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for nonresponse bias: complementary activities

Titre: Équilibrage de la réponse et ajustement des estimateurs pour biais de non-réponse : activités
complémentaires
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Abstract: One objective of Responsive Design is to manage the data collection through appropriate planning and
intervention, so as to promote in the end a well-balanced or well representative set of respondents. At that stage,
auxiliary information, including paradata, plays a crucial role. But regardless of what can be accomplished during data
collection, accurate estimation is the ultimate goal. The auxiliary variables play an important role at that stage as well,
as when calibrated weights are used for adjustment in order to reduce the nonresponse bias that nevertheless affects the
estimates.
The concept of imbalance of the survey response is central in this article. We define and measure its components,
total, marginal and conditional imbalance. We propose methods based on response propensity, observed continuously
throughout the data collection, for obtaining a well-balanced ultimate response. We apply the methods to data from a
major Swedish survey, and we explore how a successful reduction of imbalance may contribute further to reducing the
bias of estimates, over and beyond what calibration adjustment will accomplish in that regard.

Résumé : Un des objectifs d’une collecte adaptative de données est de profiter d’une planification et d’une intervention
appropriées, afin d’obtenir au final un ensemble de répondants bien équilibré ou bien représentatif. A ce stade,
l’information auxiliaire, qui inclue les paradonnées, joue un rôle central. Mais quoique l’on puisse accomplir durant
la période de la collecte, le but ultime est d’obtenir des estimations précises. Au stade de l’estimation, les variables
auxiliaires jouent également un rôle important, comme lorsque des poids calés sont utilisés pour réduire le biais de
non-réponse qui affecte néanmoins les estimations.
Le concept de déséquilibre de la réponse est central dans cet article. Nous définissons et nous mesurons ses composantes,
le déséquilibre total, marginal ou conditionnel. Nous proposons des méthodes basées sur la propension (ou l’intensité)
de la réponse, observable de façon continue pendant la collecte de données, dans le but d’obtenir une réponse ultime
bien équilibrée. Nous appliquons ces méthodes à des données d’une importante enquête suédoise, et nous examinons
dans quelle mesure une réduction bien réussie du déséquilibre peut contribuer à réduire le biais, au-delà de ce qu’un
ajustement par calage peut apporter.
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1. Introduction and literature review

General objectives for Responsive Design were formulated in Groves (2006) and Groves and
Heeringa (2006). A number of developments have followed. The terms adaptive design and re-
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sponsive design are frequently used in recent literature, sometimes interchangeably. In Bethlehem
et al. (2011), responsive design is regarded as a special case of adaptive design. Adaptive design
seems to refer mainly to situations where treatments applied to sampled elements are identified
prior to the start of the data collection, although they may also be revised or modified during the
data collection. Responsive design is used mainly for situations where the data collection may
involve two or more phases, with decisions taken underway about steps for the subsequent phases.

Avenues for developing adaptive designs are reviewed in Wagner (2008). Responsive design in a
Canadian setting is reviewed in Mohl and Laflamme (2007) and Laflamme (2009).

Responsive Design focuses, by definition, on the data collection phase of a survey. One prominent
idea is that the data collection may be inspected at suitable decision points, in order to bring
perhaps a change of direction or emphasis, in the hope that a better composition of the set of
respondents will ultimately pave the way for less bias in the estimates.

At the end of the data collection, the final set of respondents should be representative, or well bal-
anced. Different ways have been suggested to promote this goal. Case prioritization is considered
in Peytchev et al. (2010). Stopping rules aimed at halting data collection attempts for designated
sample units is considered in Rao et al. (2008) and in Wagner and Raghunathan (2010). Couper
and Wagner (2012) discuss uses of paradata to manage the survey response.

Nonresponse methodology is examined in the recent Handbook of Nonresponse in Household
Surveys by Bethlehem et al. (2011). This handbook proposes a measure of the representativity of
the survey response, the R-indicator. It is derived from the idea of varying response probability
among the population units. Since only a sample is available, estimated response probabilities
are used to construct the basic R-indicator as R̂ = 1−2Ŝ, where Ŝ is the standard deviation of
response probability estimates. Related references are Schouten and Bethlehem (2009), Schouten
et al. (2009) and Schouten et al. (2011).

At the estimation stage, estimates must nevertheless be produced with the response, more or less
representative, that was finally realized and recorded. Understandably, there is some tendency in
the literature to look separately at the two activities, realizing representativity at the data collection
stage and reducing bias at the estimation stage. The two activities, both striving for accurate
estimation, are of course interrelated.

The nonresponse bias in the estimates cannot be quantified or fully corrected, but indicators of
the risk of bias can be useful, as reviewed in Wagner (2012) and in Kreuter et al. (2010). A basic
idea in seeking evidence of bias is to observe how the response rate varies between demographic
groups, as explored in Peytcheva and Groves (2009). Proxy pattern-mixture analysis is a method
proposed by Andridge and Little (2011) for assessing non-response bias for the mean of a survey
variable. The selection of the best auxiliary variables for reducing the bias as much as possible
is discussed in Särndal (2011b), Särndal and Lundström (2008) and Särndal and Lundström (2010).

The concept of response propensity has been useful for nonresponse adjustment methods and
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30 Carl-Erik Särndal and Peter Lundquist

is used in this article also. One well-known method is to compute a response propensity score
by a logistic regression of the nonresponse indicator on the auxiliary variables, and then form
adjustment cells based on this score. This is particularly efficient when there is ample auxiliary
information. Vartivarian and Little (2002) consider adjustment cells based on joint classification
by the response propensity and summary predictors of the outcomes, to exploit residual associa-
tions between the covariates and the outcome after adjusting for the propensity score. Response
propensity is also a prominent theme in Brick and Jones (2008).

As often pointed out, two factors influence bias and variance of the estimates: the degree to which
the auxiliary information explains the study variable and the degree to which it explains the
response indicator. Such explanation, in both cases, is in practice only realized to a degree, and
not perfectly, and there is an interaction, as recognized in Little and Vartivarian (2005).

How important is it really to seek better balance in the data collection? Is it worth the effort?
Coming to the estimation stage, are the estimates really significantly improved by balancing
having taken place during data collection? Might one not just carry out the data collection in a
standardized, simpler and less expensive manner, and leave the adjustment-based on the auxiliary
information - to the estimation stage? This article attempts to get some perspectives on these
questions.

Thus we are led to ask: What can be done (or what should be done) at the data collection stage?
What remains to be done at the estimation stage? The answers depend to some degree on the sur-
vey environment. Scandinavia and The Netherlands are privileged in that surveys, especially those
on households and individuals, can rely on rich sources of auxiliary information for adjustment
at the estimation stage. Many other countries are less well equipped and only simple forms of
adjustment become possible.

The material in this article is presented as follows: Following an introduction (section 2), a
measure of imbalance in the response is defined, relative to a chosen auxiliary vector (sections
3, 4, 5); that auxiliary variables serve in two ways - for directing the data collection and/or in
calibration at the estimation stage - is made clear (section 6); methods for monitoring the data
collection with the aid of response propensity are outlined (section 7); an analysis of imbalance
(ANIMB) is formulated (section 8); response monitoring and ANIMB are illustrated empirically
with data from the Swedish Living Conditions Survey (sections 9, 10); then the focus shifts to
the estimation stage, and bias adjustment of estimates is discussed (sections 11, 12); the question
whether balancing the response during data collection yields true advantages for the estimation is
examined, theoretically and empirically (sections 13, 14).

2. The survey background

We consider a context of probability sampling, primarily for surveys on individuals and households
(but not limited to those), supported by an ample supply of auxiliary variables, as is usually the
case in Scandinavia. The target population U = {1, ...,k, ...,N} consists of N units (individuals)
indexed k = 1,2, . . . ,N. A probability sample s is drawn from U ; unit k has the known inclusion
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probability πk = Pr(k ∈ s)> 0, and the known design weight dk = 1/πk. These "d-weights" are
used throughout this article in computing means, variances and other statistics.

The variables that enter into consideration are: The study variable (y-variable), the auxiliary
variables (x-variables), and the response indicator variable denoted I.

Surveys of national importance usually involve many study variables. To present the reasoning,
we focus on one of them. Denote yk the value for unit k of the study variable y for which we wish
to estimate the population total Y = ∑U yk. (A sum ∑k∈A over a set of units A⊆U will be written
as ∑A.) If the response were complete, this estimation would be based on values yk then available
for all units k ∈ s. But the response is incomplete. At the end of the data collection period, the
value yk is available only for a subset r of the sample s.

The response indicator variable denoted I has value Ik = 1 for k ∈ r and Ik = 0 for k ∈ s− r.
Auxiliary variables (x-variables) play an important role. Some are used at the data collection stage,
others enter the scene at the estimation stage. In Section 6 we elaborate on this division of the
auxiliary variables into two categories.

An auxiliary vector is made up of a number of auxiliary variables. The generic notation for an
auxiliary vector is x; its value xk is known at least for all units k ∈ s, possibly for all k ∈U . The
x-variables in the vector can be continuous or categorical; the latter is the case in many applications
in statistical agencies. Section 9 contains an example of a list of categorical x-variables fairly
typical for a Swedish survey on individuals. The dimension of x, denoted J ≥ 1, may be quite
large, as when it incorporates a number of categorical variables, each with a number of classes.

For technical convenience, the x-vectors we use satisfy the following requirement: There exists a
constant vector µµµ such that µµµ ′xk = 1 for all units k. It is not a major restriction; all that is required
is one such vector µµµ . Most x-vectors of importance are covered. When the x-vector codes a set
of mutually exclusive and exhaustive categories, it is of the type xk = (0, . . . ,1, . . . ,0)′, where
the only "1" identifies the category of unit k. Then µµµ = (1, . . . ,1, . . . ,1)′ satisfies the requirement.
When the x-vector is used to code, say, four mutually exclusive and exhaustive age classes and,
in addition, the univariate variable "sex" equal to 1 for male and 0 for female, the dimension is
J = 4+1 = 5 (age and sex are not crossed), and µµµ = (1,1,1,1,0)′ satisfies the requirement. If
x is a univariate continuous variable, and xk = (1,xk)

′, as for a regression with intercept, then
µµµ = (1,0)′ satisfies the requirement. (But xk = xk, as in a regression without an intercept, would
not be covered.) The reason why the requirement streamlines several derivations in this paper will
be apparent at the first use made of it, the derivation of formula (5).

The time perspective is important. In many surveys of importance, the data collection extends over
a period of days or weeks or even months. We follow the data collection as a function of some
time related aspect, such as the data collection day or the call attempt number. These portray the
data collection somewhat differently. For example, the tenth call attempt may occur on different
days for two different sample units.

Journal de la Société Française de Statistique, Vol. 155 No. 4 28-50
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2014) ISSN: 2102-6238



32 Carl-Erik Särndal and Peter Lundquist

Here we use the call attempt number as the time dependent element. The process can be followed
and monitored with the aid of data collection devices such as Statistics Sweden’s WinDATI, which
records all call attempts by a staff of interviewers, destined to establish a telephone contact, and
then a completed interview with a selected sample unit.

There is a series of successively larger response sets r(a), where a refers to the time dimension,
a = 1,2, . . ., and

r(1) ⊆ r(2) ⊆ . . .⊆ r(a) ⊆ . . . (1)

Here r(a) is the set of units having delivered the value yk at a certain point a (after a call attempts,
or after a data collection days). For simpler notation, we let r refer to any one of the increasingly
larger response sets. A recording device such as WinDATI allows us to intervene in the data
collection and if necessary to redirect it, to realize in the end a better balanced final response set.

For the response r, the realized (design-weighted) response proportion of the sample s is

P = ∑
r

dk/∑
s

dk (2)

The proportion P increases as the data collection evolves. It is a basic descriptive characteristic
of the response. In principle, the ultimate response set r satisfies r ⊆ s ⊆U , but by practical
necessity, data collection will almost always stop before r has reached the full probability sample
s. The ending value P is the ultimate response rate for the survey. Then the values yk for k ∈ r are,
together with auxiliary vector values xk for k ∈ s, the material for estimating parameters such as
the population total Y = ∑U yk.

3. Measuring the imbalance of a response set

The set of respondents r present at any given point in the data collection is a more or less well
balanced representation of the probability sample s that contains r. The imbalance property is
formulated in terms of x-vector means. The computable (design weighted) x-vector mean is
x̄r = ∑r dkxk/∑r dk for the response set r and x̄s = ∑s dkxk/∑s dk for the full sample s. If x̄r = x̄s,
we say that the response set is perfectly balanced with respect to the chosen x-vector. Ordinarily
we do not achieve this in a survey, at least not exactly, but during data collection we can strive to
come close.

The mean difference vector x̄r− x̄s is composed of the differences x̄ jr− x̄ js, j = 1, . . . ,J, which is
the difference for the jth x-variable between the respondent mean, x̄ jr = ∑r dkx jk/∑r dk, and the
full sample mean, x̄ js = ∑s dkx jk/∑s dk.

A large difference x̄r− x̄s signifies that the response set is not well balanced. This difference is to
some degree inflated by a high nonresponse rate 1−P, because x̄r− x̄s = (1−P)(x̄r− x̄s−r), where
x̄s−r = ∑s−r dkxk/∑s−r dk is the mean for the nonresponse set s− r. For a constant separation
x̄r− x̄s−r between response and nonresponse means, the difference x̄r− x̄s is "unrealistically
large" if the response rate P is low. We take this into account in defining the (scalar) imbalance
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statistic as

IMB(r,x|s) = P2× (x̄r− x̄s)
′
Σ
−1
s (x̄r− x̄s) (3)

where the J× J weighting matrix, assumed non-singular, is

Σs = (∑s dkxkx′k)/(∑s dk). (4)

It is important to note that imbalance is measured with respect to a given x-vector, for the given
sample s. For one and the same response set r, the imbalance can be numerically quite different
depending on how many variables are included in the x-vector, and which ones. The notation
IMB(r,x |s) reflects the fact that imbalance is a function of (i) the set of respondents r present at a
certain point in the data collection and (ii) the specified x-vector, that is, the choice of x-variables
for the vector. The value IMB(r,x|s) depends on the characteristics (the values xk) of the units k,
respondents as well as non-respondents. The imbalance tells considerably more about the survey
response than just its proportion of the sample, which is the response rate, P = ∑r dk/∑s dk. The
response rate alone is insufficient to describe the quality of the set of respondents.

Even in a case where the response r is just a small subset of s, IMB(r,x|s) = 0 can happen (but
is unlikely to do so), namely if the perfect balance x̄r = x̄s holds. A typical feature of the data
collection is that the increasing response rate P causes x̄r to draw nearer (and in the limit become
equal to) the fixed sample mean x̄s. For high response, r is near s and x̄r ≈ x̄s. The factor P2 in the
definition (3) regulates the tendency for the imbalance to be artificially high when response is low.

A reason for interposing the inverse of Σs in (3) is that a simple upper bound can then be stated on
the imbalance: Given s, we have 0≤ IMB≤ P(1−P), whatever r and the values xk for k ∈ s. For
example, for 1−P = 20% nonresponse, 0≤ IMB≤ 0.16; for 50% nonresponse, 0≤ IMB≤ 0.25.
For data encountered in practice, IMB is usually much below the upper bound.

Apart from the factor P2, equation (3) defines the imbalance as a quadratic form in the difference
vector x̄r− x̄s. This equation can also be written as

IMB(r,x|s) = P2× (x̄′rΣ
−1
s x̄r−1) (5)

This follows from (3) because x′kΣ−1
s x̄s = 1 for all k, which is a consequence of the x-vector form

µµµ ′xk = 1 for all k:

x′kΣ
−1
s x̄s = x′k(∑s dkxkx′k)−1(∑s dkxk)

= x′k(∑s dkxkx′k)−1(∑s dkxkx′k µµµ)

= x′kµµµ = 1.

Unless emphasis is required, we use the compact notation IMB for IMB(r,x|s). The notion of
imbalance was used in Särndal (2011a) and is related to the R-indicator of Schouten et al. (2009).
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4. The concepts of distance and balance

For a given x-vector, the (weighted Euclidian) distance between respondents and nonrespondents
is measured, at any given point in the data collection, by

distr|nr = [(x̄r− x̄s−r)
′
Σ
−1
s (x̄r− x̄s−r)]

1/2

where nr stands for nonresponse. It has a simple relation to the imbalance:

distr|nr =
√

IMB/P(1−P)

In an efficient data collection, the distance should decrease, or at least not get markedly greater,
when the response set grows larger.

From IMB ≤ P(1−P) follows an upper bound on the distance, distr|nr ≤ 1/
√

P(1−P). For
example, for 50% nonresponse, distr|nr ≤ 2 for any response r and any vector specification x.

A measure of balance (the negation of imbalance) on a unit interval scale can be constructed in a
variety of ways. One possibility, suggested by IMB≤ P(1−P), is the balance indicator

BI = 1−

√
IMB

P(1−P)
= 1−

√
P(1−P)×distr|nr.

Because P(1−P)≤ 1/4, an alternative indicator also contained in the unit interval is given by

BIalt = 1−2
√

IMB = 1−2P(1−P)×distr|nr.

The indicator BIalt is a special case of the R-indicator (with R for "representativity") of Schouten
et al. (2009). They developed it from the idea of a variability in the (unknown) response prob-
abilities of the population units. A computable R-indicator is derived by first getting response
probability estimates θ̂k for k ∈ s, then obtain their standard deviation S

θ̂
, and then let the R-

indicator be defined as R = 1−2S
θ̂

. When the estimates θ̂k are derived by linear regression of Ik
on xk, this construction gives BIalt . The literature on the R-indicator emphasizes the case where
the θ̂k are derived by logistic (rather than linear) regression.

5. The case of mutually exclusive groups

The case of mutually exclusive and exhaustive groups is of special interest because in this case
the imbalance (3) takes a particularly simple and transparent form. Then the vector xk has J−1
entries "0" and one single entry "1" pointing out the group to which the unit k belongs. The
imbalance statistic (3) is then a sum of J nonnegative terms:

IMB =
J

∑
j=1

C j

where C j = Wj× (Pj−P)2 is the imbalance attributed to category j, Wj = ∑s j dk/∑s dk is the
sample proportion and Pj= ∑r j dk/∑s j dk the response rate in that category, and P is the overall
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response rate (2). During data collection we can follow the evolution of the contributions C j of the
different groups to the total imbalance, as in Lundquist and Särndal (2013). In a data collection
claimed to be efficient, we like to see a decreasing tendency in the terms C j. In the terminology of
(Bethlehem et al., 2011, p. 190), we can call C j the unconditional partial imbalance for category j
of the classification with J categories.

6. Auxiliary variables of two kinds

We make an important distinction in regard to the auxiliary variables. Potentially, there may be
many, as is often the case in the Scandinavian countries. We assume here that a set of auxiliary
variables has been identified for the process that includes a data collection stage and an estimation
stage. The variables are of two kinds, with different functions. Some are designated for monitoring
and steering the data collection, in order to obtain a final response set that is reasonably well
balanced with respect to precisely those variables. They make up the monitoring vector denoted
xMV , of dimension J. The monitoring vector is an instrument for the data collection; other available
auxiliary variables stay neutral at that stage, but are important at the estimation stage where they
enter, usually together with those in xMV , in the computation of calibrated adjustment weights in
estimating parameters such as the population total Y = ∑U yk; the objective is then to control or
reduce bias and variance.

For practical reasons, the monitoring vector is usually restricted to a selection of rather few
x-variables. An important case is when this vector identifies a set of mutually exclusive and
exhaustive sample subgroups. A practical advantage is that it is relatively easy for the survey
manager to monitor a data collection directed to a modest number of groups. How do we select
these groups? Arguably, they should be groups for which we expect large differences in response
rate, because such differences can cause large imbalance.

In a regularly repeated survey, we may have a good idea at the outset what those groups might
be. The choice is less obvious in a survey carried out for the first time. One possibility is then to
identify suitable groups by an analysis. One such tool is classification tree analysis, CHAID. It
may for example be carried out at the end of the ordinary data collection and serve to identify
the groups that should receive particular emphasis in the follow-up. Tree analysis is described in
(Bethlehem et al., 2011, p. 263-265).

7. Monitoring based on the response propensity

The data collection is monitored with the aid of response propensities computed on a chosen
monitoring vector xMV with value xMV k for unit k, known for all k ∈ s. Hence xMV is an auxiliary
vector with a special function, namely, to direct the data collection. We assume for xMV also
the property µµµ ′xMV k = 1 for all k and some constant vector µµµ . We measure response propensity
at a given point in the data collection with the predicted values from the regression of the
response indicator I on xMV . By least squares, we determine first the value λ̂λλ of λλλ that minimizes
∑s dk(Ik−λλλ

′xMV k)
2
. This leads to the response propensity computable for all k ∈ s by

P̂MV k = λ̂λλ
′
xMV k = (∑s dkIkxMV k)

′(∑s dkxMV kx′MV k)
−1xMV k. (6)
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Although P̂(r,xMV k |s) would be more informative, the simpler notation P̂MV k will be used, unless
special emphasis is needed. The mean response propensity is equal to the response rate for the
response set r: ∑s dkP̂MV k/∑s dk = ∑r dk/∑s dk = P. This is shown with the aid of the requirement
µµµ ′xMV k = 1 for all k, similarly as in the proof of x′kΣ−1

s x̄s = 1 at the end of Section 3.

By definition, the variance of the response propensities is S2
P̂MV s =∑s dk(P̂MV k−P)2

/∑s dk. De-
veloping the square and some matrix manipulation reveals an important property of this variance:
It is equal to the imbalance of the response r relative to the monitoring vector:

S2
P̂MV s = IMB(r,xMV |s)

Hence, S2
P̂MV scan be computed either as the variance of P̂MV k, or through the quadratic form (3)

with x = xMV .

The data collection is examined, and possible action is taken, at number of intervention points,
preferably at least five. These are specified in advance and are defined here by the contact attempt
number. In our experiments, contact attempts are considered discontinued for the units having
attained, at each intervention point, a high (comparatively speaking) response propensity P̂MV k.
These units are not further contacted; we shall say that they are "left cold". The rationale is that
the subsequent contact attempts should focus on units that have so far shown less propensity to
respond. Hence data collection attempts cease at different points for different units.

There are two variations of this procedure, the Threshold method and the Fixed proportion method.
We now describe them more formally, assuming that a set of suitable intervention points and a
suitable monitoring vector xDChave been identified in advance.

The Threshold method. At the first intervention point, the propensity P̂MV k is computed for all
units k ∈ s. The units (respondents and nonrespondents) with value P̂MV k greater than a threshold
fixed in advance, say 60%, are identified. Contact attempts are discontinued for those units; they
are left cold. At the second intervention point, the P̂MV k are recomputed for all units k ∈ s. Those
left cold at the first point will have their values P̂MV k somewhat changed (for certain x-vectors not
changed at all), but without consequence; they remain cold. Among the remaining units, those
(respondents and nonrespondents) with new P̂MV k-values greater than the same fixed threshold
value are identified, and they are now also left cold. In the same manner, at each of the following
intervention points, the values P̂MV k are again recomputed for all k ∈ s, and among the units still
in contention, those (respondents and nonrespondents) with P̂MV k greater than the threshold are
left cold. Those remaining at the last intervention point continue to be contacted until the very
end of the data collection period.

An example with a sample s of n = 10 units labelled k = 1 to 10, and two intervention points
prior to the end of the data collection period, illustrates the procedure in more detail. At the first
intervention point, suppose units k = 1,2,3 and 4 have values P̂MV k that exceed the specified
threshold. Of these, suppose k = 1 and 2 are nonrespondents, k = 3 and 4 respondents. At the
second intervention point, P̂MV k is recomputed for all 10 units. That is, recomputed for units
k = 1,2,3 and 4 as well, but any action at point two is restricted to units k = 5,6,7,8,9 and 10.
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Suppose that at that point k = 5,6,7 and 8 have new values P̂MV k that exceed the same fixed
threshold. Of these, suppose that k = 6 and 7 are nonrespondents, k = 5 and 8 respondents. For
units k = 9 and k = 10, contact attempts continue until the end. There, suppose that k = 9 has
responded, but not k = 10. The final response set in this example is therefore r = {3,4,5,8,9}
and the nonresponse set is s− r = {1,2,6,7,10}.

Setting the threshold value requires some insight and planning, based on knowledge about the
same survey or about similar surveys. If the response rate for the survey is realistically assessed at
around 65%, a threshold of 60% or of 55% may be used.

The Fixed proportion method. In this method a fixed proportion of the sample is identified and
left cold at each of L intervention points, defined in advance. The values P̂MV k are computed for
all k ∈ s at each of these points. Their mean P = ∑s dkP̂MV k/∑s dk = ∑r dk/∑s dk is increasing at
each point. The values are size ordered, and 100/(L+1) percent of the sample units, those with
the largest P̂MV k among those still in contention, are left cold at each point.

For example, if L = 5, then a fixed portion 1/6 of the sample s is left cold at each of the five
points, and 1/6 continues to the very end. Thus at the first point, 16.67% of the sample turns
cold; units in that part are no longer approached. At the second point, those 20% with the highest
recomputed P̂MV k, out of the 5/6 still in contention, are left cold, and so on. After the fifth point,
1/6 of the sample remains in contention until the very end.

In both methods, at the end of data collection, the propensities P̂MV k are computed a final time
for all units k ∈ s. Their mean P at that point is the ultimate response rate for this monitored data
collection. Their variance S2

P̂MV s = IMB(r,xMV |s) may be substantially lower than in a traditional
data collection, without interventions, because it is in the nature of both methods to reduce that
variance.

Variations of the threshold method are obtained by setting different values for the threshold. The
lower the threshold, the more stringent the data collection and the more uniform the final propen-
sities. Whether the final response rate will be higher or lower than in an absence of interventions
depends on how the survey resources are managed. Halting contact attempts for some units tends
to lower the response rate; on the other hand, resources are freed by halting and should be used to
intensify contact efforts for the less responsive sample members; the response rate may not in the
end be any lower than in an absence of interventions.

But in our experiments, where more and more units in a fixed actual response are left cold, the
ultimate response rate will be lower than in an absence of interventions, and so will ordinarily the
final imbalance.

An advantage of the fixed proportion method is that there is no need to assess or guess a suitable
threshold value for P̂MV k, something which may not be easy for a first-time survey.

In the empirical Section 10, we illustrate both methods on Swedish survey data. In the threshold
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method we compare three different monitoring vectors xMV , and for each of these, three different
threshold values are used. Lower threshold means more stringent surveillance of the data collection,
thereby a reduced variance in the propensities and a reduced final imbalance.

8. Total, marginal, and conditional imbalance

The imbalance IMB(r,x|s) defined by (3) can be computed for the response r present at any point
in the data collection, and for any vector specification x, given the sample s. (The only condition
on x is that the matrix Σs in (3) be nonsingular.) It is of interest to see how the imbalance reacts to
different choices of the x-vector.

We assume here that a set of auxiliary variables has been identified to serve the two phases of
the survey, the data collection and the estimation that follows later. These form a "total x-vector"
denoted xtot with value xtot,k known for k ∈ s. This "total supply" may be a selection from an even
larger pool of potentially available x-variables.

At the termination of data collection, there is a final response set r whose degree of imbalance we
wish to measure. In particular, r may be the result of interventions based on response propensity
computed on a certain monitoring vector xMV , as described in Section 7. We assume that the
variables in xMV are all or some of those in xtot . If fewer than all are used, the remaining variables
in xtot come into play at the estimation stage, in the calibrated weight computation.

The imbalance in the final response set r relative to xtot is the total imbalance, IMB(r,xtot |s),
which is IMB(r,x|s) given by (3) when computed on x = xtot .

We may also wish to measure imbalance with respect to subsets of auxiliary variables. The imbal-
ance relative to a vector xb composed of some of the variables in xtot is the marginal imbalance
of xb, IMB(r,xb|s), computed by (3) with x = xb.

For example, we may wish to evaluate the imbalance relative to those variables in the total vector
xtot that are not active in the data collection, but reserved for use in calibrated weight computation
at the estimation stage.

Let xa be the complement vector, made up of those variables in xtot that are not in xb. The condi-
tional imbalance of xa controlling for xb is defined as the non-negative difference IMB(r,xtot |s)−
IMB(r,xb|s) = IMB(r,xa|s,xb). The analysis of imbalance (ANIMB) table, which can be com-
puted for the response r present at any point in the data collection, takes the following form,
illustrated empirically in Section 10:

Source of imbalance Component of imbalance
Marginal of xb IMB(r,xb|s)
Conditional of xa given xb IMB(r,xa|s,xb) = IMB(r,xtot |s)− IMB(r,xb|s)
Total IMB(r,xtot |s)
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9. Sweden’s 2009 Living Conditions Survey: Generating alternative response sets

The 2009 Swedish Living Conditions Survey (called LCS 2009), a contributor to the European
living conditions survey EUSILC, provides data suitable for illustrating the concepts in earlier
sections. We start with the response set as actually recorded in that survey. From it we generate
12 new response sets using the two methods presented in Section 7. We then, in Section 10,
illustrate total, marginal and conditional imbalance, by computing these quantities for each of
the 13 response sets, Actual and 12 generated. It allows us to see how they react to different
compositions of the response set.

LCS 2009 is described in Lundquist and Särndal (2013). This sample survey is designed to
measure different aspects of social welfare in Sweden, in particular among different population
subgroups. The LCS 2009 sample consists of a sample of individuals 16 years and older, drawn
from the Swedish Register of Total Population. The data set used in the analysis in this report is a
subsample of n = 8,220 individuals, taken from the entire LCS 2009 sample. This subsample can
be regarded as a simple random sample.

In the LCS telephone interviews were conducted by a staff of interviewers using the Swedish
CATI-system, WinDATI. All attempts by interviewers to establish contact with a sampled person
are registered by WinDATI. For every sampled individual, the WinDATI system thus records a
series of "call attempts", which are important in our analysis.

"WinDATI events" include not only productive attempts but also call without reply, busy line,
contact with household member other than the sampled person, and appointment booking for later
contact. When contact and data delivery has occurred, the data collection effort is complete for the
sample member in question. Every registered WinDATI event is a "(call) attempt" in the following.

The LCS 2009 ordinary field work lasted five weeks, at the end of which the response rate was
60.4%. For some sampled persons, 30 or more call attempts had then been recorded. This was
followed by a three week break during which characteristics of non-interviewed individuals
were examined, in order to prepare for the three week follow-up period, which concluded the
data collection. All individuals considered by the survey managers to be potential respondents
were included in the follow-up effort, which brought the response rate up to an ultimate 67.4%.
However, there was no separate strategy or revised procedure for the follow-up. It followed the
same routines as the ordinary field work. Hence, there were no attempts at responsive design such
as for example a follow-up focusing on underrepresented groups.

For purposes of illustration, we assume that a set of auxiliary variables has been designated for
use in the survey. Some or all of these x-variables may be used to monitor the data collection. One
possibility is to use all of them for monitoring, then to use them again for the calibration at the
estimation stage. Another possibility is to use only some of them for monitoring, and to use them
also, together with the rest, in calibration at the estimation stage. We examine these alternatives.
We wish to strike a balance between two objectives: (i) a well-balanced set of respondents when
data collection ends, and (ii) getting accurate estimates at the estimation stage.
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Many x-variables are potentially available and useful for LCS 2009. We consider here the follow-
ing selection of x-variables, with notation and definition:
Educ (for Education level) equaling 1 for a person with high education; 0 otherwise;
Owner (for Property ownership) equaling 1 for a person who owns his residence; 0 otherwise;
Origin (for Country of origin) equaling 1 for a person born in Sweden; 0 otherwise;
Phone (for Phone access), equaling 1 for a person with phone number accessible at the start of the
data collection; 0 otherwise;
Age (for Age group), coded by four zero/one variables according to the age brackets: -24, 25-64,
65-74, 75+;
Civil (for Civil status); equal to 1 for a married or widowed person; 0 otherwise;
Gender; equal to 1 for male, 0 otherwise.
All are dichotomous with the exception of Age which has four categories.

We illustrate the imbalance concept by comparing results for several different final response sets
r. The first of these, used as a reference, is the data collection as actually carried out in the LCS
2009. There were no interventions. The data collection progressed with an essentially unchanging
format, as described earlier in this section. The other 12 response sets are generated from the
actual LCS 2009 response set by "interventions after the fact," using three different monitoring
vectors xMV .

In this exercise, we chose five intervention points during the data collection: Attempts 3, 6 and
9 of the ordinary data collection, the end of the ordinary data collection, and attempt 3 of the
follow-up. At each of these points, P̂MV k is computed for all k ∈ s, where s is the LCS subsample
of size 8,220. In the threshold method, units with P̂MV k greater than the specified threshold are
identified and "left cold". That is, we pretend that data collection attempts have been stopped for
these units. Their y-values are not used to compute estimates. In the equal proportions method,
1/6 of the sample, those with the highest P̂MV k, is left cold at each point.

We consider three plans, depending on the monitoring vector for the data collection. In Plan 1,
Educ, Owner and Origin are variables selected for monitoring; the vector is

xMV 1 = (Educ×Owner×Origin) (7)

This crossing of three dichotomous variables gives eight mutually exclusive and exhaustive
groups; xMV 1 has dimension J = 23 = 8 and equally many possible values, xMV 1k= (γ1k, . . . ,γ8k)

′,
where γ jk = 1 if k belongs to group j and γ jk = 0 otherwise. For sake of argument we pretend
that Plan 1 reflects a professional judgment and desire to monitor the data collection through
precisely those eight groups, so that the remaining variables, Phone, Age, Civil and Gender, are
considered reserved for computing calibrated weights, together with those in the monitoring vector.

We consider two alternative plans. In Plan 2, the data collection is monitored by

xMV 2 = ((Educ×Owner×Origin)+Age) (8)
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Age has four classes and is coded as a three dimensional vector (with four possible values) to
make possible the matrix inversion in (6) and other places. The dimension is 8+3 = 11, and the
number of possible values xMV 2k (the number of recognized properties among the sample units) is
8×4 = 32.

In Plan 3, the monitoring vector for the data collection incorporates all the x-variables in the
supply,

xMV 3 = ((Educ×Owner×Origin)+Phone+Age+Civil +Gender) (9)

In this vector, Educ, Owner and Origin are crossed, while the variables Phone, Age, Civil and
Gender enter in a "side-by-side" manner, giving xMV 3 the dimension 23+1+3+1+1 = 14, with
8×2×4×2×2 = 256 possible values.

We consider 13 different response sets r: The actual LCS 2009 response and 12 generated ones.
Nine of these are obtained by combining the monitoring vectors xMV 1 ,xMV 2 and xMV 3, given
in (7), (8) and (9), with three different thresholds, 65%, 55% and 50%. For each of the nine
possibilities, we compute, at each intervention point and for all units k ∈ s, the propensities P̂MV k
given by (6) and those for which P̂MV k exceeds the threshold are left cold, pretending that data
collection attempts have been stopped for these units. This gives nine constructed response sets.
For each vector, the threshold progression from 65% to 50% pushes in a direction of reduced
variability in the final propensities P̂MV k; their variance S2

P̂MV s = IMB(r,xMV |s) is progressively
reduced.

We also used the equal proportions method to create three more response sets, with the same three
monitoring vectors, and with the same intervention points.

With its 256 recognized categories of sample units, the vector xMV 3 generates a smooth distribu-
tion, not far from normal in appearance, of the 8,220 computed values P̂MV k. To illustrate theory,
the plenitude of xMV 3 makes it the preferred choice among the three suggested vectors, but a
consideration for practice is that monitoring few categories is much easier, as in the case of only
eight categories recognized by xMV 1.

The interest lies now in comparing these 13 response sets r in regard to their balance properties,
as done with an ANIMB analysis in the next section.

10. Empirical evidence: Analysis of imbalance for alternative response sets

We illustrate the concepts total, partial and conditional imbalance introduced in Section 8 by
applying them to the 13 response sets r (Actual, and 12 generated) from the Swedish LCS 2009
described in the preceding section. The results are given in Table 1.

We choose to measure total imbalance with respect to the vector formed by all the x-variables:

xtot = ((Educ×Owner×Origin)+Phone+Age+Civil +Gender). (10)
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This vector with dimension 14 is identical to the monitoring vector xMV 3 in (9). We pretend
here that Phone, Age, Civil and Gender are variables intended primarily for calibrated weight
computation in the estimation. Therefore we let xb be the vector with dimension 1+4+1+1 = 7
composed of these variables,

xb = (Phone+Age+Civil +Gender). (11)

The remaining variables form the vector xa. For each of the 13 response sets, we compute and
compare the ANIMB components IMB(r,xtot |s) (the total imbalance), IMB(r,xb|s) (the marginal
imbalance of xb) and IMB(xa,r|s,xb) = IMB(r,xtot |s)− IMB(r,xb|s) (the conditional imbalance,
controlling for xb).

Certain patterns are predictable for the magnitude of the ANIMB components and we wish to see
if these are confirmed empirically. For one and the same monitoring vector, we expect to see the
imbalance IMB(r,xtot |s) to decrease with the threshold, because the data collection becomes more
stringent. Also, expanding the monitoring vector, as in the progression from (7) to (9), should be
accompanied by a decreasing imbalance, for one and the same threshold.

TABLE 1. Response rate, distance, and imbalance (total, marginal, conditional) for Actual LCS2009 response, and
3×4 = 12 derived response sets, four for each of three monitoring vectors.

Imbalance
Response set Response rate Distance Total Marginal Conditional

P distr|nr 100× IMBtot 100× IMBb 100× IMBa|b

Actual 67.4 0.623 1.881 1.258 0.622

MV1; TH65 63.3 0.499 1.338 1.086 0.252
MV1; TH55 56.6 0.423 1.080 1.028 0.051
MV1; TH50 52.5 0.407 1.034 0.961 0.072

MV1; eql 53.4 0.462 1.320 0.989 0.331

MV2; TH65 63.3 0.478 1.230 0.982 0.248
MV2; TH55 57.7 0.401 0.956 0.839 0.117
MV2; TH50 53.5 0.348 0.747 0.727 0.020

MV2; eql 54.5 0.362 0.808 0.757 0.051

MV3; TH65 63.3 0.456 1.122 0.857 0.265
MV3; TH55 56.9 0.328 0.648 0.547 0.100
MV3; TH50 53.3 0.262 0.426 0.392 0.034

MV3; eql 54.6 0.284 0.495 0.441 0.054

The marginal imbalance IMB(r,xb|s) is likely to change little as long as variables in xb are left
outside the monitoring vector (Plan 1), but when they are included (to some extent in Plan 2,
more completely in Plan 3), the value of IMB(r,xb|s) should react in a decreasing direction. The
patterns for the conditional imbalance IMB(xa,r|s,xb) = IMB(r,xtot |s)− IMB(r,xb|s) are less
predictable ahead of time.

Table 1 is arranged to show the effect of changes in the x-vector and changes in the threshold.
The notation is as follows: MV 1, MV 2 and MV 3 refer to the monitoring vectors, (7), (8) and (9).
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T H refers to the threshold, 65%, 55% or 50%; eql refers to the equal proportions method, and
IMBtot = IMB(r,xtot |s), IMBb = IMB(r,xb|s), IMBa|b = IMB(r,xtot |s)− IMB(r,xb|s). The table
generates the following comments.

– All of the 12 monitored response sets show lower, in most cases considerably lower, figures
than Actual response, on all accounts: distance and the three components of imbalance. The
reduction of the imbalance from 1.881 (Actual) to 0.426 (MV 3, T H50) is, in our experience
large, although not reduced to near-zero levels; this would not be expected in practice.

– The total imbalance IMBtot and the distance distr|nr develop in perfect regularity: For one
and the same MV , both drop in when the threshold decreases from 65% to 50%. For one and
the same threshold, both drop in expanding the monitoring vector from MV 1 to MV 3.

– The equal proportions method also gives improved (lower) distance and imbalance in the
progression from MV 1 to MV 3. The results for MV 2 and MV 3 are placed between those of
T H55 and T H50.

– The vector MV 1 is defined by rather few (eight) classes, each containing a fairly large
number of sample units. The threshold method calls for setting aside an entire class when its
response propensity meets the threshold. But in the equal proportions method, classes must
be divided; a randomly selected subset of a class was identified to meet the exact 1/6 called
for at each intervention point. This explains the comparatively high total imbalance, 1.32,
for MV 1; eql. With few classes, the equal proportions method should be used with care; for
an extensive vector such as MV 3, it can be used with confidence.

– The marginal imbalance is expected to remain comparatively high as long as the variables
in xb do not participate in the monitoring. In line with this, the marginal imbalance IMBb
is at its highest for Actual. To obtain lower levels for IMBb, theory leads us to expect that
the variables in xb, Phone, Age, Civil and Gender, should be active in the monitoring. This
starts to happen with MV 2 and is accentuated in MV 3. The expected decrease in marginal
imbalance is confirmed.

– The conditional imbalance IMBa|b is, also as expected, at its highest level for Actual. In the
other 12 cases, considerable reduction occurs. It is seen here that the feature that determines
IMBa|b is not so much the monitoring vector as rather the threshold value.

11. Study variables and their estimates

In the preceding sections, study variables (y-variables) do not enter into consideration. The AN-
IMB in Sections 9 and 10 is based entirely on auxiliary variables. But the ultimate goal for the
survey is accurate estimation, for all of the often numerous y-variables, and in particular for the
most important ones. We now look at the estimation stage, with an objective to estimate the
total of a typical y-variable, Y = ∑U yk, with as little nonresponse bias as possible. To study this
empirically, we need y-data for the full sample s. This is possible if we designate one or more
register variables to play the role of a real y-variable. They are then "pseudo y-variables" with
values yk available for all k ∈ s.

Under full response, unbiasedness would be achieved by the Horvitz-Thompson estimator

ŶFUL = ∑s dkyk. (12)
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Under nonresponse, unbiasedness is not realized. The value yk is recorded for k ∈ r, missing
for k ∈ s− r. The simplest estimator, often considerably biased, is by straight expansion of the
response mean,

ŶEXP = (∑s dk)
∑r dkyk

∑r dk
= (∑s dk) ȳr. (13)

Reduced bias is usually realized by the calibration estimator

ŶCAL = ∑r dkmkyk (14)

where the weight factors are mk = (∑s dkxk)
′(∑r dkxkx′k)−1xk. They have the calibration property

∑r dkmkxk = ∑s dkxk. The right hand side is unbiased for the population total ∑U xk; consequently,
we can count on ŶCAL to be less biased than ŶEXP when x is strongly related to y. The use of the
calibrated weights dkmk reduces the nonresponse bias, without eliminating it completely, despite
any balancing that may have taken place at the data collection stage. The choice of calibration vec-
tor x is important. Normally it should include all x-variables deemed effective for bias reduction.
In the empirical work in Section 13 we let x include the full supply of x-variables (see Section 9),
so that x = xtot given by (10).

In the text that follows, the estimators are simply referred to as FUL, EXP and CAL.

The deviations of EXP and CAL from the unbiased estimate are measured by ŶEXP− ŶFUL and
ŶCAL− ŶFUL. We decompose the first of these as

ŶEXP− ŶFUL = (ŶEXP− ŶCAL)+(ŶCAL− ŶFUL) (15)

or, in words,

Deviation of EXP = Adjustment of EXP + Deviation of CAL.

Here the term ŶEXP− ŶCAL is the computable nonresponse adjustment that we apply to the simple
estimator ŶEXP to arrive at the improved (less biased) estimator ŶCAL. The other two terms in
(15) would be unknown in a real survey, but we can compute them in experiments with pseudo
y-variables.

12. A perspective through regression analysis

An alternative view of equation (15) is obtained by a regression perspective. As is well known,
if the x-vector well explains the y-variable, the nonresponse bias will be low. The regression
relationship is a key element in understanding the bias. In the extreme case of perfect explanation,
where yk = βββ

′xk holds exactly for all k and some vector βββ , the bias is completely eliminated:
ŶCAL = ŶFUL. In practice the explanation is partial, at best. Two different regressions need to be
considered, the one based on the response and the one based on the full sample.
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We have the y-means ȳr = ∑r dkyk/∑r dk for the response and ȳs = ∑s dkyk/∑s dk for the full
sample, and the linear regression coefficient vectors br for the response and bs for the full sample,
where

br = (∑r dkxkx′k)
−1

(∑r dkxkyk) ; bs = (∑s dkxkx′k)
−1

(∑s dkxkyk). (16)

Of these, ȳr and br are computable from the response; ȳs and bs are not, but are important for
the theoretical context. The means ȳr and ȳs may differ considerably because of a non-random
response. The same holds for the regression vectors br and bs. As is well-known in regression
theory, nonrandom selection of cases can severely bias the regression. Heckman (1979) is an
early reference; many articles followed in the setting of regression theory. Here, in the setting of
nonresponse theory, the difference between br and bs is also a key factor, because r is generally
not a random selection from s.

Equation (15) when divided by N̂ = ∑s dk reads

ȳr− ȳs = (x̄r− x̄s)
′br +(br−bs)

′x̄s (17)

The properties x̄′rbr = ȳr and x̄′sbs = ȳs, needed in establishing (17), follow from the requirement
µµµ ′xk = 1 for all k. We show the first of them; the second is analogous:

x̄′rbr = (∑r dk)
−1(∑r dk(µµµ

′xk)x′k)(∑r dkxkx′k)
−1

∑r dkxkyk

= (∑r dk)
−1

µµµ
′
∑r dkxkyk = ȳr

Equation (17) is important because it emphasizes two critical differences, x̄r− x̄s and br−bs. The
first term on the right hand side of (17), (x̄r− x̄s)

′br, is zero under the perfect balance x̄r = x̄s.
The second term, (br−bs)

′x̄s, is zero if the regression is consistent in the sense br = bs. For data
encountered in practice, both terms are usually non-zero.

Equation (17) shows the nearness of ȳr to ȳs (or of ŶEXP to ŶFUL) as a function of two considera-
tions: How close x̄r is to x̄s (the balance on the x-vector), and how close br is to bs (the regression
bias aspect).

Another useful representation follows from (17) by substituting br = bs +(br−bs) in the first
term on the right hand side,

ȳr− ȳs = (x̄r− x̄s)
′bs +(br−bs)

′x̄s +(x̄r− x̄s)
′(br−bs). (18)

The last term, (x̄r− x̄s)
′(br−bs), is a measure of interaction between x̄r and br. Without being

negligible, the interaction term is usually numerically less important compared with the other two
terms in on the right hand side of (18). We shall further examine the terms of (17) and (18).

As Sections 10 and 11 have shown, we can reduce the imbalance with respect to x by a monitored
data collection based on response propensity. This brings x̄r closer to x̄s, and the adjustment
term (x̄r− x̄s)

′br in (17) is likely to be reduced as a result. If at the same time the other term,
(br−bs)

′x̄s, is unchanged, the difference ȳr− ȳs and the deviation ŶEXP− ŶFUL will decrease, as
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a result of reduced imbalance.

Although a closeness of ŶEXP to ŶFUL is desirable, more important in producing survey estimates
is the closeness of ŶCAL to ŶFUL, because in the presence of strong auxiliary information, the
calibration adjusted ŶCAL is the one that would be used, not ŶEXP.

The question arises: Does reducing the imbalance - relatively easy to accomplish - also bring
about a reduction of the deviation ŶCAL−ŶFUL = N̂ (br−bs)

′x̄s? In a comparison of two different
response sets, does the one with the lower imbalance give lower deviation ŶCAL− ŶFUL?

We present a heuristic argument suggesting that this is the case. When the response r is generated
with a monitoring vector xMV , as in the methods in section 7, then xMV is in general different from
the vector x used for the calibration estimator (14), and in equations (17) and (18). Typically, x
contains at least as many x-variables as xMV .

Consider the term (br−bs)
′x̄s = x′sbr− ȳs, where r is a typical final response set, realized with or

without interventions, and described by the indicator Irk = 1 for k ∈ r and Irk = 0 otherwise, with
mean equal to the response rate, ∑s dkIrk/∑s dk = ∑r dk/∑s dk = P. In line with (16), we have

x′sbr = x̄′s(∑s dkIrkxkx′k)
−1

(∑s dkIrkxkyk).

This can be seen as a realization of the conceptual (not computable) scalar quantity

x̄′sbsθ = x̄′s(∑s dkθ kxkx′k)
−1

(∑s dkθ kxkyk). (19)

Here the conceptual θ k is the intensity with which unit k, described by xk, is present in s, and Irk
is a manifestation of that intensity.

If the intensities θ k are all equal, with variance zero, then (19) equals x̄′s(∑s dkxkx′k)−1 (∑s dkxkyk)=
x̄′sbs = ȳs, and (bsθ −bs)

′x̄s = 0. The variance of the intensities is the key to understanding whether
or not(br−bs)

′x̄s is small.

The realized response r, coded by Irk, embodies, for unit k described by the vector value xk, an
empirical intensity measured by the least squares prediction for Irk

θ̂k = (∑s dkIrkxk)
′(∑s dkxkx′k)

−1xk

with mean equal to the response rate, ∑s dkθ̂k/∑s dk = ∑r dk/∑s dk = P, and variance equal to the
imbalance of r with respect to x,

S2
θ̂s = ∑s dk(θ̂k−P)2/∑s dk = IMB(r,x|s).

(These properties are consequences of the requirement µµµ ′xMV k = 1 for all k, used several
times earlier in this article.) Replacing the unknown θk in (19) by their estimates θ̂k, we get
bsθ̂

= (∑s dkθ̂kxkx′k)
−1

∑s dkθ̂kxkyk as an estimate of bsθ . The variance of the empirical inten-
sities θ̂k over s (which is the imbalance of r) is a key element. If that imbalance is zero, then
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x̄′sbsθ̂
= x̄′sbs, and (bsθ̂

−bs)
′x̄s = 0, and we expect that (br−bs)

′x̄s ≈ 0.

We do not - by interventions or any other methods - reduce the imbalance to zero, neither in
our experiments nor in actual practice. But a reduction of the imbalance is accomplished, by
monitoring the data collection. We expect thereby a certain reduction of (br − bs)

′x̄s, and a
reduction of the deviation ŶCAL− ŶFUL, not likely to zero, but to a degree. The effect may be
modest, since several factors intervene, including the specific character of the y-variable. A few
influential yk-values may have considerable effect in one or the other direction.

13. Application to pseudo y-variables

We return to the Swedish LCS 2009 considered in sections 9 and 10. We illustrate the theoretical
Section 12 by a use of "pseudo y-variables". In methodological study, it is useful to designate
one or more register variables to play the role of y-variables. They are then pseudo y-variables,
with values yk known for k ∈ s. (They cannot serve as auxiliary variables (x-variables), thus
restricting somewhat the supply of such variables.) This allows us to see how the more or less
biased estimators under nonresponse, ŶEXP and ŶCAL given in (13) and (14), behave relative to the
unbiased estimate under full response, ŶFUL given in (12). For a pseudo y-variable, all terms in
(15), (17) and (18) are computable, and we can compare their relative sizes.

Three register variables available in LCS 2009 are used here as pseudo y-variables, with yk
recorded for k ∈ s: Benefits (a categorical variable equal to 1 for a person receiving sickness or
other social benefits; 0 otherwise), Income (a continuous variable, including employment as well
as retirement income), and Employed (a categorical variable equaling 1 for an employed person;
0 otherwise). We chose those because they are variables with quite different character, and they
are similar to real study variables in the Swedish LCS.

We compute the unbiased full sample (Horvitz-Thompson) estimate ŶFUL for the three pseudo
y-variables, as well as the nonresponse estimators ŶEXP and ŶCAL. In Table 2, the terms in equation
(15) are measured in more readily interpretable relative deviations (in per cent):

RDFEXP = RADJEXP +RDFCAL (20)

where RDFEXP = 100× (ŶEXP− ŶFUL)/ŶFUL; RDFCAL = 100× (ŶCAL− ŶFUL)/ŶFUL and where
RADJEXP = 100× (ŶEXP− ŶCAL)/ŶFUL. The table shows the relative adjustment RADJEXP and
the relative deviation RDFCAL for the CAL estimator; RDFEXP is the sum of these two terms. The
x-vector for computing the weight factors mk in (14) is x = xtot given by (10).

The 13 response sets in Table 2 are the same as those in Table 1. The first is the actual LCS
2009 response, resulting from the original data collection plan, without any interventions or
attempts at balancing. The 12 generated response are those derived in Section 10, with the same
six intervention points. In Table 2, the notation MV 1, MV 2 and MV 3 refers to the monitoring
vectors, (7), (8) and (9), and is followed by the threshold percentage, 65, 55 or 50, and, as the
fourth alternative for each vector, eql for the equal proportions method.
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TABLE 2. RADJEXP and RDFCAL at the end of data collection, for three pseudo y-variables (columns), and 13 final
response sets r; Actual LCS2009 data collection (row 1), and 12 generated (rows 2 to 13). The notation MV identifies
the monitoring vector, 1, 2 or 3, and is followed by the threshold value, or by eql for equal proportions method.

Benefits Income Employment

Response set r 100× IMB RADJEXP RDFCAL RADJEXP RDFCAL RADJEXP RDFCAL

Actual 1.881 -4.85 -4.56 3.45 3.30 1.68 3.08

MV1; 65 1.338 -4.78 -2.26 1.23 3.17 0.30 3.05
MV1; 55 1.080 -4.89 -0.95 0.53 2.76 -0.90 2.96
MV1; 50 1.034 -6.78 0.73 0.58 2.10 -1.58 2.51
MV1; eql 1.320 -5.39 -0.15 -3.00 2.28 -2.42 2.95

MV2; 65 1.230 -3.63 -4.12 1.45 3.28 1.19 2.93
MV2; 55 0.956 -3.44 -2.67 1.79 3.19 1.25 2.79
MV2; 50 0.747 -2.17 -1.84 1.50 2.84 1.49 2.82
MV2; eql 0.808 -1.19 -2.44 0.78 2.63 2.30 2.40

MV3; 65 1.122 -3.64 -3.75 2.20 3.35 1.46 3.00
MV3; 55 0.648 -3.63 -1.41 1.61 2.75 0.79 2.94
MV3; 50 0.426 -3.07 -0.95 1.20 2.32 0.42 2.61
MV3; eql 0.495 -0.97 -1.91 1.41 2.70 2.58 2.83

For each of the three vectors, Table 1 showed that a clear trend towards lower imbalance occurs
when the threshold goes from 65% via 55% to 50%. Still, the lowest imbalance, 0.426 for the
case MV 3; 50, is far from the ideal (but in practice unattainable) value of zero. The interest now
lies in observing the effect of lower imbalance on RADJEXP and RDFCAL. (When commenting on
the size of RADJEXP and RDFCAL, which can have either sign, we refer to their absolute values.
For example, "decrease" is to be interpreted as "decrease in absolute value.")

In examining Table 2 one should keep in mind that the entries depend on the specific character
of each y-variable. The magnitude of RDFCAL and RDFEXP can shift considerably from one
y-variable to another. They are usually, but not necessarily, of the same sign. Nevertheless, there
are clearly distinct patterns. Theory leads us to expect that both terms on the right hand side of
(20), RADJEXP and RDFCAL, should decrease as a result of reduced imbalance. It should also be
remembered that in a real survey, the adjustment is the only of the three terms in (15) that can be
computed; in our exploration here, computation of the three terms is made possible by the use of
pseudo y-variables.

An examination of Table 2 prompts the following comments:
– First, the importance of adjustment by calibration, leaving aside the question of monitoring,

is clearly demonstrated. For Actual, a large portion of RDFEXP = RADJEXP +RDFCAL

is "adjusted away" by calibration; RDFCAL is less than 50% of RDFEXP for Benefits and
Income. Adjustment by auxiliary information, here as in practice, can lead to no more than a
partial fulfilment of the ideal "elimination of bias."

– Compared with Actual, all 12 generated response sets have lower imbalance, and, as an
expected consequence, lower, even much lower, values in most cases for both RADJEXP and
RDFCAL. That their magnitude differs considerably between the three y-variables is in order;
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they reflect the specific character of each y-variable.
– The most consistent pattern for RADJEXP and RDFCAL occurs with the monitoring vector

MV 3, aided by its 256 different properties for the sample units and a smooth distribution of
the propensities used to generate the response. The imbalance decreases when the threshold
moves from 65% via 55% to 50% and is accompanied by a decrease in both RADJEXP and
RDFCAL.

– For the vectors MV 1 and MV 2, there is also a definite decreasing trend for RADJEXP and
RDFCAL as the threshold goes from 65% to 50%, although the pattern is not consistent. The
results for MV 1 are sensitive to the modest number (eight) of groups coded by that vector.

– The equal proportions method, labelled eql, works well with the vector MV 3 for Benefits and
Income, but is less satisfactory for Employment. But for MV 1, where random subdivision of
the rather small number of groups is a disturbing factor (see the fourth comment on Table 1),
both imbalance and RADJEXP are at comparatively high levels.

14. Discussion

In the first part of this article (Sections 3 to 10), we developed the concept of imbalance of the
response, and measured empirically its components, total, partial and conditional imbalance, in
the Swedish Living Conditions Survey. As part of that examination, we compared 13 response
sets, one actually observed, and twelve that were generated from the actual response via the
concept of response propensity. The fact that these represent different degrees of imbalance in the
response allows us to compare and study how selected auxiliary variables can contribute to balance.

That the imbalance should be reduced to zero (or that the auxiliary vector should completely
explain the response) is a faint hope, never realized in survey practice. Equally hypothetical is
that the auxiliary vector will completely explain the survey variable.

Still, it is a fact that adjusting the simple estimate by calibrated weighting reduces the bias, up
to a degree. This is well known and confirmed here. But in addition, we have presented some
evidence (Sections 11 to 13) suggesting that the bias still remaining in the estimates after cali-
brated weighting adjustment can be further reduced, namely, if the underlying set of respondents
was well balanced. That is, we have reason to believe that that efforts to balance the response
during data collection - something which is not always simple to administer - will pay off at the
estimation stage.

We have in this way, indirectly at least, asked: How do we in the most productive manner put the
auxiliary variables to work in a survey; which ones should be active in the data collection, which
ones at the estimation stage? There is no complete answer in this article to this broader question;
further work is required.
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