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Lusin type theorems for Radon measures

Andrea Marchese (�)

Abstract – We add to the literature the following observation. If � is a singular measure

on R
n which assigns measure zero to every porous set and f WRn ! R is a Lipschitz

function which is non-di�erentiable �-a.e., then for every C 1 function gWRn ! R it

holds

�¹x 2 R
nWf .x/ D g.x/º D 0:

In other words the Lusin type approximation property of Lipschitz functions with C 1

functions does not hold with respect to a general Radon measure.
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1. Introduction

It is well known (see Theorem 3.1.16 of [7]) that given any Lipschitz function

f WRn ! R and " > 0 there exists a C 1 function gWRn ! R such that

L
n¹x 2 R

nW f .x/ ¤ g.x/º < ";

where L
n denotes the Lebesgue measure on R

n. In this note we prove that in

general it is not possible to replace the Lebesgue measure with a Radon measure

�. Indeed the following theorem shows that such approximation is not available

whenever � is a singular measure on R
n which assigns measure zero to every

porous set (see §2 for the de�nition of porosity) and f WRn ! R is a Lipschitz

function which is non-di�erentiable �-almost everywhere.
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Theorem 1.1. Let � be a singular measure on R
n which assigns measure

zero to every porous set. Let f WRn ! R be a Lipschitz function which is non-

di�erentiable �-a.e. Then for every C 1 function g, it holds

�.¹x 2 R
nW f .x/ D g.x/º/ D 0:

The validity of Lusin type approximation properties in metric measure spaces

has recently attracted some attention. For example, in [8], [14] and [9] the validity

of Lusin type theorems for horizontal curves in Carnot groups is studied and [4]

extends a Lusin type theorem for gradients, originally established in [1], to a

wide class of metric measure spaces which admit a di�erentiability structure. The

forthcoming paper [10], provides a deeper investigation on the latter problem in

the special metric measure space given by the Euclidean space R
n endowed with

an arbitrary Radon measure �, analyzing the possibility to prescribe not only

the di�erential, but also some non-linear blowups at many points. The class of

the “admissible” blowups is determined in terms of certain geometric properties

of the measure �, namely in terms of its decomposability bundle, introduced

in [2]. Finally, let us mention the paper [13], where a result in the spirit of [1]

was proved for maps from an in�nite dimensional locally convex space, endowed

with a Gaussian measure, to its Cameron–Martin space.

This paper is organized as follows. In §2 we recall two facts which are nec-

essary to guarantee that the content of Theorem 1.1 is non-empty: �rstly the exis-

tence of a singular measure � on R
n which assigns measure zero to every porous

set (Proposition 2.1) and secondly the existence of a Lipschitz function f WR ! R

which is non-di�erentiable �-almost everywhere (Proposition 2.4). These results

are already present in the literature. Nevertheless, for the reader’s convenience,

we present here slightly simpli�ed versions of the original proofs. In §3 we prove

Theorem 1.1. In §4 we brie�y discuss the possibility to extend and improve the

main result of [1]: we observe that, in the one-dimensional case, the result is triv-

ially valid with respect to any Radon measure and we show that, except for atomic

measures, it is not possible to �nd any Lipschitz function having a unique non-

di�erentiable blowup in a set of positive measure.

2. Notations and Prerequisites

2.1 – Notations about sets and measures

All the sets and functions considered in this note are tacitly assumed to be Borel

measurable and measures are de�ned on the Borel �-algebra. Moreover measures
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are positive, locally �nite and inner regular (i.e. the measure of a set can be

approximated from within by compact subsets). As usual, we say that a measure

� is absolutely continuous with respect to a measure � (and we write � � �) if

�.E/ D 0 for every Borel setE such that �.E/ D 0. We say that � is supported on

a setE if the complement set of E has measure zero and we say that � is singular

with respect to � if there exists a Borel setE such that �.E/ D 0 and� is supported

on E. When words like “nullset” and “singular measure” are used without further

speci�cation, they implicitly refer to the Lebesgue measure. Given a measure �

and a locally integrable function f we denote by f� the measure satisfying

f�.A/ WD
Z

A

f d�;

for every Borel set A. In particular, we write � A to indicate the measure f�,

where f D 1A is the characteristic function of a Borel set A assuming values 0

and 1.

2.2 – Porosity

We say that a setE � R
n is porous at a point x if there exist a constant C.x/ > 0,

a positive sequence rk ! 0 and a sequence of points yk 2 B.x; rk/ such that

(1) B.yk; C.x/rk/ � B.x; rk/ and E \ B.yk; C.x/rk/ D ;;

where we denoted by B.y; r/ the open ball centered at y with radius r . We say

that E is porous if it is porous at every point x 2 E.

2.3 – Existence of a singular measure which assigns measure zero to porous sets

In order to guarantee that Theorem 1.1 actually applies to a non-trivial class of

pairs .�; f /we need to prove �rst of all the existence of a singular measure on R
n

which assigns measure zero to every porous set. We prove the existence of such

measure for n D 1. A proof of this fact can be found in [15]. In order to keep this

note self-contained, we present here a slightly simpler proof. More precisely we

exhibit a singular measure on R whose blowups assign positive measure to every

open set. We easily get a measure on R
n with the same property, by taking the

product of such measure on R with the Lebesgue measure L
n�1 on R

n�1. The

fact that this product measure charges measure zero to every porous subset of Rn

is a simple consequence of Lemma 2.3 below.

Proposition 2.1. There exists a non-zero singular measure � on R
n such that

�.P / D 0 whenever P is porous.
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The construction uses the idea of Riesz product measures. On Œ0; 1�we call i-th

generation of dyadic intervals, i D 0; 1; 2; : : :, all the intervals of the form

I D Œa2�i ; .aC 1/2�i �; for a D 0; : : : ; 2i � 1:

We will make use of the following lemma, which is a well-known fact. Being

unable to �nd a precise reference, we prefer to include its proof. Remember that a

point x is said to be a Lebesgue continuity point for a function f with respect to

the measure � if there holds

1

�.B.x; r//

Z

B.x;r/

jf .y/ � f .x/j d� �! 0; as r ! 0:

Lemma 2.2 (Martingale Theorem). Let .�i /i2N be a sequence of probability

measures on Œ0; 1�. Assume that �i D fiL
1, where fi is constant on the dyadic

intervals of the i-th generation. Assume moreover that �j .I / D �i .I / for every

dyadic interval I of the i-th generation, for every j > i . Then �i weakly-�

converges to a probability measure �. Moreover the Radon–Nikodym derivative

f of the absolutely continuous part of � satis�es

f D lim
i!1

fi ; L
1-a.e.

Proof. By the compactness theorem for measures (see Proposition 2.5 of [5]),

there is a subsequence .�ih/h2N weakly-� converging to a measure �. Since the

dyadic intervals generate the Borel �-algebra, the hypotheses of the theorem

guarantee that actually the whole sequence .�i /i2N converges to �.

To prove the second part of the theorem, denote �s the singular part of � and

let S � Œ0; 1� be a nullset such that �s.Œ0; 1� n S/ D 0. Fix a point x 2 Œ0; 1� n S
with the following properties:

� x is a point of Lebesgue continuity for f with respect to L
1;

� x is a continuity point for every fi ;

� 2i�s.Ii / ! 0 as i ! 1,

where we denoted by Ii the dyadic interval of the i-th generation containing x (the

second property guarantees that such interval is unique). Notice that these three

properties are satis�ed by L
1-almost every point in Œ0; 1� and in particular the third

property follows from the Besicovitch Di�erentiation Theorem (see Theorem 2.10

of [5]). Observe that ¹Iiºi2N is a family of sets of bounded eccentricity, i.e. there

exists C > 0 such that each Ii is contained in a ball B , centered at x, with
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L
1.Ii / � CL

1.B/. Therefore the Lebesgue Theorem (see Theorem 7.10 in [12])

yields:

fi .x/ D �i .Ii /

L1.Ii /
D �.Ii /

L1.Ii /
D

R

Ii
f d L

1

L1.Ii /
C �s.Ii /

L1.Ii /
�! f .x/; as i ! 1: �

The proof of Proposition 2.1 uses a blowup argument. Given a Radon measure

� on R and a point x we de�ne the measure �x;r by

�x;r .A/ WD �.x C rA/; for every Borel set A:

We denote by Tan.�; x/ the set of the blowups of � at x, i.e. all the possible weak-�

limits of the form

lim
ri &0

�i

where (we are interested only in the case in which the quotient is de�ned)

(2) �i WD �x;ri
B.0; 1/

�.B.x; ri//
:

The following lemma gives a su�cient condition for a measure to assign

measure zero to every porous set.

Lemma 2.3. Let � be a locally �nite measure on R
n, such that for �-a.e. x

and for every � 2 Tan.�; x/ ¤ ;, it holds �.A/ > 0 for every open set A. Then

�.P / D 0 for every porous set P � R.

Proof. We assume by contradiction that � satis�es the hypotheses of the

lemma but there exists a porous set P with �.P / > 0. It is a general fact

about tangent measures (see Remark 3.13 of [5]) that if E is a Borel set, then

Tan.� E; x/ D Tan.�; x/ for �-a.e x 2 E. Then for �-a.e. x 2 P , every blowup �

of � P at x is an element of Tan.�; x/. In particular, by hypothesis, �.B/ > 0 for

every open ball B � B.0; 1/. Instead we show that, for every x 2 P , it is possible

to �nd a blowup � of � P at the point x and a non-trivial ball B � B.0; 1/ such

that �.B/ D 0.

Fix x 2 P and let C WD C.x/, .rk/k2N and .yk/k2N as in (1). Possibly passing

to a subsequence, we may assume that .yk � x/=rk converges to a point y in the

closure of B.0; 1� C/. This implies that, for every subsequence of .rk/k2N, such

that the corresponding rescaled measures (de�ned in (2)) converge weakly-� to a

measure � 2 Tan.� P; x/, it holds �.B.y; C=2// D 0. �

Proof of Proposition 2.1. As we noticed in the discussion before Proposi-

tion 2.1, it is su�cient to prove the proposition for n D 1.
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Consider the 1-periodic function 'WR ! R which agrees with 2�Œ0;1=2� � 1

on Œ0; 1� and consider a non-increasing sequence of positive numbers ai , i D
0; 1; 2; : : : ; such that ai < 1; ai & 0 and

P

i a
2
i D C1. Further hypotheses

on .ai /i2N will be speci�ed later. De�ne on Œ0; 1� the functions

'i .x/ D ai'.2
ix/; ˆN D

N
X

iD0

'i ;  i D 1C 'i ; ‰N D
N
Y

iD0

 i :

Consider now the measures�N D ‰N L
1. By the Martingale Theorem there exists

a measure � such that�N

�
* � asN ! 1 and moreover‰N ! d�abs

dx
(the Radon–

Nikodym derivative of the absolutely continuous part of �) a.e. We will prove that

� is a singular measure and, for a suitable choice of .ai /, it satis�es �.P / D 0 for

every porous set P .

� is singular. To prove that � is singular, according to Lemma 2.2 it is

su�cient to prove that lim infN ‰N D 0;L1-a.e. Notice now that for jt j < 1

there holds

log.1C t / � t � t2

8
;

hence we have

log.‰N / D
N

X

iD0

log.1C 'i / �
N

X

iD0

�

'i �
'2

i

8

�

D ˆN �
N

X

iD0

a2
i

8
:

Since the random variable ˆN has expected value E.ˆN / D 0 and variance

�2.ˆN / D
PN

iD0 a
2
i , then Chebyshev inequality (see 5.10.7 of [3]) gives

L
1
�°

x 2 Œ0; 1�WˆN .x/ >

N
X

iD0

a2
i

16

±�

� 162

PN
iD0 a

2
i

;

and the right-hand side tends to zero asN ! 1 because
P

a2
i D C1. Therefore

we have

lim inf
N

‰N D exp
�

lim inf
N

�

ˆN �
PN

iD0 a
2
i

8

��

D 0; L
1-a.e:

�.P / D 0 whenever P is a porous set. Now we make the choice a0 D
a1 D 1=

p
2 and for i > 1 ai WD i�1=2. We want to show that for �-a.e. point

x 2 .0; 1/, every blowup of � at x gives positive measure to every non-trivial

interval J � .�1; 1/. By Lemma 2.3, this guarantees that every porous set is

�-null.
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Consider a point x 2 .0; 1/, a measure � 2 Tan.�; x/ and a sequence rj & 0

such that � D limj �j , where �j is de�ned according to (2). We may further

assume, possibly passing to a subsequence, that

(3) rj � min¹2�j �2; dist.x; B.0; 1/c/º:

For every j 2 N, there exist i D i.j /, and a dyadic interval Ii .x/, of the i-th

generation, containing x, such that it also contains either x C rj or x � rj , but

no interval in the next generation has the same property. Note that Ii .x/ cannot

contain both x C rj and x � rj . In particular we have

rj � jIi .x/j � 4rj ;

hence, by (3), it holds i.j / � j . Denote by I 0
i .x/ the adjacent dyadic interval

of the same generation as Ii .x/, that together with Ii .x/ covers .x � rj ; x C rj /.

We claim that, eventually in j , the ratio

cj .x/ D �i�1.Ii .x//

�i�1.I
0
i .x//

satis�es

(4) e�8 � cj .x/ � e8; for �-a.e., x 2 .0; 1/:

This would be su�cient to prove that �.J / > 0 for every non-trivial closed interval

J � .�1; 1/. Indeed we have

(5) �.J / � lim sup
j

�j .J / � lim sup
j

�.I /

�.Ii .x/ [ I 0
i .x//

;

where I D I.j / is the largest dyadic interval contained in xCrjJ . Note that I can

be obtained, either from Ii or from I 0
i , by a number of subsequent subdivisions

that depends only on J . Hence the fact that �.I / D �m.I / for everym su�ciently

large and the bound (4) imply that the ratio in (5) is bounded from below by a

positive constant.

To prove the claim (4), �x x 2 .0; 1/ and j and let .�k.x//k2N be the unique

sequence made of 0’s and 1’s such that

(6) min¹Ii .x/º D
i

X

kD0

2�k�k.x/

(see Figure 1), and analogously de�ne .� 0
k
.x//i

kD1
replacing Ii with I 0

i in (6).
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Figure 1. Values of the function �k.x/, for k D 1; 2.

Obviously we have

max¹cj .x/; cj .x/�1º �
i

Y

kDk0C1

1C ak

1� ak

;

where k0 is the last index smaller than i D i.j / such that �k0
.x/ D � 0

k0
.x/.

Notice that if k0 < i � 1 and I 0
i .x/ is the left neighborhood of Ii .x/, we have

�k0C1.x/ D 1 and �k.x/ D 0 for every k D k0 C 2; : : : ; i ; vice-versa if I 0
i .x/ is

the right neighborhood of Ii .x/, we have �k0C1.x/ D 0 and �k.x/ D 1 for every

k D k0 C 2; : : : ; i .

For ` D 0; 1, and for j � 4 denote

E`
j D ¹x 2 .0; 1/W �k.x/ D `; for every k 2 Œi � i1=2 C 2; i �º:

Observe that, for j su�ciently large, the set of points x such that cj .x/ 62 Œe�8; e8�

is contained in E0
j [ E1

j . Indeed assume by contradiction that x 62 E0
j [ E1

j , but

either cj .x/ > e
8 or cj .x/ < e

�8. In both cases we have

(7)

i
Y

kDk0C1

1C ak

1� ak

> e8:

Since log.1C t / < t , for t > 0, then we have, for k0 � 3

i
Y

kDk0C1

1C k�1=2

1� k�1=2
D exp

�

log
�

i
Y

kDk0C1

1C k�1=2

1 � k�1=2

��

� exp
�

4

i
X

kDk0C1

k�1=2
�

:

But it is easy to see that

(8) 4

i
X

kDk0C1

k�1=2 � 8;

whenever k0 � i � i1=2 � 2, hence, for j su�ciently large, (7) implies that

x 2 E0
j [E1

j .
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Eventually we compute, for i � 4,

�.E`
j / �

i
Y

kDi�i1=2C2

1C k�1=2

2

� 2�i1=2C2

i
Y

kDi�i1=2C1

.1C k�1=2/

� 2�i1=2C2 exp
�

i
X

kDi�i1=2C1

ln.1C k�1=2/
�

� e22�i1=2C2;

where in the last inequality we used (8) and the fact that log.1C t / < t . Therefore

�
�

1
\

hD4

1
[

j Dh

.E0
j [ E1

j /
�

D 0

and since, by the observation above, this set contains the set of points x such that

cj .x/ 62 Œe�8; e8� frequently, the claim (4) is proved. �

2.4 – Existence of a Lipschitz function which is non di�erentiable a.e. with re-

spect to a singular measure

A function f WRn ! R is called L-Lipschitz (L > 0) if

jf .y/ � f .x/j � Ljy � xj; for every x; y 2 R
n:

We conclude this section of preliminary results proving that, given a singular

measure � on R, there exists a 1-Lipschitz function f WR ! R which is non-

di�erentiable at �-a.e. point. The original proof of a stronger statement is con-

tained in [16]. The proof we present uses the Baire Theorem (see Theorem 2.2

of [11]).

Proposition 2.4. Given a singular measure � on R, there exists a 1-Lipschitz

function f WR ! R which is non-di�erentiable at �-a.e. point.

Proof. Throughout the proof we will denote by X the complete metric space

of real valued 1-Lipschitz functions on the real line, endowed with the supremum

distance. We will actually prove a stronger statement: namely that the family of

1-Lipschitz functions f WR ! R such that f is non-di�erentiable at �-a.e. point.
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is residual (i.e. it contains the intersection of countably many open dense sets) and

in particular, by the Baire Theorem, it is dense in X .

Fix any compact nullset E and de�ne inductively an in�nitesimal sequence of

positive numbers ."i/i2N and a sequence of open sets .Ei /i2N, with the following

properties:

� E � EiC1 � Ei ;

� Ei is a �nite union of disjoint open intervals;

� L
1.Ei / � "i I

� "iC1 � ˛i"i , where

˛i WD min¹L1.I /W I is a connected component of Ei º:

De�ne the following subsets ofX (we will write c.c. for “connected component”):

Ui D ¹g 2 X W g.b/ � g.a/ > .b � a/ � "iC1; whenever .a; b/ is a c.c. of Ei º;

Vi D ¹g 2 X W g.b/ � g.a/ < "iC1 � .b � a/; whenever .a; b/ is a c.c. of Eiº;
Aj D

[

i�j

Ui ; Bj D
[

i�j

Vi :

Obviously Ui and Vi are open sets for every i , and therefore Aj and Bj are

also open, for every j . Moreover, Ui and Vi are 2"i -nets in X , by which we mean

that for every element � 2 X there is an element �i 2 Ui (respectively Vi ) such

that k� � �ik1 � 2"i . To prove this fact, consider for every function � 2 X the

function

�i .x/ D �

�

x �
Z x

�1

�Ei
.t / d t

�

C
Z x

�1

�Ei
.t / d t;

which has the following properties: �0
i .x/ D �0.x�

R x

�1 �Ei
.t / d t / for a.e. x 62 Ei

and �0
i .x/ D 1 if x 2 Ei . This is clearly an element of Ui and k� � �ik1 � 2"i .

The proof that Vi is a 2"i -net is analogous.

As a consequence, Aj and Bj are dense for every j . Finally,

A D
�

1
\

j D1

Aj

�

\
�

1
\

j D1

Bj

�

is a residual set in X (in particular it is dense).

Next we prove that every function f 2 A is not di�erentiable at any point of

E. More precisely, we claim that

f 0
C.x/ WD lim sup

jhj&0

f .x C h/ � f .x/
h

D 1
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and

f 0
�.x/ WD lim inf

jhj&0

f .x C h/ � f .x/
h

D �1

for every x 2 E. Fix " > 0 and take i 2 N such that 3"i < ", and f 2 Ui . Let

I D .a; b/ be the connected component of Ei containing x. Take a point y 2 I

such that

dist.x; y/ � L
1.I /

3
:

Let I 0 be the open interval with end points x and y. Since on .a; b/we have f 0 � 1

a.e. and f .b/ � f .a/ � b � a � "iC1, then we also have
Z

I 0

f 0.t / d t � jx � yj � "iC1:

Therefore we conclude:

f .y/ � f .x/

y � x
� jy � xj � "iC1

jy � xj � 1 � 3"iC1

L1.I /
� 1 � 3"iC1

˛i

� 1 � 3"i � 1 � ":

Similarly we can prove that f 0
�.x/ D �1 for every x 2 E.

Eventually we consider a sequence of compact nullsets Ek � R such that

�.R n
S

k E
k/ D 0. Since for every k the set Ak of 1-Lipschitz functions which

are non-di�erentiable at all points ofEk is a residual set, then also the intersection

of the sets Ak is residual and it is contained in the set of all 1-Lipschitz functions

which are non-di�erentiable at �-a.e. point. �

3. Proof of Theorem 1.1

By Proposition 2.1 and Proposition 2.4 we deduce that the class of pairs .�; f /

satisfying the assumption of Theorem 1.1 is non empty, at least for n D 1. To prove

the same fact for n � 2, one should replace our Proposition 2.4 with Theorem 1.14

of [6].

To prove Theorem 1.1 assume by contradiction that there exists a C 1 function

g such that, denoting

A WD ¹x 2 R
nW g.x/ D f .x/º;

there holds �.A/ > 0. We can assume that f is 1-Lipschitz and g is globally

L-Lipschitz for some L > 0.

Denote h WD f � g. Observe that h is .1C L/-Lipschitz and h � 0 on A. We

claim thatDh exists and it is equal to 0 at�-a.e. point ofA, which is a contradiction

because it implies that f is di�erentiable on a set of positive measure �.
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To prove the claim, consider the set P � A of points where eitherDh does not

exist or Dh ¤ 0. In particular, for every x 2 P , there exist a constant C.x/ > 0

and a sequence of points yk ! x such that

jh.yk/j > C.x/jyk � xj; for every k 2 N:

Then for every x 2 P and for every k 2 N we would have h ¤ 0 on the open ball

Bk centered at yk with radius .LC 1/�1C.x/jyk � xj. Since P � A this implies

that the set P is porous. Hence �.P / D 0.

4. Lusin type theorem for gradients

4.1 – Prescribing derivatives

In this section we discuss the possibility to extend and possibly to improve the

result of [1], when we replace the Lebesgue measure with any Radon measure.

We will consider only the one-dimensional setting. The higher dimensional case

and further results are discussed in [10]. The �rst trivial observation is that the

result of [1] is valid with respect to any Radon measure.

Theorem 4.1. Let gWR ! R be a Borel function and � be a Radon measure

on R. Then for every " > 0 there exist a set E � R with �.R n E/ < " and a C 1

function f WR ! R such that f 0 D g on the set E.

Proof. Fix " > 0. By the standard Lusin theorem (see Theorem 2.24 of [12]),

there exist a setE � R with �.RnE/ < " and a bounded and continuous function

hWR ! R such that h D g on the set E. Denote

f .x/ WD
Z x

0

h.t/dt:

Clearly f is C 1 and it holds f 0 D h D g on the set E. �

4.2 – Prescribing non-di�erentiable blowups

Next we want to investigate the possibility to modify Theorem 4.1, prescribing

some non-linear local behavior at many points. Clearly the corresponding f

cannot be a C 1 function, but we can require it to be Lipschitz. When � is the

Lebesgue measure, the Rademacher theorem is an obstruction to our aim. Indeed it

guarantees that the local behavior of any Lipschitz function f at most of the points

must be linear. Since by Proposition 2.4 we know that for a singular measure� one



Lusin type theorems for Radon measures 205

can �nd Lipschitz functions which are �-almost everywhere non-di�erentiable,

we wonder if it is possible to �nd a Lipschitz function with an arbitrarily prescribed

non-di�erentiability local behavior.

We denote by Tan.f; x/ the set of the blowups of f at x, i.e. all the possible

limits (with respect to the uniform convergence) of the form

lim
ri &0

fx;ri
;

where fx;r.y/ D r�1.f .x C ry/ � f .x//. Given a pair .a; b/ in R
2 we say that a

function f WR ! R is .a; b/-di�erentiable at the point x0 if the two limits

lim
x!x�

0

f .x/ � f .x0/

x � x0

; lim
x!x

C

0

f .x/ � f .x0/

x � x0

exist and they are equal to a and b respectively.

Note that, for a Lipschitz function f , this is the only unique blowup of f at x0

that one can prescribe, if “prescribing a unique blowup” is intended in the sense of

�nding a function gx0
such that Tan.f; x0/ D ¹gx0

º. Observe that this requirement

forces gx0
to be positively homogeneous, because every rescaling of a blowup is

also a blowup. The following proposition shows that, unless � is atomic (i.e. there

exists a countable set N such that �.R nN/ D 0), it is not possible to prescribe a

non-linear unique blowup at many points.

Proposition 4.2. Let � be a Radon measure on R and let a; bWR ! R

be bounded Borel functions, such that a.x/ ¤ b.x/ �-a.e. Then the following

property .P / holds if and only if � is an atomic measure.

.P / For every ı > 0 there exist a setE � R with �.RnE/ < ı and a Lipschitz

function f WR ! R such that for every x 2 E, f is .a.x/; b.x//-di�erentiable.

Proof. If � is an atomic measure then it is very easy to prove the validity of

property .P / constructing, for every ı, an appropriate piecewise a�ne function f .

Now assume property .P / holds for the functions a and b. Then it also holds

if we replace a and b with

a1 WD a � .aC b/=2; b1 WD b � .aC b/=2:

Indeed, given ı > 0 one can apply Theorem 4.1 to the function g WD �.a C b/=2

with parameter " WD ı=2, thus obtaining a set E0 and a function f0. Then by

property (P) for a and b, there exist a set E1 and a Lipschitz function f1 such that

�.R n E1/ < ı=2 for every x 2 E1, f1 is .a.x/; b.x//-di�erentiable. Hence the
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function f WD f0 C f1 and the set E WD E0 [E1 yield property .P / for the �xed

parameter ı and the functions a1 and b1.

Now we have that a1.x/ and b1.x/ have di�erent sign (non zero) for �-almost

every point x. Note that this implies that �-almost every x 2 E is a strict local

maximum or minimum for f . We claim that there are at most countably many

such points, which implies that � is an atomic measure. To prove the claim, for

every i 2 N we denote by Ai the set of points x in E such that f .x/ is the unique

minimum of f in the interval .x � 1=i; x C 1=i/. By construction, the set Ai is

discrete for every i 2 N, hence the union of the sets Ai (which contains �-a.e.

point of E) is at most countable. �

Even if for a general measure it is not possible to prescribe any form of

non-di�erentiable �rst order approximation, it might be possible to prescribe the

existence of a non-linear blow up, at many points x. Such problem is treated in

[10]. In particular we prove the following perhaps surprising result. For every

singular measure � on the line, the generical (in the sense of Baire categories)

1-Lipschitz function f WR ! R has the following property: for �-a.e. point x,

the set Tan.f; x/ of all blowups of f at x coincides with the set of all 1-Lipschitz

functions with value 0 at the origin. In other words the generical Lipschitz function

attains every possible blowup at � a.e. point.
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