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ABSTRACT

In 1985 Kazuya Kato formulated a fascinating framework of conjectures which generalizes the Hasse principle
for the Brauer group of a global field to the so-called cohomological Hasse principle for an arithmetic scheme X. In this
paper we prove the prime-to-characteristic part of the cohomological Hasse principle. We also explain its implications on
finiteness of motivic cohomology and special values of zeta functions.
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Introduction

Let K be a global field, namely a number field or a function field of dimension one
over a finite field. A fundamental fact in number theory due to Brauer-Hasse-Noether
and Witt is the Hasse principle for the Brauer group of K, which asserts the injectivity of
the restriction map:

(0.1) Br(K) →
⊕

v∈PK

Br(Kv),

where PK is the set of places of K and Kv is the completion of K at v. In 1985 Kato [K]
formulated a fascinating framework of conjectures which generalizes this fact to higher
dimensional arithmetic schemes X, namely schemes of finite type over a finite field or the ring
of integers in a number field or a local field. For an integer n > 0, he defined a complex
KC(0)(X,Z/nZ) of Bloch-Ogus type (now called the Kato complex of X):

· · · ∂−→
⊕

x∈X(a)

Ha+1(x,Z/nZ(a))
∂−→

⊕

x∈X(a−1)

Ha(x,Z/nZ(a − 1))
∂−→ · · ·
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· · · ∂−→
⊕

x∈X(1)

H2(x,Z/nZ(1))
∂−→

⊕

x∈X(0)

H1(x,Z/nZ).(0.2)

Here X(a) denotes the set of points x ∈ X such that dim {x} = a with the closure {x} of x in
X, and the term in degree a is the direct sum of the Galois cohomology Ha+1(x,Z/nZ(a))

of the residue fields κ(x) for x ∈ X(a), where the coefficients Z/nZ(a) are the Tate twist (see
Section 1 Lemma 1.5). In case X is the model of a global field K (namely X = Spec(OK)

for the integer ring OK of the number field K or a smooth projective curve over a finite
field with the function field K), the Kato complex KC(0)(X,Z/nZ) is

H2(K,Z/nZ(1))
∂−→

⊕

x∈X(0)

H1(x,Z/nZ)

which is shown to be isomorphic to the n-torsion part of (0.1) where the direct sum of
Br(Kv) for the infinite places v of K is removed if X = Spec(OK). For an arithmetic
scheme X flat over Spec(OK), we need modify (0.2) to get the right Kato complex: For
a scheme Y of finite type over K or Kv with v ∈ PK, consider the following complex
KC(1)(Y,Z/nZ):

· · · ∂−→
⊕

x∈Y(a)

Ha+2(x,Z/nZ(a + 1))
∂−→

⊕

x∈Y(a)

Ha+1(x,Z/nZ(a − 1))
∂−→ · · ·(0.3)

· · ·
⊕

x∈Y(1)

H3(x,Z/nZ(2))
∂−→

⊕

x∈Y(0)

H2(x,Z/nZ(1)),

where the sum
⊕

x∈Y(a)
is put at degree a. For X of finite type over a non-empty open

subscheme U ⊂ Spec(OK), we have the natural restriction maps

KC(0)(X,Z/nZ)[1] → KC(1)(XK,Z/nZ) → KC(1)(XKv
,Z/nZ),

where XL = X ×U Spec(L) for L = K and Kv (the degree shift [1] comes from the fact
X(a+1) ∩ XK = Y(a) with Y = XK). We define a variant of Kato complex as

KC(X/U,Z/nZ)

= cone
[

KC(0)(X,Z/nZ)[1] →
⊕

v∈�U

KC(1)(XKv
,Z/nZ)

]
,

where �U denotes the set of v ∈ PK which do not correspond to closed points of U (thus
�U includes the set of all infinite places of K).

The Kato homology of X (with coefficient in Z/nZ) is defined as

(0.4) KHa(X,Z/nZ) = Ha(KC(X,Z/nZ)) for a ∈ Z.
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If X is over U ⊂ Spec(OK) as above, we introduce a variant of the Kato homology:

(0.5) KHa(X/U,Z/nZ) = Ha(KC(X/U,Z/nZ)) for a ∈ Z.

These are important invariants that reflects arithmetic nature of X. The Hasse principle
for the Brauer group of a global field K is equivalent to the vanishing of the Kato homol-
ogy in degree 1 of the model of K. As a generalization of this fact, Kato proposed the
following conjectures called the cohomological Hasse principle.

Conjecture 0.1. — Let X be a proper smooth scheme over a finite field. Then

KHa(X,Z/nZ) = 0 for a > 0.

We remark that Geisser [Ge4] defined a Kato complex with integral coefficient for
X over a finite field, and studied an integral version of Conjecture 0.1.

Conjecture 0.2. — Let X be a regular scheme proper and flat over Spec(Ok) where Ok is the

ring of integers in a local field. Then

KHa(X,Z/nZ) = 0 for a ≥ 0.

Conjecture 0.3. — Let X be a regular scheme proper flat over a non-empty open subscheme

U ⊂ Spec(OK) where K is a number field. Then

KHa(X/U,Z/nZ) = 0 for a > 0.

Our main results are the following.

Theorem 0.4 (Theorem 8.1). — Conjectures 0.1 and 0.2 hold if n is invertible on X.

Theorem 0.5 (Theorem 8.4). — Conjecture 0.3 holds if n is invertible on U.

Indeed we will prove the vanishing of the Kato homology with Q�/Z�-coefficient
for a fixed prime � invertible on X, and deduce the vanishing of Z/�mZ-coefficient by us-
ing the Bloch-Kato conjecture (see Section 7) recently established by Rost and Voevodsky
(the whole proof is available in the papers [V1], [V2], [SJ], [HW]).

We give few words on the known results on the Kato conjectures (see [Sa3, Sec-
tion 4] for a more detailed account). Let X be as in the conjectures. The Kato conjec-
tures in case dim(X) = 1 rephrase the classical fundamental facts on the Brauer group
of a global field and a local field. Kato [K] proved it in case dim(X) = 2. He deduced
it from higher class field theory proved in [KS] and [Sa1]. For X of dimension 2 over
a finite field, the vanishing of KH2(X,Z/nZ) in Conjecture 0.1 had been earlier estab-
lished in [CTSS] (prime-to-p-part), and by M. Gros [Gr] for the p-part even before Kato
formulated his conjectures. There have been results [Sa2], [CT], [Sw], [JS1] showing the
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vanishing of the Kato homology with Q�/Z�-coefficient in degree ≤ 3. In [J2] and [JS2]
general approaches to Conjecture 0.1 are proposed assuming resolution of singularities.
Our technique of the proof of Theorem 0.4 is a refinement of that developed in [JS2]
and it replaces resolution of singularities by a recent result of Gabber on a refinement of
de Jong’s alteration ([Il2]). Finally we mention the following theorem which will be used
in the proof of Theorem 0.5.

Theorem 0.6 (Jannsen). — Let Y be a projective smooth variety over a number field K. Write

YKv
= Y ×K Kv where Kv is the completion of K at v ∈ PK. Then we have a natural isomorphism

Ha(KC(1)(Y,Q/Z)) ∼=
⊕

v∈PK

Ha(KC(1)(YKv
,Q/Z)) for a > 0.

We now explain some applications of the Main Theorem 0.4. It turns out that the
cohomological Hasse principle plays a significant rôle in the study of motivic cohomology
of arithmetic schemes X. In this paper we adopt

Hq

M(X,Z(r)) = CHr(X,2r − q).

as the definition of the motivic cohomology of regular X, where the right hand side is
Bloch’s higher Chow group ([B], [Le] and [Ge1]). One of the important open problems
is the conjecture that motivic cohomology of regular arithmetic schemes is finitely gener-
ated, a generalization of the known finiteness results on the ideal class group and the unit
group of a number field (Minkowski and Dirichlet), and the group of the rational points
on an abelian variety over a number field (Mordell-Weil). In [JS2] it is found that the
Kato homology fills a gap between motivic cohomology with finite coefficient and étale
cohomology of X. Indeed, for a regular arithmetic scheme X of dimension d and for an
integer n > 0, there is a long exact sequence

KHq+2(X,Z/nZ) → CHd(X, q;Z/nZ)
ρX−→ H2d−q

ét (X,Z/nZ(d))

→ KHq+1(X,Z/nZ) → CHd(X, q − 1;Z/nZ)
ρX−→ · · · ,

where CH∗(X, q;Z/nZ) is Bloch’s higher Chow group with finite coefficient and ρX is the
étale cycle map defined in [B], [GL], [Le] and [Sat]. Thus, thanks to known finiteness
results on étale cohomology, the cohomological Hasse principle implies new finiteness
results on motivic cohomology (see Section 9).

We also give an implication of Theorem 0.4 on a special value of the zeta function
ζ(X, s) of a smooth projective variety X over a finite field. It expresses

ζ(X,0)∗ := lim
s→0

ζ(X, s) · (1 − q−s)

by the cardinalities of the torsion subgroups of motivic cohomology groups of X. It may
be viewed as a geometric analogue of the analytic class number formula for the Dedekind
zeta function of a number field (see Section 10, Remark 10.2).
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In a forthcoming paper [KeS], we will give a geometric application of the coho-
mological Hasse principle to singularities. A consequence is the vanishing of weight ho-
mology groups of the exceptional divisors of desingularizations of quotient singularities
and radicial singularities.

Now we sketch the basic structure of the proof of our main theorem. We start with
an observation in [JSS] that the Kato complex arises from the niveau spectral sequence
associated to étale homology theory. To explain this more precisely, fix the category CS of
schemes separated and of finite type over a fixed base S. Recall that a homology theory
H = {Ha}a∈Z on CS is a sequence of functors:

Ha(−) : CS → Ab (Ab is the category of abelian groups)

which is covariant for proper morphisms and contravariant for open immersion, and
gives rise to a long exact sequence (called the localization sequence)

· · · ∂−→ Ha(Y)
i∗−→ Ha(X)

j∗−→ Ha(U)
∂−→ Ha−1(Y)

i∗−→ · · ·
for a closed immersion i : Y ↪→ X and the open complement j : U = X − Y ↪→ X where
∂ is a connecting homomorphism (see Definition 1.1 for a precise definition). Given a
homology theory H on CS, the method of [BO] produces the niveau spectral sequence
for X ∈ CS:

(0.6) E1
a,b(X) =

⊕

x∈X(a)

Ha+b(x) ⇒ Ha+b(X) with Ha(x) = lim−→
V⊆{x}

Ha(V).

Here the limit is over all open non-empty subschemes V of the closure {x} of x in X.
Fundamental examples are the étale homology H = Hét(−,Z/nZ) given in Examples 1.4
and 1.8, where S = Spec(k) for a finite field k or S = Spec(Ok) for the integer ring Ok of
a local field. For the spectral sequence (0.6) arising from the étale homology theory, one
has E1

a,b(X) = 0 for b < −1 and the Kato complex KC(0)(X,Z/nZ) is identified up to
sign with the complex

· · · → E1
a,−1(X)

d1−→ E1
a−1,−1(X)

d1−→ · · · d1−→ E1
1,−1(X)

d1−→ E1
0,−1(X).

In particular we have a natural isomorphism

KHa(X,Z/nZ) � E2
a,−1(X)

and an edge homomorphism

εa
X : Hét

a−1(X,Z/nZ) → KHa(X,Z/nZ)

relating the Kato homolgy to the étale homology.
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Now we start from a general homology theory H on CS, which satisfies the condi-
tion that for a fixed integer e, we have E1

a,b(X) = 0 for X ∈ CS and b < e (this will be the
case if H is leveled above e, see Definition 1.2(1)). We then define the Kato homology of
X ∈ CS associated to H as

KHa(X) = E2
a,e(X) (a ∈ Z),

where the right hand side is an E2-term of the spectral sequence (0.6) arising from H. It
is an easy exercise to check that the Kato homology

KH(−) = {KHa(−)}a∈Z

provides us with a homology theory on CS equipped with an edge homomorphism

(0.7) εa
X : Ha+e(X) → KHa(X) for X ∈ CS

which is a map of homology theories in an obvious sense (see Definition 1.1).
In order to prove the Kato conjecture in this abstract setting, we introduce a condi-

tion on H, called the Lefschetz condition (see Definition 3.1). In case H is the étale homology
with Q�/Z�-coefficient:

Hét(−,Q�/Z�) = lim−→
n

Hét(−,Z/�nZ),

the Lefschetz condition is shown in [JS3] and [SS], where weight arguments based on
Deligne’s results [D] play an essential rôle.

We now assume that our homology theory H satisfies the Lefschetz condition and
that for a fixed prime � invertible on S, Ha(X) are �-primary torsion for all X ∈ CS and
a ∈ Z. We also assume S = Spec(k) for a field k (we will treat the case where S = Spec(R)

for a henselian discrete valuation ring R). By induction on d > 0 we then prove the
following assertion (see the sentence above Lemma 6.6):

KC(d) For any X ∈ CS with dim(X) ≤ d projective and smooth over k we have
KHa(X) = 0 for a ≥ 1.

One of the key steps in the proof is to show that under the assumption of the Lefschetz
condition, KC(d − 1) implies:

(∗) For X ∈ CS projective, smooth and connected of dimension d over k and for a
simple normal crossing divisor Y ↪→ X such that one of the irreducible com-
ponents is ample, the composite map

δa : Ha+e(U)
εa

U−→ KHa(U)
∂−→ KHa−1(Y) (U = X − Y)

is injective for 1 ≤ a ≤ d and surjective for 2 ≤ a, where εa
U is the map (0.7)

and ∂ is a connecting homomorphism in the localization sequence for the
Kato homology.
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Now we sketch a proof of KC(d − 1) =⇒ KC(d). For X as above and for a fixed
element α ∈ KHa(X) with 1 ≤ a ≤ d , we have to show α = 0. It is easy to see that there
is a dense open subscheme j : U → X such that:

(∗∗) j∗(α) is in the image of εa
U : Ha+e(U) → KHa(U).

Suppose for the moment that Y = X − U is a simple normal crossing divisor on X. Then
one can use a Bertini argument to find a hypersurface section H ↪→ X such that Y ∪ H
is a simple normal crossing divisor. Replace U by U − U ∩ H and Y by Y ∪ H (note that
the condition (∗∗) is preserved by the modification). Consider the commutative diagram

KHa+1(U)
∂

KHa(Y) KHa(X)
j∗

KHa(U)
∂

KHa−1(Y)

Ha+e+1(U)

εa+1
U

δa+1

Ha+e(U)

εa
U

δa

where the upper row is the exact localization sequence for the Kato homology. The con-
dition (∗) implies that δa is injective and δa+1 is surjective by noting that Y is supposed to
contain an ample divisor H ⊂ X. An easy diagram chase shows that α = 0.

In the general case in which Y ↪→ X is not necessarily a simple normal crossing
divisor we use a recent refinement of de Jong’s alterations due to Gabber (cf. Remark 6.1)
to find an alteration f : X′ → X of degree prime to � such that the reduced part of
f −1(Y) is a simple normal crossing divisor on X′ which is smooth and projective over k.
We use intersetion theory to construct a pullback map

f ∗ : KHa(X) → KHa(X′)

which allows us to conduct the above argument for f ∗(α) ∈ KHa(X′). This means
f ∗(α) = 0 and taking the pushforward gives deg(f )α = 0. Since deg(f ) is prime to �

and α was supposed to be killed by a power of �, we conclude α = 0, which completes
the proof of KC(d).

The most severe technical difficulty which is handled in this paper is the con-
struction of the necessary pullback maps on our homology theories, in particular over a
discrete valuation ring. This problem is solved in Section 4 using Rost’s version of intersec-
tion theory and the method of deformations to normal cones. An alternative construction
using the Gersten conjecture is given in Section 5.

1. Homology theory

Let S be the spectrum of a field or of an excellent Dedekind ring. By CS we denote
the category of schemes X/S which are separated and of finite type over S.
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The dimension of an integral X ∈ CS is defined to be

dimS(X) = trdeg(k(X)/k(T)) + dim(T),

where T is the closure of the image of X in S and dim(T) is the Krull dimension. If all
irreducible components Xi of X satisfy dimS(Xi) = d we write dimS(X) = d and say that
X is equidimensional.

For an integer a ≥ 0, we define X(a) as the set of all points x on X with dimS({x}) =
a, where {x} is the closure of x in X. One can easily check that

(1.1) Xa ∩ Y = Ya for Y locally closed in X.

In the geometric case, i.e. if S is the spectrum of a field, x ∈ X belongs to X(a) if and only
if trdegk(κ(x)) = a where κ(x) is the residue field of x.

Definition 1.1. — Let CS∗ be the category with the same objects as CS, but where morphisms are

just the proper maps in CS. Let Ab be the category of abelian groups. A homology theory H = {Ha}a∈Z

on CS is a sequence of covariant functors:

Ha(−) : CS∗ → Ab

satisfying the following conditions:

(i) For each open immersion j : V ↪→ X in CS, there is a map j∗ : Ha(X) → Ha(V), associ-

ated to j in a functorial way.

(ii) If i : Y ↪→ X is a closed immersion in X, with open complement j : V ↪→ X, there is a

long exact sequence (called localization sequence)

· · · ∂−→ Ha(Y)
i∗−→ Ha(X)

j∗−→ Ha(V)
∂−→ Ha−1(Y) −→ · · · .

(The maps ∂ are called the connecting morphisms.) This sequence is functorial with respect

to proper maps or open immersions, in an obvious way.

A morphism between homology theories H and H′ is a morphism φ : H → H′ of functors on

CS∗, which is compatible with the long exact sequences in (ii).

Given a homology theory H on CS, we have the spectral sequence of homological
type associated to every X ∈ Ob(CS), called the niveau spectral sequence (cf. [BO]):

(1.2) E1
a,b(X) =

⊕

x∈X(a)

Ha+b(x) ⇒ Ha+b(X) with Ha(x) = lim−→
V⊆{x}

Ha(V).

Here the limit is over all open non-empty subschemes V ⊆ {x}. This spectral sequence is
covariant with respect to proper morphisms in CS and contravariant with respect to open
immersions.
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Definition 1.2. — Fix an integer e.

(1) Let H be a homology theory on CS∗. Then H is leveled above e if for every affine regular

connected X ∈ CS with d = dimS(X) and for a < e we have

(1.3) Hd+a(X) = 0.

(2) Let H be leveled above e. For X ∈ Ob(CS) with d = dim(X), define the Kato complex of

X by

KCH(X) : E1
0,e(X)

d1←− E1
1,e(X)

d1←− · · · d1←− E1
d,e(X),

where E1
a,e(X) is put in degree a and the differentials are d1-differentials.

(3) We denote by KHa(X) the homology group of KCH(X) in degree a and call it the Kato

homology of X. By (1.3), we have the edge homomorphism

(1.4) εa
X : Ha+e(X) → KHa(X) = E2

a,e(X).

Remark 1.3.

(1) One easily sees that ε0
X is always an isomorphism and ε1

X is always surjective.
(2) If H is leveled above e, then the homology theory H̃ = H[−e] given by

H̃a(X) = Ha−e(X) for X ∈ Ob(C) is leveled above 0. Thus we may consider
only a homology theory leveled above 0 without loss of generality.

A proper morphism f : X → Y and an open immersion j : V → X induce maps
of complexes

f∗ : KCH(X) → KCH(Y), j∗ : KCH(X) → KCH(V).

For a closed immersion i : Z ↪→ X and its complement j : V ↪→ X, we have the following
exact sequence of complexes thanks to (1.1)

(1.5) 0 → KCH(Z)
i∗−→ KCH(X)

j∗−→ KCH(V) → 0.

Example 1.4. — Assume S = Spec(k) with a field k. Fix an algebraic closure k of k

and let ksep be the separable closure of k in k. Let Gk = Gal(ksep/k) be the absolute Galois
group of k. Fix a discrete torsion Gk-module 
 viewed as a sheaf on Sét. One gets a
homology theory H = Hét(−,
) on CS:

Hét
a (X,
) = H−a(Xét,R f !
) for f : X → S in CS.

Here Rf ! is the right adjoint of Rf! defined in [SGA4, XVIII, 3.1.4]. Sometimes we will
write Hét

a (X) for Hét
a (X,
) if the coefficient module 
 is clear from the context. We have

the following (see [JSS]).
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Lemma 1.5. — Let f : X → S be smooth of pure dimension d over S.

(1) Assume that any element of 
 is annihilated by an integer prime to ch(k). Then we have

Hét
a (X,
) = H2d−a(Xét,
(d)).

Here, for an integer r > 0, we put


(r) = lim−→
n

f ∗
n ⊗ μ⊗r
n,X with 
n = Ker(


n−→ 
),

where the limit is taken over all integers n prime to ch(k) and μn,X is the étale sheaf of n-th

roots of unity on X.

(2) Assume that k is perfect and any element of 
 is annihilated by a power of p = ch(k) > 0.

Then we have

Hét
a (X,
) = H2d−a(Xét,
(d)).

Here, for an integer r > 0, we put


(r) = lim−→
n

f ∗
n ⊗ Wn�
r
X,log[−r] with 
n = Ker(


pn−→ 
),

where Wn�
r
X,log is the logarithmic part of the de Rham-Witt sheaf Wn�

r
X (cf. [Il1, I 5.7])

and [−r] means a shift in Db(Xét), the derived category of bounded complexes of sheaves on

Xét. We remark that we use Wn�
r
X,log only for r = dim(X) in this paper.

By Lemma 1.5 we get for X general

E1
a,b(X) =

⊕

x∈X(a)

Ha−b(x,
(a)) with H∗(x,
(a)) = lim−→
V⊆{x}

H∗(V,
(a)).

Here the limit is over all open non-empty subschemes V ⊆ {x}.
Now assume that k is finite. Due to the fact cd(k) = 1 and the affine Lef-

schetz theorem [SGA4, XIV, 3.1] together with [Sw, Lemma 2.1], Lemma 1.5 implies
Hét

d+a(X,
) = 0 for a < −1 if X is affine smooth connected of dimension d over S. Hence
H = Hét(−,
) is leveled above −1. The arising complex KCH(X) is written as:

· · ·
⊕

x∈X(a)

Ha+1
ét (x,
(a)) →

⊕

x∈X(a−1)

Ha
ét(x,
(a − 1)) → ·· ·(1.6)

· · · →
⊕

x∈X(1)

H2
ét(x,
(1)) →

⊕

x∈X(0)

H1
ét(x,
).

Here the sum over the points X(a) is placed in degree a. In case 
 = Z/nZ it is identified
up to sign with complex (0.2) thanks to [JSS].
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Example 1.6. — Assume S = Spec(k) and Gk and 
 be as in 1.4. If 
 is finite, we
define the homology theory HD(−,
) by

HD
a (X,
) := Hom

(
Ha

c (Xét,

∨),Q/Z

)
for X ∈ Ob(CS),

where 
∨ = Hom(
,Q/Z) and Ha
c (Xét,−) denotes the cohomology with compact sup-

port over k defined as

Ha
c(Xét,−) = Ha(Xét,−)

for any compactification j : X ↪→ X over k, i.e. X is proper over k and j is an open
immersion. If 
 is arbitrary, we put

HD
a (X,
) = lim−→

F

HD
a (X,F) for X ∈ Ob(CS),

where F runs over all finite Gk-submodules of 
. By Lemma 1.7 below, this homology
theory is leveled above 0.

Lemma 1.7.

(1) If X is affine regular connected over S with k perfect and d = dim(X), then

HD
a (X,
) � H2d−a(Xk,ét,
(d))Gk

for a ≤ d,

and it vanishes for a < d, where Xk = X ×k k and 
(d) is defined as in Lemma 1.5 and

MGk
denotes the coinvariant module by Gk of a Gk-module M.

(2) If k is finite, HD(−,
) shifted by degree 1 coincides with Hét(−,
) in Example 1.4.

(3) If k ⊂ k′ is a purely inseparable field extension there is a canonical pushforward isomorphism

HD(X ⊗k k′,
)
∼→ HD(X,
),

where the left hand side is defined as the dual of the cohomology with compact support over k′.

Proof. — We may assume that 
 is finite. By the Poincaré duality for étale coho-
mology and [JSS, Theorem 2.10 and Remark 2.5(2)], we have

Hb
c(Xk,ét,


∨) � Hom
(
H2d−b(Xk,ét,
(d)),Q/Z

)
,

which vanishes for b < d by the affine Lefschetz theorem [SGA4, XIV, 3.1] and [Sw,
Lemma 2.1]. By the Hochschild-Serre spectral sequence this implies Hb

c(Xét,

∨) = 0

for b < d and Hd
c (Xét,


∨) � Hd
c (Xk,ét,


∨)Gk . Taking the dual, this implies (1). (2) follows
from the Poincaré duality and [JSS, Theorem 2.10 and Corollary 2.17] together with the
Tate duality for Galois cohomology of finite field. (3) follows from the canonical pullback
isomorphism

Ha
c(Xét,


∨) → Ha
c ((X ⊗k k′)ét,


∨)

which follows from [SGA4, XVIII 1.2 and XVII 5.2.6]. �
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In the following example we are in the arithmetic case.

Example 1.8. — In this example, we assume S = Spec(R) where R is a henselian
discrete valuation ring. Let s (resp. η) be the closed (resp. generic) point of S. Let C/s ⊂ CS

be the subcategory of separated schemes of finite type over s. Let GS = π1(S, η) with
a geometric point η over η. Let 
 be a torsion GS-module whose elements are of order
prime to ch(k), viewed as an étale sheaf on S. One has a homology theory H = Hét(−,
)

on CS:

(1.7) Hét
a (X,
) = H2−a(Xét,R f !
(1)) for f : X → S in CS,

where the Tate twist is defined as in Lemma 1.5(1). Note that the restriction of H to C/s

coincides with the homology theory Hét(−,
) in Example 1.4. The last fact follows from
the purity isomorphism

Rai!
(1) =
{


 a = 2,

0 a �= 2,

where i : s → S is the closed immersion. By the absolute purity due to Gabber ([FG], see
also [SS, Lemma 1.8]), for X ∈ CS which is integral regular with dimS(X) = d , we have

(1.8) Hét
a (X,
) = H2d−a

ét (X,
(d)).

By (1.8) we get for general X ∈ CS

E1
a,b(X) =

⊕

x∈X(a)

Ha−b
ét (x,
(a)).

We now assume that κ(s) is finite. Due to the fact cd(κ(s)) = 1 and Gabber’s affine
Lefschetz theorem [Il3, Théorème 2.4], (1.8) implies that H = Hét(−,
) is leveled above
−1. The arising complex KCH(X) is written as:

· · ·
⊕

x∈X(a)

Ha+1
ét (x,
(a)) →

⊕

x∈X(a−1)

Ha
ét(x,
(a − 1)) → ·· ·(1.9)

· · · →
⊕

x∈X(1)

H2
ét(x,
(1)) →

⊕

x∈X(0)

H1
ét(x,
).

Here the term
⊕

x∈X(a)
is placed in degree a. For 
 = Z/n this is identified up to sign with

complex (0.2) thanks to [JSS].
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2. Log-pairs and configuration complexes

In this section we revisit the combinatorial study of the homology of log-pairs orig-
inating from [JS3]. Let the assumption be as in Section 1. We assume that either

(G) (geometric case) S = Spec(k) for a perfect field k.
(A) (arithmetic case) S = Spec(R) for a henselian discrete valuation ring R with

perfect residue field.

We denote by η (resp. s) the generic (resp. closed) point of S in the arithmetic case.

Definition 2.1. — We let Sreg ⊂ CS be the following full subcategory:

• In the geometric case X ∈ Sreg if X is regular and projective over S.

• In the arithmetic case X ∈ Sreg if X is regular and projective over S, and letting Xfl denote the

union of those irreducible components of X flat over S, where Xfl

s,red is a simple normal crossing

divisor on Xfl , where Xfl

s,red is the reduced special fiber of Xfl .

We let S irr
reg denote the subcategory of Sreg of the objects which are irreducible. For a closed subscheme

T ⊂ S (T = S, or the closed point of S in the arithmetic case), let Sreg/T (resp. S irr
reg/T) denote the

subcategory of Sreg (resp. S irr
reg ) of the objects whose image in S is T.

Definition 2.2. — For X ∈ Sreg , a simple normal crossing divisor Y on X is admissible if one

of the following conditions is satisfied:

• we are in the geometric case, or

• we are in the arithmetic case, and letting Y1, . . . ,Yr be the irreducible components of Y which

are flat over S, Y1 ∪ · · · ∪ Yr ∪ Xfl

s,red is a simple normal crossing divisor on Xfl .

Remark 2.3. — In the second case of the above definition,

• Y ∩ Xfl is a subdivisor of Y1 ∪ · · · ∪ Yr ∪ Xfl

s,red ,
• for all 1 ≤ i1 < · · · < is ≤ r, Yi1 ∩ · · · ∩ Yis ∈ Sreg and flat over S.

Definition 2.4. — We let S ⊂ CS be the following full subcategory: X ∈ S if either X ∈ Sreg

or there exists a closed immersion X ↪→ X′ such that X′ ∈ Sreg and X is an admissible simple normal

crossing divisor on X′.

Definition 2.5.

(1) A log-pair is a couple � = (X,Y) where either

– X ∈ Sreg and Y is an admissible simple normal crossing divisor on X,

– or X ∈ S and Y = ∅.

(2) Let � = (X,Y) and �′ = (X′,Y′) be log-pairs. A map of log-pairs π : �′ → � is a

morphism π : X′ → X such that π(Y′) ⊂ Y.
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(3) We let L P denote the category of log-pairs: The objects and morphisms are as defined in (1)

and (2). We have a fully faithful functor:

S → L P ; X → (X,∅).

For a log-pair � = (X,Y) with X ∈ Sreg we let �̂ be the log-pair (Y,∅). This defines a

functor L P → L P .

(4) Let � = (X,Y) be a log-pair with X ∈ Sreg . Let Z ↪→ X be a closed immersion in S
such that �Z = (Z,Z ∩ Y) and �Z = (X,Y ∪ Z) are log-pairs. Then the sequence in

L P

�Z → � → �Z

is called a fiber sequence in L P , where the first (resp. second) map is induced by the closed

immersion Z → X (resp. the identity on X).

(5) Let � = (X,∅) be a log-pair. Let X1 be an irreducible component of X and X2 be the

union of the other irreducible components of X. Then the sequence in L P

�X1∩X2 → � → �

is also called a fiber sequence. Here �X1∩X2 = (X1 ∩ X2,∅) and � = (X1 � X2,∅) (by

definition these are log-pairs).

Next we present a construction which allows us to extend certain functors defined a
priori only on Sreg to all log-pairs. It is an elementary version of the construction of Gillet
and Soulé [GS]. Let Cb(Ab) be the category of homologically bounded complexes of
abelian groups. Assume given a covariant functor F : Sreg → Cb(Ab) such that the natural
maps give an isomorphism

(2.1) F(X1) ⊕ F(X2)
∼=→ F(X1 � X2).

We now construct in a canonical way a functor F̄ : L P → Cb(Ab) which satisfies:

• F̄ maps fibre sequences of log-pairs to fibre sequences in the derived category.
• For X ∈ Sreg and � = (X,∅), F̄(�) = F(X).

For a simplicial object in Sreg

X• : · · · X2

δ0−→
s0←−
δ1−→
s1←−
δ2−→

X1

δ0−→
s0←−
δ1−→

X0,
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let Tot F(X•) ∈ Cb(Ab) be the total complex associated to the double complex

· · · → F(Xn)
∂−→ F(Xn−1)

∂−→ · · · ∂−→ F(X0),

where ∂ = ∑n

a=0(−1)a(δa)∗.
For a log-pair � = (X,Y) where X ∈ Sreg and Y is an admissible simple normal

crossing divisor on X, we set

F̄(�) = Tot F
((∐

j∈J

Yj → X
)

•

)
[−1],

where Yj ↪→ Y (j ∈ J) are the irreducible components of Y and (
∐

j Yj → X)• is the
augmented Čech simplicial scheme associated to the map

∐
j Yj → X, which is easily

seen to be a simplicial object in Sreg .
For a log-pair � = (Y,∅) where Y ∈ S is an admissible simple normal crossing

divisor on X ∈ Sreg , we set F̄(�) to be the mapping fiber of the natural map

F(X) → Tot F
((∐

j∈J

Yj → X
)

•

)
[−1].

It is easy to check that the functor F̄ satisfies the properties stated above.
In what follows we fix a homology theory H on CS leveled above e as in Defini-

tion 1.2. We denote the restriction of the Kato complex functor KCH to Sreg by the same
letter. The construction explained above produces a functor

KCH : L P → Cb(Ab).

For simplicity of notation we will omit the bar and write KCH(�) = KCH(�). We easily
see the following lemma.

Lemma 2.6. — For a log-pair � = (X,Y;U) with X ∈ Sreg , there is a natural quasi-

isomorphism

KCH(�)
�−→ KCH(U)

compatible with fibre sequences of log-pairs.

We need another type of a Kato complex below. The reduced Kato complex of a
log-pair � = (X,Y) is defined to be the complex KCH(�̂), where we recall �̂ = (Y,∅).
For later reference we state the following variant of Lemma 2.6.

Lemma 2.7. — For a log-pair � = (X,Y) with X ∈ Sreg , there is a natural quasi-

isomorphism

KCH(�̂)
�−→ KCH(Y).
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Next we define the trace map for a Kato complex. For X ∈ S irr
reg we put

(2.2) 
H(X) := KCH(TX), where TX is the image of X in S.

The functor 
H : S irr
reg → Cb(Ab) extends naturally to Sreg via (2.1). Now apply the bar

construction to 
H to get a functor


H : L P → Cb(Ab).

For simplicity of notation we write 
H(�) = 
H(�) for a log-pair � and call it the
configuration complex of � (with coefficient 
H). We set

Ga(�) := Ha(
H(�)).

We also write Ga(X) = Ga(�) for a log pair � = (X,∅).
For X ∈ S irr

reg with image TX in S we have the trace map

(2.3) KCH(X) → KCH(TX) = 
H(X)

induced by the proper map X → TX. By the bar construction, this extends to a trace
map of complexes for a log-pair �:

(2.4) tr� : KCH(�) → 
H(�)

which is a natural transformation of functors L P → Cb(Ab).
If � = (X,Y;U) we can use Lemma 2.6 to construct a morphism

(2.5) trU : KCH(U) � KCH(�) −→ 
H(�)

in the derived category. This induces a homomorphism of homology groups

(2.6) γ a
� : KHa(U) → Ga(�).

By the Gillet-Soulé construction explained above and Lemma 2.6, the following diagram
is commutative

KHa(U)
∂−−−→ KHa−1(Y)

⏐⏐�γ a
�

⏐⏐�γ a−1
�̂

Ga(�)
∂−−−→ Ga−1(�̂)

where ∂ is the boundary map arising from the fibre sequence

�̂ −→ (X,∅) −→ �.

This fibre sequence implies:



COHOMOLOGICAL HASSE PRINCIPLE AND MOTIVIC COHOMOLOGY 139

Lemma 2.8. — For a closed subscheme T ⊂ S, let iT ∈ {−∞,0,1} be defined as follows. If

Ha(KCH(T)) = 0 for all a ∈ Z, iT = −∞. Otherwise

iT = max{a ∈ Z | Ha(KCH(T)) �= 0}.

For a log-pair � = (X,Y) with X ∈ S irr
reg/T, the boundary map

Ga(�)
∂−→ Ga−1(�̂)

is an isomorphism for a ≥ iT + 2 and injective for a = iT + 1.

Lemma 2.9. — For a log-pair � = (X,Y), Ga(�) = 0 for a > dimS(X).

Proof. — Evident from the definition. �

Lemma 2.10. — Let � = (X,∅) be a log-pair and q ≥ 0 be an integer. Assume that for any

Z ∈ S irr
reg with dimS(Z) ≤ dimS(X) the map (2.3) induces a quasi-isomorphism

τ≤qKCH(Z)
�−→ τ≤q
H(Z).

Then tr� induces a quasi-isomorphism τ≤qKCH(�)
�−→ τ≤q
H(�).

Proof. — We prove the lemma by a double induction on the dimension of X and
on the number of irreducible components of X. Let X1 be an irreducible component of
X and let X2 be the union of the other irreducible components. The fibre sequence

�X1∩X2 → � → �

with �X1∩X2 = (X1 ∩ X2,∅) and � = (X1 � X2,∅) gives rise to a morphism of fibre
sequences in the derived category

KCH(�X1∩X2) KCH(�) KCH(�)


H(�X1∩X2) 
H(�) 
H(�)

where the first and second vertical arrow induce isomorphisms on homology groups
in degree ≤ q. So the last arrow induces isomorphisms on homology groups in
degree ≤ q. �
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3. Lefschetz condition

Let the notation be as in the previous section. We introduce the Lefschetz condition
which will be crucial in the proof of our main theorem in the next section. Roughly, the
Lefschetz condition for a homology theory H says that for a log-pair (X,Y;U) such that
an irreducible component of Y is ample, we can calculate Ha+e(U) for a ≤ dim(U) by
using the configuration complex introduced in the previous section. Below we explain
and generalize the arguments given in [JS2, Lemma 3.4] and [SS], which show that the
Lefschetz condition is satisfied for the homology theories (with admissible coefficients, see
Definition 3.4) introduced in Section 1. The use of weight arguments is pivotal.

For a log-pair � = (X,Y) with X ∈ Sreg , let

(3.1) γ εa
� : Ha+e(U) → Ga(�)

be the composition of the maps γ a
� and εa

U which were defined in (2.6) and (1.4).

Definition 3.1. — Let � = (X,Y) be a log-pair with X ∈ S irr
reg and let TX be its image in S.

(1) � is H-clean in degree q for an integer q if q ≤ dimS(X) and γ εa
� is injective for a = q

and surjective for a = q + 1.

(2) Assume X is irreducible. Then � is ample if dimS(X) > dimS(TX) and there exists a

regular closed subscheme Y′ of Y such that Y′ is a divisor on X relatively ample over TX.

(3) We say that H satisfies the Lefschetz condition if a log-pair � = (X,Y) is H-clean in

degree q for all q ≤ dimS(X) whenever � is ample or dimS(X) = dimS(TX).

The following Bertini theorem ([P], [Ga], [JS3]) shows that there are plenty of
ample log-pairs.

Theorem 3.2. — Let � = (X,Y) be a log-pair, where X ∈ S irr
reg with dimS(X) >

dimS(TX). Fix an invertible sheaf L on X relatively ample over TX. For a sufficiently large N > 0
there exists a section of L⊗N with support Z ↪→ X such that �′ = (X,Y ∪ Z) is an ample log-pair.

Lemma 3.3. — Assume that H satisfies the Lefschetz condition. Let T ⊂ S be a closed sub-

scheme. For X ∈ S irr
reg/T the map KHa(X) → KHa(T) induced by the proper map X → T is an

isomorphism for a ≤ dimS(T).

Proof. — By Remark 1.3(1) it suffices to show that the composite map

Ha+e(X)
εa

X−→ KHa(X) → KHa(T)

is an isomorphism for a ≤ dimS(T). Note that the above map is γ εa
� for � = (X,∅).

Hence, the assertion in case dimS(X) = dimS(T) follows from the Lefschetz condition. In
case dimS(X) > dimS(T), use the Bertini Theorem 3.2 to choose regular divisor Y ↪→ X
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relatively ample over T such that � = (X,Y;U) forms an ample log-pair. From the fiber
sequence of log-pairs:

�Y → �X → �, where �Y = (Y,∅), �X = (X,∅),

we get the following commutative diagram with exact rows

Ha+1+e(U)

�

Ha+e(Y)

�

Ha+e(X) Ha+e(U)

�

Ha−1+e(Y)

�

Ga+1(�) Ga(�Y) Ga(�X) Ga(�) Ga−1(�Y)

where for a ≤ dimS(T), the indicated maps are isomorphisms by the Lefschetz condition
and the induction assumption (note Ga(�X) = Ga(�Y) = KHa(T)). So the five lemma
shows that the middle vertical arrow is an isomorphism too. This proves the lemma. We
note that the above diagram is commutative since the vertical maps are the compositions
of the maps induced by the natural transformation from the homology theory H to the
associated Kato homology KH and the maps induced by (2.5). �

In the rest of this section we assume that the base scheme S is the spectrum of the
perfection k of a finitely generated field or the spectrum of a henselian discrete valuation
ring R with finite residue field. Let � be a prime number. The homology theory H will
be as in one of the examples of Section 1 and we assume k is finite if H = Hét (geometric
case) and � is invertible in R if H = Hét (arithmetic case).

Let G = π1(S, η) with a geometric generic point η. The following definition is
motivated by [J2].

Definition 3.4. — A finitely generated free Z�-module T with trivial G-action is called admis-

sible of weight 0. A finitely generated free Z�-module T with continuous G-action is called admissible if

there is an exact sequence of free Z�-modules with continuous G-actions

0 −→ T′ −→ T −→ T′′ −→ 0

such that T′ ⊗Z�
Q� is mixed of weights < 0 [D] and T′′ is admissible of weight 0. A torsion Z�-

module 
 with G-action is called admissible if there is an admissible free Z�-module T such that


 = T ⊗Z�
Q�/Z�.

The next theorem comprises results due to Jannsen–Saito [JS2] and Saito–
Sato [SS].

Theorem 3.5. — Let H∗(−,
) be one of the homology theories defined in Section 1 and S as

explained above. Assume 
 = T ⊗Z�
Q�/Z� is an admissible torsion G-module as in Definition 3.4.

Then H satisfies the Lefschetz condition.
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Proof. — Take an ample log-pair � = (X,Y;U) with X ∈ S irr
reg . We want to show

the map

(3.2) γ εa
� : Ha+e(U) → Ga(�)

is an isomorphism for a ≤ dimS(X).
First we treat the homology theory H = HD(−,
) of Example 1.6 over the base

scheme S = Spec(k). Recall that H is leveled over e = 0. It follows immediately from the
definition that for X ∈ Sreg

(3.3) HD
0 (X,
) � HD

0 (S,
) = 
G, and 
H(X) = 
G[0],
where 
G is the coinvariant of 
 under G. We now distinguish several cases. For X ∈ CS

smooth over k, put Xk = X ×k k with an algebraic closure k of k and write

Hi(Xk,Q�/Z�(r)) =
{

lim−→n
Hi(Xk,ét,μ

⊗r
�n ) � �= ch(k)

lim−→n
Hi−r(Xk,ét,Wn�

r
Xk,log) � = p := ch(k)

Hi(Xk,Q�(r)) =
{

lim←−n
Hi(Xk,ét,μ

⊗r
�n ) ⊗Z�

Q� � �= ch(k)

lim←−n
Hi−r(Xk,ét,Wn�

r
Xk,log) ⊗Zp

Qp � = p := ch(k)

Case I-1. — The desired assertion in case dimS(X) = 0 follows immediately from
(3.3). Assume dimS(X) = 1. In view of (3.3) we are reduced to show that the sequence

(3.4) 0 −→ HD
1 (U,
)

∂−→
⊕

y∈Y(0)

HD
0 (y,
) −→ HD

0 (X,
) −→ 0

is exact. For this we may assume without loss of generality that X is geometrically con-
nected over k. The assertion is clear except the injectivity on the left. An easy computation
shows

(3.5)
⊕

y∈Y

HD
0 (y,
) =

(⊕

y∈Yk̄




)

G

=
(⊕

y∈Yk̄

T ⊗Z�
Q�/Z�

)

G

By the reason of weight, the exact sequence 0 → T′ → T → T′′ → 0 in 3.4 induces an
isomorphism

(⊕

y∈Yk̄




)

G

=
(⊕

y∈Yk̄

T′′ ⊗Z�
Q�/Z�

)

G

.

On the other hand Lemma 1.7 implies

(3.6) HD
1 (U,
) = H1(Uk̄,ét,
(1))G = (

H1(Uk̄,Q�/Z�(1)) ⊗Z�
T)G.
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We claim that the exact sequence in 3.4 induces an isomorphism

H1(Uk̄,ét,
(1))G � (
H1(Uk̄,Q�/Z�(1)) ⊗Z�

T′′)
G
.

By the claim we can assume without loss of generality that T = T′′ is admissible of weight
0 so that 
 = (Q�/Z�)

r with trivial G-action. To show the claim, it suffices to prove
(H1(Uk̄,Q�/Z�(1)) ⊗ T′)G = 0. The affine Lefschetz theorem (case � �= ch(k)) or [Sw,
Lemma 2.1] (case � = ch(k)) implies that the natural map

H1(Uk̄,Q�(1)) → H1(Uk̄,Q�/Z�(1))

is surjective and the claim follows from the vanishing of (H1(Uk̄,Q�(1)) ⊗Z�
T′)G. We

have the exact localization sequence

H1(Xk̄,Q�(1)) −→ H1(Uk̄,Q�(1)) −→ H0(Yk̄,Q�),

where we use [Sw, Theorem 2.5] in case � = ch(k). It shows that H1(Uk̄,Q�(1)) is mixed
of weight −1 and 0, thanks to [D] in case � �= ch(k) and to [CTSS, p. 784 (iii)] and
[GrSw, Theorem 1.3] in case � = ch(k). Since T′ is mixed of weight < 0, this implies the
desired vanishing.

Now we show the injectivity of ∂ in (3.4) assuming 
 = (Q�/Z�)
r with trivial

G-action. Consider the exact localization sequence

(3.7) H1(Xk̄,ét,
(1)) −→ H1(Uk̄,ét,
(1)) −→
⊕

y∈Yk̄


 −→ 
 −→ 0.

By the weight argument as before, we get

(3.8) (H1(Xk̄,ét,
(1)))G = 0,

By (3.5) and (3.6), the sequence (3.7) would give us the desired injectivity, if we showed
that it stays exact after taking coinvariants. Let M be defined by the short exact sequence

(3.9) 0 −→ M −→
⊕

y∈Yk̄


 −→ 
 −→ 0.

From (3.7) and (3.8), we deduce that H1(Uk̄,ét,
(1))G = MG. Let N ⊂ G be an open nor-
mal subgroup which acts trivially on the set Yk̄ . Since 
 = (Q�/Z�)

r with trivial G-action,
N acts trivially on each term of (3.9) and it splits as a sequence of N-modules. Hence we
get the exact sequence

H1(G/N,
) −→ H1(Uk̄,ét,
(1))G −→
(⊕

y∈Yk̄




)

G

−→ 
G −→ 0.

Since 
 = (Q�/Z�)
r is divisible, we have H1(G/N,
) = 0, which finishes the proof of

Case I-1.
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Case I-2. — Assume d = dimS(X) > 1 and Y is irreducible. In this case it is clear
from (3.3) that Ga(�) = 0 for a ∈ Z. On the other hand Lemma 1.7 implies that

(3.10) HD
a (U,
) = H2d−a(Uk̄,ét,
(d))G for a ≤ d

and it vanishes for a < d . Hence it remains to show vanishing in (3.10) for a = d . The
affine Lefschetz theorem (case � �= ch(k)) or [Sw, Lemma 2.1] (case � = ch(k)) implies

Hd(Uk̄,Q�(d)) −→ Hd(Uk̄,Q�/Z�(d)),

is surjective. Hence it suffices to show Hd(Uk̄,Q�(d))G = 0. We have the exact localization
sequence

· · · → Hd(Xk̄,Q�(d)) −→ Hd(Uk̄,Q�(d)) −→ Hd−1(Yk̄,Q�(d −1)) −→ · · · ,

where we use [Sw, Theorem 2.5] in case � = ch(k). It shows that Hd(Uk̄,Q�(d)) is mixed
of weight −d and −d + 1 < 0 thanks to [D] in case � �= ch(k) and to [CTSS, p. 784 (iii)]
and [GrSw, Theorem 1.3] in case � = ch(k). This implies the desired vanishing and the
proof of Case I-2 is complete.

Case I-3. — Assume d = dimS(X) > 1 and that Y consists of r > 1 irreducible
components (Yj)1≤j≤r . Let Yr be ample. We use a double induction on the dimension d

of X and on the number r of irreducible components of Y, which will reduce us to Case
I-1 and Case I-2. Consider the fibre sequence

�Y1 → � → �,

where �Y1 = (Y1,Y1 ∩ (
⋃

j>1 Yj) ;W) and � = (X,
⋃

j>1 Yj ;V). Writing Ha(Z) =
HD

a (Z,
) for Z ∈ CS for simplicity, it gives rise to the following commutative diagram
with exact rows

Ha(W) Ha(V)

�

Ha(U) Ha−1(W)

�

Ha−1(V)

�

Ga(�Y1) Ga(�) Ga(�) Ga−1(�Y1) Ga−1(�)

The commutativity of the diagram follows by the same argument as in the last part of
the proof of Lemma 3.3. For a ≤ d , the indicated maps are isomorphisms by our induc-
tion assumption and the left vertical map is surjective by our induction assumption and
Lemma 2.9. Hence a diagram chase shows that the middle vertical arrow is bijective.
This completes the proof of Theorem 3.5 for the homology theory in Example 1.6. It
implies the theorem for the homology theory in Example 1.4 by Lemma 1.7(3).

Finally we prove the theorem for the homology theory H = Hét(−,
) in Exam-
ple 1.8 over the base scheme S = Spec(R) where R is a henselian discrete valuation ring
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with finite residue field. Recall that this is leveled over e = −1. Note that the restriction
of H on C/s coincides with the homology theory in Example 1.4, where C/s ⊂ CS is the
subcategory of separated schemes of finite type over the closed point s of S. This allows
us to deal with (3.2) only in case X is flat over S (so that TX = S). We now distinguish
some cases. Recall that 
 is assumed to be �-primary torsion with � invertible on S.

Case II-1. — Assume dimS(X) = 1. In this case X = Spec(R′) where R′ is a
henselian discrete valuation ring which is finite over R. Let s′ (resp. η′) be the closed (resp.
generic) point of X. Then the log-pair � = (X,Y) is equal to either (X,∅) or (X, s′;η′).
By definition, 
H(X) = KCH(S) is the complex:

H1(sét,
)
∂←− H2(ηét,
(1))

deg 0 deg 1

which is acyclic due to the localization exact sequence and the isomorphism

Ha(Sét,
(1)) � Ha(sét,
(1)) = 0 for a ≥ 2.

In case � = (X,∅), this implies Ga(�) = Ha(KCH(S)) = 0 for all a ∈ Z. On the other
hand we have

Hét
a−1(X,
) � H3−a(Xét,
(1)) � H3−a(s′

ét,
(1)).

The last group vanishes for a ≤ 1 because of the fact cd(s′) = 1. In case � = (X, s′;η′),

H(�) is equal to the complex H2(ηét,
(1)) put in degree 1, while

Hét
a−1(η

′,
) � H3−a(η′
ét,
(1))

which vanishes for a = 0. For a = 1, the map (3.2) is identified with the correstriction map

H2(η′
ét,
(1)) → H2(ηét,
(1))

which is known to be an isomorphism. This proves the desired assertion in this case.

Case II-2. — Assume d := dimS(X) > 1 and Y is a regular flat and relatively ample
divisor over S. It is clear that Ga(�) = 0 for a ∈ Z. Using duality (1.8) and base change
theorem [SS, Lemma 3.4], we conclude that

(3.11) Hét
a−1(U,
) � H2d−a+1(Uét,
(d)) � H2d−a+1(Us,ét,
(d))

By the assumption of ampleness of Y, Us is affine of dimension d − 1 over s. Hence the
last group of (3.11) vanishes for a ≤ d because of the affine Lefschetz theorem and the
fact cd(s) = 1. This proves the desired assertion in this case.
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Case II-3. — Finally, to show the general case, we use an induction argument as in
Case I-3 to reduce either to Case II-2 or to the geometric case in Example 1.4 over the
base Spec(k), where k is the finite residue field of R.

This completes the proof of Theorem 3.5. �

4. Pullback map (first construction)

Let the notation be as in Section 3. Let H be a homology theory on the category
CS leveled above e. We now introduce a condition for H which plays a crucial role in the
proof of the main theorem.

We say that a morphism f : Y → X in CS is embeddable if it factors as

Y
i−→ PX

πX−→ X,

where i is an immersion and πX is the base change to X of a smooth morphism π : P → S.
We now consider the condition:

(PB) For any embeddable morphism f : X′ → X between irreducible regular
schemes in CS with dimS(X′) = dimS(X) there exist functorial pullbacks

f ∗ : Ha(X) → Ha(X′) and f ∗ : KHa(X) → KHa(X′)

extending the given pullbacks for open immersions and which satisfy the
following properties:
(i) The diagram

Ha+e(X)
εa

X′

f ∗

KHa(X)

f ∗

Ha+e(X′)
εa

X

KHa(X′)

commutes.
(ii) If f is proper and dominant, the composite map

KHa(X)
f ∗−→ KHa(X′)

f∗−→ KHa(X)

is multiplication by deg(X′/X).

The main result of this section is the following:

Theorem 4.1. — All homology theories in the examples in Section 1 satisfy (PB).
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The theorem will be shown here only in case each element of the coefficient group

 is killed by an integer invertible on the base scheme S. The general case requires
completely revisiting Rost’s pullback construction [R] in the absence of purity and will
be explained elsewhere.

The above theorem is deduced from the following more general statement:

Theorem 4.2. — Assume that H extends to a homology theory with duality, see Definition 4.4.

Then H satisfies (PB).

It is an easy routine to verify that the homology theories in the examples in Sec-
tion 1 satisfy the assumption of Theorem 4.2 under the above restriction on the charac-
teristic (see Examples 4.5, 4.6 and 4.7). An alternative shorter proof of Theorem 4.1 for
the homology Hét from Example 1.4 is given in the next section.

The following definition of homology theory with duality is a combination of the
notion of a twisted Poincaré duality theory, see [BO] and [J1], and of Rost’s cycle mod-
ules [R]. As a general remark we mention that in [R] it is assumed that the base is a field.
Nevertheless the results that we transfer from [R] hold over a Dedekind ring too.

Definition 4.3. — A cohomology theory with supports is given by abelian groups Ha
Y(X, n)

for any closed immersion Y ↪→ X of schemes in CS and for any a, n ∈ Z, which satisfies the following

conditions. For Y = X, Ha
Y(X, n) is simply denoted by Ha(X, n).

(1) The groups Ha
Y(X, n) are contravariant functorial for Cartesian squares

Y′ X′

f

Y X,

i.e. there exists a pullback f ∗ : Ha
Y(X, n) → Ha

Y′(X′, n).

(2) For a closed immersion Y ↪→ X there is a cup-product

�(O×
X) ⊗ Ha

Y(X, n) −→ Ha+1
Y (X, n + 1)

compatible with pullback. For t ∈ �(O×
X) we denote the homomorphism

t ∪ − : Ha
Y(X, n) → Ha+1

Y (X, n + 1)

by the symbol {t}.
(3) For closed immersions Z ↪→ Y ↪→ X there is a long exact sequence

· · · −→ Ha
Z(X, n) −→ Ha

Y(X, n) −→ Ha
Y−Z(X−Z, n)

∂−→ Ha+1
Z (X, n) −→ · · ·
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compatible with pullbacks. Note that this implies in particular

Ha
Y(X, n) � Ha

Yred
(X, n)

for a closed immersion Y ↪→ X and the reduced part Yred of Y.

(4) Consider a Cartesian diagram

Y′ X′

f

Y X

such that f is finite and flat and X,X′ are regular. Then there is a pushforward map

f∗ : Ha
Y′(X′, n) → Ha

Y(X, n)

compatible with the localization sequence from (3) and such that f∗ ◦ f ∗ equals multiplica-

tion by deg(X′/X) if X is connected.

(5) For closed immersions Z ↪→ Y ↪→ X and for t ∈ �(O×
X) the diagram

Ha
Y−Z(X − Z, n)

∂

−{t}

Ha+1
Z (X, n)

{t}

Ha
Y(X, n)

{t}

Ha+1
Y−Z(X − Z, n + 1)

∂
Ha+2

Z (X, n + 1) Ha+1
Y (X, n + 1)

commutes.

(6) If Z ↪→ Y ↪→ X are closed immersions of schemes in CS, such that Y has pure codimension

c in X and X is regular, then there is a Gysin homomorphism

PX,Y : Ha
Z(Y, n) −→ Ha+2c

Z (X, n + c)

transitive in an obvious sense and such that for closed immersions Z ↪→ Z′ ↪→ Y the

diagram

Ha
Z(Y, n)

PX,Y

Ha
Z′ (Y, n)

PX,Y

Ha
Z′−Z(Y − Z, n)

∂

PX,Y

Ha+1
Z (Y, n)

PX,Y

Ha+2c
Z (X, n + c) Ha+2c

Z′ (X, n + c) Ha+2c
Z′−Z(X − Z, n + c)

∂

Ha+2c+1
Z (X, n + c)

commutes.
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(7) If X and Y are regular, the Gysin morphism PX,Y is an isomorphism, called purity isomor-

phism.

(8) For closed immersions Z ↪→ Y ↪→ X as in (6) and for t ∈ �(O×
X) the diagram

H∗
Z(Y,∗)

{t̄}

PX,Y

H∗
Z(X,∗)

{t}

H∗
Z(Y,∗)

PX,Y

H∗
Z(X,∗)

commutes. Here t̄ is the restriction of t to Y.

(9) Consider Cartesian squares

(4.1) Z′ Y′

g

X′

f

Z Y X.

with f flat and X,X′,Y,Y′
red regular. Let ηi

Y for 1 ≤ i ≤ r be the maximal points of Y′

and set mi = length(OY′,ηi
Y
). Then the diagram

H∗
Z(Y,∗)

∑
mi (gi)∗

PX,Y

H∗
Z(X,∗)

f ∗

H∗
Z′(Y′,∗)

PX′,Y′
H∗

Z′(X′,∗)

commutes. Here gi means the induced morphism {ηi} → Y.

(10) Consider Cartesian squares as in (4.1) with f finite and flat. Then the diagram

H∗
Z′(Y′,∗)

f∗

PX′,Y′
H∗

Z′(X′,∗)

f∗

H∗
Z(Y,∗)

PX,Y

H∗
Z(X

′,∗)

commutes.
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(11) For an equidimensional regular scheme X and t ∈ �(OX) such that Y := V(t) is regular,

the diagram

Ha(Y, n)
PX,Y

Ha+2
Y (X, n + 1)

Ha(X, n)

i∗

Ha(U, n)
{t}

Ha+1(U, n + 1)

∂

commutes. Here U = X − Y and i : Y ↪→ X is the closed immersion.

Definition 4.4. — We say that a homology theory H extends to a homology theory with duality

if there exists a cohomology theory with supports (X,Y) �→ H∗
Y(X,∗) in the sense of Definition 4.3

and an integer n0 such that for a regular equidimensional X ∈ CS of dimension d there is an isomorphism

DX : Ha(X)
∼−→ H2d−a(X, d + n0)

with the following properties:

(1) For a closed immersion of regular schemes Y ↪→ X and for U = X − Y the diagram

H∗(U)
∂

DU

H∗(Y)

DY

H∗(X)

DX

H∗(U,∗)
∂

H∗(Y,∗) H∗(X,∗)

commutes. Here the lower row is a combination of purity in 4.3(7) and the localization

sequence in 4.3(3).

(2) For an open immersion U → X of regular schemes in CS the diagram

H∗(X)

DX

H∗(U)

DU

H∗(X,∗) H∗(U,∗)

commutes.

(3) If f : X′ → X is finite and flat and X,X′ are regular the diagram

H∗(X′)

f∗

DX′
H∗(X′,∗)

f∗

H∗(X)
DX

H∗(X,∗)

commutes



COHOMOLOGICAL HASSE PRINCIPLE AND MOTIVIC COHOMOLOGY 151

The following examples show that the homology theories in the examples in Sec-
tion 1 extend to homology theories with duality under our assumption on characteristic.

Example 4.5. — Let S = Spec(k) be the spectrum of a perfect field and fix a Gk-
module 
 whose elements are of finite order prime to ch(k). We define étale homology
of π : X → S to be

Hét
a (X) = H−a(Xét,Rπ !
)

and étale cohomology with support in Y ↪→ X to be

Ha
Y(X, n) = Ha

Y(Xét,
(n)).

This defines a cohomology theory with support in the sense of Definition 4.3 and there
is an isomorphism

Ha(X) ∼= H2d−a(X, d)

for regular equidimensional X of dimension d due to [SGA4 XVIII Theorem 3.2.5].

Example 4.6. — Let S = Spec(k) be the spectrum of the perfection of a finitely gen-
erated field and fix a finite Gk-module 
 of order prime to ch(k). Let dk be the Kronecker
dimension of k and d the dimension of X. We define homology of π : X → S to be

HD
a (X) = Hom(Ha

c(Xét,

∨),Q/Z)

and cohomology with support in i : Y ↪→ X to be

Ha
Y(X, n) = Ha+2dk+1

c (k,RπY
∗ R i! 
(n + dk)),

where πY : Y → Spec(k) is the canonical morphism. For the definition of Galois coho-
mology of k with compact support and for Artin-Verdier duality see Section A. If 
 is a
torsion Gk-module whose elements are of order prime to ch(k), we define the correspond-
ing homology and cohomology groups as the direct limit over all finite submodules. This
defines a cohomology theory with support and we get that HD is a homology theory with
duality (see Corollary A.4).

Example 4.7. — Let S = Spec(R) be the spectrum of a henselian discrete valuation
ring. Denote by s (resp. η) the closed (resp. generic) point of S. Fix a unramified Gη-
module 
 whose elements are of finite order prime to ch(k(s)). Define homology of
π : X → S to be

Hét
a (X) = H2−a(Xét,Rπ !
(1))

and cohomology with support in Y ↪→ X to be

Ha
Y(X, n) = Ha

Y(Xét,
(n)).

This defines a cohomology theory with support (see [SS, Lemma 1.8]).
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Assume we are given a homology theory H. Recall that the niveau spectral se-
quence for X ∈ CS reads

E1
a,b(X) =

⊕

x∈X(a)

Ha+b(x) =⇒ Ha+b(X).

It has a pushforward morphism induced by a proper morphism of schemes [BO]. On the
other hand the coniveau spectral sequence for a cohomology theory with support reads

Ea,b
1 (Y ↪→ X, n) =

⊕

x∈X(a)∩Y

Ha+b
x (X, n) =⇒ Ha+b

Y (X, n)

for a closed immersion Y ↪→ X and for n ∈ Z. If a homology theory H extends to a ho-
mology theory with duality in the sense of Definition 4.4 then the two spectral sequences
are canonically isomorphic up to indexing. For example we have isomorphisms for regu-
lar X = Y of dimension d :

Ea,b
1 (X, d + n0) ∼= E1

d−a,d−b(X).

In order to construct a pullback for Kato homology we will work with cohomol-
ogy theories with support. Our next definition makes the term ‘morphism of coniveau
spectral sequences’ precise.

Definition 4.8. — For X,Y ∈ CS a morphism of coniveau spectral sequences

f : X Y

(of degree (a0, b0,m0) and level t ≥ 1) is given by the following data:

(i) For r ≥ t there are homomorphisms

fr : Ea,b
r (X, n) −→ Ea+a0,b+b0

r (Y, n + m0)

such that the following diagram is commutative

Ea,b
r (X, n)

(−1)a0+b0 dr

fr

Ea+r,b−r+1
r (X, n)

fr

Ea+a0,b+b0
r (Y, n + m0)

dr

Ea+r+a0,b−r+1+b0
r (Y, n + m0)

and such that fr+1 and fr are compatible with respect to the diagram.
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(ii) There are homomorphisms

ftot : Ha+b(X, n) −→ Ha+b+a0+b0(Y, n + m0)

compatible with the limit homomorphisms

f∞ : Ea,b
∞ (X, n) −→ Ea+a0,b+b0∞ (Y, n + m0).

In the following we give some examples of morphisms of coniveau spectral se-
quences.

Flat pullback. — For a flat morphism f : Y → X of schemes in CS it is shown in [BO]
that there arises from 4.3(1) a morphism of coniveau spectral sequences

f ∗ : X Y

of degree (0,0,0) and level 1.

Cup-product. — Let X be in CS. By taking cup-product with an element t ∈ �(O×
X)

(cf. 4.3(2)), we get a morphism of coniveau spectral sequences

{t} : X X

of degree (0,1,1) and level 1.

Pushforward by closed immersion. — For a closed immersion i : Y ↪→ X of codimen-
sion c of regular schemes in CS, we get a pushforward morphism of coniveau spectral
sequences

i∗ : Y X

of degree (c, c, c) and level 1 which is given as the composition

Ea−c,b−c
r (Y, n − c)

∼−→ Ea,b
r (Y ↪→ X, n) −→ Ea,b

r (X, n).

Here the former morphism is induced by purity in 4.3(7).

Residue. — For a closed immersion Y ↪→ X of codimension c of regular schemes in
CS with U = X − Y, we get a residue morphism of coniveau spectral sequences

∂ : U Y
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of degree (1 − c,−c,−c) and level 1 which is given as the composition

Ea,b
r (U, n) −→ Ea+1,b

r (Y ↪→ X, n)
∼−→ Ea+1−c,b−c

r (Y, n − c).

Here the former morphism arises from 4.3(3) and the latter isomorphism is induced by
purity in 4.3(7). For r = 2 we have a long exact sequence

(4.2) · · · ∂−→ Ea−c,b−c
2 (Y, n)

i∗−→ Ea,b
2 (X, n)

j∗−→ Ea,b
2 (U, n)

∂−→ Ea+1−c,b−c
2 (Y, n) → ·· · ,

where j : U ↪→ X is the open immersion.

Finite flat pushforward. — For a finite flat morphism f : X′ → X between regular
schemes in CS, there arises from 4.3(4) a morphism of coniveau spectral sequences

f∗ : X′ X

of degree (0,0,0) and level 1.
The following proposition on homotopy invariance is crucial.

Proposition 4.9. — For regular X ∈ CS and for a vector bundle f : V → X the flat pullback

along f induces an isomorphism of coniveau spectral sequences of degree (0,0,0) and level 2

f ∗ : X V.

In particular f ∗ : H∗(X,∗) → H∗(V,∗) is an isomorphism.

Proof. — It is sufficient to show that f induces an isomorphism on E∗,∗
2 -level. First

we treat the special case where V → X is a trivial vector bundle, namely V = X×An → X
is the natural projection. By induction on n we are reduced to the case V = X × A1.
This can be shown by transferring the argument of [R, Section 9] to our setting. For the
function field E of an integral scheme X ∈ CS, write

H∗(E,∗) = lim−→
U⊂X

H∗(U,∗),

where U ranges over all open subschemes of X. Then the functor E �→ H∗(E,∗) from
function fields of integral schemes in CS to abelian groups satisfies properties similar to
Rost’s axioms for cycle modules. Now an inverse to f ∗

2 : E∗,∗
2 (X) → E∗,∗

2 (V) is given by

X × A1 X × (A1 − {0})
{−1/t}

X × (A1 − {0}) ∂

X.

Here ∂ is the residue morphism corresponding to the closed immersion X × {∞} ↪→
X × (P1 − {0}).
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We now reduce the general case to the special case. We proceed by induction on
dim(X). First we assume that there exists a regular closed subscheme Y ⊂ X such that
V → X is a trivial vector bundle over U = X − Y. We have the commutative diagram

· · · ∂

Ea−c,b−c
2 (Y, n)

f ∗

i∗
Ea,b

2 (X, n)
j∗

f ∗

Ea,b
2 (U, n)

∂

f ∗

· · ·

· · · ∂

Ea−c,b−c
2 (f −1(Y), n)

i∗
Ea,b

2 (f −1(X), n)
j∗

Ea,b
2 (f −1(U), n)

∂ · · ·
where the horizontal long exact sequences come from (4.2). By induction and by what we
have shown, this proves that f ∗

2 : E∗,∗
2 (X) → E∗,∗

2 (V) is an isomorphism.
In general there is a sequence of closed subschemes

X0 ⊂ X1 ⊂ · · ·Xr = X

such that Xi − Xi−1 for 1 ≤ i ≤ r are regular and that V → X is a trivial vector bundle
over X − Xr . This reduces the proof to the previous case and the proof is complete. �

Using homotopy invariance we can now define the pullback morphism of coniveau
spectral sequences along closed immersions of regular schemes. For such a closed immer-
sion i : Y ↪→ X let D(X,Y) be the blow-up of X × A1 in Y × {0} minus the blow-up of X
in Y. Then D(X,Y) is flat over A1, and the fiber over a point p ∈ A1 − {0} (resp. 0 ∈ A1)
is isomorphic to X × {p} (resp. the normal cone NYX of Y in X), cf. [R, Section 10].

Pullback along immersions:. — Let i : Y → X be a closed immersion of regular
schemes in CS. Using the normal cone we define the morphism of coniveau spectral
sequences of degree (0,0,0) and level 1

J(i) : X NYX.

as the composition

X
π∗

X × (A1 − {0})
{t}

X × (A1 − {0}) ∂

NYX.

Here π : X × (A1 −{0}) → X is the projection and t is the standard coordinate of A1 and
∂ is the residue morphism corresponding to the closed immersion NYX ↪→ D(X,Y).
Composing J(i) with the inverse of the flat pullback along NYX → Y we get the pullback
morphism along i which is of degree (0,0,0) and level 2

i∗ : X Y.

The proof of the next proposition is standard (see [Deg] for the argument on the
E∗,∗

2 -level).
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Proposition 4.10. — The pullback along closed immersions satisfies:

(i) The homomorphism i∗tot : H∗(X,∗) → H∗(Y,∗) stemming from the normal cone con-

struction is equal to the usual pullback from Definition 4.3(1).

(ii) The construction of pullback along closed immersions is functorial.

(iii) It is compatible with cup-products.

(iv) For a Cartesian square

Y′ X′

f

Y
i

X

of regular schemes with closed immersion i and flat f the diagram

Y′ X′

Y X
i∗

f ∗

commutes.

(v) For two morphisms Z
i→ Y

p→ X of regular schemes with i a closed immersion, p flat and

p ◦ i flat, we have

(p ◦ i)∗ = i∗ ◦ p∗.

(vi) For two morphisms Z
i→ Y

p→ X of regular schemes with i a closed immersion, p smooth

and p ◦ i a closed immersion, we have

(p ◦ i)∗ = i∗ ◦ p∗.

It follows from Proposition 4.10(iv) that one gets a pullback map along lo-
cally closed immersions of regular schemes with the same properties. Using Proposi-
tion 4.10(vi) and standard arguments, see [F] Section 6.6, one can now define a pullback
along arbitrary embeddable morphisms between regular schemes.

General pullback. — Let f : Y → X be an embeddable morphism of regular schemes
in CS, which factors as

Y
i−→ P

π−→ X,

where π is smooth and i is an immersion. Define

f ∗ = i∗ ◦ π∗.
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Proposition 4.11. — The following holds for the general pullback along f :

(i) The map f ∗
tot : H∗(X,∗) → H∗(Y,∗) is equal to the usual pullback map of cohomology.

(ii) The map f ∗ does not depend on the factorization of f .

(iii) The general pullback construction is functorial.

(iv) If f is flat the general pullback coincides with the flat pullback.

Now we can prove Theorem 4.2. Passing from the coniveau spectral sequence to
the niveau spectral sequence as discussed above gives us a pullback map of niveau spectral
sequences for a morphism of regular schemes of the same dimension. In particular we
have produced the pullback maps in condition (PB). The only thing one has to check is
part (ii) of (PB). For this we need a detailed understanding of the pullback construction on
E∗,∗

1 -level as is given in the work of Rost [R] in terms of his Chow groups with coefficients.
Fix an integer a ≥ 0. Recall that for X ∈ C , the term in degree a of the Kato complex
KCH(X) is

E1
a,e(X) =

⊕

x∈X(a)

Ha+e(x).

Now let f : X′ → X be as in (PB). Choose a non-empty open subscheme V ⊂ X such
that f is finite and flat over V. Putting Z = X − V, we have

(4.3) E1
a,e(X) = E1

a,e(V) ⊕ E1
a,e(Z).

We put

� = Ker
(
E1

a,e(V) ↪→ E1
a,e(X)

d1−→ E1
a−1,e(X)

)

and denote by imV
∗ the image of � in KHa(X) = E2

a,e(X). The following two lemmas
imply part (ii) in (PB) and therefore finish the proof the theorem.

Lemma 4.12. — The restriction of f∗ ◦ f ∗ : KHa(X) → KHa(X) to imV
∗ , i.e.

f∗ ◦ f ∗|imV∗ : imV
∗ −→ KHa(X),

is equal to the inclusion imV
∗ ↪→ KHa(X) multiplied by deg(X′/X).

Lemma 4.13. — The inclusion imV
∗ ↪→ KHa(X) is an isomorphism.

Proof of Lemma 4.12. — Consider α ∈ � ⊂ E1
a,e(V) and denote its image in E1

a,e(X)

by αX (cf. (4.3)). Choose a factorization f = i ◦ p with a closed immersion i and a smooth
morphism p and choose a coordination of the normal bundle of i as in [R, Section 9].
This choice induces a pullback map f ∗ : E1

a,e(X) → E1
a,e(X

′) as in [R, Section 12] which
satisfies the following properties:



158 MORITZ KERZ, SHUJI SAITO

• the restriction of f ∗ to Ker(d1 : E1
a,e(X) → E1

a−1,e(X)) induces f ∗ on KHa(X) =
E2

a,e(X).
• For an open immersion j : U ↪→ X, we have the commutative diagram:

(4.4) E1
a,e(X)

f ∗−−−→ E1
a,e(X

′)
⏐⏐�j∗

⏐⏐�(j′)∗

E1
a,e(U)

f ∗
U−−−→ E1

a,e(U
′)

where the vertical arrows are the pullbacks by the open immersions and j ′ : U′ =
f −1(U) ↪→ X′ and fU : U′ → U is the base change of f via j (see the sentence
above [R], Lemma 11.1).

• In the above diagram, if fU is flat, then f ∗
U is the naive pullback via the flat map

U′ → U (see below Definition 4.8, and [R, (3.5)] and [R, Lemma 12.2]).

We put

αX′ = f ∗(αX) ∈ E1
a,e(X

′).

Let V′ = f =1(V) and Z′ = X′ − V′ = f −1(Z) with Z = X − V. Let

αX′ = α1 + α2, α1 ∈ E1
a,e(V

′), α2 ∈ E1
a,e(Z

′)

be the decomposition with respect to

E1
a,e(X

′) = E1
a,e(V

′) ⊕ E1
a,e(Z

′).

By the above fact, α1 = (j ′)∗(αX′) is the naive pullback of α ∈ E1
a,e(V) via the flat map

V′ → V. Therefore we have f∗(α1) = deg(X′/X)αX. So in order to finish the proof of
the lemma it suffices to show that β := f∗(α2) = 0 ∈ E1

a,e(X). We have the commutative
diagram:

E1
a,e(Z

′)
i′∗−−−→ E1

a,e(X
′)

⏐⏐�(fZ)∗
⏐⏐�f∗

E1
a,e(Z)

i∗−−−→ E1
a,e(X)

where i : Z ↪→ X and i′ : Z′ ↪→ X′ are the closed immersions and fZ : Z′ → Z is the base
change of f via i. This shows the support of β is contained in Z, namely β ∈ E1

a,e(Z).
Let i : Y ↪→ X be the support of αX. Since αX is the image of α ∈ E1

a,e(V), Y is the
union of closed integral subschemes Yi of dimS(Yi) = a such that none of Yi is contained
in Z = X − V, which implies dimS(Y ∩ Z) < a. Applying the diagram (4.4) to the case
U = X − Y, we see αX′ ∈ E1

a,e(Y
′) with Y′ = f −1(Y). By the same argument as above, this
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implies the support of β is contained in Y and hence β ∈ E1
a,e(Z ∩ Y). Now the desired

assertion follows from the fact E1
a,e(Z ∩ Y) = 0 as dimS(Z ∩ Y) < a. �

Proof of Lemma 4.13. — Assume for simplicity of notation that our homology theory
H is leveled above e = 0. It suffices to show that the composite map

E1
a+1,0(X)

d1−→ E1
a,0(X) → E1

a,0(Z)

is surjective for a ∈ Z, where the second map is the projection with respect to (4.3). For a
point z ∈ Z(a) we can choose z′ ∈ V(a+1) by [SS, Lemma 7.2] such that z lies on the regular
locus of Y := {z′}. Let R be the finite set of points of dimension a on Y ∩ Z which are
different from z. We have an exact sequence arising as the limit of localization sequences
for the homology theory H

Ha+1(z
′)

∂−→ Ha(z) ⊕ Ha(R′) −→ Ha(A),

where A is the normalization of the semi-local one-dimensional ring OY,{z}∪R and R′ is
the set of points of Spec(A) lying over R. By the assumption that H is leveled above e = 0
we have Ha(A) = 0 and hence ∂ is surjective. This implies the desired surjectivity. �

5. Pullback map (second construction)

In the previous section we gave a complete proof of the fact, Theorem 4.1, that the
homology theories defined in the examples in Section 1 satisfy condition (PB) under our
restriction on characteristic. This proof relies on the Fulton-Rost version of intersection
theory. In this section we give an alternative proof of Theorem 4.1 for the étale homology
theory Hét from Example 1.4 by using the fact that the Gersten conjecture holds over
fields. This allows us to remove the restriction on characteristic at least for Hét.

Let the notation be as in Example 1.4. Assume S = Spec(k) where k is a finite field.
Let X be smooth over S = Spec(k) of pure dimension d . By Lemma 1.5 we have

an isomorphism

Ha(X) = Hét
a (X,
) = H2d−a

ét (X,
(d)).

Thus, for f : X → Y as in (PB), f ∗ : Hét
a (Y,
) → Hét

a (X,
) is defined by

f ∗ : H2d−a
ét (Y,
(d)) → H2d−a

ét (X,
(d)), (d = dim(X) = dim(Y))

the pullback map for étale cohomology. We have the spectral sequence

(5.1) Ea,b
2 = Ha

Zar(X, Hb
X) ⇒ Ha+b

ét (X,
(d)),
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where Hb
X = Rbρ∗
(d) with ρ : Xét → XZar , the natural morphism of sites. By the Bloch-

Ogus version of Gersten’s conjecture (see [CTHK]), we have a flasque resolution of Hb
X:

(5.2) Hb
X

�−→ C b
X in Db(XZar),

where Db(XZar) is the derived category of bounded complexes of Zariski sheaves on Y,
and C b

X is the following (cohomological) complex of Zariski sheaves:
⊕

x∈X(0)

(ix)∗Hb
ét(x,
(d)) →

⊕

x∈X(1)

(ix)∗Hb−1
ét (x,
(d − 1)) → ·· ·

→
⊕

x∈X(a)

(ix)∗Hb−a
ét (x,
(d − a)) → ·· · ,

where the term
⊕

x∈X(a) (ix)∗Hb−a
ét (x,
(d − a)) is placed in degree a and ix : x → X is the

inclusion. In view of the description (1.6) of KCH(X), this implies a natural isomorphism

(5.3) KHét
a (X)

�−→ Hd−a
Zar (X, Hd+1

X ).

We note Hb
X = 0 for b > d + 1 due to the injectivity of Hb

X → (iη)∗Hb(η,
(d)) (η is
the generic point of X) and the fact Hb(η,
(d)) = 0 for b > d + 1 where we use the
assumption that k is finite. Thus we get an edge homomorphism for the spectral sequence
(5.1):

λa
X : H2d+1−a

ét (X,
(d)) → Hd−a
Zar (X, Hd+1

X ).

This allows us to define f ∗ : KHét
a (Y) → KHét

a (X) for f : X → Y as in (PB) to be the
composite map

f ∗ : Hd−a
Zar (Y, Hd+1

Y ) → Hd−a
Zar (X, f ∗Hd+1

Y ) → Hd−a
Zar (X, Hd+1

X ),

where the second map is induced by the natural pullback map f ∗Hd+1
Y → Hd+1

X .
The first condition of (PB) is immediate from the definitions. The second condi-

tion follows from the commutative diagram

H2d+1−a
ét (Y,
(d))

f ∗−−−→ H2d+1−a
ét (X,
(d))

⏐⏐�λa
Y

⏐⏐�λa
X

Hd−a
Zar (Y, Hd+1

Y )
f ∗−−−→ Hd−a

Zar (X, Hd+1
X )

and from the commutative diagram

Hét
a−1(X,
)

∼−−−→ H2d+1−a
ét (X,
(d))

⏐⏐�εa
X

⏐⏐�λa
X

KHét
a (X)

∼−−−→ Hd−a
Zar (X, Hd+1

X )
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The commutativity of the last diagram follows from the compatibility of the niveau and
coniveau spectral sequences with respect to the isomorphism (5.3) and from compatibility
of the coniveau spectral sequence and the spectral sequence (5.1) (cf. [Pa, Cor. 4.4]).

Finally we show the last condition of (PB). Let f : X → Y be as in (PB). From the
flasque resolution (5.2), we get an isomorphism

(5.4) Rf∗Hd+1
X

�−→ f∗C d+1
X in Db(YZar).

We have the trace map

trf : f∗C d+1
X → C d+1

Y

that induces �(U, f∗C d+1
X ) → �(U, C d+1

Y ) for open U ⊂ Y, which is induced by the fol-
lowing commutative diagram

⊕
x∈V(0)

Hd+1
ét (x,
(d)) −−−→ ⊕

x∈V(1)

Hd
ét(x,
(d − 1)) −−−→ · · · −−−→ ⊕

x∈V(d)

H1
ét(x,
)

⏐⏐�f∗
⏐⏐�f∗

⏐⏐�f∗
⊕

y∈U(0)

Hd+1
ét (y,
(d)) −−−→ ⊕

y∈U(1)

Hd
ét(y,
(d − 1)) −−−→ · · · −−−→ ⊕

y∈U(d)

H1
ét(y,
)

where V = f −1(U) and the upper (resp. lower) complex represents �(U, f∗C d+1
X ) (resp.

�(U, C d+1
Y )). For x ∈ V(a) and y ∈ U(a), the (x, y)-component of f∗:

Hd+1−a
ét (x,
(d − a)) → Hd+1−a

ét (y,
(d − a))

is 0 if y �= f (x) and the pushforward map for the finite morphism Spec(x) → Spec(y) if
y = f (x). By (5.2) and (5.4), trf induces trf : Rf∗Hd+1

X → Hd+1
Y , a map in Db(YZar), and

f∗ : Hb
Zar(X, Hd+1

X ) � Hb
Zar(Y,Rf∗Hd+1

X )
trf−→ Hb

Zar(Y, Hd+1
Y ).

It is easy to check the commutativity of the following diagram:

KHét
a (X)

�−−−→ Hd−a
Zar (X, Hd+1

X )
⏐⏐�f∗

⏐⏐�f∗

KHét
a (Y)

�−−−→ Hd−a
Zar (Y, Hd+1

Y )

Hence we are reduced to show the following:

Claim 5.1. — Let f : X → Y be as (PB). Then the composite

Hd+1
Y

f ∗−→ Rf∗Hd+1
X

trf−→ Hd+1
Y

is the multiplication by [k(X) : k(Y)], where the first map is the adjunction of the pullback
map f ∗Hd+1

Y → Hd+1
X .
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Indeed, by the Gersten conjecture, the natural map Hd+1
Y → (iη)∗Hd+1

ét (η,
(d)) is
injective, where η is the generic point of Y. Hence it suffices to show the claim after the
restriction to η, which follows from the standard fact that the composite

Hn(η,
(d))
f ∗−→ Hn(ξ,
(d))

f∗−→ Hn(η,
(d))

is the multiplication by [k(X) : k(Y)], where ξ is the generic point of X.

6. Main theorem

In this section we state and prove the Main Theorem 6.2. Let the notation be as in
Section 2. For an integer q ≥ 0 and a prime �, consider the following condition:

(G)�,q For any X ∈ S irr
reg and for any proper closed subscheme W of dimS(W) ≤ q

in X, there exists X′ ∈ S irr
reg and a morphism π : X′ → X such that

• π is surjective and generically finite of degree prime to �,
• W′ := π−1(W)red is an admissible simple normal crossing divisor

on X′ (cf. Definition 2.2).

Remark 6.1.

(1) If the base scheme S is the spectrum of a field of characteristic 0, (G)�,q holds
for all q and � thanks to Hironaka [H].

(2) (G)�,q holds for q ≤ 2 due to [CJS, Corollary 0.4]. Indeed in the cases (1) and
(2), one can take π to be a birational morphism.

(3) If � is invertible on S, (G)�,q for all q ≥ 0 follows from stronger statements which
have been recently proved by Gabber (see [Il2, Theorem 1.3 and 1.4])

Now we state the main theorem.

Theorem 6.2. — Let H be a homology theory leveled above e. Fix an integer q ≥ 0 and a prime

�, and assume the following conditions:

(1) Ha(X) is �-primary torsion for all X ∈ CS and a ∈ Z,

(2) H satisfies the Lefschetz condition (cf. Definition 3.1),

(3) the condition (PB) from Section 4 holds for H,

(4) the condition (G)�,q−2 holds.

Then, for any X ∈ S irr
reg , the trace map (2.3) induces a quasi-isomorphism

τ≤qKCH(X)
�−→ τ≤qKCH(TX).



COHOMOLOGICAL HASSE PRINCIPLE AND MOTIVIC COHOMOLOGY 163

Before coming to the proof of the theorem we deduce the following corollary gen-
eralizing the theorem to not necessarily projective schemes.

Corollary 6.3. — Let H be a homology theory satisfying (1), (2) and (3) of Theorem 6.2.

Assume further that � is invertible on S (so that (4) is satisfied for all q by Gabber’s theorem). Let

X ∈ CS be regular, proper and connected over S and let T be the image of X in S. Then KHa(X) = 0
for a ≥ iT + 1 (cf. Lemma 2.8).

Proof. — Since � is invertible on S, we may use Chow’s lemma [EGAII, Section 5.6]
and Gabber’s theorem [Il2, Theorem 1.3 and 1.4] to construct X′ ∈ S irr

reg/T and a mor-
phism π : X′ → X such that π is surjective and generically finite of degree prime to
�. By Theorem 6.2 we get KHa(X′) = 0 for a ≥ iT + 1. From (PB) we deduce that
π∗ : KHa(X′) → KHa(X) is surjective for a ∈ Z and thus the corollary follows. �

For the proof of the theorem, we first show the following Proposition 6.4. Let q ≥ 1
be an integer. For a log-pair � = (X,Y;U) with X ∈ S irr

reg , consider the condition:

(LG)q The composite map

∂εa
� : Ha+e(U)

ε
q

U−→ KHa(U)
∂−→ KHa−1(Y)

is injective for a = q and surjective for a = q + 1.

Proposition 6.4. — Let H be a homology theory leveled above e. Let X ∈ S irr
reg and d =

dimS(X). Fix a prime � and an integer q ≥ 0. Assume the following conditions:

(1) KHq(X) is �-primary torsion.

(2) The condition (PB) from Section 4 holds for H.

(3) The condition (G)�,q−2 holds.

(4) For any log-pair � = (X′,Y′) with a proper surjective morphism π : X′ → X such that

X′ ∈ S irr
reg and dimS(X′) = d, there exists a log-pair �′ = (X′,Y′′) such that Y′ ⊂ Y′′

and that �′ satisfies the condition (LG)q.

Then we have KHq(X) = 0.

For the proof of the proposition, we need the following:

Lemma 6.5. — Let q ≥ 1 be an integer. Let � = (X,Y;U) with X ∈ S irr
reg be a log-pair

which satisfies the condition (LG)q. Let j∗ : KHq(X) → KHq(U) be the pullback via j : U ↪→ X
and ε

q

U : Hq+e(U) → KHq(U) be as in Definition 1.2(3). Then (j∗)−1(Image(εq

U)) = 0.

Proof. — First we claim that j∗ is injective. Indeed we have the exact sequence

KHq+1(U)
∂−→ KHq(Y) → KHq(X)

j∗−→ KHq(U).
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Since ∂ε
q+1
U is surjective by the assumption, ∂ is surjective and the claim follows. By the

above claim it suffices to show Image(j∗) ∩ Image(εq

U) = 0. We have the exact sequence

KHq(X)
j∗−−−→ KHq(U)

∂−−−→ KHq−1(Y).

Let β ∈ Hq+e(U) and assume α = ε
q

U(β) ∈ KHq(U) lies in Image(j∗). It implies ∂(α) =
∂ε

q

U(β) = 0. Since ∂ε
q

U is injective by the assumption, this implies β = 0 so that α = 0. �

Now we prove Proposition 6.4.

Proof. — Let α ∈ KHq(X). By recalling that

ε
q

X : Hq+e(X) → KHq(X) = E2
q,e(X)

is an edge homomorphism and by looking at the differentials

dr
q,e : Er

q,e(X) → Er
q−r,r+e−1(X),

we conclude that there exists a closed subscheme W ⊂ X such that dim(W) ≤ q − 2,
and that putting U = X − W, the pullback α|U ∈ KHq(U) of α via U → X lies in the
image of ε

q

U, namely there exists β ∈ Hq−1(U) such that α|U = ε
q

U(β). By (G)�,q−2 we
can find X′ ∈ S irr

reg and a proper surjective map π : X′ → X generically finite of degree
prime to � such that (X′,Y′) is a log-pair where Y′ = π−1(W)red . Put U′ = π−1(U). By
the condition 6.4(4), there is a log-pair � = (X′,Y′′;V) with Y′ ⊂ Y′′ which satisfies
the condition (LG)q. Thanks to the condition 6.4(2), we have the commutative diagram
(since X and X′ are projective over S, π is projective and hence it is embeddable in the
sense of Section 4)

KHq(X)
π∗−−−→ KHq(X′)

⏐⏐�
⏐⏐�

KHq(U)
π∗−−−→ KHq(U′) −−−→ KHq(V)

�⏐⏐ε
q

U

�⏐⏐ε
q

U′
�⏐⏐ε

q

V

Hq+e(U)
π∗−−−→ Hq+e(U′) −−−→ Hq+e(V)

Put α′ = π∗(α) ∈ KHq(X′) and β ′ = π∗(β) ∈ Hq−1(U′). Let α′
|V ∈ KHq(V) (resp. β ′

|V ∈
Hq(V)) be the pullback of α′ (resp. β ′) via V ↪→ X′ (resp. V ↪→ U′). By the diagram we
get α′

|V = ε
q

V(β ′
|V) ∈ KHq(V). By Lemma 6.5 this implies α′ = 0. Since the composite

KHq(X)
π∗−→ KHq(X′)

π∗−→ KHq(X)
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is the multiplication of the degree of π which is prime to �, we get α = 0 by the condition
6.4(1). �

For a closed subscheme T ⊂ S and integers q, d ≥ 0, consider the condition:

KCT(q, d) For any X ∈ Sreg with dim(X) ≤ d and TX ⊂ T where TX is the im-
age of X in S, the proper map X → TX induces a quasi-isomorphism
τ≤qKCH(X)

�−→ τ≤qKCH(TX).

Lemma 6.6. — Assume KCT(q, d − 1) for integers d ≥ 1 and q ≥ 0. If a log-pair

� = (X,Y;U) with X ∈ S irr
reg/T is H-clean in degree q and if q ≥ iT + 1 (cf. Definition 3.1 and

Lemma 2.8), then it satisfies (LG)q.

Proof. — We consider the commutative diagram

Hq+1+e(U)
ε

q+1
U−−−→ KHq+1(U)

∂−−−→ KHq(Y)
⏐⏐�γ

q+1
�

�
⏐⏐�γ

q

�̂

Gq+1(�)
�−−−→
∂

Gq(�̂)

where γ
q

�̂
is an isomorphism by KCT(q, d − 1) and Lemma 2.10, and the lower ∂ is an

isomorphism by Lemma 2.8 (use q ≥ dimS(T) + 1), and γ ε
q+1
� = γ

q+1
� ◦ ε

q+1
U is surjec-

tive by the cleanness assumption. This shows ∂ε
q+1
U is surjective. Next we consider the

commutative diagram

Hq+e(U)
ε

q

U−−−→ KHq(U)
∂−−−→ KHq−1(Y)

⏐⏐�γ
q

�
�
⏐⏐�γ

q−1
�̂

Gq(�)
↪→−−−→
∂

Gq−1(�̂)

where γ
q−1

�̂
is an isomorphism by KCT(q, d − 1) and Lemma 2.10, and the lower ∂ is

injective by Lemma 2.8, and γ ε
q

� = γ
q

� ◦ ε
q

U is injective by the cleanness assumption. This
shows ∂ε

q

U is injective and the proof is complete. �

We now prove Theorem 6.2.

Proof. — For this we may fix a closed subscheme T ⊂ S. It suffices to show
KCT(q, d) holds for all d ≥ 0. By Lemma 3.3 we may assume q ≥ dimS(T) + 1 ≥ iT + 1.
We now proceed by induction on d = dim(X). The case d = 0 follows from Lemma 3.3.
Assume d ≥ 1 and KCT(q, d − 1) and we want to show KHq(X) = 0 for X ∈ S irr

reg/T. For
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this we apply Proposition 6.4 to X. The conditions (1), (2) and (3) hold by the assump-
tion of the theorem. The condition (4) of the proposition is satisfied by Lemma 6.6 and
the Bertini Theorem 3.2 due to the Lefschetz condition. This completes the proof of the
theorem. �

7. Result with finite coefficients

Theorem 6.2 shows the vanishing of the Kato homology of an object of Sreg for
a homology theory satisfying the Lefschetz condition. By Theorem 3.5 the condition is
satisfied for some homology theories with admissible coefficient 
 = T ⊗Z�

Q�/Z� as in
Definition 3.4. In this section we improve Theorem 6.2 and Corollary 6.3 to the case of
finite coefficient 
n = T ⊗Z�

Z/�nZ.
Fix a prime � and assume given an inductive system of homology theories:

H = {H(−,
n)}n≥1,

where H(−,
n) are homology theories leveled above e on CS. We assume H(X,
n) is
killed by �n for any X ∈ CS. It gives rise to a homolgy theory (again leveled above e) on CS:

H(−,
∞) : X → Ha(X,
∞) := lim−→
n≥1

H(X,
n) for X ∈ Ob(CS)

with ιn : H(−,
n) → H(−,
∞), a natural transformation of homology theories. We
further assume given for each integer n ≥ 1, a map of homology theories of degree −1

(7.1) ∂n : H(−,
∞) → H(−,
n)

such that for any X ∈ C and for any integers m > n, we have the following commutative
diagram of exact sequences

(7.2) 0 −−−→ Hq+1(X,
∞)/�n ∂n−−−→ Hq(X,
n)
ιn−−−→ Hq(X,
∞)[�n] −−−→ 0

∥∥∥
⏐⏐�ιm,n

∥∥∥

0 −−−→ Hq+1(X,
∞)/�m ∂m−−−→ Hq(X,
m)
ιm−−−→ Hq(X,
∞)[�m] −−−→ 0.

We let KCH(X,
n) and KCH(X,
∞) denote the Kato complexes associated to
H(−,
n) and H(−,
∞) respectively and KHa(X,
n) and KHa(X,
∞) denote their
Kato homology groups. By definition KHa(X,
∞) = lim−→n≥1

KHa(X,
n).

Remark 7.1. — The above assumption is satisfied for the inductive systems of ho-
mology theories {Hét(−,
n)}n≥1 and {HD(−,
n)}n≥1 in Examples 1.4 and 1.6, where

n = T ⊗ Z/�nZ for a finitely generated free Z�-module with continuous Gk-action.
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For an integer q ≥ 0 we consider the following condition for H(−,
∞):

(D)q For any x ∈ X(q), Hq+e+1(x,
∞) is divisible.

Remark 7.2.

(1) For H = {Hét(−,Z/�nZ)}n≥1, the condition (D)q is implied by the Bloch-
Kato conjecture (see Lemma 7.3 below). For H = {HD(−,Z/�nZ)}n≥1, it is not
known to hold.

(2) Let x ∈ X(q). In view of (7.2) and the vanishing of Hq+e−1(x,
∞) (which follows
from the assumption that H(−,
n) is leveled above e), (D)q is equivalent to
the exactness of the following sequence

0 → Hq+e(x,
n)
ιn−→ Hq+e(x,
∞)

�n−→ Hq+e(x,
∞) → 0.

Lemma 7.3. — For H = Hét(−,Z/�nZ) in Example 1.4, (D)q holds.

Proof. — In view of Lemma 1.5, (D)q is equivalent to the condition that

lim−→
n

Hq

ét(Spec(L),Z/�nZ(q))

is divisible for the residue field L = κ(x) of x ∈ X(q). This is a consequence of the surjec-
tivity of the Galois symbol map ([Mi] and [BK, Section 2]):

h
q

L : KM
q (L) → Hq

et(Spec(L),Z/�nZ(q))

where KM
q (−) denotes the Milnor K-group. In case � = ch(L) the surjectivity had been

shown by Bloch-Gabber-Kato [BK]. In case � �= ch(L) it has been called the Bloch-Kato
conjecture and now established by Rost and Voevodsky (the whole proof is available in
the series of the papers [V1], [V2], [SJ] and [HW]). �

Theorem 7.4. — Let H be an inductive system of homology theories as above. Fix an integer

q ≥ 0 and assume the following conditions:

(1) H(−,
∞) satisfies the Lefschetz condition (cf. Definition 3.1).

(2) H(−,
∞) satisfies (PB) from Section 4.

(3) (G)�,q−1 from Section 6 holds (this is the case if q ≤ 3 by [CJS]).

(4) (D)q and (D)q−1 hold.

Then, for X ∈ S irr
reg with image T in S, KHq(X,
n) = 0 if q ≥ iT + 1.

Corollary 7.5. — Assume that H(−,
∞) as above satisfies the Lefschetz condition and (PB)

from Section 4. Assume further that � is invertible on S. Let X ∈ CS be regular, proper and connected

over S and let T be the image of X in S. Let q ≥ 1 be an integer. Assuming (D)q and (D)q−1, we

have KHq(X,
n) = 0 if q ≥ iT + 1.
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The theorem and corollary follow at once from Theorem 6.2, Corollary 6.3 and
the following:

Lemma 7.6. — If (D)q and (D)q−1 holds, we have an exact sequence for X ∈ CS:

0 → KHq+1(X,
∞)/�n → KHq(X,
n) → KHq(X,
∞)[�n] → 0.

Proof. — This follows from the following commutative diagram:

0 0
⏐⏐�

⏐⏐�
⊕

x∈X(q+1)
Hq+e+1(x,
n) −−−→ ⊕

x∈X(q)
Hq+e(x,
n) −−−→ ⊕

x∈X(q−1)
Hq+e−1(x,
n)⏐⏐�ιn

⏐⏐�ιn

⏐⏐�ιn

⊕
x∈X(q+1)

Hq+e+1(x,
∞) −−−→ ⊕
x∈X(q)

Hq+e(x,
∞) −−−→ ⊕
x∈X(q−1)

Hq+e−1(x,
∞)
⏐⏐��n

⏐⏐��n

⏐⏐��n

⊕
x∈X(q+1)

Hq+e+1(x,
∞) −−−→ ⊕
x∈X(q)

Hq+e(x,
∞) −−−→ ⊕
x∈X(q−1)

Hq+e−1(x,
∞)
⏐⏐�

⏐⏐�
⏐⏐�

0 0 0

where all columns and rows are exact by the assumption and Remark 7.2(2). �

In the above argument, in order to show the vanishing of KHq(X,
n), the vanish-
ing of KHq(X,
∞) and KHq+1(X,
∞) are used. In [JS2, Section 5] a refined argument
is given which uses only the vanishing of KHq(X,
∞) to show that of KHq(X,
n). This
is useful when we deal with the case � = p for which we cannot use Gabber’s theorem and
obliged to resort to results on resolution of singularities in low dimension such as [CJS].
In what follows we recall the argument.

Theorem 7.7. — Let q ≥ 1 be an integer. Assume the following:

(1) H(−,
∞) satisfies the Lefschetz condition.

(2) H(−,
n) satisfies (PB) from Section 4.

(3) (G)�,q−2 from Section 6 holds (this is the case if q ≤ 4 by [CJS]).

(4) (D)q holds.

(5) We have an exact sequence of the Kato complex for S:

0 → KCH(S,
n)
ιn−→ KCH(S,
∞)

�n−→ KCH(S,
∞) → 0.

Then, for X ∈ S irr
reg with image T in S, KHq(X,
n) = 0 if q ≥ iT + 1.
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Proof. — We may assume dimS(X) ≥ q. In case dimS(X) = q, by Remark 7.2(2),
(D)q implies that KHq(X,
n) is a subgroup of KHq(X,
∞). Hence the assertion follows
from Theorem 6.2. Assume dimS(X) > q. We apply to H = H(−,
n) the same argument
as the proof of Theorem 6.2 (reducing it to Proposition 6.4 and Lemma 6.6). We are
reduced to showing the following: �

Lemma 7.8. — Let � = (X,Y;U) be a log-pair with dimS(X) ≥ q + 1. If � is clean in

degree q + 1 and q for H(−,
∞), it is clean in degree q for H = H(−,
n).

Proof. — We have the commutative diagram

0 −−−→ Ha+1(U,
∞)/�n ∂n−−−→ Ha(U,
n) −−−→ Ha(U,
∞)[�n] −−−→ 0
⏐⏐�γ εa+1

�,
∞

⏐⏐�γ εa
�,
n

⏐⏐�γ εa
�,
∞

0 −−−→ Ga+1(�,
∞)/�n −−−→ Ga(�,
n) −−−→ Ga(�,
∞)[�n] −−−→ 0

where the exactness of the lower sequence follows from the condition (5) of Theorem 7.7.
The assumption implies γ εa

�,
∞ is injective for a = q + 1 and q (resp. surjective for a =
q+2 and q+1). By the diagram this implies that γ εa

�,
n
is injective for a = q and surjective

for a = q + 1, which completes the proof of the lemma. �

8. Kato’s conjectures

In this section we prove part of the original conjectures of Kato from [K]. We fix a
prime � and consider the Kato homology with �-primary torsion coefficient.

We start with Kato’s Conjectures 0.3 and 5.1 from [K]. Assume either of the fol-
lowing:

(i) S = Spec(k) for a finite field k,
(ii) S = Spec(R) where R is a henselian discrete valuation ring with finite residue

field.

In case (ii) we assume that � is invertible in R. Let G = Gal(k/k) be the absolute Galois
group of k in case (i) and G = π1(S, η) with a geometric point η over the generic point
η of S in case (ii). We fix an �-primary torsion G-module 
 and consider the following
étale homology theory on CS: In case (i) it is given by

Hét
a (X,
) = H−a(Xét,R f !
) for f : X → S in CS.

In case (ii) it is given by

Hét
a (X,
) = H2−a(Xét,R f !
(1)) for f : X → S in CS.



170 MORITZ KERZ, SHUJI SAITO

This is leveled above −1 and the associated Kato complex is written as:

· · ·
⊕

x∈X(a)

Ha+1
ét (x,
(a)) →

⊕

x∈X(a−1)

Ha
ét(x,
(a − 1)) → ·· ·(8.1)

· · · →
⊕

x∈X(1)

H2
ét(x,
(1)) →

⊕

x∈X(0)

H1
ét(x,
).

For 
 = Z/�mZ (with the trivial G-action), this coincides with the complex (0.2) (with n =
�m) which Kato considered originally. Let KHét

a (X,
) be the associated Kato homology
groups. The following theorem gives a complete answer to Kato’s Conjectures 0.3 and
5.1 from [K] for � invertible on S.

Theorem 8.1. — Assume either of the following:

(1) 
 = T ⊗ Q�/Z� is admissible in the sense of Definition 3.4.

(2) 
 = Z/�nZ with the trivial G-action.

For a regular connected scheme X proper over S with image TX in S we have

KHét
a (X,
) =

{

G for a = 0 and dim(TX) = 0,

0 otherwise

under one of the following assumptions:

• � is invertible on S,

• X is projective and (G)�,a−2 holds (which is the case if a ≤ 4 by [CJS]).

Proof. — Under the assumption (1) the theorem follows from Theorem 6.2, Corol-
lary 6.3, Theorem 3.5 and Theorem 4.1. We show the theorem under the assumption (2)
by applying Theorem 7.7 to the inductive system of the étale homology theories:

H = {Hét(−,Z/�nZ)}n≥1.

The condition (5) is easily checked. The condition (1) follows from Theorem 3.5 and
(2) from Theorem 4.1. Finally (4) follows from Lemma 7.3. This completes the proof of
Theorem 8.1. �

Another consequence of our approach to Kato’s conjectures, which was not di-
rectly conjectured by Kato himself and which will be used in [KeS] to study quotient
singularities, is the following theorem. Note that we do not know at present whether it
holds with finite coefficients except in case k is a one-dimensional global field (see the
proof of Theorem 8.3).
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Let S = Spec(k) where k is a finitely generated field k or its purely inseparable ex-
tension. Let G = Gal(k/k) be the absolute Galois group of k. We fix an �-primary torsion
G-module 
 and consider the following étale homology theory on CS from Example 1.6:

HD
a (X,
) := lim−→

F

Hom
(
Ha

c (Xét,F∨),Q/Z
)

for X ∈ Ob(CS),

where F runs over all finite G-submodules of 
 and F∨ = Hom(F,Q/Z). This homology
theory is leveled above 0. Let KHD

a (−,
) be the associated Kato homology groups.

Theorem 8.2. — Assume 
 = T ⊗ Q�/Z� is admissible in the sense of Definition 3.4. For a

connected scheme X smooth proper over k, we have

KHD
a (X,
) =

{

G for a = 0,

0 for a > 0

under one of the following assumptions:

• � �= ch(k),

• X is projective and (G)�,a−2 holds after replacing the base field k by its perfection.

Proof. — Let k̃ be the perfection of k. From Lemma 1.7(3) we deduce a canonical
isomorphism

KHD
a (X ⊗k k̃,
)

�−→ KHD
a (X,
).

Hence we may assume that k is perfect. Then the proof is the same as that of Theo-
rem 8.1. �

Next we discuss Conjecture 0.4 from [K]. Let S = Spec(K) where K is a one-
dimensional global field. Let PK be the set of all places of K. Let CS be the category of
schemes separated and of finite type over S. Let � be a prime number with � �= ch(K) and
write 
n = Z/�nZ for an integer n > 0. For X ∈ CS with dim(X) = d , Kato considered
the complex KC(1)(X,
n):

⊕

x∈X(d)

Hd+2
ét (x,
n(d + 1)) →

⊕

x∈X(d−1)

Hd+1
ét (x,
n(d)) → ·· · →

⊕

x∈X(0)

H2
ét(x,
n(1))

and the corresponding complexes KC(1)(XKv
,
n) for XKv

= X×K Kv with the henseliza-
tion Kv of K at v ∈ PK. Here we put the sum

⊕
x∈X(a)

at degree a for a ≥ 0. Let us define
the complex

(8.2) KC(X/K,
n) := cone
[

KC(1)(X,
n) →
⊕

v∈PK

KC(1)(XKv
,
n)

]
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and its homology

(8.3) KHa(X/K,
n) = Ha(KC(X/K,
n)) for a ∈ Z.

In fact in his original approach Kato considered completions instead of henselizations
of K, but Jannsen [J3] showed that this does not change homology. The next theorem
is due to Jannsen in case K is a number field [J2] and gives a partial answer to Kato’s
Conjecture 0.4 [K].

Theorem 8.3. — For a connected scheme X proper smooth over the one-dimensional global field

K and for � �= ch(K) we have

KHa(X/K,
n) =
{


n for a = 0,

0 for a > 0.

Proof. — Let H = HD(−,
n) be the homology theory from Example 1.6 over the
base S = Spec(K) and KCH(X,
n) be the associated Kato complex. We claim that for
any Y ∈ CS there is an exact sequence

(8.4) 0 → KC(1)(Y,
n)
ι−→

⊕

v∈PK

KC(1)(YKv
,
n)

ρ−→ KCH(Y,
n) → 0.

Indeed, the injectivity of ι is due to Jannsen [J2, Theorem 0.2] and a generalization of
[J2, Theorem 0.4] using Gabber’s refinement of de Jong’s alterations [Il2]. The map ρ

as well as the right-exactness of (8.4) comes from the duality stated Corollary A.5. (8.4)
implies that we have an isomorphism of Kato homology groups

KHD
a (X,
n) ∼= KHa(X/K,
n) for a ∈ Z.

Thus we are reduced to show the assertion of the theorem by replacing KHa(X/K,
n)

by KHD
a (X,
n). By Lemma 1.7(3) we may replace K by its perfection. Then we can

apply Theorem 7.7 to the inductive system of the homology theories:

H = {HD(−,
n)}n≥1.

We have already checked all the conditions other than (4). As for the last condition we
have to show the injectivity of HD

q (x,
n) → HD
q (x,
∞) for x ∈ X(q) (cf. Remark 7.2(2)).

By (8.4) we have an exact sequence

0 → Hq+2
ét (x,Z/�nZ(q + 1)) →

⊕

v∈PK

Hq+2
ét (xv,Z/�nZ(q + 1)) → HD

q (x,
n) → 0,

where xv = x ×Spec(K) Spec(Kv). Hence it suffices to show the injectivity of

Hq+2
ét (Spec(L),Z/�nZ(q + 1)) → Hq+2

ét (Spec(L),Q�/Z�(q + 1))
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for residue fields L of x and xv , which follows from the divisibility of

Hq+1
ét (Spec(L),Q�/Z�(q + 1)).

Thus the desired assertion follows from the Bloch-Kato conjecture (see the proof of
Lemma 7.3). This completes the proof of Theorem 8.3. �

Finally, we discuss Kato’s Conjecture 0.5 from [K]. Let K be a one-dimensional
global field. Fix a prime � �= ch(K) and put 
n = Z/�nZ for an integer n > 0. Fix a
connected regular scheme U of finite type over Z with the function field K. For a scheme
X separated and of finite type over U, let KC(0)(X,
n) denote the complex (8.1):

⊕

x∈X(d)

Hd+1
ét (x,
n(d)) →

⊕

x∈X(d−1)

Hd
ét(x,
n(d − 1)) → ·· · →

⊕

x∈X(0)

H1
ét(x,
n).

We have the natural restriction map

KC(0)(X,
n)[1] → KC(1)(XK,
n) with XK = X ×U Spec(K)

and one considers a version of Kato complex defined as

KC(X/U,
n) := cone
[

KC(0)(X,
n)[1] →
⊕

v∈�U

KC(1)(XKv
,
n)

]

and its homology group

KHa(X/U,
n) = Ha(KC(X/U,
n)) for a ∈ Z.

Here �U denotes the set of v ∈ PK which do not correspond to closed points of U and
XKv

= X ×U Kv with Kv , the henselization of K at v.

Theorem 8.4. — Assume that � is invertible on U. For a regular connected scheme X proper,

flat and with smooth generic fibre over U, we have

KHa(X/U,
n) =
{


n for a = 0,

0 for a > 0.

Remark 8.5. — For dim(X) = 1 Theorem 8.4 is a version of the celebrated Brauer-
Hasse-Noether Theorem proved in the 1930s. For dim(X) = 2 it was shown by Kato [K]
and motivated him to conjecture the general case. The case dim(X) = 3 can be deduced
from the results proved in [JS1].
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Proof. — Let v ∈ U be a closed point and denote by the same letter v the associ-
ated place of K. Letting Xv = X ×U v, there is a residue map of complexes (see [JS1,
Proposition 2.12])

δ : KC(1)(XKv
,
n) → KC(0)(Xv,
n)

whose cone is identified up to sign with the complex (8.1) (with 
 = 
n) for X ×U Rv

where Rv is the henselization of OU,v . Hence δ is a quasi-isomorphism by Theorem 8.1.
This implies an isomorphism

KHa(XK/K,
n) ∼= KHa(X/U,
n) for a ∈ Z

and Theorem 8.4 follows from Theorem 8.3. �

9. Application to cycle maps

In this section X denotes a separated scheme of finite type over a field or a
Dedekind domain. Let CHr(X, q) be Bloch’s higher Chow group defined by Bloch
[B] (see also [Le] and [Ge1]). It is related to algebraic K-theory of X via the Atiyah-
Hirzebruch spectral sequence ([Le]):

(9.1) Ep,q

2 = CH−q/2(X,−p − q;Z/nZ) ⇒ K′
−p−q(X,Z/nZ).

In case X is smooth over a field, it is related to the motivic cohomology defined by Vo-
evodsky via

(9.2) Hq

M(X,Z(r)) = CHr(X,2r − q).

A ‘folklore conjecture’, generalizing the analogous conjecture of Bass on K-groups, is
that CHr(X, q) should be finitely generated if X is over Z or a finite field. Except the
case r = 1 or dim(X) = 1 (Quillen), the only general result has been known for the Chow
group CH0(X) of zero-cycles, which is a consequence of higher dimensional class field
theory ([Sa1] and [CTSS]).

One way to approach the problem is to look at an étale cycle map constructed
by Bloch [B], Geisser and Levine [GL] and Levine [Le] (see also [Ge1]): Fix an integer
n > 0. Let CHr(X, q;Z/nZ) be the higher Chow group with finite coefficients, which fits
into a short exact sequence:

(9.3) 0 → CHr(X, q)/n → CHr(X, q;Z/nZ) → CHr(X, q − 1)[n] → 0.

Assume that X is regular and that either n is invertible on X or X is smooth over a perfect
field. Then we have a natural map

(9.4) ρ
r,q

X,Z/nZ : CHr(X, q;Z/nZ) → H2r−q

ét (X,Z/nZ(r)),
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where Z/nZ(r) is the Tate twist introduced in Lemma 1.5. Sato [Sat] constructed a sim-
ilar map in case X is flat over Z and n is not necessarily invertible on X but we will not
use this in this paper. The following theorem follows from the results of Suslin-Voevodsky
[SV] and Geisser-Levine [GL] together with the Bloch-Kato conjecture:

Theorem 9.1. — The map ρ
r,q

X,Z/nZ is an isomorphism for r ≤ q and injective for r = q + 1.

Corollary 9.2. — Let Z be a quasi-projective scheme over either a finite field or Z or a

henselian discrete valuation ring with finite residue field. Let n > 0 be an integer invertible on X. Then

CHr(Z, q;Z/nZ) is finite for r ≤ q + 1.

Proof. — The localization sequence for higher Chow groups implies that for a
closed subscheme Y ⊂ Z of pure codimension c with the complement V = Z − Y, we
have a long exact sequence

· · ·CHr−c(Y, q;Z/nZ) → CHr(Z, q;Z/nZ) → CHr(V, q;Z/nZ)(9.5)

→ CHr−c(Y, q − 1;Z/nZ) → ·· · .

Hence we may replace Z by V and this reduces the proof to the case where Z is regular,
which follows from Theorem 9.1 thanks to the finiteness result for étale cohomology
H∗

ét(X,Z/nZ(r)) (cf. [CTSS, (26) on page 780], [M1, Theorem 1.9]). �

Now we turn our attention to ρ
r,q

X,Z/nZ for r ≥ d := dim(X) and the base scheme is
as in Corollary 9.2. In case r > d it is easily shown (see [JS2, Lemma 6.2]) that ρ

r,q

X,Z/nZ

is an isomorphism (the proof uses Theorem 9.1). An interesting phenomenon emerges
for ρ

r,q

X,Z/nZ with r = d . Using Theorem 9.1, one can show that there exits a long exact
sequence (see [JS2, Lemma 6.2]):

KHq+2(X,Z/nZ) → CHd(X, q;Z/nZ)
ρ

d,q

X,Z/nZ−→ H2d−q

ét (X,Z/nZ(d))(9.6)

→ KHq+1(X,Z/nZ) → CHd(X, q − 1;Z/nZ)
ρ

d,q−1
X,Z/nZ−→ · · · ,

where KH∗(−,Z/nZ) is the Kato homology defined as (0.4). Hence Theorem 8.1 implies
the following:

Theorem 9.3. — Assume either of the following conditions:

(i) X is regular and proper over either a finite field or a henselian discrete valuation ring with

finite residue field and n is invertible on X.

(ii) X is smooth projective over a finite field and q ≤ 2.
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Then we have the isomorphism

ρ
d,q

X,Z/nZ : CHd(X, q;Z/nZ)
�−→ H2d−q

ét (X,Z/nZ(d)).

In particular CHd(X, q;Z/nZ) is finite.

The above theorem implies the following affirmative result on the finiteness con-
jecture on motivic cohomology:

Corollary 9.4. — Let Z be a quasi-projective scheme over either a finite field or a henselian

discrete valuation ring with finite residue field. Let n > 0 be an integer invertible on Z.

(1) CHr(Z, q;Z/nZ) is finite for all r ≥ dim(Z) and q ≥ 0.

(2) K′
i(Z,Z/nZ) is finite for i ≥ dim(Z) − 2.

Proof. — (2) follows from (1) and (9.1). To show (1), we may assume n = �m for
a prime � invertible on Z. We proceed by the induction on dim(Z). First we remark
that the localization sequence (9.5) implies that for a dense open subscheme V ⊂ Z, the
finiteness of CHr(Z, q;Z/nZ) for all r ≥ dim(Z), is equivalent to that of CHr(V, q;Z/nZ).
In particular we may suppose Z is integral. By Gabber’s theorem ([Il2, Theorem 1.3
and 1.4]), there exist such X as in Theorem 9.3, an open subscheme U of X, an open
subscheme V of Z, and a finite étale morphism π : U → V of degree prime to �. The
assertion of the theorem holds for X by Theorem 9.3 and hence for U by the above
remark. So it holds for V by a standard norm argument and hence for Z by the above
remark. This completes the proof. �

10. Application to special values of zeta functions

Let X be a smooth projective variety over a finite field F. We then consider the zeta
function

ζ(X, s) =
∏

x∈X(0)

1
1 − N(x)−s

(s ∈ C),

where N(x) is the cardinality of the residue field κ(x) of x. The infinite product con-
verges absolutely in the region {s ∈ C | �(s) > dim(X)} and is known to be contin-
ued to the whole s-plane as a meromorphic function. Indeed the fundamental results
of Grothendieck and Deligne imply

ζ(X, s) =
∏

0≤i≤2d

Pi
X(q−s)(−1)i+1

,
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where Pi
X(t) ∈ Z[t] and for an integer r

ζ(X, r)∗ := lim
s→r

ζ(X, s) · (1 − qr−s)ρr

is a rational number, where ρr = −ords=rζ(X, s). The problem is to express these values
in terms of arithmetic invariants associated to X. It has been studied in [M2] (where
étale cohomology is used) and in [Li1] and [M3] (where étale motivic complexes used)
and in [Li2], [Ge2] and [Ge3] (where Weil-étale cohomology is used). As an application
of Theorem 9.3, we get the following new result on the problem.

Theorem 10.1. — Let X be a smooth projective variety over a finite field F. Let p = ch(F) and

d = dim(X).

(1) For all integers j, the torsion part Hj

M(X,Z(d))tors of Hj

M(X,Z(d)) is finite modulo the

p-primary torsion subgroup. Moreover, Hj

M(X,Z(d))tors is finite if d ≤ 4.

(2) We have the equality up to a power of p:

(10.1) ζ(X,0)∗ =
∏

0≤j≤2d

|Hj

M(X,Z(d))tors|(−1)j

.

The equality holds also for the p-part if d ≤ 4.

Remark 10.2.

(1) Let X = Spec(OK) where OK is the ring of integers in a number field. The
formula (10.1) should be compared with the formula

lim
s→0

ζ(X, s) · s−ρ0 = − |H2
M(X,Z(1))tors|

|H1
M(X,Z(1))tors| · RK

which is obtained by rewriting the class number formula using motivic co-
homology. Thus (10.1) may be viewed as a geometric analogue of the class
number formula. Note that the regulator RK does not appear in (10.1) since
Hj

M(X,Z(d)) is (conjecturally) finite for j �= 2d .
(2) The case d = 2 of Theorem 10.1 is equivalent to [K, Proposition 7.2]. This

follows from the following isomorphism for a smooth surface X over a field:

Hj+2
M (X,Z(2)) � Hj(XZar, K2) for j ≥ 0,

which is deduced from [B, Intro. (iv) and (x)] and [NS], [To].

Proof. — Put

CHd(X, i;Q�/Z�) = lim−→
n

CHd(X, i;Z/�nZ),

H∗
ét(X,Q�/Z�(d)) = lim−→

n

H∗
ét(X,Z/�nZ(d)).
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By Theorem 9.3 we have an isomorphism

(10.2) CHd(X, i;Q�/Z�) � H2d−i
ét (X,Q�/Z�(d)).

By (9.3) we have an exact sequence

(10.3) 0 → CHd(X, i) ⊗ Q�/Z� → CHd(X, i;Q�/Z�) → CHd(X, i − 1){�} → 0.

Assuming i ≥ 1, H2d−i
ét (X,Q�/Z�(d)) is finite by [CTSS, Theorem 2]. Thus (10.2) and

(10.3) imply CHd(X, i) ⊗ Q�/Z� = 0 and we get an isomorphism of finite groups

(10.4) CHd(X, i − 1){�} � H2d−i
ét (X,Q�/Z�(d)).

In view of (9.2), this shows the first assertion (1). For the proof of (2), we use the formula

ζ(X,0)∗ = [H0
ét(X,Z)tors][H2

ét(X,Z)cotor][H4
ét(X,Z)] · · ·

[H1
ét(X,Z)][H3

ét(X,Z)][H5
ét(X,Z)] · · ·

due to Milne [M2, Theorem 0.4]. Here H0
ét(X,Z) = Z, H1

ét(X,Z) = 0, and Hj

ét(X,Z)

for j ≥ 3 and the cotorsion part H2
ét(X,Z)cotor of H2

ét(X,Z) are finite. By the arithmetic
Poincaré duality we have

H2d−i
ét (X,Q�/Z�(d)) � Hom(Hi+1

ét (X,Z�),Q�/Z�),

where Hi+1
ét (X,Z�) = lim←−n

Hi+1
ét (X,Z/�nZ) which is finite for i ≥ 1. Thus (2) follows from

the following isomorphisms

Hj

ét(X,Z�) � Hj

ét(X,Z){�} for j ≥ 3,

H2
ét(X,Z�) � H2

ét(X,Z)cotor{�},

which can be easily shown by using the exact sequence of sheaves

0 → Z
�n−→ Z → Z/�nZ → 0. �
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Appendix A: Galois cohomology with compact support

In this section we recall Artin-Verdier duality, following [K, Section 3], and we introduce
Galois cohomology with compact support. In this section all sheaf cohomology groups
will be with respect the étale topology. For a scheme Z and an integer n > 0 we denote by
Db

c(Z,Z/nZ) the derived category of complexes of sheaves of Z/n-modules over Z with
bounded constructible cohomology.

We fix a finitely generated field K and an integer n > 0 invertible in K. Note that
we have

Db
c(K,Z/nZ) := Db

c(Spec(K),Z/nZ) = lim−→
V

Db
c(V,Z/nZ),

where V runs over all integral schemes of finite type over Z with function field isomorphic
to K. For C ∈ Db

c(K,Z/nZ) and a ∈ Z we endow the étale cohomology group Ha(K,C)

with the discrete topology.
Let V be an integral scheme of finite type over Z with function field K and let

jK : Spec(K) → V be the canonical morphism. Take C ∈ Db
c(K,Z/nZ) and choose a

dense open subscheme U ⊂ V and CU ∈ Db
c(U,Z/nZ) restricting to C ∈ Db

c(K,Z/nZ).
Define

(A.1) Ha(V, jK! C) = lim←−
U′⊂U

Ha(V, jU
′

! (CU|U′)),

where U′ runs through all dense open subschemes of U and jU
′ : U′ → V is the canonical

morphism. This inverse limit is independent of the choices we made and we endow it
with the pro-finite topology of the inverse limit.

Similarly we define Galois cohomology with compact support for C ∈ Db
c(K,Z/nZ)

as follows. Choose an integral scheme U of finite type over Z with function field K and
choose CU ∈ Db

c(U,Z/nZ) restricting to C. Now we set

(A.2) Ha
c(K,C) = lim←−

V⊂U

Ha
c (V,CV), Ha

c(V,CV) = Ha(Spec(Z), ̂Rf V
! (CU|V)),

where V runs through all dense open subschemes of U and f V : V → Z is the canonical
morphism and the hat is as in [K, Section 3]. Again this group does not depend on the
choices made and it is endowed with the pro-finite topology of the inverse limit.

Assume that K is a one-dimensional global field. Let PK be the set of places of
K and let Kv for v ∈ PK be the henselization of K at v. The next lemma relates Galois
cohomology with compact support to the local-global map.

Lemma A.1. — Fix an integer q ≥ 0. Let C ∈ Db
c(K,Z/nZ) and assume that the cohomology

sheaves Hi(C) vanish for i ≤ q. Then there is a canonical isomorphism of finite groups

Coker
[

Hq+2(K,C) →
⊕

v∈PK

Hq+2(Kv,C)

]
∼= Hq+3

c (K,C).



180 MORITZ KERZ, SHUJI SAITO

Proof. — Let V be an integral scheme, separated and of finite type over Z with
function field isomorphic to K. There is a long exact localization sequence

· · · → Ha
c (K,C) → Ha(V, jK! C) →

⊕

v∈�V

Ha(Kv,C) → Ha+1
c (K,C) → ·· · ,

where �V is the set of places of K which do not correspond to closed points of V. Taking
the direct limit over all V, the lemma follows from the following two claims which are
consequences of cohomological vanishing theorems:

Claim A.2.

(1) The map lim−→V
Hq+2(V, jK! C) → Hq+2(K,C) is surjective.

(2) If V is affine and n is invertible on V, we have isomorphisms:

Hq+3(V, jK! C)
∼→ Hq+3(K,C)

∼→
⊕

v∈P∞
K

Hq+3(Kv,C),

where P∞
K is the set of infinite places of K.

�

Now we state a version of Artin-Verdier duality using Galois cohomology with
compact support. We refer to [K, Section 3] and [JSS, Section 1.1] for more details. Let
K be an arbitrary finitely generated field with n ∈ K×. For C ∈ Db

c(K,Z/nZ) we put

C∨ = R Hom(C,Z/n) ∈ Db
c(K,Z/nZ).

For C ∈ Db
c(K,Z/nZ), choose a connected regular scheme U of finite type over

Z[1/n] and choose CU ∈ Db
c(U,Z/nZ) restricting to C as in (A.2). Artin-Verdier duality

says that for any V ⊂ U open there is an isomorphism of finite groups

(A.3) Hom(Ha
c (V,CV(dK)),Z/n) ∼= H2dK+1−a(V,C∨),

where dK = dim(V) (which is the Kronecker dimension of K).
Taking the direct limit over all nonempty open V ⊂ U in (A.3) we get:

Theorem A.3. — There is a natural isomorphism

Homcont(Ha
c(K,C(dK)),Z/n) ∼= H2dK+1−a(K,C∨),

where Ha
c(K,C(dK)) = lim←−V⊂U

Ha
c(V,CV) is endowed with the pro-finite topology.

Combining Theorem A.3 and the Poincaré duality for X, we get:
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Corollary A.4. — Let X be a smooth variety of dimension d over K and π : X → Spec(K)

be the canonical morphism. Let 
 be a locally constant constructible sheaf of Z/nZ-modules on Xét.

Then there is a natural isomorphism

H2d+2dK+1−a
c (K,Rπ∗
∨(d + dK)) ∼= Hom(Ha

c (X,
),Z/nZ).

Combining Lemma A.1 and Theorem A.3, we get:

Corollary A.5. — Assume that K is a one-dimensional global field K. Let X be a smooth affine

connected variety of dimension d over K and C be a constructible Z/nZ-sheaf on Xét. Then there is a

natural isomorphism of finite groups

Hom(Hd
c (X,C∨),Z/nZ)

∼= Coker
[

Hd+2(X,C(d + 1)) →
⊕

v∈PK

Hd+2(XKv
,C(d + 1))

]
.
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