, €) is an approximate dichotomous search for the minimum total penalty value W*. It is implemented as
a parametric dynamic programming algorithm that has the following property: for given positive parameters w
and €, it reports either that W* < v or that W* > v(1 —¢). This approach was first used by Gens and Levner [6]
in solving the knapsack problem and was later explored by Warburton [16], Hassin [8], Ergun et al. [7] and
Levner et al. [7], among others [8], for different versions of the constrained routing problem.

Test(v,e) will be repeatedly applied as a sub-procedure in the NARROW algorithm to narrow the gap
between the bounds UB and LB up to UB/LB < 2. This stage is very similar to the method described in
Ergun et al. [3], with some minor adaptations for the specific characteristics of the scheduling problem. For
completeness of exposition, we provide a brief description of both building blocks.

Algorithm 1. Algorithm Test(v, €).

input :e>0,v; § =ev/n; (wi,pi,di), i=1,...,n,such that di < d2 <---<dyn; B; =)
7=1...,n.
output: Report either that W7, is less than or equal to v, or that W™ is larger than v(l — €).
Step 1. [initialization]. S(0) = {(0,0)}; W (0) = 0.
Step 2. [Generate S(1) to S(n)].
for i =1 ton do
V(iE)=10
foreach pair (W, P) in S(i — 1) do
| V(@) « V(@) U{(W +wi, P +pi)}
end

ti —dj,

i=1,...,5

© N0k W N

end

Form G(i — 1), the set of pairs (W, P) in S(i — 1) such that P > B;. Form S(¢) by merging G(i — 1) and V(7).
During the merge eliminate excessive d-close and w-redundant pairs. If S(z) is empty, go to Step 3.

end

Step 3. If any one of S(I),...,S(n) is empty, then report that W* > v(l — €); otherwise report that W* < v.

fu
(=]

=
N o=
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Associate each vector & = (x1,...,%,) with a pair (W, P), where W = W () and P = P(x) are as defined
in Section 2. Denote by S(k) the set of pairs (W, P), arranged in increasing order of P values, where every pair
in S(k) corresponds to a schedule of jobs 1,..., k.

If two pairs, (W7, P1) and (Wa, P), fulfill P; < Py and Wy < Wa, then the pair (Wa, P,) is considered to be
dominated by (W3, P;) and may be discarded. When we are interested in finding solutions satisfying W (z) < v
(v being a parameter), a pair (W, P) with W > v is called v-redundant and can be discarded.

If two pairs, (W7, Pp) and (Wa, Py), fulfill 0 < Wy — W < 4, then the pairs are called d-close, and one of
the pairs can be discarded. To discard d-close pairs from a set S(k), we perform the following: (a) partition the
interval [I, w]| into "n/e" equal subintervals of size no greater than § = ev/n; (b) if a given subinterval contains
more than one pair from S(k), then discard all -close pairs from the subinterval, with the exception of a single
“representative”, namely, the pair with the largest (in this subinterval) T coordinate.

Now we can describe the procedure Test(v, €) (Algorithm 1) where V' (k) and G(k) will denote auxiliary sets
of vectors &, k = 1,...,n. The complexity of Test(v, €) as well as its required space are O(n?/¢). This fact and
the validity of this procedure are proven in Gens and Levner [6].

We now present the narrowing procedure, NARROW (Algorithm 2), which originates from a similar procedure
suggested by Ergun et al. [3] for solving the restricted shortest path problem. Specifically, when running Test(v,
€), we choose € as a function of UB/LB, such that the value of € changes from iteration to iteration. For the
reader’s convenience, to distinguish this iteratively changing value from the allowable error (denoted by €) in
the FPTAS, which will be presented below, we denote the former by 6. Thus, in what follows, the procedure
Test (v, €) will be referred to as Test(v, 6).

The idea is that when the bounds UB and LB are far from each other, we choose a large §; when UB and LB
get closer, we can choose a smaller §. More precisely, as in Ergun et al. [3], in each iteration of Test(v, ), we set
0 «— 1—+/LB/UB , whereas a new w value in each iteration depends upon 6 and equals v = \/LB - UB/ (1 — 6).
The difference between NARROW and the similar narrowing algorithm presented in Ergun et al. [3] lies in the
content of the testing sub-procedure Test(v, §). The complexity of NARROW (Algorithm 2) is O(n?). The proof
is similar to that of Lemma 5 in Ergun et al. [3] and is omitted here.

Algorithm 2. Algorithm NARROW.

input : LB and UB such that UB/LB < n.
output: LB and UB such that UB/LB < 2.
if UB/LB < 2 then

| go to line 2
end

Set § —1—/LB/UB

Set v=+/LB-UB/(1-6)

Run Test(v, 0)

if Test(v, 0) returns that W* < v then
Set UB «— v
else Set LB — v(1 —6)

end

Go to line 2

Return the improved LB and UB end

© WO A W N

[
N = O

C. Fast-approximation algorithm

We start Stage C with LB and U B values satisfying UB/LB < 2, and obtain an e-approximation schedule.
This Algorithm 3 is of the dynamic programming type, so it is very similar to the above algorithm Test(v, €).
Nevertheless, for completeness of exposition, we present its full description and estimate its computational
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complexity. We present the details in Algorithm 3. As in Test(v, €) (Algorithm 1) above, we delete all the
dominated pairs in all the sets S(k). In addition, we delete e-close pairs as follows:

(a) In each set S(k), partition the interval [0, UB] into [(UB/LB) (n/e)] equal sub-intervals of size no greater
than § = eLB/n;

(b) If, for a given sub-interval, there are multiple pairs from S(k) for which the value of W falls into the
subinterval, discard all excessive J-close pairs, leaving only one representative pair in the subinterval, i.e.,
the pair with the smallest P-coordinate (in this subinterval).

(¢) Discard any pair (W, P) with W > UB.

Algorithm 3. An e-approximation algorithm AA(LB, UB, ).

input : UB, LB, ¢, 6 =eLB/n.
output: An e-approximation schedule such that the corresponding expected time is at most (1 + ¢)W™*
Step 1. [initialization]
Set S(1) = {(0,0)}, S(k) < 0 for k =2,...,n. Step 1. [Generate S(2) to S(n)]
for k=1 ton do

G0

for each pair (W,P) € S(k—1) do

| G GU{(W+w(k),P+pk))}

end

S(k) < merge (S(k),@); during the merging eliminate the dominated pairs and d-close pairs
end
Step 3. [Determine an approximate solution]
find min W in S(n), denote it by answer
Return answer as the e-approximation penalty and use backtracking to find the schedule itself.

© 0N kW N

[
N = O

Theorem 3.1. The complezity of the entire three-stage FPTAS is O (n? /e ).

Proof. Since the length of the subinterval is § = eLB/n, we have O(n(%2)(1/¢)) subintervals in the interval
[0, UB], and since UB/LB < 2, there are O(n/e) sub-intervals in the interval [LB, UB]. Therefore, there are
O(n/¢) representative pairs in any set G and S(k). Constructing each G in line 3 requires O(n/¢) elementary
operations because G is constructed from a single S(k). Merging the sorted sets G and S(k) in line 3, as well as
discarding all the dominated pairs, is done in linear time (in the number of pairs, which is O(n/e)). In Step 2,
we have O(n) iterations.Thus, the total complexity of Algorithm AA is O(n?/¢). Since Stage C has the same
complexity as Stage B, and dominates Stage A of the algorithm, the overall complexity of the approximation
algorithm is O(n?/e). 0

4. OTHER SCHEDULING PROBLEMS

To illustrate the general approach we present two examples: the restricted shortest path problem and the
two-machine just-in-time scheduling problem.

Example 1 ([7]). A directed graph is given with n vertex and m edges. Each edge has a length and a transition
time. The objective is to find, for a given 1" value, a shortest path such that its total transition time is less than
or equal to T'. The complexity of the original Hassin’s algorithm is O(nmloglogUB/LB + nm/e). It is easy to
see, that the suggested technique permits to reduce the FPTAS complexity to O(mn/e). The interested reader
can find further details in Levner et al. [11] and Elalouf et al. [1].
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Example 2 ([14]). A set of n independent, non-preemptive jobs is available for processing at time zero. All
jobs have to be processed on two machines and follow the same route through the machines. Let d; represent
the due date of job J;; w; the gain (income) of completing job J; just-in-time (that is, exactly at time d;); and
pij the processing time of job J; on machine M; for i = 1,2 and j = 1,...,n. The objective is to find a schedule
with the maximum weighted number of jobs completed exactly at time d;. Whereas the Shabtay-Bensousan’s
FPTAS has complexity of O(n*/e + n*logUB/LB), the technique of the present paper reduces the latter to
O(n?/e) (we refer to Elalouf et al. [2] for further details).

Concluding this section, let us describe general conditions for the scheduling problems for which the technique
described above can be used to improve the complexity of approximation procedures. Specifically, these problems
are characterized by the following properties:

Let S be a general scheduling problem with n jobs for which the following conditions hold:

(i) The optimal solution (OPT) can be found, e.g., by dynamic programing, in O(nYUB), where UB is the
upper bound on OPT, and vy is a fixed number.

(ii) An initial upper bound on the solution UB and a lower bound LB such that UB/LB < n can be found in
O(n¥*1) time.

Theorem 4.1. When using the above technique, the complexity of the FPTAS for problem S is O(nY*! /e)
(where € is the required accuracy of the solution).

Proof. The FPTAS described above consists of three stages, each with complexity of O(nY*!/¢):

According to assumption (i), Stage A is done in O(nY*!). For Stage B, using the NARROW procedure
described in Section 3 requires the Test procedure to be run at most 7 times; the complexity of the Test procedure
is O(nY*1), since we can replace UB with n. For Stage C, the approximation can be done in O(n¥*!/e) by
replacing U B with n/e. The complexity of Stage C dominates that of Stages A and B, and the overall complexity
of the approximation algorithm is O(nY*1!/e). O

It is easy to see that the sufficient conditions of the theorem hold for the scheduling and routing problems
considered in Sections 3—4 of this paper.

5. CONCLUDING REMARKS

Regarding the MIN-JSDP problem, since the complexity of the new FPTAS algorithm is O(n?/¢), we imme-
diately arrive at the conclusion that the question posed by Gens and Levner [6] has a positive answer: Indeed,
it is possible to obtain an e-approximation solution for MIN-JSDP whose complexity is the same as that of
the solution for the maximization form of the problem. It is a challenging direction for future research to find
new fully polynomial approximation algorithms with low polynomial degrees for wider classes of combinatorial
problems.
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