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A BV FUNCTIONAL AND ITS RELAXATION FOR JOINT MOTION
ESTIMATION AND IMAGE SEQUENCE RECOVERY

Sergio Conti1, Janusz Ginster1 and Martin Rumpf1,2

Abstract. The estimation of motion in an image sequence is a fundamental task in image processing.
Frequently, the image sequence is corrupted by noise and one simultaneously asks for the underlying
motion field and a restored sequence. In smoothly shaded regions of the restored image sequence the
brightness constancy assumption along motion paths leads to a pointwise differential condition on the
motion field. At object boundaries which are edge discontinuities both for the image intensity and for
the motion field this condition is no longer well defined. In this paper a total-variation type functional
is discussed for joint image restoration and motion estimation. This functional turns out not to be
lower semicontinuous, and in particular fine-scale oscillations may appear around edges. By the general
theory of vector valued BV functionals its relaxation leads to the appearance of a singular part of the
energy density, which can be determined by the solution of a local minimization problem at edges.
Based on bounds for the singular part of the energy and under appropriate assumptions on the local
intensity variation one can exclude the existence of microstructures and obtain a model well-suited
for simultaneous image restoration and motion estimation. Indeed, the relaxed model incorporates a
generalized variational formulation of the brightness constancy assumption. The analytical findings are
related to ambiguity problems in motion estimation such as the proper distinction between foreground
and background motion at object edges.
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1. Introduction

In computer vision, the accurate computation of motion fields in image sequences – frequently called optimal
flow estimation – is a long standing problem, which has been addressed extensively. For a general overview on
optical flow estimation we refer to the survey by Fleet and Weiss [23]. We consider an image sequence given via
a grey value map

u : (0, T )× Ω → R ; (t, x) �→ u(t, x)

on a space time domain D := (0, T )×Ω, where Ω is a bounded Lipschitz domain in R
d for d = 1, 2, 3. To begin

with, we suppose that motion is reflected by the image sequence and that image points move according to a
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velocity field v : D → R
d. Hence, constancy of grey values u(t, x(t)) along motion trajectories t �→ x(t) with

ẋ(t) = v(t, x(t)) leads to the transport equation

0 =
d
dt

u(t, x(t)) = ∂tu(t, x) + ∇xu(t, x(t)) · v(t, x(t)) (1.1)

as a constraint equation for the unknown velocity field v. This constraint equation is generally known as
the brightness constancy constraint and for the space time motion field w = (1, v) it can be rewritten as
∇u(t, x) · w(t, x) = 0. Here and in what follows ∇ = (∂t,∇x) denotes the space time gradient. This condition
gives us pointwise one constraint for d unknown velocity components. Indeed, only the component of the velocity
orthogonal to isolines of the grey value can be computed from equation (1.1), which leads to an illposed problem
known as the aperture problem. Nagel and Otte [39] and Tristanelli [49] suggested to consider second derivatives,
i.e. d

dt∇xu(t, x(t)) = 0 along motion trajectories t �→ x(t) leads to ∂t∇xu + ∇2
xu v = 0 so that, if (∇2

xu)(t, x)
is invertible, v(t, x) can be computed. Similarly, in more geometric terms the motion field can be described via
temporal variations of the shape operator on level sets as proposed by Guichard [27]. Since second derivatives
are involved, these pointwise approaches are vulnerable to noise and hence of difficult practical usability. Based
on the assumption that the image intensity u varies on a finer scale than v, one might assume v to be locally
constant and accumulate locally different constraint equations to estimate v. This dates back to the early work
by Lucas and Kanade [36, 51] or the structure tensor approach [8], which minimizes the local energy functional∫

D ω(t − s, x − z)(∇u(s, z) · v(t, x))2 dz ds for a local window function ω(·, ·).
This paper aims at consistently treating the general case with basically two different types of representations

of motion in image sequences:

− mostly smooth motion visible via spatial variations of object shading and texture and their transport in time;
− motion represented by moving object edges, frequently characterized by discontinuities in the motion velocity

apparent at edges of moving objects.

The local approaches mentioned above are able to estimate the first type of motion and offer relatively high
robustness with respect to noise but in general they do not lead to dense flow fields and fail to identify motion
information concentrated on edges. Global variational approaches were initiated by the work of Horn and
Schunck [29]. They considered minimizers of the energy functional

∫
D |∇u·w|2+α|∇v|2 dxdt implicitly assuming

the optical flow field v to be smooth. A rigorous numerical analysis for a finite difference discretization of the
Horn–Schunck approach was performed by Le Tarnec et al. [35]. Nagel and Enkelmann [38] proposed to use an
anisotropic regularization term with a smaller penalization for variations of v in normal direction across edges.
With a focus on real world applications, Weickert et al. [51] proposed a combination of local flow estimation and
global variational techniques to combine the benefits of robustness and dense field representation, respectively.
For a detailed analysis of the occlusion problem associated with the estimation of object motion we refer to
the joint approach for motion estimation and segmentation by Kanglin and Lorenz [32]. Ito [31] suggested to
treat the optical flow estimation in terms of an optimal control formulation. Brune et al. [12] used the optimal
control paradigm to estimate intensity and motion edges in image sequences.

Before discussing total variation type approaches for motion estimation – to which our method belongs – we
investigate a basic but already characteristic optical flow problem.

A simple model problem. Suppose an object O with a shading or texture intensity map u1 is moving with
spatially constant velocity v1 on a background with shading and texture intensity map u2, which is itself moving
with constant velocity v2. Thus, the observed image sequence is given by

u(t, x) = χO(x − tv1)u1(x − tv1) + (1 − χO(x − tv1))u2(x − tv2), (1.2)
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where χO denotes the characteristic function of the object domain O. Trying to retrieve the object and the
two velocities v1, v2 from the image sequence one observes the following:

(i) If both image intensities u1 and u2 are constant the role of foreground and background can be flipped,
i.e. either the object O or its complement D \ O is moving with speed v = v1, whereas the background
velocity v2 obviously cannot be determined.

(ii) If both shading or texture intensity maps u1 and u2 are smooth and locally allow the computation
of v1 and v2 from (1.1), the decision on foreground and background is associated with the consis-
tency of one of the velocities vi (i = 1, 2) with the motion of the interface. Thereby, consistency is
expressed in terms of the singular counterpart n · wi = 0 of (1.1), where wi = (1, vi) and n denotes the
space time normal on the interface, which coincides with the jump set Ju of the image function u from (1.2).

(iii) If neither u1 nor u2 is consistent with the motion of the jump set Ju then the object is undergoing a more
complex evolution than just a rigid motion, e.g., growth or shrinkage.

In the general case, beyond this simple model problem, at each point on the jump set Ju of the space time
intensity map u one should compare the values of the velocity v+ and v− on the two sides with the space time
interface normal n on Ju to decide on the actual local motion pattern. Hence, we are interested in a variational
approach which explicitly incorporates this local consistency test, where the motion data v+ and v− on the two
sides are determined either via local shading or texture data or from a global relaxation principle taking into
account far field motion data.

The space of functions of bounded variation (BV ) allows to describe configurations with singularities of
codimension one, i.e. edge-type jump sets. Total variation regularization was first introduced in image processing
by Rudin, Osher, and Fatemi [48]. Cohen [16] proposed to replace the usual quadratic regularization in the above
motion estimation approaches by a BV type regularization

∫
Ω |∇v| dy. A more general convex regularizer with

linear growth was investigated by Schnörr and Weickert [52]. A broader comparison of different regularization
techniques in imaging and a discussion of suitable quasi-convex functionals was given by Hinterberger et al. [28].
In particular they considered a W 1,p- approximation of BV type functionals. Papenberg et al. [42] investigated
a TV regularization of the motion field and an optical flow constraint involving higher order gradients. In their
pioneering paper Chambolle and Pock [15] suggested a duality approach for nonsmooth convex optimization
problems in BV and discussed as one application the TV motion estimation problem. An improvement of the
original ansatz was suggested by Wedel et al. [50] and an efficient implementation of this primal dual optimization
approach to optical flow estimation was presented recently by Sánchez et al. [44].

The approach by Aubert and Kornprobst [5] is closely related to ours. They considered for d = 2 the energy
functional

E[v] =
∫

D

|∇u · (1, v)| + φ(∇v) + αv|v|2 dxdt, (1.3)

extended to the space of velocity fields of bounded variation, where u is a fixed image intensity map in L∞∩SBV
and φ : R

2 → R a function with linear growth. They discussed the following fundamental problem. On the jump
set Ju of u, representing the space time edge surfaces, the singular part of the gradient Du is only a Radon
measure and in the generic case of moving objects one expects a significant overlap of Ju with the jump set Jv

of the motion field v. Thus, it is unclear how to define Du ·w. This is indeed a recasting of the above observation
(ii) in the context of the theory of functions with bounded variation. Aubert and Kornprobst considered a locally
averaged evaluation of the motion field, and they finally studied the relaxation of the above functional in BV .
In the case of Lipschitz continuous image sequences, Aubert et al. [6] considered the numerical approximation
of the above total variation functional based on a duality approach and a suitable approximation of φ with a
sequence of functionals of quadratic growth.

Frequently the image sequence is corrupted by noise that one wishes to remove. On the theoretical side, we
cannot assume that the input image intensity is already in BV . We study here a BV approach for the joint
reconstruction of non smooth space time intensity maps u and the underlying non smooth optical flow fields v.
It differs from the ansatz by Aubert and Kornprobst [5] in that here both fields are reconstructed simultaneously.
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We investigate in particular the relation to the above-discussed fundamental observations (i)−(iii) on motion
estimation and show that the BV approach naturally incorporates a local analysis of the motion pattern in the
vicinity of the jump set Ju. Depending on the data, minimizing sequences may develop undesirable small-scale
oscillations around interfaces. Analytically this means that the functional is not lower semicontinuous. The
theory of relaxation permits to replace the functional by its lower semicontinuous envelope, thereby eliminating
the fine-scale oscillations from the kinematics, but still incorporating their averaged effect in the energetics. The
key technical ingredient we use here is a general result on the relaxation of variational problems on vector-valued
BV functions by Müller and Fonseca [24] and earlier work on relaxation on BV functions by Ambrosio and Dal
Maso [3] and Aviles and Giga [7]. It leads to the relaxed functional presented in (2.3) below. The ambiguity
close to the jump set is then resolved by minimizing locally a suitable microscopic problem, which in turn leads
to a selection of the relevant local motion pattern, see (2.4) below. Using upper and lower bounds on the relaxed
energy we can show that under suitable (implicit) assumptions on the image intensity map u and the motion
field v such microscopic oscillations can be ruled out.

The advantages of the joint estimation of intensity u and motion field v are the following:

− A reliable segmentation of moving objects via the non smooth intensity map helps to estimate their motion.
− Given the motion field, the brightness constancy assumption along motion paths significantly improves the

denoising of the image sequence or even the restoration of missing frames.
− Reliable motion detection also poses an important cue for object detection and recognition.

Thus, joint approaches which simultaneously estimate the motion field, segment objects and denoise the image
sequence are particularly appealing. Advances in this direction were investigated in [14, 37, 41, 43, 54]. A first
approach which relates optical flow estimation to Mumford–Shah image segmentation was presented by Nesi [40].
Cremers and Soatto [18–20] gave an extension of the Mumford−Shah functional from intensity segmentation to
motion based segmentation in terms of a probabilistic framework.

Rathi et al. investigated active contours for joint segmentation and optical flow extraction [45]. Brox et al. [11]
presented a Chan−Vese type model for piecewise smooth motion extraction. For given fixed image data the
decomposition of image sequences into regions of homogeneous motion is encoded in a set of level set functions
and the regularity of the motion fields in these distinct regions is controlled by a total variation functional.
Indeed, Kornprobst et al. [33] already studied a joint approach for the segmentation of moving objects in front
of a still background and the computation of the motion velocities.

The paper is organized as follows. In Section 2 we introduce the variational approach via the definition of a
suitable energy on space time intensity maps u and motion fields v and retrieve the general relaxation result for
this type of energies. The functional we propose to use is given in (2.3)−(2.4). On the jump sets of u and v the
integrand of the relaxed functional involves a microscopic variational problem. The main contribution of this
paper is to establish bounds for this microscopic energy and to give sufficient conditions for the non existence
of microscopic oscillations. In Section 3 we discuss the consequences of our results for optical flow estimation.
Then, in Section 4 we present the proofs of the results discussed in Section 2.

2. Variational approach and relaxation results

In this section we derive a joint functional for the restoration of a space time image sequence and the estimation
of the underlying motion field. We start by fixing some notation. We denote by Ω the image domain, a bounded
Lipschitz-domain in R

d with d ≥ 1, and by D = (0, T )×Ω ⊂ R
d+1 the associated space time domain. For a spatial

vector x ∈ R
d we write x = (x1, . . . , xd), while time-space vectors are denoted by y = (y0, y1, . . . yd) ∈ R

d+1

with t = y0 being the time coordinate. Correspondingly, the space time gradient reads as ∇ = ∇y = (∂t,∇x).
We use | · | for the Euclidean norm including all matrix spaces. We use standard notation Lp and W 1,p with
1 ≤ p ≤ ∞ for Lebesgue and Sobolev spaces, respectively. By the fundamental decomposition result [4, 22] the
derivative of a function of bounded variation f ∈ BV

(
R

k; Rl
)

can be written as

Df = ∇fLk + Dcf + [f ] ⊗ nHk−1 Jf
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where (a ⊗ b)i,j = aibj for i = 1, . . . , l and j = 1, . . . , k. Here Jf is the jump set of f , [f ] = (f+ − f−) is the
jump, f+, f− : Jf → R

l are the approximate limits on Jf , n : Jf → Sk−1 is the measure theoretic normal to Jf

and Dcf is the Cantor part of the measure Df , orthogonal to both Lk and Hk−1 Jf . The jump part of Df is
denoted by Djf = [f ] ⊗ nHk−1 Jf .

Let u0 ∈ Lp(D) represent the input data, a given grey valued image sequence, with p < 1∗ := d+1
d . Our

aim is to determine a restored image sequence u : D → R and an underlying motion field v : D → R
d.

Throughout this paper we use the shortcut notation w = (1, v) for the space time motion field. Since we expect
that both the reconstructed image sequence and the reconstructed image velocities will jump on the boundaries
of reconstructed moving objects, which are codimension 1 surfaces in space time, we consider BV (D) as the
suitable space for intensity maps and BV (D; Rd) as the suitable space for velocity fields.

We start by defining a functional F measuring the quality of the restoration and the motion extraction for an
image sequence u ∈ W 1,1(D) and a motion field v ∈ W 1,1(D; Rd). The actual functional on BV (D)×BV (D; Rd)
will then be defined via relaxation. For fixed M and αF , αv, αu > 0 we consider the following energy integrand
g : R

d × R
d+1 × R

d(d+1) → [0,∞)

g (v, p, q) = αF |w · p| + αv |q| + αu |p|
and define for a general Lipschitz domain U ⊂ R

d+1 the energy

E[u, v, U ] =

{∫
U

g (v,∇u,∇v) dy if (u, v) ∈ W 1,1(U) × W 1,1(U ; Rd); ‖v‖L∞ ≤ M

∞ otherwise.
(2.1)

This energy is then complemented with a fitting term with respect to the given image sequence u0 ∈ Lp(D) to
obtain the functional

F [u, v, D] = ‖u − u0‖p
Lp(D) + E[u, v, D].

The energy E[u, v, D] is finite for (u, v) ∈ W 1,1(D) × W 1,1(D; Rd) and ‖v‖L∞(D) ≤ M with αv

∫
D |∇v| dy and

αu

∫
D |∇u| dy measuring the regularity of the motion field v and the image sequence u, respectively. Furthermore,

αF

∫
D

|w · ∇u| dy = αF

∫
D

|∂tu + v · ∇xu| dxdt

quantifies the agreement of the pair (u, v) with the brightness constancy constraint (1.1). We remark that for
general input image sequences u0 bounds on the energy do not imply a priori bounds on the motion field in
L∞, for example in the case that u0 is spatially uniform. The constraint on ‖v‖L∞ has been included to avoid
this technical difficulty.

At this point we are ready to define the actual functional of interest for (u, v) ∈ BV (D) ×BV (D; Rd) as the
relaxation F ∗ of the functional F with respect to convergence in L1(D):

F ∗[u, v, D] = inf
{

lim inf
k→∞

F [uk, vk, D]
∣∣∣ (uk, vk) ∈ L1(D; Rd+1); (uk, vk)L1→ (u, v)

}
. (2.2)

As already mentioned in the introduction in the generic case of optical flow applications the jump set Jv of the
motion field (the union of boundaries of moving objects) is a subset of the jump set Ju of the image intensity
(the union of all image edges). Hence, v is expected to jump on a subset of the support of the jump part
Dju = [u] ⊗ nHd Ju of the measure Du, so that the term (1, v) · Du is ill-defined. A proper understanding of
this term requires to select locally a microscopic profile for u and v and includes – but will not be restricted
to – the proper choice between v+ or v− for the pointwise value for v in the term (1, v) · Dju and thus the
local selection between foreground and background (cf. the consistency issue (ii) in the simple model problem
in Sect. 1). In fact, the theory of relaxation for problems with linear growth is more complex than the one with
p-growth, p > 1 [21], because of the singular part of the gradient in the limit. Relaxation and lower semicontinuity
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with a convex integrand depending only on the gradient field were already obtained in the 60s [26,46], the general
case, with dependence of the integrand also on x and u was investigated in the early 90s [3,7]. Here, we use the
more general result by Fonseca and Müller in [24], which also includes the case of quasiconvex integrands, as
the starting point of our investigation. Successive developments include [9, 10, 25, 34, 47].

These results show that the relaxation F ∗ of F with respect to the L1-topology, as defined in (2.2), is finite
on the domain

BV (D) × (BV (D; Rd) ∩ {v ∈ L∞ : ‖v‖L∞ ≤ M})
and it equals

F ∗ [u, v, D] = ‖u − u0‖p
Lp(D) +

∫
D

g (v,∇u,∇v) dy +
∫

D

g (v, Dcu, Dcv)

+
∫

J(u,v)

K(u+, u−, v+, v−, n) dHd. (2.3)

Since g is one-homogeneous and convex in the second and third arguments, g coincides with its regression
function and the third term in (2.3) should be interpreted as∫

D

g

(
v,

dDcu

d(|Dcu| + |Dcv|) ,
dDcv

d(|Dcu| + |Dcv|)
)

d(|Dcu| + |Dcv|).

The key nonconvexity arises from the dependence of g on the first variable in the jump part. Thereby, the
function K : R×R×R

d×R
d×Sd → R depending on the approximate limits (u+, v+) and (u−, v−) of (u, v) and

the measure theoretic normal n on the jump set J(u,v) is the solution of a local minimizing problem in which
the energy on the jump is optimized with respect to all possible microstructures. Precisely,

K
(
u+, u−, v+, v−, n

)
= inf {E[u, v, Qn] : (u, v) ∈ A} , (2.4)

where Qn is the rotated cube

Qn =
{

y ∈ R
d+1 : |y · n| <

1
2
,
∣∣y · m1

∣∣ < 1
2
, . . . ,

∣∣y · md
∣∣ <

1
2

}
,

with {n, m1, . . . , md} denoting an orthonormal basis of R
d+1, and A is the set of W 1,1-functions which have

traces u±, v± on the two sides of Qn normal to n and are periodic in the m1, . . . , md-directions,

A =

{
(u, v) ∈ W 1,1

(
Qn; R1+d

)
: u = u± and v = v± on ∂Qn ∩

{
y · n = ±1

2

}
,

u(y) = u
(
y + mi

)
and v(y) = v

(
y + mi

)
on
{

y · mi = −1
2

}}
.

We remark that the term ‖u − u0‖p
Lp(D) is continuous in u with respect to the weak convergence in BV , since

we chose p < 1∗. Furthermore, both F and F ∗ are coercive in BV , in the sense that for any given u0 and for
any sequence (uj , vj) with F ∗[uj, vj , D] bounded, the sequence of BV norms of uj and vj are also bounded.
Therefore the above representation of the relaxation follows immediately from the more general statement of
Fonseca and Müller ([24], Thm. 2.16) and existence of minimizers for the relaxed functional F ∗ follows easily
by the direct method of the calculus of variations.

A practical usage of the functional F ∗ requires knowledge of the effective surface energy K, much as in the
case of relaxation on W 1,p spaces one needs to determine the quasiconvex envelope of the integrand [21]. A
numerical computation is in principle feasible via the minimization in (2.4), but it is nevertheless useful to



BV RELAXATION AND MOTION ESTIMATION 1469

extract analytical information on K as far as possible. In what follows we give lower and upper bounds for
the singular term K and compute it explicitly in special cases. Thereby, we show that the model favors locally
simple (i.e. planar) profiles in the microscopic problem (2.4) under reasonable assumptions from the viewpoint
of the practical optical flow application. This renders the functional F ∗ well-suited for joint image sequence
restoration and motion extraction. A detailed discussion of the consequences of the bounds for K is postponed
to Section 3.

Theorem 2.1. Given u+, u− ∈ R, v+, v− ∈ R
d and n ∈ Sd for K = K (u+, u−, v+, v−, n) the following

statements hold:

(i) If (w+ · n) (w− · n) ≤ 0 then K = αu |[u]| + αv |[v]| ,
(ii) For d = 1 and |[u]| ≤ 2αv

αF
one has min

N+∈R2
K(N+) ≤ K ≤ min

N+∈R2
K(N+), where

K(N+) = (αu |[u]| + αv |[v]|) (∣∣N+
∣∣+ ∣∣N−∣∣)+ αF |[u]| (∣∣N+ · w+

∣∣+ ∣∣N− · w−∣∣) ,

K(N+) = (αu |[u]| + αv |[v]|) (∣∣N+
∣∣+ ∣∣N−∣∣)+ αF |[u]| ∣∣N+ · w+ + N− · w−∣∣ ,

with N− = n − N+,
(iii) For general d ≥ 1 one has K ≤ Kd, where

Kd = min

⎛
⎝ l∑

j=1

(
αu |[u]| + αv

∣∣v+−vj
∣∣+ αv

∣∣v−−vj
∣∣) ∣∣N j

∣∣+ αF |[u]|
l∑

j=1

∣∣N j ·wj
∣∣
⎞
⎠ ,

where wj =
(
1, vj

)
and the minimum is taken over l ∈ N and the set of vectors v1, . . . , vl ∈ R

d and
N1, . . . N l ∈ R

d+1, subject to
∑l

j=1 N j = n.

The proof is given in Section 4.3.
The upper bounds in Theorem 2.1 are based on suitable choices for the optimal microscopic solution u, v

of (2.4). If the profile of these microscopic solutions u, v depend only on y · n, we call it simple. There are in
particular two types of simple profiles when solving (2.4) for given data (u−, v−), (u+, v+), and n. In the case
(w+ · n) (w− · n) ≤ 0 we define the following piecewise constant functions u ∈ BV (Qn) and v ∈ BV (Qn; Rd):

u(y) =

{
u− if y · n < 0
u+ if y · n ≥ 0

and v(y) =

⎧⎪⎨
⎪⎩

v− if y · n < − 1
3

v0 if − 1
3 ≤ y · n < 1

3

v+ if y · n ≥ 1
3 ,

(2.5)

where v0 is chosen in the line segment [v−, v+] such that w0 ·n = 0 for w0 = (1, v0). For suitable approximations
in W 1,1 such as those obtained by convolution uk = k

2χ{|y·n|< 1
k } ∗ u, vk = k

2χ{|y·n|< 1
k } ∗ v we have that

K(u+, u−, v+, v−, n) ≤ lim inf
k→∞

E[uk, vk, Qk] = αv|[v]| + αu|[u]|, (2.6)

where [v] = v+ − v− and [u] = u+ − u−. This profile corresponds to a microscopic consistency with a BV
interpretation of the brightness constancy constraint (1.1). In the other case (w+ · n) (w− · n) > 0 consistency of
a simple and optimal microscopic profile is out of reach. Let us assume that |w− · n| ≤ |w+ · n|. Then a feasible,
simple profile for the minimization of E[·, ·, Qn] is given by

u(y) =

{
u− if y · n < 0
u+ if y · n ≥ 0

and v(y) =

{
v− if y · n < 1

3

v+ if y · n ≥ 1
3 .

Indeed, again using the same ansatz for the approximation as above, one obtains

K(u+, u−, v+, v−, n) ≤ lim inf
k→∞

E[uk, vk, Qk] = αF |w− · n| + αv|[v]| + αu|[u]|. (2.7)
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Figure 1. A sketch of the two simple profiles for (w+ · n) (w− · n) ≤ 0 (left) and
(w+ · n) (w− · n) > 0 with |w− · n| ≤ |w+ · n| (right). The black line indicates the jump set
of v. In the dark grey area u takes the value u−, on the light grey area the value u+.

Figure 1 shows sketches of the simple profiles in both cases. In the next theorem we establish sufficient conditions
for the existence of minimizing profiles which are simple.

Theorem 2.2. Let u+, u− ∈ R, v+, v− ∈ R
d and n ∈ Sd, then we have the following.

(i) If (w+ · n) (w− · n) ≤ 0 then the optimal profile for K is simple and

K = αv|[v]| + αu|[u]|.
(ii) If d = 1, (w− · n)(w+ · n) > 0, |[u]| ≤ 2αv

αF
and 2 (αu|[u]| + αv|[v]|) |n1| ≥ αF |[u]||[v]| then the minimizing

profile for K is simple and

K = αF min{|w− · n|, |w+ · n|}|[u]| + αv|[v]| + αu|[u]|. (2.8)

(iii) If d > 1, (w− · n)(w+ · n) > 0 and |[u]| ≤ 2αv

dαF

|[w]·n|
|[v]| then the minimizing profile for K is simple and given

by (2.8).
(iv) If the profile is simple, then

K = min
a∈Rd

(
αu |[u]| + αv

∣∣v+−a
∣∣+ αv

∣∣v−−a
∣∣+ αF |[u]| |n · (1, a)|).

The proof is given in Section 4.3. An example where the profile is not simple is discussed in Section 3 below.

3. Consequences for the motion estimation

In this section we discuss the practical implications of Theorem 2.2 on the actual optical flow estimation
based on the proposed variational approach for the joint image sequence restoration and motion extraction. We
will analyze implicit conditions on the approximate limits of u and v at jump sets under which the singular
energy density K defined in (2.4) is simple and there is no relevant microscopic scale arising in the variational
model. Furthermore, we will give an example where microstructures actually appear and thus the singular energy
density K is not simple. As the only interesting cases appear where [u] �= 0, in this section we always assume
that Jv ⊂ Ju.

We start observing that the condition for simple profiles in one space dimension in Theorem 2.2(ii) includes
in particular the case

|[u]| ≤ 2
αv

αF
|n1| , (3.1)
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Figure 2. 1D Sketch of different configurations at the interface Ju of a moving object (u = u+)
with motion velocity v+ on a background with motion field v− and w± = (1, v±). On the left
the interface motion is consistent with the object motion, in the middle the object is eroding
and on the right the object is dilating.

as well as the case
|[v]| ≤ 2

αu

αF
|n1| and |[u]| ≤ 2

αv

αF
· (3.2)

Hence, for moderate speed of the intensity interface Ju (associated with large n1) and either moderate difference
|[v]| of the estimated motion on both sides of the interface or moderate intensity variation |[u]| the condition in
Theorem 2.2(ii) is fulfilled (in particular for (|n1| > 1

2 and αv

2αF
≥ ‖u‖L∞) or ( αv

αF
≥ ‖u‖L∞ and |n1| ≥ MαF

αu
)).

For the case d > 1 the condition in Theorem 2.2(iii) can be rephrased as

|[v] · (n1, . . . , nd)| ≥ dαF

2αv
|[v]| |[u]|.

Thus, if αF

αv
is small, this condition is fulfilled for a moderate speed of the intensity interface Ju (associated

with large spatial component of n) and for a direction of the jump [v]
|[v]| with a significant component pointing

in direction of the spatial interface normal (n1,...,nd)
‖(n1,...,nd)‖ .

In the practical application the velocities on the two sides of the discontinuity v+ and v− are determined within
the variational setting by shading or texture information on both sides of the edge set Ju. Then, the singular
energy density K(u+, u−, v+, v−, n) is associated with the proper identification of the type of object motion as
described for the simple model problem in Section 1, in particular the decision on foreground or background and
the identification of additional erosion or dilation. As we will see below, for K simple the minimization of the
joint functional is able to decide on the motion pattern. In the case that K is not simple and that microstructures
appear the variational model seems not to appropriately reflect the scope of possible motion patterns. On the
other hand, under the reasonable implicit assumption that the data u+, u−, v+, v− fulfills one of the conditions
under which the singular energy density K is simple the joint variational approach actually renders the coupled
restoration and motion estimation problem meaningful including the proper identification of the local motion
pattern at object edges.

In what follows we study the different local motion pattern at some point y ∈ Ju and the associated singular
energy density K in more detail.

Consistent interface motion.

Let us suppose that a light object with image intensity u+ is moving with a speed v+ on a dark background with
speed v− and image intensity u− (u+ > u−) (cf. left sketch in Fig. 2). The consistency of the interface motion of
the space time edge set Ju with the object motion is expressed in terms of the brightness constancy assumption
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Figure 3. Overlaying motion.

w+ · n = 0 at the point y ∈ Ju with n denoting the space time normal on Ju, i.e. Du = [u]⊗ nHd Ju. In this
case Theorem 2.2(i) applies and K = αv|[v]|+ αu|[u]|. Microscopically this is realized by the profile sketched in
Figure 1(left) with v0 = v+. Due to noise the brightness constancy assumptions might only be approximately
fulfilled with |w+ ·n| � 1. Then, Theorem 2.2(ii) shows that we obtain the corresponding approximate singular
energy density K = αF |w+ · n||[u]| + αv|[v]| + αu|[u]|.
Non consistent interface motion.

Let us suppose that in the same configuration w− · n < w+ · n < 0 (cf. middle sketch in Fig. 2). Hence, neither
the object motion v+ nor the motion v− (currently classified as background) is consistent with the motion of
the interface Ju. Indeed, we observe an erosion of the interface. Let us assume that v is the actual speed of the
interface with w·n = 0 for w = (1, v), then v−v+ is the effective erosion velocity and |(0, v−v+)·n| = |w+·n| is the
associated footprint in the singular energy density K, which is in agreement with the findings of Theorem 2.2(ii).
Obviously, the energy functional considers this classification as favorable compared to the one obtained via
flipping object and background and classifying a foreground object with intensity u− moving with speed v− and
dilation speed v− − v and larger footprint in the singular energy density |w− ·n|. Microscopically this is realized
by the profile sketched in Figure 1(right). If w− · n < 0 < w+ · n (cf. right sketch in Fig. 2) the variational
approach favors the classification of a dilation process on the interface Ju with velocity v̄ − v+ for the velocity
v̄ on the line segment [v−, v+] with w̄ · n = (1, v̄) · n = 0 and thus smallest possible singular energy density
K = αv|[v]| + αu|[u]|. The associated microscopic solution profile coincides with that sketched in Figure 1(left).

Objects and background with constant intensity.

Objects and background with constant intensity. If there is no shading or texture information, the estimation
of motion velocities can solely be based on the observed motion of interfaces. Examplarily, let us suppose that
objects O1, . . . ,Om are moving with constant velocities v1, . . . , vm in front of a immobile background as sketched
in Figure 3. Furthermore, let us explicitly rule out interface dilation and erosion. For such a configuration the
singular energy density compares the different foreground and background configurations in the local depth
ordering. For a fixed depth ordering of the objects the estimation of a velocity vi for each object is based on the
minimization of

∫
∂Ovis

i
K dHd with

K = αF |(1, vi) · n| + αv|vi − vopp
i | + αu|ui − uopp

i |,

where ∂Ovis
i is the visible part of ∂Oi and vopp

i , uopp
i are the velocity and the intensity opposite ∂Oi, respectively.

The estimation of the depth ordering via the variational approach is then performed by a comparison of the
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minimal total energy obtained for the set of all possible depth configurations (In Fig. 3 the color of the interfaces
shows which is the relevant velocity of the singular energy density for the minimal total energy). An estimation
of the background speed is obviously not possible.

Appearance of microstructures.

By the above discussion it is clear that we have to deal with large relative velocities and jumps in the intensities.
The key idea is to find a case where the upper bound in Theorem 2.1(ii) and (iii) is lower than the energy of
simple profiles given in Theorem 2.2(iv).

We discuss first the case d = 1. Let n ∈ S1 and let K be the upper bound given in Theorem 2.1(ii). We
assume that

|[u]| ≤ 2αv

αF
and 0 < w− · n < w+ · n.

Then the energy of a simple profile in Theorem 2.2(iv) coincides with K(0). Indeed, if a is between v− and v+

then |v+ − a|+ |v− − a| ≥ |v+ − v−| and |n · (1, a)| ≥ |n ·w−|; if a is outside that interval then, letting b be the
projection of a on the interval, |v+ − a| + |v− − a| = |v+ − v−| + 2|a − b| and |n · (1, a)| ≥ |n · b| − |b − a|. This
proves that the minimum is attained at a = v−.

Therefore it suffices to construct a situation where 0 is not a minimizer of the upper bound function K. For
a vector N ∈ R

2 chosen later and a small δ ∈ (0, 1) we compute, assuming n · w− �= 0 and writing for brevity
ζ = αF |[u]|

αu|[u]|+αv |[v]| ,

K(δN) − K(0)
αu |[u]| + αv |[v]| = |δN | + |n − δN | − 1 + ζ

(|δN · w+| + |(n − δN) · w−| − |n · w−|)
= A(N)δ + O(δ2)

where
A(N) = |N | − n · N + ζ(|N · w+| − N · w−).

Therefore it suffices to show that N ∈ R
2 can be chosen so that A(N) < 0.

We choose a large velocity v ≥ 1, set αF = αv = αu = 1, v± = ±v, u+ = 1, u− = 0, so that [u] = 1 ≤ 2αv/αF ,
ζ = 1/(1+2v), w± = (1,±v). We choose a normal which corresponds to motion with a velocity close to but not
identical with the velocity v−. Precisely, for some ṽ > v we set n = (ṽ, 1)/

√
ṽ2 + 1. Then it is easy to see that

0 < n · w− < n · w+. Finally we set N = (v,−1), so that N · w+ = 0. It remains to show that v and ṽ can be
chosen so that A(N) < 0. To do this we compute

A(N) = |N | − n · N + ζ(|N · w+| − N · w−) =
√

v2 + 1 − vṽ − 1√
ṽ2 + 1

− 2v

1 + 2v

which is negative if v and ṽ are chosen sufficiently large (cf. Fig. 4). A detailed computation shows that v = 2
and any ṽ ≥ 4 will do. In the case v = ṽ, however, the Taylor series above is not admissible (since w− · n = 0)
and the profile becomes simple again, in agreement with Theorem 2.2(i).

The construction can be easily generalized to the case d > 1. From the lower bound in Theorem 2.2(iv) we
know that the best interfacial energy which can be attained using simple profiles is given by

Ks = αu |[u]| + αv

∣∣v+ − a
∣∣+ αv

∣∣v− − a
∣∣+ αF |[u]| |n · (1, a)|

for some a ∈ R
d. We choose as above a large velocity v ≥ 1, set αF = αv = αu = 1, v± = ±ve1,

w± = (1, v±), u± = ±1, and pick a normal which corresponds to motion with velocity −ṽe1, namely,
n = (ṽ, 1, 0, . . . , 0)/

√
1 + ṽ2, for some ṽ > v. The optimal a is also parallel to e1, and a short computation

shows that it equals v−, so that

Ks = αu |[u]| + αv

∣∣v− − v+
∣∣+ αF |[u]||n · w−|.
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Figure 4. Sketch of a situation where microstructures develop. On the left the 1D sketch of a
moving object with relatively high velocity in space-time. On the right a microstructure profile
that has a lower energy than a simple profile.

The one-dimensional result shows that there is N+ ∈ R
2 such that K(N+) < Ks. This result can be immediately

embedded in the higher-dimensional setting by taking l = 2, N1 = (N+, 0, . . . , 0), N2 = n−N1, v1 = v+, v2 = v−

in the upper bound of Theorem 2.1(iii). Therefore the same values, v = 2 and ṽ ≥ 4, will do.
We refer to Section 4.4 for a visualization of a more general microscopic pattern in the case d = 2.

Potential impact on the numerical implementation of the motion estimation model.

The model studied here has a built-in consistency with respect to the local shading or texture information
and to the global geometry Ju of moving and deforming objects in space-time, and is therefore attractive for
concrete applications to imaging, based on an appropriate numerical implementation. The possible appearance
of microstructures is, however, a very problematic feature of the model. If microstructure appears the usability
of the model in imaging is questionable.

The analysis presented in this paper shows that microscopic patterns appear only if the motion velocity v
encoded in the edge set Ju is relatively large and the motion data v+ and v− encoded in the shading or the
texture on both sides of the edge are substantially inconsistent with v. Thus, in imaging applications the criteria
for simple profiles stated in Theorem 2.2 and discussed at the beginning of this section mostly rule out the
appearance of microstructures and indicate that a one-scale method should be appropriate in normal situations.
The criteria in Theorem 2.2 can be used in a numerical algorithm as an a posteriori test for the appropriateness
of the one-scale model based on upscaled versions of u+, u−, v+, v−, and n. If this test fails, it may be advisable
to modify the the parameters αu, αv and αF , in ways which are suggested by the conditions in Theorem 2.2.
Failure of the test, if one does not appropriately modify the parameters of the problem, leads to microscopic
patterns. In particular, one would expect to observe oscillations in the single-scale numerical approximation
of u and v in the vicinity of the edge set Ju, with a length scale given by the spatial discretization. In [13]
oscillatory patterns are numerically treated using a Young measure approach. In general numerical multiscale
methods, e.g. [30,53], could be employed to reliably and efficiently solve problems involving the microstructure
formation. In fact, the constructions used in the proofs of the upper bounds could be used to set up a reduced
microscopic model in a two-scale discretization approach, which would include a local optimization over a small
set of parameters describing the microstructure. Numerical two-scale methods of this type are only of theoretical
interest, but in this concrete application they are of no practical relevance. For a practical implementation of
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the single-scale model it is useful to observe that the functional F is not jointly convex in u and v. However,
F is separately convex in u and in v and thus classical primal-dual methods can be applied in an alternating
minimization scheme.

4. Proofs of the main results

In this Section we prove Theorems 2.1 and 2.2. We start by discussing the symmetries of the function K and
reformulating its definition on a different space of test functions in Section 4.1. Moreover, we prove classical
subadditivity and convexity properties for K. Then, in Section 4.2 we discuss explicit constructions which lead to
upper bounds of K for d = 1 and prove a lower bound of K for d = 1. Based on the ingredients of Section 4.1 the
proofs of the theorems are then given in Section 4.3. Finally, in Section 4.4 we illustrate the possible microscopic
patterns which might arise in critical regimes complementing the discussion in Section 3.

4.1. Preliminaries

In order to simplify the following discussion we first list the symmetries which K obeys.

Lemma 4.1. K has the following symmetries:

K (u+, u−, v+, v−, n) = K (u+ − u−, 0, v+, v−, n),

K (u+, u−, v+, v−, n) = K (−u+,−u−, v+, v−, n),

K (u+, u−, v+, v−, n) = K (u−, u+, v−, v+, n),

K (u+, u−, v+, v−, n) = K (u−, u+, v−, v+,−n).

Proof. They all follow immediately from the definition. For the first equality replace u by u−u−. For the second
item replace u by −u. For the third equality replace u and v by u(−y) and v(−y). The last invariance is simply
a relabeling of the boundary conditions. �

One key observation is that we can replace the set of functions in the definition of K by a simpler class of
functions. In particular, the function u can be assumed to take only two values, and the velocity field v can
be assumed to be smooth. This allows to give a classical sense to the term w · Du. We stress that existence
of minimizers is not expected in this restricted class, indeed functions of this class are later interpreted as
microstructures.

Lemma 4.2. In the definition of K in (2.4) the set A can be replaced by

AC =

{
(u, v) ∈ BV

(
Qn;

{
u+, u−})× C∞ (Qn; Rd

)
: u = u± and v = v± on

∂Qn ∩
{

y · n = ±1
2

}
and periodic in the mi-directions

}
.

Proof. We prove the claim in three steps. If [u] = 0 then one immediately obtains K = αv|[v]| from which the
result follows easily by standard density results. Hence we only need to deal with the case [u] �= 0.

Step 1. First we show that inf E[A∞, Qn] ≤ inf E[A, Qn], where

A∞ =
(
C∞ (Qn; R

)× C∞ (Qn; Rd
)) ∩ A.

To prove the inequality, we choose (u, v) ∈ A and can assume that ‖v‖L∞ ≤ M . We extend u and v period-
ically to

{
y ∈ R

d+1 : |y · n| < 1
2

}
and constantly in the n-direction and define (u, v) (y) = (u, v)(2y). Then a

straightforward computation shows that

E [u, v, Qn] = E [u, v, Qn] .
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For 0 < ε < 1
4 we define (uε, vε) = (u, v) ∗ ρε where ρε ∈ C∞

c (Bε) is a standard mollifier. Since (u, v) is constant
on
{
y ∈ R

d+1 : y · n > 1
4

}
and

{
y ∈ R

d+1 : y · n < − 1
4

}
, the functions (uε, vε) satisfy (uε, vε) ∈ A∞.

To prove convergence of the energy we first observe that by the general properties of mollification of Sobolev
functions we immediately obtain uε → u and vε → v in W 1,1 (Qn; R) and W 1,1

(
Qn; Rd

)
, respectively. The more

subtle term is
∫

Qn
|wε · ∇uε| dy, where wε = (1, vε). Since ‖wε‖L∞ ≤ ‖w‖L∞ ≤ M + 1 we can estimate

‖wε · ∇uε‖L1(Qn) ≤ ‖wε · (∇uε −∇u)‖L1(Qn) + ‖(wε − w) · ∇u‖L1(Qn) + ‖w · ∇u‖L1(Qn) .

The first term on the right hand side can be estimated by

‖wε · (∇uε −∇u)‖L1(Qn) ≤ ‖w‖L∞(Qn) ‖∇uε −∇u‖L1(Qn) → 0.

For the second term we observe that wε − w → 0 pointwise a.e. and that

|(wε − w) · ∇u| ≤ 2 ‖w‖L∞(Qn) |∇u| pointwise.

Hence by Lebesgue’s dominated convergence theorem we derive

lim
ε→0

‖(wε − w) · ∇u‖L1(Qn) = 0.

Therefore
inf E[A∞, Qn] ≤ lim sup

ε→0
E [uε, vε, Qn] ≤ E [u, v, Qn] = E [u, v, Qn]

concludes the proof of the first step.

Step 2. We show that inf E[AC , Qn] ≤ inf E[A∞, Qn]. Let (u, v) ∈ A∞, assume for definiteness that u+ ≥ u−.
The coarea formula yields

∫
Qn

(αu |∇u| + αF |w · ∇u|) dy ≥
∫ u+

u−

(∫
Qn

αu

∣∣Dχ{u<t}
∣∣+ αF

∣∣w · Dχ{u<t}
∣∣) dt.

Indeed, the first term is standard, the second one follows easily from ([4], (3.33) in Thm. 3.40) approximating
w uniformly with piecewise constant vector fields.

Thus there exists t∗ ∈ (u−, u+) such that∫
Qn

(αu |∇u| + αF |w · ∇u|) dy ≥ (u+ − u−) ∫
Qn

αu

∣∣Dχ{u<t∗}
∣∣+ αF

∣∣w · Dχ{u<t∗}
∣∣ .

We define Q−
n = {y ∈ Qn : u(y) < t∗} and u∗ = u+ + (u− − u+)χQ−

n
. Then

∫
Qn

αu |∇u| + αF |w · ∇u| dy ≥
∫

Qn

αu |Du∗| + αF |w · Du∗|

where Du∗ on the right hand side has to be interpreted as a measure. Since the function w is smooth, it is
in particular continuous on the jump set Ju∗ , hence the integral is well defined. Furthermore by the trace
theorem u∗ fulfills the boundary conditions. Therefore (u∗, v) ∈ AC and inf E[AC , Qn] ≤ inf E[A∞, Qn].

Step 3. We prove that inf E[A, Qn] ≤ inf E[AC , Qn]. As in Step 1 we choose (u, v) ∈ AC , extend both functions
periodically, scale them to (u, v), and mollify u (but not v) to obtain uε = u ∗ ρε. For the same reasons as in
Step 1 we have (uε, v) ∈ A and

lim
ε→0

∫
Qn

|∇uε| dy =
∫

Qn

|Du| =
∫

Qn

|Du|.
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It remains to show that
∫

Qn
|w · ∇uε| dy → ∫

Qn
|w ·Du|, where as usual w = (1, v). To see this, we deduce from

|Du|(∂Qn) = 0 for the Radon measure w · Du that (cf. [4], Prop. 3.7)

lim
ε→0

∫
Qn

|ρε ∗ (w · Du)| dy =
∫

Qn

|w · Du|.

Furthermore,

∫
Qn

[ρε ∗ (w · Du) − w · (ρε ∗ Du)] dy =
∫

Qn

[∫
Bε(y)

ρε(y − z)(w(z) − w(y)) · Du(z)

]
dy

converges to zero because w is uniformly continuous on Qn. Hence

lim sup
ε→0

E[uε, v, Qn] ≤ E[u, v, Qn] = E[u, v, Qn],

which proves the claim. �

Next we give an iterated relaxation formula.

Lemma 4.3. For (u, v) ∈ AC we have

K(u+, u−, v+, v−, n) = inf
{
E∗[u, v, Qn] : (u, v) ∈ AC

}
,

where E∗[u, v, Qn] =
∫

Qn
αv|Dv|+ ∫Qn∩Ju

K(u+, u−, v, v, ν)dHd for (u, v) ∈ AC with ν being the normal to Ju.

Proof. Let E∗ be the relaxation of E, defined as in (2.2). From the general relaxation result we know that it
has a form corresponding to (2.3), namely,

E∗[u, v, Qn] =
∫

Qn

g (v,∇u,∇v) dy +
∫

Qn

g (v, Dcu, Dcv)

+
∫

J(u,v)∩Qn

K
(
u+, u−, v+, v−, ν

)
dHd.

If (u, v) ∈ AC in particular E∗[u, v, Qn] =
∫

Qn
αv|Dv|+∫

Qn∩Ju
K(u+, u−, v, v, ν)dHd, as given in the statement.

Fix u+, u−, v+, v−, n; let (u, v) ∈ AC , extend u, v periodically and define as in Step 1 of the proof of
Lemma 4.2 (uj, vj) = (u, v)(jx). Then (uj , vj) → (u∗, v∗) = (u−, v−) + ([u], [v])χy·n>0 in L1. Hence, by the
lower semicontinuity of E∗ we obtain

K(u+, u−, v+, v−, n) = E∗[u∗, v∗, Qn] ≤ lim inf
j→∞

E∗[uj, vj , Qn] = E∗[u, v, Qn].

The other inequality follows immediately from Lemma 4.2 and E ≥ E∗. �

Next we prove two more general properties, namely, subadditivity and convexity of the surface energy K,
which are well known for example in the setting of variational problems on partitions [1, 2]. We start with
subadditivity and its main consequence in the present setting.

Lemma 4.4 (Subadditivity). Let u+, u− ∈ R, v+, v− ∈ R
d, n ∈ Sd. Then:

(i) For any u′ ∈ R, v′ ∈ R
d one has

K(u+, u−, v+, v−, n) ≤ K(u+, u′, v+, v′, n) + K(u′, u−, v′, v−, n).
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(ii) For any a ∈ R
d one has

K(u+, u−, v+, v−, n) ≤ αu|[u]| + αv(|v+ − a| + |v− − a|) + αF |[u]| |(1, a) · n|.
Proof.

i. For j ∈ N we define

(uj, vj)(y) =

⎧⎪⎨
⎪⎩

(u+, v+) if y · n > 1
j

(u′, v′) if − 1
j ≤ y · n ≤ 1

j

(u−, v−) if y · n < − 1
j ·

Clearly (uj, vj) → (u∞, v∞) = (u−, v−) + ([u], [v])χy·n>0 in L1 and E∗[uj , vj , Qn] = K(u+, u′, v+, v′, n) +
K(u′, u−, v′, v−, n) for all j > 2. Since E∗ is lower semicontinuous, we obtain

K(u+, u−, v+, v−, n) = E∗[u∞, v∞, Qn] ≤ lim inf
j→∞

E∗[uj , vj , Qn],

which concludes the proof.

ii. Two applications of i and the fact that K = αv|[v]| if |[u]| = 0 give

K(u+, u−, v+, v−, n) ≤ K(u+, u+, v+, a, n) + K(u+, u−, a, a, n) + K(u−, u−, a, v−, n)
≤ αv|v+ − a| + (αu|[u]| + αF |[u]| |(1, a) · n|) + αv|a − v−|.

�

We next show that K is convex in the last argument, after having been extended to a positively one-
homogeneous function. This will be linked to the possible development of oscillations of the interface.

Lemma 4.5 (Convexity). For given u+, u− ∈ R, v+, v− ∈ R
d we define h : R

d+1 → R by

h(n) = |n|K
(

u+, u−, v+, v−,
n

|n|
)
·

The function h is positively one-homogeneous and convex, in particular,

h(n+ + n−) ≤ h(n+) + h(n−) for all n+, n− ∈ R
d+1. (4.1)

Proof. Positive one-homogeneity is obvious from the definition. It implies λh(n+) + (1 − λ)h(n−) = h(λn+) +
h((1 − λ)n−), hence convexity is equivalent to subadditivity; therefore it suffices to prove the inequality (4.1).
Furthermore, it suffices to consider the case that |n+ + n−| = 1 with n+ and n− linearly independent (the case
that n+ and n− are parallel, including the case that one vanishes, is immediate).

By the scaling argument used in the proof of Lemma 4.3 it suffices to construct functions (u, v) : R
d+1 → R

d+1

which are periodic in the d directions orthogonal to n = n+ + n− and with (u, v)(y) = (u±, v±) whenever
±y · n > L, for some L > 0. We shall first construct a curve γ that can be interpreted as the jump set of a
function u satisfying the boundary conditions. The curve γ will consist of two subsets, one has normal n+/|n+|
and measure |n+|, the other has normal n−/|n−| and measure |n−|. To make this precise, we define n±

p = Jn±,
where J ∈ SO(d + 1) is a 90-degree rotation in the plane spanned by n+ and n−. We define

γ+ = [0, 1)n+
p and γ− = n+

p + [0, 1)n−
p ,

so that γ− ends at n+
p + n−

p = Jn, with n = n+ + n−. We set m1 = Jn, choose m2, . . . , md such that
{n, m1, . . . , md} is an orthonormal basis of R

d+1, and define Σ = Zm1 + (γ+ ∪ γ−) +
∑

i≥2 mi
R, see Figure 5

(notation: A + cB = {a + cb : a ∈ A, b ∈ B}). This is a d-dimensional surface, corresponding to the constant
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ω+

ω−

n

u
=

u
+u
=

u
−

Figure 5. The construction of γ is a periodic laminate using γ+ and γ− that splits R
2 into

two connected components ω+ and ω−. Then u is defined as u− on ω− and as u+ on ω+.

extension in the directions m2, . . . , md of the curve obtained joining alternatively copies of the segments γ+

and γ−. In particular, R
d+1 \ Σ has exactly two connected components; one of them, call it ω−, contains

{y · n < −L} and the other, call it ω+, contains {y · n > L}, where L = |n+| + |n−| + 1, see Figure 5. We set
(u, v) = (u−, v−) + ([u], [v])χω+ . Then the normal to the jump set is n+/|n+| on a set of measure |n+

p | = |n+|,
and correspondingly for n−. We define by rescaling (uj , vj)(y) = (u, v)(jy), so that (uj , vj) → (u∗, v∗) =
(u−, v−) + ([u], [v])χy·n>0 in L1. Therefore, dropping the arguments u+, u−, v+, v− for brevity,

E∗[u∗, v∗, Qn] = h(n+ + n−) = K(n+ + n−)

≤ |n+|K
(

n+

|n+|
)

+ |n−|K
(

n−

|n−|
)

= h(n+) + h(n−). �

4.2. Upper and lower bounds for d = 1

Proposition 4.6 (Construction for d = 1). Let d = 1 and u+, u−, v+, v− ∈ R, n ∈ S1. Then for any N+ ∈ R
2

we have

K(u+, u−, v+, v−, n)≤(αu|[u]|+αv|[v]|)(∣∣N+
∣∣+∣∣N−∣∣)+ αF |[u]| (∣∣N+· w+

∣∣+ ∣∣N−· w−∣∣) ,

where N− = n − N+ and w± = (1, v±).

Proof. The result follows by Lemmas 4.5 and 4.4(ii), taking once a = v+ and once a = v−. For the sake of
illustration we give here a self-contained, explicit construction.

We start by replicating the construction of Lemma 4.5. Again, we first construct a curve γ that will be
interpreted as the jump set of a function u satisfying the boundary conditions, and which consists of two
subsets, with the normals N+/|N+| and N−/|N−|. Precisely, we define as in the proof of Lemma 4.5

γ+ = [0, 1)(N+)⊥ and γ− = (N+)⊥ + [0, 1)(N−)⊥,

so that γ− ends at (N+ +N−)⊥ = n⊥. We set γ = n⊥
Z+(γ+ ∪γ−) and L = |N+|+ |N−|+1. Then R

2 \ γ has
exactly two connected components and for L sufficiently large one of them, call it ω−, contains {y · n < −L}
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n

ṽ ε
=

v
−

u
=

u
−

ṽ ε
=

v
+

u
=

u
+

Figure 6. The picture shows the construction of u and v. On the dark part u takes the value
u−, on the grey part the value u+. The brown line is the part of the jump set of u parallel to
N− (γ−), the blue line represents the part of γ with normal parallel to N+ (γ+). The black
line indicates up to smoothing the jump set of ṽε. As can be seen this is in terms of length and
normal essentially the jump set of u.

and the other, call it ω+, contains {y ·n > L}, see Figure 5. We set u = u− + (u+ − u−)χω+ . Then u fulfills the
desired boundary conditions.

Ideally the function v should equal v+ on ω+∪(γ+ + n⊥
Z
)
, and v− on ω−∪(γ− + n⊥

Z
)
. As an approximation

we construct a function vε as follows (cf. Fig. 6). Precisely, for ε ∈ (0, 1), we set

ω+
ε = ω+ ∪ Bε(γ+ + n⊥

Z) \ Bε(γ− + n⊥
Z)

and ṽε = v− + (v+ − v−)χω+
ε
. It is easy to see that |Dṽε|(Qn) ≤ |v+ − v−|(|N+| + |N−| + 4πε). Let now

vε = ϕε ∗ ṽε ∈ C∞, where ϕε ∈ C∞
c (Bε) is a mollification kernel. Then (cf. Fig. 6) there exists a constant c,

such that:

(i) vε = v− on γ−; H1(γ+ \ {vε = v+}) ≤ cε,
(ii)

∫
Qn

|∇vε| dy ≤ |[v]| (|N+| + |N−| + cε),
(iii) vε = v± on {±y · n > L}.
Thus (u, vε) ∈ AC and a straightforward computation shows that

E[u, vε, Qn] = (αu |[u]| + αv |[v]|) (∣∣N+
∣∣+ ∣∣N−∣∣+ cε

)
+ αF |[u]| (∣∣N+ · w+

∣∣+ ∣∣w− · N−∣∣+ c|[v]|ε) .

Finally, we can take ε arbitrarily small, which establishes the claim. �

In order to prove the lower bound in Theorem 2.1(ii) we need the following truncation lemma. As it is
frequently the case in truncation, this can only be done if the relevant field (the velocity here) is scalar, and the
result is therefore restricted to d = 1.

Lemma 4.7 (Truncation for d = 1). Let d = 1 and u+, u−, v+, v− ∈ R be such that v− ≤ v+. Let n ∈ S1,
(u, v) ∈ AC and v : Qn → [v−, v+] be defined as

v(y) =

⎧⎪⎨
⎪⎩

v(y) if v− ≤ v(y) ≤ v+,

v+ if v+ < v(y),
v− if v(y) < v−.
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If |[u]| ≤ 2 αv

αF
, then we have

αv

∫
Qn

|∇v| dy + αF

∫
Qn

w · Du ≥ αv

∫
Qn

|∇v| dy + αF

∫
Qn

w · Du, (4.2)

where w = (1, v) and w = (1, v).

Proof. Let Q−
n = {y ∈ Qn : u(y) = u−}, γ = (∂Q−

n ) ∩ Qn and nγ be the outer normal to Q−
n on γ, so that

Du = [u] ⊗ nγdH1 γ. We want to estimate the term

αF

∫
Qn

(w − w) · Du = αF [u]
∫

γ

(w − w) · nγ dH1.

Since w−w vanishes on {y·n = −1/2} and it is periodic in the direction n⊥ we have that
∫

∂Q−
n \γ(w−w)·ν dHd =

0 (here ν is the outer normal to Q−
n ), and the same on Q+

n = Qn \ Q−
n . Therefore by the Gauss–Green formula∫

γ

(w − w) · nγ dH1 =
∫

Q−
n

div(w − w) dy = −
∫

Q+
n

div(w − w) dy.

Estimating | div w| ≤ |∇v| and averaging over the two sides of γ we obtain

αF

∫
Qn

(w − w) · Du ≤ αF
|[u]|
2

∫
Qn

|div (w − w)| dy ≤ αF
|[u]|
2

∫
Qn

|∇v −∇v| dy

= αF
|[u]|
2

(∫
Qn

|∇v| dy −
∫

Qn

|∇v| dy

)

≤ αv

∫
Qn

|∇v| dy − αv

∫
Qn

|∇v| dy,

where we used that locally either v = v and ∇v = ∇v, or ∇v = 0. This concludes the proof. �

At this point we present the key lower bound in the one dimensional case. The main idea is to reduce the
energy to an integral on the jump set of u and separate it into different parts, in order to show that the optimal
curve has a structure similar to the one used for the construction in the upper bound and illustrated in Figure 5.
For this we start from the reduction to intensity maps u which are characteristic functions, done in Lemma 4.2,
and the truncation of v, discussed in Lemma 4.7. Then we show that we can consider also functions v which
take only two values, and use this to subdivide γ into two subsets, a strategy similar to the one used in ([17],
Lem. 4.5) to obtain the relaxation of a line-tension model for dislocations in crystals.

Proposition 4.8 (Lower bound for d = 1). Let d = 1, u+, u−, v+, v− ∈ R, n ∈ S1 be such that |[u]| ≤ 2 αv

αF
.

Then K(u+, u−, v+, v−, n) ≥ minN+∈R2 K(N+) where

K
(
N+
)

= (αu |[u]| + αv |[v]|) (∣∣N+
∣∣+ ∣∣n − N+

∣∣)+ αF |[u]| ∣∣N+ · w+ +
(
n − N+

) · w−∣∣ .
Remark 4.9. If (w− · n) (w+ · n) ≤ 0 then the minimizer N+

∗ belongs to the segment [0, n] and makes the last
term vanish, the bound reduces to K ≥ K (N+

∗ ) = (αu |[u]| + αv |[v]|).
Proof. By Lemma 4.1 we can assume without loss of generality that v− ≤ v+. Let (u, v) ∈ AC . By Lemma 4.7
we may further assume that v− ≤ v ≤ v+. We write u = u+ − [u]χQ−

n
for a set Q−

n ⊂ Qn of finite perimeter.
Using the abbreviation γ = (∂Q−

n ) ∩ Qn and nγ for the outer normal to Q−
n on γ we have as in the proof of

Lemma 4.7 Du = [u]nγH1 γ and

E[u, v, Qn] = αu

∫
Qn

|Du| + αv

∫
Qn

|∇v| dy + αF

∫
Qn

|w · Du| .



1482 S. CONTI ET AL.

We estimate

E[u, v, Qn] ≥ αu |[u]|H1(γ) + αv

∣∣∣∣
∫

Q−
n

∇v dy

∣∣∣∣+ αv

∣∣∣∣
∫

Q+
n

∇v dy

∣∣∣∣+ αF |[u]|
∣∣∣∣
∫

γ

w · nγ dH1

∣∣∣∣ .
This is the key estimate to establish the lower bound, and it is sharp if the three integrands have a constant
orientation on the respective domains.

We observe that the quantity on the right-hand side depends only on the value of v on γ. Indeed, since v is
periodic in the direction orthogonal to n and

∫
γ

nγ dH1 = ns,

∫
Q−

n

∇v dy =
∫

γ

vnγ dH1 − v−n =
∫

γ

(v − v−)nγ dH1

and the same on Q+
n . We therefore define G : L∞(γ, [v−, v+]) → R by

G[ṽ] = αv

∣∣∣∣
∫

γ

(ṽ − v−)nγ dH1

∣∣∣∣+ αv

∣∣∣∣
∫

γ

(ṽ − v+)nγ dH1

∣∣∣∣+ αF |[u]|
∣∣∣∣n0 +

∫
γ

ṽnγ
1 dH1

∣∣∣∣ ,
so that (we recall that n0 is the time component, n1 the space component)

E[u, v, Qn] ≥ αu|[u]|H1(γ) + min G.

Existence of a minimizer in L∞(γ, [v−, v+]) follows immediately from the convexity of the functional G. Even
more, the functional G is weakly continuous on L∞(γ), and therefore for any ε > 0 there is v∗ ∈ L∞(γ, {v−, v+})
such that G(v∗) ≤ min G + ε. This permits us to reduce to the situation where also the velocity v takes only
two values.

We split γ into two subsets depending on the value of v∗:

γ− =
{
y ∈ γ : v∗(y) = v−

}
and γ+ =

{
y ∈ γ : v∗(y) = v+

}
,

and define

N− =
∫

γ−
nγ dH1 and N+ =

∫
γ+

nγ dH1.

These quantities characterize the effective orientation of γ+ and γ−, corresponding to the two normals in
Proposition 4.6 and Lemma 4.5. Since v∗ is constant in each of the two subsets of γ, by convexity one could
assume that nγ is also constant on each of them, and then rearrange so that γ is composed of two segments.
This illustrates the idea behind the energy bound, however it is not needed to conclude the proof.

It suffices indeed to separate the integrals in the definition of G into a γ+ and a γ− part, then a short
computation gives

G[v∗] = αv|[v]|(|N+| + |N−|) + αF |[u]||n0 + v+N+
1 + v−N−

1 |
= αv|[v]|(|N+| + |N−|) + αF |[u]||w+ · N+ + w− · N−|,

where w± = (1, v±). Since H1(γ) ≥ |N+| + |N−| and by periodicity N+ + N− = n this gives

E[u, v, Qn] ≥ K
(
N+
)− ε ≥ min

N+∈R2
K
(
N+
)− ε

for all (u, v) ∈ AC and ε > 0, which concludes the proof. �
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4.3. Proofs of Theorems 2.1 and 2.2

At first we prove a lower bound in the higher dimensional case.

Proposition 4.10 (Lower bound for d ≥ 1). For (u, v) ∈ AC let us define Q−
n = {y ∈ Qn : u(y) = u−} and

W = (W )i =1,...,d
j =0,...,d

=
∫

Ju
v ⊗ ν dHd ∈ R

d×(d+1) with ν denoting the outer normal of Q−
n on Ju. Then

E[u, v, Qn] ≥ αF |[u]|n0 + αu |[u]| + f(W ),

where f(W ) = αF |[u]|∑d
k=1 Wkk + αv (|v− ⊗ n − W | + |v+ ⊗ n − W |) .

Proof. Repeating the first steps in the proof of Proposition 4.8 one verifies

E[u, v, Qn] ≥ αF |[u]|
∫

Ju

w · ν dHd + αv

∫
Qn

|∇v| dy + αu |[u]|Hd (Ju)

≥ αF |[u]|
∫

Ju

w · ν dHd + αv

∣∣∣∣
∫

Q−
n

∇v dy

∣∣∣∣+ αv

∣∣∣∣
∫

Q+
n

∇v dy

∣∣∣∣+ αu |[u]|

= αF |[u]|
(

n0 +
d∑

k=1

Wkk

)
+ αv

(∣∣v− ⊗ n − W
∣∣+ ∣∣v+ ⊗ n − W

∣∣)+ αu |[u]|

= αF |[u]|n0 + αu |[u]| + f(W ).

Since we do not have a sharp truncation result in this case the following steps in the proof of Proposition 4.8
based on the functional G do not extend to this situation. �

Now we proceed with the proofs of the main theorems.

Proof of Theorem 2.1. First we treat the case (i), where the optical flow constraint can be satisfied locally.
To prove the upper bound we first choose t ∈ [0, 1] such that (1, v−t + v+(1 − t)) · n = 0. The upper bound
follows then from Lemma 4.4(ii), taking a = v−t+ v+(1− t). For the sake of illustration we give also an explicit
construction here. Let ϕ : R → R be a smooth monotone function such that ϕ(− 1

2 ) = 0, ϕ(0) = t and ϕ(1
2 ) = 1.

We set
u(y) = u− + (u+ − u−)χy·n<0 and v(y) = v− + (v+ − v−)ϕ(y · n) (4.3)

and observe that (u, v) ∈ AC . A simple computation shows that K ≤ αu |[u]| + αv |[v]|.
To prove the lower bound we choose (u, v) ∈ AC and verify using convexity and periodicity

E[u, v, Qn] ≥ αu |[u]| + αv |[v] ⊗ n| = αu |[u]| + αv |[v]| .

This concludes the proof of (i).
The upper bound in (ii) follows immediately from the construction in Proposition 4.6. The lower bound in (ii)

was proven in Proposition 4.8.
Finally, to prove (iii) we observe that Lemma 4.5 shows that if n =

∑l
j=1 N j ∈ Sd then

K(u+, u−, v+, v−, n) = h

⎛
⎝ l∑

j=1

N j

⎞
⎠ ≤

l∑
j=1

h(N j) =
l∑

j=1

|N j |K
(

u+, u−, v+, v−,
N j

|N j |
)

.

Using the bound from Lemma 4.4(ii) in each term in the sum gives the assertion. �
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Proof of Theorem 2.2.

i. The first assertion immediately follows from Theorem 2.1(i) and its proof.

ii. By Proposition 4.8 we have K ≥ min K(R2), where

K(N+) = (αu |[u]| + αv |[v]|) (∣∣N+
∣∣+ ∣∣n − N+

∣∣)+ αF |[u]| |w− · n + [v]N+
1 |.

We first show that if [v](w− · n)n1 > 0 then N+ = 0 is a minimizer of K. Since N+ �→ |n − N+| is convex, it
lies above its tangent, |n − N+| ≥ 1 − n · N+. Using

∣∣w− · n + [v]N+
1

∣∣ ≥ |w− · n| + sign(w− · n)[v]N+
1 for the

last term we obtain

K(N+) − K(0) ≥ (αu |[u]| + αv |[v]|) (∣∣N+
∣∣− n · N+

)
+ αF |[u]| sign(w− · n)[v]N+

1 .

Using the fact that [v](w− · n)n1 is positive we obtain

K(N+) − K(0)
αu|[u]| + αv|[v]| ≥

∣∣N+
∣∣− n · N+ + ξn1N

+
1 ,

where

ξ =
αF |[u]||[v]|

(αu|[u]| + αv|[v]|)|n1| ·

Since by assumption ξ ∈ [0, 2] we have

n · N+ − ξn1N
+
1 = (1 − ξ)n1N

+
1 + n0N

+
0 ≤ |n| |N+| = |N+|,

therefore K(N+) ≥ K(0).
Recalling the upper bound we have K(0) ≤ K ≤ K(0), and since K(0) = K(0) we conclude that in the case

[v](w− · n)n1 > 0 one has K = K(0) = αu |[u]| + αv |[v]| + αF |[u]| |w− · n|, with a simple profile since we have
set N+ = 0 in the construction of the upper bound. The same result still holds if [v] = 0, as a simple inspection
of the lower bound shows.

Swapping (u+, v+) with (u−, v−) and using Lemma 4.1 we obtain that if [v](w+ ·n)n1 < 0 then K = K(n) =
αu |[u]| + αv |[v]| + αF |[u]| |w+ · n|, again with a simple profile. For [v] = 0 the two assertions coincide. Since
for n1 = 0 our assumption ξ ≤ 2 is only satisfied in the trivial case [u] = 0 and [v] = 0, we have shown that if
w+ · n and w− · n are nonzero and have the same sign the profile is simple and the interfacial energy is either
K(0) or K(n); since they are both admissible the energy necessarily is the minimum of the two.

iii. At first we observe that Lemma 4.4(ii) implies that αF min{|w− · n|, |w+ · n|}+ αv|[v]|+ αu|[u]| is an upper
bound. Swapping n with −n we can assume that w+ ·n and w− ·n are strictly positive, swapping (u+, v+) with
(u−, v−) we can assume that

0 < w− · n ≤ w+ · n.

From Proposition 4.10 we know that E[u, v, Qn] ≥ αF |[u]|n0 + αu |[u]| + f(W ) with

f(W ) = αF |[u]|
d∑

k=1

Wkk + αv

(∣∣v− ⊗ n − W
∣∣+ ∣∣v+ ⊗ n − W

∣∣) .

Notice that

f
(
v− ⊗ n

)
= αF |[u]|

d∑
k=1

v−k nk + αv |[v]| .

As w+ · n ≥ w− · n ≥ 0 it suffices to show that f has a minimum at v− ⊗ n. Since f is convex this is the case if
and only if 0 is a subgradient at v− ⊗ n. It can be easily seen that the set of subgradients of f at v− ⊗ n is

∂f
(
v− ⊗ n

)
= αF |[u]| (δij)1≤i≤d,

0≤j≤d
+ αv

(
B1(0) − [v] ⊗ n

|[v]|
)
·
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Figure 7. Sketch of a microscopic pattern corresponding to an explicit construction of the
upper bound of K for d = 2 (left: macroscopic configuration, middle: microscopic pattern,
right: top view of the pattern).

Hence 0 ∈ ∂f (v− ⊗ n) if and only if

αF

αv
|[u]| (δij)1≤i≤d,

0≤j≤d
− [v] ⊗ n

|[v]| ∈ B1(0) ⊂ R
d(d+1)

(we recall that we are using the Euclidean norm on R
d(d+1)). Squaring the left hand side shows that this is

equivalent to (
αF

αv

)2

|[u]|2 d − 2
αF

αv
|[u]| [w] · n

|[v]| + 1 ≤ 1

which in turn is the same as
αF

αv
|[u]| d − 2

[w] · n
|[v]| ≤ 0.

This holds since we are in the case [w] · n ≥ 0 and by assumption 2αv|[w] · n| ≥ αF d|[u]||[v]|.
We finally prove (iv). The upper bound follows from Theorem 2.1(iii) with l = 1. To prove the lower bound,

we observe that the construction in Lemma 4.2 does not modify the property of being one-dimensional, hence
we can assume that u, v ∈ AC are of the form u = u− +[u]χω(y ·n), v = ṽ(y ·n), for some set of finite perimeter
ω ⊂ R

d+1 and some function ṽ : R → R
d. Then, setting t∗ ∈ Ju = ∂ω,

E[u, v, Qn] ≥ αu|[u]| + αv

∫ 1/2

−1/2

|ṽ′|(t)dt + αF |[u]||(1, ṽ(t∗)) · n|.

With a = ṽ(t∗) the assertion follows. �

4.4. Illustration of expected microstructures for d ≥ 1

In the higher dimensional case (d > 1) the upper bound in Theorem 2.1(iii) refers to a set of vectors
(N1, . . . , N l). In the case d = 1 the corresponding vectors N+ and N− explicitly appear in a geometric con-
struction of a microscopic pattern in the proof of Proposition 4.6. Using the convexity of the microscopic energy
K stated in Lemma 4.5 this explicit construction is not required in the proof of Theorem 2.1(iii). Nevertheless,
explicit microscopic patterns can be constructed, where the vectors N j are weighted normals with Nj

|Nj | being
the normal on a set of interface facets of total area |N j |. Figure 7 sketches for d = 2 such a microscopic pattern
with three weighted normals

Q

⎛
⎜⎝

1
4

− 1
4

1
4

⎞
⎟⎠ , Q

⎛
⎜⎝

− 1
2

− 1
2

1
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where Q is a suitable rotation in R
3. The resulting effective interface normal n = N1 + N2 + N3 = Q(0, 0, 1)T

is the macroscopic normal on the jump set Ju. The underlying pattern is based on nested lamination, i.e. a
lamination pattern of facets perpendicular to N2 and N3 (plotted in light and dark orange) is altered with facets
perpendicular to N1 (plotted in green). To compensate the lack of rank-1 consistency a thin transition pattern
is introduced in between (plotted in grey).

References

[1] L. Ambrosio and A. Braides, Functionals defined on partitions in sets of finite perimeter. I. Integral representation and Γ -
convergence. J. Math. Pures Appl. 69 (1990) 285–305.

[2] L. Ambrosio and A. Braides, Functionals defined on partitions in sets of finite perimeter. II. Semicontinuity, relaxation and
homogenization. J. Math. Pures Appl. 69 (1990) 307–333.

[3] L. Ambrosio and G. Dal Maso, On the relaxation in BV (Ω; R
m) of quasi-convex integrals. J. Funct. Anal. 109 (1992) 76–97.

[4] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Math. Monogr.
Oxford University Press, New York (2000).

[5] G. Aubert and P. Kornprobst, A mathematical study of the relaxed optical flow problem in the space BV (Ω). SIAM J. Math.
Anal. 30 (1999) 1282–1308.

[6] G. Aubert, R. Deriche and P. Kornprobst, Computing optical flow via variational techniques. SIAM J. Appl. Math. 60 (1999)
156–182.

[7] P. Aviles and Y. Giga, Variational integrals on mappings of bounded variation and their lower semicontinuity. Arch. Ration.
Mech. Anal. 115 (1991) 201–255.

[8] J. Bigun and G.H. Granlund, Optical flow based on the inertia matrix of the frequency domain. In Proc. of SSAB Symposium
on Picture Processing: Lund University, Sweden (1988) 132–135.
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