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ON THE CONVERGENCE RATE
OF FINITE DIFFERENCE METHODS FOR DEGENERATE
CONVECTION-DIFFUSION EQUATIONS IN SEVERAL SPACE DIMENSIONS

KENNETH HVISTENDAHL KARLSEN!, NILS HENRIK RISEBRO!
AND ERLEND BRISEID STORROSTEN!

Abstract. We analyze upwind difference methods for strongly degenerate convection-diffusion equa-
tions in several spatial dimensions. We prove that the local L'-error between the exact and numerical
solutions is O(AwQ/(19+d)), where d is the spatial dimension and Az is the grid size. The error estimate
is robust with respect to vanishing diffusion effects. The proof makes effective use of specific kinetic
formulations of the difference method and the convection-diffusion equation. This paper is a continu-
ation of [K.H. Karlsen, N.H. Risebro E.B. Storrgsten, Math. Comput. 83 (2014) 2717-2762], in which
the one-dimensional case was examined using the Kruzkov—Carrillo entropy framework.

Mathematics Subject Classification. 65M06, 656M15, 35K65, 35L65.

Received January 27, 2015. Revised July 10, 2015.
Published online March 11, 2016.

1. INTRODUCTION

The design of numerical methods for convection-diffusion problems is important for many applications in
science and engineering. It is especially challenging to construct accurate methods for nonlinear problems in
which the “diffusion part” is small or vanishing, relative to the “convection part” of the problem. Connected to
this is the difficult problem of deriving error estimates for numerical methods that are robust in the singular
limit as the diffusion coefficient vanishes, thereby avoiding the usual exponential growth of error constants.

In this paper we are interested in deriving error estimates for a class of finite difference methods for nonlinear,
possibly strongly degenerate, convection-diffusion problems of the form

(1.1)

Ou+ V- flu) = AA(u), (t,z) € lr,
u(0, z) = up(x), r € R4,

where ITr = (0,7) x R4, T > 0,d > 1, and u : II7 — R is the unknown function that is sought. The initial
datum wg is an integrable and bounded function, while the fluz function f : R — R? and the diffusion function
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A : R — R satisfy the standing assumptions
f, Alocally C'; A(0) = 0; A is nondecreasing. (1.2)

By strongly degenerate it is meant that we allow for A’(u) = 0 for all u in some interval [a, ] C R. The
resulting class of equations therefore contains parabolic and hyperbolic equations, as well as a mix thereof. In
the nondegenerate (uniformly parabolic) case A’(-) > 0, it is well-known that (1.1) admits a unique classical
solution. On the other hand, for strongly degenerate equations with discontinuous solutions, the well-posedness
is ensured only in a class of weak solutions satisfying an entropy condition. The following result is known: For
ug € LY(R?) N L>(R?), there exists a unique solution u € C((0,7); L*(R?)), u € L>(II7) of (1.1) such that
0y A(u) € L*(II7) and for all convex functions S with ¢ = S'f’ and iy = S’ A’,

oS (u) + V- qs(u) — Arg(u) <0, weakly on [0,T) x R%.

These inequalities are referred to as entropy inequalities and the corresponding solution is called an entropy
solution.

For conservation laws (A’ = 0), the well-posedness of entropy solutions is a celebrated result due to
Kruzkov [26]. Carrillo [8] extended this result to degenerate parabolic problems such as (1.1). For uniqueness
of entropy solutions in the BV class, see [35,36]. An alternative well-posedness theory, based on the so-called
kinetic formulation, was developed by Lions, Perthame, and Tadmor [29] and Chen and Perthame [10]. We refer
to [2,16] for an overview of the relevant literature on hyperbolic and mixed hyperbolic-parabolic problems.

In this paper we derive error estimates for numerical approximations of entropy solutions to convection-
diffusion equations. Convergence results, without error estimates, have been obtained for difference meth-
ods [17,18,23]; finite volume methods [1,21]; splitting methods [22]; and BGK approximations [3,6], to mention
a few references. For a posteriori error estimates for finite volume methods, see [31].

We are herein interested in estimating the error committed by a class of monotone difference methods. The
monotone methods make use of an upwind discretization of the convection term and a centred discretization
of the parabolic term. For notational simplicity in the introduction, let us assume f*/(-) > 0 and consider the
prototype (semi-discrete) difference method

d
d fiua) — fita—e A(Ugrte;) — 2A(uq) + A(ua—c;)
_u + 1 i ¢ i 7
@ Z ; Ax2
where a = (a1, ...,aq) € Z% is a multi-index, e; is the ith unit vector in R?, and Az > 0 is the spatial grid size.

Although our methods are semi-discrete, i.e., not discretized in time, the results and proofs can be adjusted to
cover some fully discrete methods, such as the implicit method analyzed in [18]. We refer to [25] for a discussion
of this topic when d = 1.

Denote by ua, the piecewise constant interpolant linked to wu,. The goal is to determine a number (conver-
gence rate) v > 0 such that

luaz(t, ) —ul(t, )| < CAz7, (ug € BV), (1.3)

for some constant C' > 0 independent of Az and (the smallness of) A’.

In the purely hyperbolic case (A’ = 0), a prominent result due to Kuznetsov [28] says that ~ is 1/2 for
monotone difference methods, as well as for the vanishing viscosity method. Influenced by [28], a number of
works have further developed the “Kruzkov—Kuznetsov” error estimation theory for conservation laws. We refer
to [5,13] for an overview of the relevant results. Making use of the kinetic formulation, Perthame [33] provided
an alternative route to error estimates.

With regard to convection-diffusion equations (1.1) with A’(-) > 0, the subject of error estimates is signifi-
cantly more difficult. It is only recently that there has been some progress. The simplest case is the vanishing
viscosity method. Denote by u” the solution of the uniformly parabolic equation

ul + V- f(u?) = AA"(u"), A"(u) = A(u) + nu, (1.4)
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where 1 > 0 is a (small) viscosity parameter. We have the following error estimate for the viscosity approxima-
tion u":

Hu’7(~,t) - u("t)”Ll < C\/"_% (UO S BV), (1.5)

where u is the entropy solution of (1.1). A “Kruzkov—Kuznetsov” type proof of this result is given in [19], see
also [20] for a boundary value problem. The error bound (1.5) can also be seen as an outcome of continuous
dependence estimates [11,13] or the kinetic formulation [12, 30].

For conservation laws, the error estimate (1.5) for the viscous equation reveals what to expect for monotone
difference methods [28]. This suggestive link breaks down for degenerate convection-diffusion equations (1.1),
cf. [25], a fact that may foreshadow added difficulties coming from a second order operator. Indeed, for general
A satisfying (1.2) and in one spatial dimension, the work [24] established (1.3) with v = 1/11, a rate that was
recently improved to v = 1/3 in [25]. Although v = 1/3 is the best available rate at the moment, its optimality
is unknown and also far from the convergence rate v = 1/2 known to be optimal for conservation laws. But in
spite of that, with a linear diffusion function A, the convergence rate improves to v = 1/2 [24,25].

Apart from a result (y = 1/2) for linear convection-diffusion equations [12], we are not aware of any results
for multi-dimensional equations (1.1) with a degenerate, nonlinear diffusion part. In this paper we establish (1.3)
with

7= T4 (d is the spatial dimension), (1.6)

for general diffusion functions A obeying (1.2).

A technical aspect of the proof of (1.3) is that we are not applying the difference method directly to (1.1)
but rather to (1.4). Denoting the corresponding numerical solution by ., we will prove that (1.3) holds with
uagz, u replaced by u'y,u”, respectively, and that the error constant C' is not depending on the parameter 7.
Our original claim (1.3) follows from this, since we have the error estimate (1.5).

To help motivate the technical arguments coming later, let us lay out a “high-level” overview of the analysis
and some of the difficulties involved. As just alluded to, we will mostly work under the assumption A’ > 0. As
a consequence no information is lost upon working with A(u) instead of w in the kinetic formulation (compare
with the u-based formulation in [10]). Set B = A~! and define g by go A = f. Then the solution u of (1.1)
satisfies

B'()dixaw) +9'(Q) - VXaw) — AXaw) = Icmau), (1.7)

where

M) = Mag)(C) = 3(¢ — A(u)) VA,
1 if0<¢< A),

XA(uw) = Xa) () =4 —1 if A(u) < (<0,
0 otherwise.

This new formulation, although restricted to nondegenerate (isotropic) diffusion, allows for a simpler proof of
the L' contraction property and thus the error estimate (1.3). More specifically, certain error terms linked to
the regularization of the x function [10] can be avoided, a fact that we use to our benefit.

Now we indicate how (1.7) leads to the L' contraction property. Let u and v be solutions to (1.1) with initial
values ug and vg, respectively. Following [10,33], we introduce the microscopic contraction functional

Qu,v(§) = [xu(&)] + [x0(E)] — 2xu(€) X0 (§)- (1.8)
Under the change of variable ¢ = A(¢),

fu— o] = / Quan(€) A = / B(O)Qauy.atm) () dC.



502 K.H. KARLSEN ET AL.

and hence
0=l = | B(O0Qacw (@) de
= [ 500 [ ©] dc+ [ 500 heaw(©)] a¢
=2 [ B0 (xat (€xa (O) . (19)

In view of (1.7), the chain rule yields

Q)0 |xaw |+ 9 Q) V x(aw)| — Alxaw| = sign () dcmacw), (1.10)

with an analogous equation for v. Using the equations for x 4(u), Xa(v) and Leibniz’s product rule, we easily
check that

B'(¢)0 (XA(u)XA(v)) +4'(C) - v(XA(u)XA(U)) - A(XA(u)XA(U))

(1.11)
= XA)0cma) + Xa@w)Ocmaw) — 2V Xaw) * VXA()-
Making use of (1.10) and (1.11) in (1.9) yields
O lu—v|= / "(€) - VQ a(u), A (€ dC+/AQA(u) Aw)(Q)d¢
/ D(¢)dc, (1.12)

where

D(¢) = (sign (¢) = 2xa)(Q) ) demaquy + (sign () = 2w (Q)) demacy

+4VxA@w) (©) - VXaw) (©)
=: D1(¢) + D2 (¢) + D3(0);

the term D(-) accounts for the parabolic dissipation effects associated with u, v. Integrating (1.12) in x gives

%/\u(t,az)—v(t,x)\ dx://RD(C)dde.

Although the computations have been formal up to this point, they are valid when interpreted in the sense
of distributions. Moreover, as will be seen later, these computations can with some effort be replicated at the
discrete level, i.e., when we replace the function v by the numerical solution ua,-

Clearly, the L'-contraction property follows if we can confirm that

/ D(¢)d¢ < 0. (1.13)
R

This step is rather delicate and will ask for a regularization of the x functions. Indeed, the hard part of the proof
leading up to (1.3), (1.6) is related to this step. Let us for the moment ignore the regularization procedure, and
continue with formal computations. Note that

sign (€) — 2xa(v)(¢) = sign (¢ — A(v)),

and thus, after an integration by parts followed by an application of the chain rule,

JRAGE =—2/6< A)5(¢ — A@)) [VA()[? dc.
R
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Similarly,

/ Da(¢)d¢ = —2 / 5(C — AW)3(C — AW)) [VAW)[? d.
R R

Again by the chain rule,
Ds(¢) = 40(¢ = A(u))5(¢ — A(v))VA(u) - VA(v).

Combining these formal computations we finally arrive at (1.13):

/ D()d¢ = 2 / 5(C — A(u))d(C — A(v)) [VA@) — VA@)P dC <0.
R R

One crucial insight in [25] is that the convergence rate can be improved if one can send a certain parameter
€ to zero independently of the grid size Az, where € controls the regularization of the Kruzkov entropies. In
this paper the regularization of the entropies is replaced by the regularization of the y functions, and as before
we would like to send e to zero independently of Az (and other parameters). It turns out that in one spatial
dimension we can do this, reaching the convergence rate v = 1/3 as in [25]. In several dimensions we have not
been able to carry out this “c — 0 before other parameters” program.

A serious difficulty stems from the lack of a chain rule for finite differences, in combination with the highly
nonlinear nature of the dissipation function D(-), resulting in a series of intricate error terms. A feature of the
kinetic approach is that the crucial error term can be expressed via the parabolic dissipation measure. To be
a bit more precise, at the continuous level, the convergence rate v = 1/3 in the one-dimensional case depends
decisively on the (weak) continuity of the map

¢ / 5(C — E)may () dC = (e — A(u))(Ds Alw))?, (1.14)

where u is the entropy solution and m 4, is the parabolic dissipation measure. The continuity of this map
follows from (1.7). Unfortunately, in several space dimensions the continuity becomes a subtle matter, since the
parabolic dissipation measure splits into directional components,

d
Ma) = Y My My = 0(C — A) (0, Au)®,
i=1
It appears difficult to claim from the kinetic equation (1.7) the continuity of the individual components

- /R5(4 = iy (€ dC = 8(c — A(w) (@, AW)2, i=1,...,d

Not being able to send the x-regularisation parameter € to zero, we must instead balance € against the grid size
Az and a number of other parameters, at long last arriving at (1.3) with the convergence rate (1.6).

The optimality of (1.6) (d > 1), in the L°° N BV class, is an open problem. It is informative to compare
with recent results on viscosity solutions and error bounds for degenerate fully nonlinear elliptic and parabolic
equations. We refer to Krylov [27], Barles and Jakobsen [4], and Caffarelli and Souganidis [7] for some recent
works. For monotone approximations of fully nonlinear, first-order equations with Lipschitz solutions, Crandall
and Lions [15] proved in 1984 the optimal L*° convergence rate 1/2. However, finding a rate for degenerate second
order equations remained an open problem. The first result is due to Krylov with the rate 1/27. Later Barles
and Jakobsen improved this to to 1/5, with a further improvent by Krylov to 1/2 for equations with special
structure. We remark that these results concern equations with convex nonlinearities. Caffarelli and Souganidis
proved that there is an algebraic rate of convergence for a class of nonconvex equations. The convergence rate
is not explicit but known to be some (small) positive number. Here we should point out that in our framework
convexity plays no role; the error estimate applies to general nonlinearities.
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The remaining part of this paper is organized as follows: In Section 2 we gather some relevant a priori
estimates for nondegenerate convection-diffusion equations and state precisely the definition of an entropy
solution. The difference method and the main result are presented in Section 3. In Section 4 we supply certain
kinetic formulations of the convection-diffusion and difference equations. Section 5 is devoted to the proof of the
main result, achieved through the derivation of an error equation based on the kinetic formulations, along with
a lengthy series of estimates bounding “unwanted” terms in this equation. In Appendix 5.4 we collect results
relating to well-posedness and a priori estimates for the difference method.

2. VISCOSITY APPROXIMATIONS AND ENTROPY SOLUTIONS

Let us define the viscosity approximations. Set A"7(u) := A(u) + nu for any fixed n > 0, and consider the the
uniformly parabolic problem

{u’g + V- f(u") = AA ("), (t,x) € I, (2.1)

u(0, ) = uo(x), r € R4

It is well-known that (2.1) admits a unique classical (smooth) solution. We collect some relevant (standard)
estimates from [35].

Lemma 2.1. Suppose ug € L>®(R%) N LY (RY) N BV (RY), and let u” be the unique classical solution of (2.1).
Then for any t > 0,

[ (t, ')”Ll(Rd) < ||u0||L1(Rd) )
[u”(t, ')”Loc(Rd) < ||U0||L°°(Rd)7

[u"(t, )| gy (ray < luol gy gy -

Lemma 2.2. Suppose ug € L=(R)NLY(R?) and V- (f(ug) — VA(ug)) € L*(RY). Let u" be the unique classical
solution of (2.1). Then for any ti,tz > 0,

[ (t2,-) = (b, )l L1y < IV - (F(w0) = VA(uo))ll L1 (ay [t2 = ta] -

These results imply that the family {u"}, _, is relatively compact in C([0, T'; Lj, (RY)). If uw = lim,—o u", then

loc
[[u” — uHLl(HT) < Cn'’?, (2:2)

for some constant C' which does not depend on 7, see, e.g., [19]. Moreover, u is an entropy solution according
to the following definition.

Definition 2.3. An entropy solution of (1.1) is a measurable function u = u(t, x) satisfying:

(D.1) w e L]0, T); LY(R)) N L*°(II7) N C((0,T); L*(RY)).

(D2) A(u) € L2([0, T); H'(R%)).

(D.3) For all constants ¢ € R and all test functions 0 < ¢ € C5°(R? x [0,T)), the following entropy inequality
holds:

// lu— cld + sign (u — ¢) (F(u) — F(¢)) - Vo + |A(w) — A(c)| Apdtda + / o — clip(z, 0) dz > 0.
Il Rd

The uniqueness of entropy solutions is proved in [8], see the introduction for additional references.
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3. DIFFERENCE METHOD AND MAIN RESULT

Let f = (f%,...,f%), and let Az denote the mesh size. For simplicity we consider a uniform grid in R¢
consisting of cubes with sides Az. For a multi-index o = (a, ..., aq) € Z%, we let I, denote the grid cell
I, = [$a1—1/2>$a1+1/2) X X [xad—1/271'ad+1/2)7

where z;11/5 = (j+1/2)Ax for j € Z. Let e;, € Z* be the vector with value one in the kth component and zero
otherwise. Then we define the forward and backward discrete partial derivatives in the kth direction as

Oa+te, — Oa

Definition 3.1 (numerical flux). We call a function F' € C*(R?) a monotone two point numerical fluzx for f, if
F(u,u) = f(u) and

13} 0
— > — <
auF(u,v) >0 and (%F(u, v) <0

holds for all uw and v. We say that the numerical flux splits whenever F' can be written
F(u,v) = Fi(u) + Fa(v).
Note that F{ > 0 and Fj < 0 whenever F' is monotone.

Let F* be a numerical flux function corresponding to f* for k = 1,...,d. The semi-discrete approximation
of (1.1) is the solution of the equations

{%ua + 3 D Fi(ug, tiare) = Y1, D' Dl A(uy), o € Z2, t € (0,T), 5.1)

e (0) = Uq,0, a ez,

where uq,0 = ﬁ J; wo(z)dz. See Appendix 5.4, in particular Lemmas A.2 and A.3, regarding existence and
solution properties to this infinite system of ODEs.
Define the piecewise constant (in x) function ua, by

uaz(t, x) = u(t) for x € I,. (3.2)
Our main result is the following;:

Theorem 3.2. Suppose f and A satisfy (1.2) and the initial function ug is in BV (R%) N L=(R%) N L (RY).
Let F' be a monotone, Lipschitz, two point numerical flux corresponding to f' that splits for 1 < i < d. Let u
be the entropy solution to (1.1) and ua, be defined by (3.2), where uy, is the solution to (3.1).

Then, for any positive R and T, there exists a constant C depending only on f, A, ug, R and T, such that

2
lwaz(t) = u@)ll L1 po,ry) < CAT19+, te0,T].

4. KINETIC FORMULATIONS

In this section we supply certain kinetic formulations of the continuous and discrete equations (1.1) and (3.1).
As a preparation for the error estimate, we also regularize the kinetic equations by mollification. As explained
in the introduction, due to the application of the viscous approximations in the proof of the error estimate, we
assume A’ > 0 for these intermediate results.
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4.1. Kinetic formulation of convection-diffusion equation

Lemma 4.1. Assume that A’ > 0 and set B := A~'. Let u be the solution of (1.1). Define g by g(A(2)) = f(2)
for all z € R. Let S € C*(R),

::AHS%aB%ada balu) = w(AQW)),
mzfﬁvmvm@ ga(u) = g(AQw)),

and Sa(u) = S(A(u)). Then

Orpa(u) + V- qa(u) — ASa(u) = =S4 (u) [VA®u)|*.
Proof. Multiplying (1.1) by 9/, (u) gives

EWA(“) + VL (W)V - f(u) = 9y (u) AA(w).

A(u)
: ( W)

_ (/Ay (o)) A (0) d ):sm«mv%&

Using a change of variables A(o

Hence
Ya(w)V - fu) =V - qa(u).
Similarly we obtain ¢4 (u) = S’(A(u)). Finally, observe that
ASa(u) = §"(Aw)) [VAG)[? + 6/, (w) AA(w). u

The above entropy equation can be rephrased in terms of the y function. Recall that for any locally Lipschitz
continuous ¥ : R — R,

mm—www14WKMW@ma (u € R). (4.1)

The next lemma reveals the equation satisfied by x(A(w); ), where u solves (1.1), i.e., the kinetic formulation
of the convection-diffusion equation.

Lemma 4.2. Assume that A" > 0 and set B := A~'. Let u be the solution of (1.1). Define p(t,x,() =
X(A(u(t, 2)); ¢). Then

{B/(C)atp +g' Q) Vp—Ap=08cm inD(0,T) x R: x R),

p(0,2,C) = x(Aluo(2)): 0), (z,¢) € RY X R, 4.2)

where
m(t,,¢) = 5(¢ — A(u)) [VA(u)[”,
and g satisfies g(A(z)) = f(z) for all z € R.

Proof. By Lemmas 4.1 and (4.1),

@/s«w«nmmeGV/G«w«mmwmmeﬂ/ymmmmo«:/gmﬂmw%oa
R R R R

O
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4.2. Kinetic formulation of discrete equations

Stability /uniqueness analysis for differential equations often revolve around the chain rule. The chain rule
breaks down for numerical methods, but for us the next lemma will act as a substitute.

Lemma 4.3. Let S € C?(R) satisfy S’(0) = 0. For any g € C*(R) and any real numbers a, b and c,

b a b
S'(a)(9(b) - g(a)) = / (=) () dz — / S'(2)g(2)dz + / "(2)(g(2) - (b)) d=.

Proof. For any ¢ € R, integration by parts yields

¢
SOl / Sz + [ 870 - 9)d
0
Take the two equations obtained by setting ¢ be equal to a and b and subtract one from the other. O
To make the discrete and continuous calculus notations similar, we introduce the discrete gradient
Dio = (Dlo,... ,Dia), for any o : Z¢ — R.

The upcoming lemma contains the equation satisfied by x(uq; (), where u, is the solution of the scheme (3.1).

Lemma 4.4. Suppose A’ > 0. Let {ua},cpa be the solution to (3.1). Then pa(t,&) == x(ua(t);€) satisfies
0up+ (F(&)- D+ FY(E) - Dy) p— AQD— - Dip =gl +ma),
Ca(oa 5) = X(ua,0§ g)v

in D'(R x [0,T)) for each a € Z2, where

d

me =Y (F(€) = F{(ua—e;)) DX (ua; ) + (F3(€) = F3(varte,)) Dix(uai €))

i=1
and

41 . 1 .
= 3 (g5 (A1) = AOIDx(00i ) + () — Alun- )P x{1ai))

i=1
Proof. Since {uq} is a solution of (3.1),
d . .
S’ (o (t))Oruq(t ZS' (e (£)) DL F¥ (e (1), Uarre; (1) = ZS’(ua(t))DiDﬂrA(ua(t)), (4.3)
i=1
for all t € (0,7) and « € Z%. By the chain rule
S (ua (1)) Opua(t) = 0:S(ual(t)).
Consider the flux term. For each i, we have that F* = Fi + Fi, and therefore

S (wa(t) DL F' (ta(t), uate, (1) = 8" (ua(t)) DL Fi (ua) + 5 (ua () DY F(ua).-
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By Lemma 4.3, with g equal to F} and F%, we obtain

1

S (1) Fi(ua) = D' Qi) = 5 [ "G — Filuan) a2

o o 1 Uate; ) .
' (ua(t) D} Fi() = D @(ua) + 5 [ SFE) — Filuare))

where

/S' F’ z)dz for j =1,2.

Consider the term on the right-hand side of (4.3). Let

u) = /0 () A (2) d=

Fix ¢ and apply Lemma 4.3 with ¢ = A, a = uq, b = ug—¢,;, and uq4e;. Adding the two equations yields
S"(ua) D™D (A(ua)) = D- D R(ua)

1 Hocted "

ro / S"(2)(A(2) — Alttase,)) dz
1 “«'x—e- 1

e / TSR ~ Al 2

Hence (4.3) turns into

d

8tS(ua) + Z(Dl QZ (Ua) + D} QZ ua ZDZ Dz

=1
d 1 pue-e ' 4
"L /ua §"(2)(Fi(2) = Fi(ta-c.)) dz

Ua+e,;

d 1 .
ZA_ S// ( )—Fg(ua-ﬁ-el))dz

d

Ua+te,

+3 — / A(2) = Aluase,) d
d

Z AL / S A() — Aluas,)) dz.
By equation (4.1),

D' Qi (un) + D Qb (ua) / S'E((F) (€D + (F) () Dl )x(ta; €) de.

Similarly,
Di D', R(ug) = /R /(€A (€)DE Dl (1 €) de.

Consider the right-hand side. For any g € C(R),

b
/ 5" (2)(g(z) — 9(b)) dz = / S"(€)(9(E) — g(b)) (x(b:€) — x(as€)) dé.
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Hence
[ ) ~ o) 42 = = [ SUOEO - Filsoe )P x(ues6) de
T [ - Pt @2 = = [ SUOEHO - Filunse D xtuai) de
Similarly,
s [0 - A a
= 5 [ 5(OAlase) — AE)D (s e,
37 ) EAE - A
—1 " i .
= [ S7OUA© — Ao ) D i) .
The result follows. -

For a function u : R? — R we define the shift operator S, by Syu(z) = u(z + y). Then the discrete derivatives
may be expressed as
i SiAz,u —Uu
Diu—+222nt "1
£ Az
where Ax; = Axe;.

Making a change of variable ( = A(&), we can obtain an equation satisfied by x(A(uaz); (), where u, is the
numerical solution (3.2), resulting in the “discrete” kinetic formulation to be utilized later.

Lemma 4.5. Suppose A’ > 0. Let {uy} be the solution to (3.1) and define ua, by (3.2). Let G; : R — R
satisfy G (A(u)) = Fj(u) Yu, for j =1, 2. Then p?*(t,z,¢) = x(A(uas(t,7)); ) satisfies

B'(C)0:p* + (G1(C) - Dy + G5(C) - D_)p™" — D_ - D4 p™* = 0c(nq" + ng"),
p27(0,¢) = x(A(ud,); ),

in D'(R x IIT), where

d d
ng” = Z(GQ(C) — GY(A(S- Az, ua2))) DL X(A(uar); ¢) + Z(GQ(C) — G(A(S Az, uaz))) DX (A(uar); €)
and
d 1 ) d 1 )
ny" = Z E(A(Smium:) — QDY x(A(uaz); ) + Z E(C — A(S-az,unz)) DX (A(uas); €). (4.4)

Proof. Let S € C(R) and define S4(§) = S(A(§)). By Lemma 4.4,
o / Sa(€)x(tta; €) dE + / SA©)(FI(€) - D + FY(€) - Dy )x(ua; €) e
R R
~ [ Sa©AOD- - Dix(uai€)dg = - [ Sy€)me +ma) e
R R
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Let ¢ = A() and note that x(uq;€) = x(A(uq); A(E)). The terms on the left-hand side are straightforward to
verify. Next,

d
/stmﬂf) g =2 / S'(A)(GH(A()) — GiAua—e)) D x(Alua); A€)A'(6) de
d
2 /R S'(A€))(GH(A(E)) — G3(Aluate,) D’ X(Alua); AE))A'(€) dg
a ) ; .
=3 [ $OGHO) - GlAae D A (Al €) de

d
+ 3 [ SO(GC) = Go(Atun e DD x(Alua)i ) e

A similar computation shows the second equality involving nﬁ‘”. O

4.3. Various regularizations
In this section we study mollified versions of Lemmas 4.2 and 4.5. Let us first introduce some notation. Let
J € C(R) denote a function satisfying
supp(J) C [-1,1], / J(xz)dr =1 and J(—z) = J(z)
R

for all z € R. That is, J is a symmetric mollifier on R with support in [—1,1]. For any o > 0 we let J,(z) =
o 1J(oc71z). For any n > 1, J®" is a symmetric mollifier on R"™ with support in [~c, 0] In general the
dimension of the argument will define n, so to simplify the notation we write .J, instead of J&".

Let v : R? — R be a continuous function and u,v € L*(R). Then we define

Wuv) % fog)@ / / (), v(y2)) f (& — 1)g(@ — y2) dyadya,

where f,g € L'(R). Similarly, we let

(u)
wlu0) ¥ i [ o) o@)ie =)
This notation generalizes in an obvious way to functions of several variables.
We start by introducing regularizations of sign(-) and x(u;-)
Lemma 4.6. Fore > 0, define

13
sign, (€) =2 /O 1O dC, xe(us€) == /R (s )€ — ¢ d.

Then

(i)  For each &, u x:(u;§) € C(R) and duxe(u;§) = Jo(§ — u).
(ii) For all w and
sign, (€) — 2x<(u; &) = sign, (€ —u).

(iii) For any u

/|xeus (s )] dé < de.
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Proof. We first prove (i). Let H.(0) = Je(0). Since J-(§ — ¢) = J-(C — &),

Jim = [ (el 20) = ()€ = O dC = Jim 5 (He(u+h— €) = H.u =) = Je(u—).

Next we prove (ii). Let 0 = ¢ — £. By the symmetry of J.,

e = [ Xuio+ €)1 (0) dor
R
A calculation (or (5.24)) yields
x(uo+ &) =x(u—§&o) —x(=§o0).
Note that x(—¢§;0) = —x(&; —0o). Hence
Xe(wi) = [ (= 60+ x(& -0 ) o,
R
It follows that
sign, (6) — 2x:(05) = 2 | (1= 6O +2 [ (60 ~ X6 =)
R R
= N+ S.

Since (x(&;¢) — x(&;—()) is antisymmetric in ¢ and J. is symmetric it follows that 75 = 0. Now

u—§ E—u
G2 a@d=2 [ I =sign. (€~ u).
0 0
To prove (iii), note that
e (15€) — (15 €)] = 0 whemever € ¢ (—¢,) U (u— &, u+¢). D
For ¢ > 0 and f € C(R), let R! : R? — R be defined by

/R F(0)x(w; 0)Jo(C — o) do = RE (u, €) + F(C)xe (15 0), (4.5)

for all u,¢ € R.

Now we are ready to provide “regularized” versions of Lemmas 4.2 and 4.5. As the mollification will take
place on a slightly smaller region, we introduce the notation II}? := (rg, T — o) x R%.

We start with the regularization of the kinetic formulation of the convection-diffusion equation.

Lemma 4.7. Assume that A" > 0. Let u be the solution of (1.1) and define
Perro = X(AMW); ) * Jpy @ Jp ® Je.
Then for (t,x,() € II}* x R, the function pe ., Satisfies

B'(Q)0perro +9'(Q) - Voerry = Dpesry + ORE, . + V- RE, = 0cnacrry,

where
Rg,r,ro = Rg(A(u), Q) * Jr @ Jpy,s

with RY defined by (4.5), and

Pacna(t2,C) = (¢ = A) [VA@)P * oy @ ) (2, 2),
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Proof. Starting off from Lemma 4.2, take the convolution of equation (4.2) with J. and apply (4.5). Finally,
convolve the resulting equation with J, ® J,,. O

Next up is the regularization of the kinetic formulation of the discrete equations.

Lemma 4.8. Under the same assumptions and with the same notation as in Lemma 4.5, define
pEAJw‘aTO = X(A(qu); ) * JT'() ® JT‘ ® Jg-

For (t,z,¢) € II}* x R, the function p22,  satisfies

&,157T0

B/(C)atp?,f,ro + g/(C) ' VpsA,f,ro - ApsA,f,ro + Gll (C) : (D+ - V)psA,f,ro
+GY(Q) - (D= = V)p22 .+ (A—D_-Dy)p2  + ORE A"

&,757T0
G/I,Aa: G/z,Ax

+ D Reliing” + Do ReFing” = 0c(nA% 1,y + 15 % )
Here, RI:5% = RI(A(uas), ) * Jr ® Jp, with R] coming from (4.5). Furthermore,
MR vy =047 % (Je ® Jp @ Jpy) and ng” ... =ng" * (Je ® Jp ® Jy,).
Proof. In view of Lemmas 4.5 and (4.5),
B'(¢)8:p=" + (G1(C) - Dy + G5(C) - D-)p=* — D - Dy p2®
+ 0RY (uar,O) + D - RE (war, €) + D - RE* (s, €) = 0(nd% + ngt).

where p2(t,x,¢) = x-(A(uaz); ¢) and nﬁf’g = n4%x J. and né‘”s = n&" x J.. Take the convolution of the above
equation with J, ® J,,. Recall that G} + G, = ¢’ and add and subtract to obtain the result. O

5. PROOF OF THEOREM 3.2

We are now ready to embark on the proof of the error estimate (Thm. 3.2). Instead of working directly with
the microscopic contraction functional (1.8), we introduce a regularized version Q. of it. For u, v, & € R, define

Q< (u, v;§) = sign, (§) xe(u; &) + sign, (§) xe(v;€) — 2xe(u; &) xe(v; ), (5.1)

where sign_ and x. are given in Lemma 4.6. One may show that

/ (e (15 €) — e (05 €))2 dé = / Qu(u, v; €) de.
R R

This equality is, however, not directly useful to us, since we will be working with functions like x-(A(u);§) with
A(-) nonlinear, but see the related Lemma 5.18.

5.1. Main error equation

We will use the kinetic formulations of the convection-diffusion equation and the difference method to derive
a fundamental equation for the error quantity Q-(A(u(t, x)), A(uaz(t,x)); ) (properly regularized).

Lemma 5.1. Assume that A’ > 0. With the notation of Lemmas 4.7 and 4.8, define

(u,unz)

Qeirrg(€) = Qe(A(u), A(une); Q)+ " (Jrg @ 1) @ (Jry @ Jr).
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Then, for all (t,z) € II;°,

[ B0 dc+ [ 40 Qe (5.2)
R R
— [ 8 dC+2 [ Tpey (25 — (D44 D), e (5.3)
R R

- [ sign. (¢ = Alwan) * Joy @ T)ORE, G (5.4)

R
~ [ (sign. (¢ = A(w) oy @ )0 RE 2 e (5.5)

R
- [ (sign (¢ = Awan) * Jpy @ )V - R, 4G (5.6)

R
_ / (sign. (¢ — A@) % Jp, @ ;) (Ds - REERT + D REERT) d¢ (5.7)

R

- / (sign, (C — A(u) % Jry ® J,)(GL(C) - (Ds — V)

T+ GY(C) - (D- — V) pe, dC. (5.8)
+ [ (sign. (¢ = Aw) oy @ J,)(A = D- - D)o, dc (5.9)
~2 [ (U6 = M) * Ty © TG (5.10)
- Q/REAx,e,r,ro(C) dc, (5.11)

where

Enzerro(C) = =Vperro - (Dy + D*)pe‘iffro
+ (JE(C - A(uﬂﬁf)) * J?"o X J?")”A,e,r,ro

+ (JE(C_A(U))*JTO ®‘] )nAsrro (512)
Proof. By definition,
QE,T,’I‘D (t, 'Tv C) = Signg (C) pS,’l‘,To (ta .'L', C) + Signs (C) p{-:A,f,rD (t’ 1’7 C) - 2:06,7“,7‘0 (t, 'Tv C)psA,f,ro (t’ 'Tv C)

Hence,

o / QerroB'(C)dC = / sign, (C) Or(pemn + p2% . )B'(C) dC

+/Rat(p€,’f,7‘op?,7w‘,ro)3/(<) d¢

= N+ %.
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By Lemmas 4.7 and 4.8

Fi =~ | sign. () '(C) - V(perry + p2L,,) A

%\

71
Ea

[ sign. (©) Alpemg + 2%, ) dC - / sign, () 0 (RE.,, + RE:A7) 4

%\

T2 T2

Signs (C) (v .RE’I‘TO +D+ RET?”AOm +D- R§r7%$) dg

e

TH

+ Slgna (C) (aCnAaE,T”"O + aCnﬁi,r,ro) dC

%\

78

sign. (€) (G1(¢) - (D+ = V) + G5(Q) - (D- = V) s, dC

%\

T8

+ [ sign. () (A—D_-Dy)ps, ac+ / sign, (¢) Ond= . dC.

%\

Ty T8

Similarly for .75 we obtain

T = Z/RQI(C) : V(Pe,r,ropﬁf,ro) d¢ _Q/RPE,T,TOApgf,TO + Aps,r,ropsA,f,ro d¢

T} T2

+2/p€,Ta”‘OatRfrerx+psrroatR§rro C
R

73

G1,A G, A
+2/p5rrov Rgrro +psrToD+ RE”‘T0$+psrroD RET”'Ode

T

Ax Ax
_2/ pEvrﬂ"()aCnA,e,T,ro + pgﬁr’roagnA,s,r,ro dC
R

TP
1o / Perr (GU(C) - (Dy — V) + GA(Q) - (D — V) p2%, dC
78
_2/ Pe,r,ro (A -D_- D+)p5 70 dC 2/ pEaT,TOaCnéi‘,r,ro dC .
R

Ty T
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We compute 77 + Z5 term by term, and thereby explain each of the terms (5.3)—(5.11) in the lemma. We start
with

21 + 1?21 = _AQI(C) : VQS,’I‘,TO dCa

which gives the last term in (5.2).
To make the second derivative terms a complete derivative we need to add and subtract. Hence we may write

72+ 72 = A/Qmod<+4/v/)mo Vpde, A
:A/Qs,r,ro d<+2/vP6,r,ro'(D++D )per'r‘o d¢
R R
+2/ Vps,?”ﬂ"o(Qv - (D+ +D—))p€rro dga
R

which explains (5.3) and the first term in Fay e rrq-
By Lemma 4.6 it follows that

Signs (C) - Qpe,r,ro = Signs (C - A(u)) * JTO ® Jr,
sign, (¢) — 2pﬁﬁro =sign, (( — A(uag)) * Jry @ Jr.

Hence,
7+ 79 = = [ (sion (= Awan) » Ty © TNORE, ,AC
- /R (sign, (¢ — A(u)) * Jry @ Jr)atRf;ff dc,
which explains (5.4) and (5.5) Similarly,

Thy Th = - / (sign, (¢ — A(ung)) * Jny ® J,)V - RY, . dC
R

= [ (sien (¢ = A(w) iy .07) (Ds - REE + DRI
R

which explains the presence of (5.6) and (5.7).
Performing integration by parts we obtain, using Lemma 4.6,

7+ 75 = [ (sign. (¢ = Alwan) * Jry ® J)0enac
+ (sign, (¢ — A(w)) * Jry ® J)Ocn3" o dC
. /R (Jo(C = Awas)) * Jry ® T ) acorre
(e = AW) ey ® J)nAZ A

which explains the two last terms in Fag ¢ rro-
Similarly,

TS+ T = - / (sign, (¢ — A@w) % Jry ® J)(G1(C) - (D — V)
+ G/2(C) ' (D— - V))ps r,ro dga
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and
T+ T = / (sign, (C — A(u) % Jny ® J;)(A— D_ - Dy)p2, d,
R

explaining the terms (5.8) and (5.9).
Finally, integration by parts yields

TS T =2 / (Jo(C — Aw) % Ty ® J)nd% - dC,
R
which is the term (5.10). O

5.2. Dissipative term

In this subsection we are concerned with finding an upper bound on (5.12). In the continuous setting, this
“dissipative” term is negative, c¢f. (1.13), which comes as a consequence of the chain rule of calculus. The
following elementary lemma will help us contend with the lack of a discrete chain rule.

Lemma 5.2. Let a and b be two real numbers. Then there exist real numbers T = 7.(a,b,() and 0 = 6-(a,b, ()
such that 7 and 6 are between a and b, and

/R (¢ = O)(x(b:€) — x(a;€)) A€ = (¢ — B)(b — a), (5.13)
[ 9= 0 = 9 €) = x(a:€) d = 3¢ = )b~ ). (514)
Furthermore, whenever a # b:
(i
1 b
T(C=0) = 5= [ Hc- s
) b
T(C=7) = s [ FlC— - ds
(i)
1 b
(¢ = 0) = J¢ = )b~ a) =y [ L(c = €)(2¢ — (b+a)) ds
(iii)
2 b
Je(C—7)=JA(( —a) = b=ay (/a (Jo(C—¢&) — Je(C —a))(b—ﬁ)d§> ;
(iv)

JE(C - 95(0/7 ba C)) - JE(C - TE(aa bv C)) - (JE(C - eﬁ(b’ a, C)) - JE(C - TE(bv a, C))) :
Proof. To prove (5.14), note that

b
/R (¢ — )b — €)(x(b:€) — x(a:€)) dé = / J.(C—€)(b— &) de.

By the mean value theorem there exists a 7 between a and b such that

b b
/ Jg(c—g)(b—adg:Jg(c—T)/ (b— ) de.
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Equation (5.13) follows in a similar way. The proof of (i) is immediate. Let us prove (ii). By (i)

b
(JE(C—9)—J5(C—T))(b—a):/ J.(C =& (1_22_f> de.

It remains to observe that
b—¢ 2{—(b+a).
b—a b—a

1-2
To prove (iii), note that
b
Js<c—a><b—a>2:2/ Jo(C — a)(b— €)de.

Hence (iii) follows by (i). To prove (iv), observe that the expression on the right-hand side of (ii) is symmetric
in a and . g

The next result can be viewed as a discrete counterpart of the the chain rule, enabling us to write the
nonlinear term n *_ properly regularized, on a form that resembles a parabolic dissipation term like (1.14).

Lemma 5.3. With the notation of Lemma 4.5, for each 1 < i < d, let

TXx,i:TE(A(UAz)aSAmA(qu),Oa Tag = T Te(A(uaz), S- Az, Aluas), )

and
QAw = QE(A(qu),SAxiA(qu),(:), 923:72» = QE(A(qu),S_AxiA(qu),C),

where 1., 0. is defined in Lemma 5.2. Then
(i)
1 - i
Ak (8 w,0) = 5 D (¢ = Th, (DL A(wan)) + 5 Y T~ Ta, )DL Aluas))
(i) for1<i<d,

Di—Xe(A(qu) C) (C eAx z) : (A(qu))v
Di—Xe(A(UAx)Q C) = E(C - eAgm‘) —(A(UAQ:))

Proof. By the definition (4.4) of n4?, recalling that Sy commutes with function evaluation,
S
i xSt ) =Y o / Je(¢ = )(Sae, Aluns) — €)(X(Saw, Aluss); &) — x(A(uas); €)) €
i=1 R

d
1
+ Z m /]R JE(C - g)(SfA:mA(uA:v) - g)(X(SfA:viA(uA:v); g) - X(A(UAI); g)) dg
i=1
Hence (i) follows by Lemma 5.2. To prove (ii) note that by Lemma 5.2,

Di/RX(A(qu);f)Je(C—f)dfz ﬁ/Jg(C—f)(X(SAwiA(qu);g) — (A(unay): €)) dé
= Je(C =04, ) D (Aluag)).

The same argument applies to 6, ;. O
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We have now come to the key result of this subsection, namely a lower bound on the discrete dissipation
term (5.12).

Lemma 5.4. Let Eag . rr, be defined in Lemma 5.1. Then

2
Encerr > Z R+ + R;) everywhere in (ro,T —19) X R? x R,
k=1

for all positive numbers Ax, €, r, and ro, where

d
Rf(¢) = Z((JE«; — Thpi) = Je(C = 04, )DL Aung) * Jry @ J)Ou, pe.rros
d
R (Q) = Z((Je((: - TZI,Z‘) —Je(C— ezx,i))DiA(qu)) * Jry @ Jp) O, Pe,riro
d
REQ) =3 D0 [((Fel¢ = Awan)) = 1 = AL # Iy @ 1)

X (Jo(C = AL)(Or, A)? 5 Ty @ 1),
R (0= fj[((m — Awar) = J(C = Alra, ) * ry © 1)

5 (Jo(C = A(w)) (D, A(u)2 * Ty @ JT)} .

Proof. By Lemma 5.3,

d
(¢ = A(w) w oy © I 03 1, = 5 SUC = A % Jay @ I = 74, V(D Alwan) o Ty .7,
d
5 IUC = Aw) % Ty @ )¢ = 73, N(DE Aluan)P # Ty @)
= T+ T

Observe that
Oz, Perro = O, (Xe (A(1); Q) x Jry @ Jp) = Je(C — A()) 0, A(u) * Jpy @ .

Using Lemma 5.3 once more gives

(ka +sz)pz-:A,7w‘,r0 - ( (C QAI z) (uA$)*J7"O ®‘]
+ (¢~ 02, D Alune)) % Jry ® T

Hence,

d
Vperry - (Dy + D)2, = Z(Js(é — Aw))z, Au) * Jpy @ Jp)(Je(C = 04, )DL Alune) * Iy @ Jy)
d
+ D (Je(C = A(w) D, Aw) % Jry @ ) (Je(C = 04, ) DL A(uas)) * Jry © Jr).

i=1



CONVERGENCE RATE FOR DEGENERATE PARABOLIC EQUATIONS

Adding and subtracting we obtain
~Vpewso - (Ds + D)p27,, = T5F + Ty + Ry + Ry,

where

d
Ty = Z(JE(C — A(u))0z, A(u) * Jry ® Jr)(Je(C — sz,i)DiA(qu) * Jry @ Jr),
i=1
d
Ty =— Z(JE(C — A(u)) 0, Au) * Jry @ Jp)(Je(C — TZx,i)Di—A(qu)) * Jro @ Jp).

i=1

For each 1 <17 < d,

Jo(C = Alwsa) = 5 (J:(C~ Alwan) = Jo(C - A(7S,,0)
45 (90— Alwa)) = (¢~ AGa,,)
45 (Jel¢ = AL, )+ ¢ — A,

It follows that
(JE(C - A(“Aw)) * Jro & Jr)nA,s,r,ro = =73+ + %’7 + R;r + R;

where
1 d
%,4_ =3 Z(JE(C - A(TZQ;Z)) o Jrg @ Jp)(Je(C = A(w) (0r, A(w))? % Tpy @ J),
i=1
1 d
T3 = 5 Z(JE(C - A(TZsz)) o Jrg @ ) (J=(C = A(w)) (0 A(w))? x Jpy @ Jy).
i=1
Note that s )
EAI,E,T,’I‘() = Z(zj + 9 + Z R+ + R
k=1 k=1
Now,

(J-(C = A(u)) * Jry @ Jo)((Je(C = 74, ) (DY Auag))? * Ty @ J)

N —
Tﬁ&

N
Il
-

T =

x>~
Il w
_

(Jo(C = A(u) 0z, Aw) * Ty @ Jr)(Je(C = T4, ) DY Auns) * Jry @ Jy)

T%&

N
Il
-

Je(C = A(T2,.3)) % Jrg @ Jo) (Je(C = Aw))(0n, A(w)? * Jry @ Jr)

+
| —
M&

=

Jo(C = Au) (¢ — Alrh, ) (90, A(u) — D'y A(ua,))”

N | —

~ [\
||M&

— ﬁ

(u, uAl)

Tro @ Jr ® Jyy @ J,

519
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The obtained inequality holds for all (¢,z,¢) € (rg, T — ro) x R? x R. Similarly,
3
Z T (t,z,¢) > 0 for all (¢,2,¢) € (ro, T —19) x R x R.
i=1
This concludes the proof of the lemma. a

5.3. Bounding error terms

We are going to estimate a series of “unwanted” terms coming from Lemmas 5.1 and 5.4. To this end, we
will need to gather three technical lemmas, the first one being a simple application of Young’s inequality for
convolutions.

Lemma 5.5. Let ¢ : R? — R be a measurable function, and u,v : R — R be measurable functions satisfying
‘¢(U($1)7U($2))’ < Ki(z1)Ka(z2) (z1,22 € RY),

for some K1 € LP(RY),1 < p < 00, and K5 € L'(R?). Then

) "7 124l

L1(RY) < ||K1HLP(Rd) HKQHLl(]Rd) Hf“Lq(Rd) H!JHLl(Rd) )

for any g € LY(R) and f € LY(R) where p~! + ¢! = 1.
If ¢ € L>(R?), then

(u,v)
[eo) "< roq| | < Il 1l gy 9l oy (5.15)

Lo (R%)

Proof. Observe that

ku,v) " e

<[] K @ = )l late = )] dunddda

= [[(Ky+ [f) (K2 [gD] 1 gy -

L1(R%)

By Holder’s inequality,
(1% [f1) (K2 * (gD L2 ray < B >[Il oo ay (152 % 9]l L1 ray -

By Young’s inequality for convolutions, [[Kix |fl[[pe®e) < [K1llpomay /Loy and [K2x |glll 11 gey <

K2 1 (ay 9] 1 (may- Equation (5.15) follows, since

< ||¢HL<>C(R2) Hf“Ll(Rd) ”gHLl(Rd)' u

/ B(u(yn), v2) F (@ — 1)g(@ — y2) dyrdys
Rd Rd

The next lemma is at the heart of the matter, permitting us to estimate some terms involving convolutions
against approximate delta functions.

Lemma 5.6. For real numbers a and b, let 7 = 7.(a,b,() and 0 = 6-(a,b,() be as in Lemma 5.2.
(i) For f € Li (R), define
7P = [(¢=m) = (e = a) sy c
Then

A

b
JRCAGREAIGIRT
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(ii) For f € L>=(R), define
T2(f) = / (Jo(C = 0) — Jo(C — 7)(b — a) F(C) dC.

Then )
72| < 5 1y bl

(iii) Suppose {f:}.oo C Wl})cl (R) and assume that there exists f € Wl})cl (R) such that f- — f in Wl})cl (R). Then

< .

b
/ £(€)] de

: 1
lim 7(f.)

Proof. Assume that a < b. By Lemma 5.2 and Fubini’s theorem,

) b
T = =gz [ (U *I€) =+ T 0= ).

Since ¢ (b — £)? = —2(b — &), integration by parts yields

b bh— 2
720) = [ odts = a6 o e (5.16)
Then statement (i) follows, since
2
Ez:fl;z < 1, whenever a < ¢ < b. (5.17)
By Lemma 5.2,
72) = g [ O8 (ot ) e
=M b—a ), : '

As ||f % Jell poo ) < 1 fll o ) We may conclude that

1 b
T2 < s [ Il 26— (@ D)
This implies statement (ii), because

1

b
[ 126~ (a0 dg = 50—,

Finally, we establish statement (iii). By the triangle inequality and Young’s inequality for convolutions,
12 Te = iy S o= Fllpery 11 x T = Fll

for any compact V C R. Hence (f. % J.) — f’ in L]

loc

(R) as € | 0. By (5.16) and (5.17) it follows that

: 1 T ’ / (b_f)z _ b / (b_f)z
i 72(1) = tim [ (e T0© G 46 = [ P0G e

The estimate follows thanks to (5.17). O

We need one more lemma bounding some specific convolution integrals.
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Lemma 5.7. Suppose f € C(R) and let Rf : R? — R be defined by (4.5). Then
R(w.0) = [ (0) = 56 ulo = ) o (5.19)
for all u,¢ € R. Furthermore, if f is Lipschitz continuous, then
[ 1RE 0] dc < ey (519)
Suppose A’ >n >0 and let g be defined by go A = f. For a,b € R, let
Zta.b) = | sien. (=) R @:0)c

Then
€
1Z(a,b)| < 4| fllLip . (5.20)

Proof. Observe that

/ F(0)x(w;0) (¢ — o) do = / (F(0) — F(O)x(s 0) (¢ — o) do+F()xe s C).
R R

RE(u,0)

Let ¢'(o) = (f(o) — f(€))J-(¢ — 7). Equation (5.18) follows, since

To prove (5.19) observe that

[ ot ac s [ ol ([ 150 - 112 = o) dc ) @

The result follows as

[ 1#(0) = £ 16 = @) o < e
Let us prove (5.20). Take
HY (b;¢) = / : RY (b: ) do.
£ 0 €
Integration by parts yields
Z(a.h) = =2 [ (¢~ )HZ (50)dC = ~(HY () » J)a).
R

By (5.18),

a b
HY (b;a) = / / (¢/(@) - ¢'(0))Je(w — o) dw dor
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Due to the symmetry of Jg,

17 o) = [ ’ / @) o) dwdo

_ /Oa /Obg’(a)JE(w ~0)dwdo

- / /Obg%wwg(w ) dwdo

_ /Ob /O ¢ (). (w — o) dw do

= [ it ([ o= a)da) as

- [ e | w0 do) do.

Note that "
/0 Je(w—o0)do = /Rx(a;a)Jg(w —o0)do = xe(a;w).
Hence,
1Y (:0) = [ 9/6) (1) elase) - x(as ) (b)) do.
Set

Ma, byw) = x(b;w)xe(a;w) — x(a;w)x:(b;w).

To find the support of A\(a, b;w) we first observe that A(a, b;w) = —A(b, a;w). This reduces the situation to the
following cases:

0<a<b: |Ma,bw)| <1jg_y<e,

b<a<0: |Ma,bw)| <1jg—y<e,

a<0<b: |Ma,byw)| < 1jy<e.
It thus follows that )

|1 (b,0)| <20/l =

Statement (5.20) follows as g'(A(z))A’(2) = f'(2), which implies [|¢'[| ., < |fl.ip n~ L. O

We have now the tools needed to start estimating the error terms in Lemmas 5.1 and 5.4, starting with those
in Lemma 5.4.

Estimate 5.8. Let RT be defined in Lemma 5.4. Then there exists a constant C = C(d,J) such that

Proof. Let us first make an observation regarding the similarity of these terms. By statement (iv) of Lemma 5.2,
recalling also the definition of HZM and ij in Lemma 5.3,

/R RE(O) + Ry ()¢

Az Az
<(C—|(1+—|||D_A .
L) r? ( - r )l (qu)HLl(HT;Rd)

Sav, (Je(C = Tap ) = Je(C — 03,))
- JE(C - TE(SAzlA(UAz)a A(“Az)a C)) - JE(C - QE(SAxlA(uAZE)? A(”Am)a C))
== (Je(c - TXx,z’) —Jo(¢ — 92%,0) :
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Recalling that pe ., = xe(A(w); ) x Jr, ® Jp, which implies

RY(O)+ Ry (¢ Z Savwr [ (¢ = 730) = (¢ = 03,.0)) DL (wae) % (Jry @ )| D
3 (€= Ta) = Te(C = 02,0)) DL () % (g © )] Orcper,

B SR (o€ =720, = J(€ = 02,.,)) DL (was) * (o © 1)

i=1
d
= 20> (JelC~ 72,0) — T~ 03, )DL Aluan)) xe(Aw): Q)
i=1
) g @0 ) ® (T @ D\ J,).
By statement (ii) of Lemma 5.6,
Az &
— i (u U’Al 7
LR+ R A < G55 I sy 1D ACwan) 57y @0, 0 0y 0 DL (5)
i=1
By Lemma 5.5,
Az & , ,
R L(IT) i=1
Recall that (|0, Jr[| 1 gay < 217 r~1. Note that
; 1
|DiJ(2)] = o (i + Ax) = T W 7 (5) = ||J’\| Loy i<rsaa | [ Ir(2))-
JFi Ve
Hence ) A
. x
HDEFJTHIA Rd) =2 HJ/” / ]l\m\STJrAx dz; =2 ”J/”oo p (1 + T) (5'22)

The estimate follows from (5.22) and (5.21).
Estimate 5.9. Let Ry be defined in Lemma 5.4. Then there exists a constant C' = C(d,.J) such that
Az

2
< 672 ; ||D+A(UAI)HL2(HT;]Rd) HVA(U)HL2(HT;Rd) :
L1(IT}°) 4/ ror

/R RE(Q) + Ry (¢)d¢

Proof. Let us consider R2+ . The term R; is treated the same way. By Lemma 5.6,

1 d
/RR;«)dc] <32
<a AW " (T @ 1) ® (e © 1)
SAT A(uaz)
\ N[ - A e g

A(unaz)

[ (26 = Aluan)) = e = A5, ) 2o~ Al ag

| /\

(u uAl)

X (awlA(u)) (‘]7"0 ® ‘] ) (‘]7"0 ® ‘]7”)
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By Young’s inequality for convolutions,

172 (- = A@)) * Tl oo ry < 12 (- = AW ooy 1211 L2 gy < IIJH

PA
Hence,

'LL ’LLAT

[ RE©ac < F W1 Z|DZ (w8) | O, A2 8 (0.0, @ (Jyy 00).

Applying Lemma 5.5, with K (u) = |u|, K2(v) = v2, p = q = 2, we get

d
Ax i 2
JREEES < 2T 1 S D% A o gy 100 A e
R L) € i—
X || Jry @ J”“|L2(R><Rd) [ Jro ® Jr”Ll(Rde) .
Now
d 1 d+1
[Tre @ Jrll p2@xmay = 1roll 2y L] 197l 2y = == 1T ll12x) - U
0 (RXR4) olL2( )g (®) /rord (R)

Estimate 5.10. Let Rli be defined in Lemma 5.4 and suppose d = 1. Then there exists a constant C' = C(J)
such that

Az
ﬁ) I1D+vuazllprzp -

lim / RE(O)+ Ry () d¢

E,LO R

Ax Az
<C|— —+ = 1Al +
Ll(U;U) — ( r HfHLlp r2 || ||L1p

Proof. We consider Ry . The R, term can be treated similarly. Note that for d = 1,

(uAT

/ RE(Q)dC = / (Jo(C = Alung)) — Je(C — ATED) nacrmo(©) d¢ "5 1y @ 1,
R R

where n4rr, is defined in Lemma 4.7. The map ¢ — nacrr(t, 2, () belongs to Wl})cl( ) for each fixed
(t,xz) € (ro, T —19) x R. Due to Lemmas 4.7, 5.7, and 4.6,

1im 9cna.c.rro () = B'(Q)0rpr.ry (C) + ¢ (()0zprry (O) = 0o (€)
in L*(R) for each fixed (t,), where
Pr.ro(€) = X(A(u); €) * Jry @ Jy.
By statement (iii) of Lemma 5.6,

(uAT

SacA(ung)
lin / B3 (0)ac| <| / B/ (O)0prone (O)] dC Tro ©J,

A(uaz)

SA:LA(UA:L) , (UA:L)
+|f \g(@axpr,m(mdc\ 21,60,
A(uaz)

SAx A(UA:L
-/ 10210 ()] C

(UA:L

=N+ D%+ T

(UA:L

ro @ Jr
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We consider each term separately. Let B(() = £ or equivalently A(§) = (. It follows that

(u, uAT)

SazA(uag)
A</ BOXAW: QL dc| “% 10| @y © gy 7,

A(uaz)

Sazuse (u,u AT
/ Ix(u; €)| d§ 8¢ Ty | © Ty @ Ty @

UAx

(u, uAl)

< Az Dy A(uaz)| |0t Tro| @ Jr @ Jrg @ .
By Lemma 5.5,

Ax
7 L1 120y < 2— 1T | oo 1D+ uazll L1 17, -

Observe that ¢'(A())A' (&) = f/(€) and d¢ = A/(f)df. Hence,

SazA qu)
Al(uag)

A:L

Jro @ 0dy| @ Jry ® Jy

9 (XA Q)| dc\ -

Sazuaz
=/ FOxw: o) de| K 1y @ 00| @ dry @
UAzx
(u, uAT)
< A2l 1Dyunsl "5 Ty 10,01 @y 0 ..
By Lemma 5.5,
Az
12l 2oy < 20 fllip = 1 oo 1D+ uazl L rry) -
Similarly,
SazA(uag) (u, qu) 9
7<|f (Aw); 0)] d¢ Ty ® 020, @ Joy @ T,
A(uaz)
< Aw|Dy Alun)| " 1y © 020, @ Jyy @ .
By Lemma 5.5,

Az
T3l prrryoy < 25 1Tl oo 1D+ Alwra)ll 1 (17, -
Estimate 5.11. Let U be the second term in (5.3), Lemma 5.1, that is,
U= 2/ VIOEJ‘,TO ! (2v - (D+ +D- )perro dC
R
Then there exists a constant C' = C(d, J) such that

Ax? Az
0151y < €2 (1 n —) (TP

Remark 5.12. The BV norm may be replaced by the L' norm at the expense of an extra factor r—1.

Proof. Clearly,

/Rvpgﬂ”ﬂ"o ' (QV - (D+ +D_ )pe ,T,T0 dC

LI(IT})

< ||Vps,r,r0HLoc(H;0 XR;R) ||(2V - (D+ +D_ )pSTTOHLl(HTO XR;RE) *
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By Young’s inequality for convolutions,

||amps,r,ro||Loc(n;0 xR) < [Ix(A(w); ')HLOC(HTx]R) [Je ® On, Jr ® JTO”Ll(RdexR)
< NNOw Tl 1 gy < 201 | 77

We have
(20, — (D', + DL))p2% 0 = x(A(unag); ) % Je © (205, — (DY + DL)) T, @ Ty

Using Taylor expansions with remainders,

Az
((Di. + D') —20,,) J(x) = ﬁ/ (2 = A2)203 Jo (i + 2) dz [[ ()
0 J#
2A /A (z+ A2)?02 Jp(2; + 2) dzHJ (x;)
v j#i

=1 0s, (91 (2) + ¢3(2)),
see for instance ([25], p. 25). Hence
(205, — (DY + DL)p2 1y = 0o, (X(Alune); ) % Je @ (01 +95) @ T, ) -

By Young’s inequality for convolutions

||(283’:7 - (Di + sz))pe r'r‘o”Ll(HTO xR) < ||X( (qu)a ')HLl([O,T]XR;BV(Rd)) X ||<pzl + (PéHLl(Rd) .

Note that [ x(A(was) Mot gozyxmemy gy = 1AW L1 fo.77, v (ayy- NOW, a8 0, Iy (i +2) < 72|17

it follows that

||<p’1||L1(Rd) = E/}R’/O (z—Ax)ZaiiJr(xi+z) dz’dazi

A Az
@iﬁﬁwwm/ (2 — Aw) d
0

Axr3

S 2 (1422,

\ /\

The same estimate applies to b.

Estimate 5.13. Let .7 be the term (5.9) from Lemma 5.1, that is,
7 = [ (sign. (¢~ Alw)) « 1oy © J)(A = D - Dy)pB, .
R

Then there exists a constant C' = C(d, J) such that

Az Az
17y < O (14 25) NAGan i o ryovceey -

Remark 5.14. At the cost of an extra factor »—!, the BV norm may be replaced by the L! norm.

527
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Proof. First note that [sign, (¢ — A(u)) *x Jr, ® J»| <1, s0

7| <|[(A-D-- D+)Pﬁf,ro||L1(nTxR) :

Now,
(02, — D Di)p2s = x(A(uan): ) * Jo @ (82, — DDAV, @ .

Using a Taylor expansion ([25], p. 24),

83%,—D’_DZ J,«x:—/ Ax584 x; +2)dz Jr(z4)
(@, = D' D) = g [ (- Anol g 1762
1 0
- 6A—2/ (z+ Az)*05 Jp(2; + 2) dz HJr(asj)
T J—Ax

it
=: 0n, (£} (2) + 05 ().

Hence,
(02, = DLDY)p2e . = 02, (X(A(unz); ) * Jo @ (05 + ©4) ® Iy, ) -

By Young’s inequality for convolutions,
) ‘ , .
H(a DZ D} )pET'I‘OHLl(HTXR) > HX( (uAar)v')||L1([0’T]><R;Bv(Rd)) X H‘Pll +()022’|L1(Rd)'

It remains to estimate the L' norm of ¢ and :

] 1 Ax
16 s ) = W/R‘/o (2 = 4203 Jy (s + ) e d

A Ax
< T o) | [ - anpa
3Az rt o | Jg

Ol A (A
“T 12 s Ut )

A similar estimate applies to ¢b.

Estimate 5.15. Let .71 and J be the terms from (5.8) in Lemma 5.1, that is,
%= / (sign, (C — A@)) % Jny ® J;) G1(C) - (D4 — V)p22,. dC,
% = / (sign, (C — A(u) % Joy ® 1) G4(C) - (D = V)p22  dC,
where Gy(A(u)) = Fi(u) for j = 1,2. Then there exists a constant C = C(d, J) such that
1950y < O5F (1 55 ) Wbl iz 14 C0ae) o v oy

for k=1,2.
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Remark 5.16. Again the BV norm may be replaced by the L! norm at the cost of an extra factor r—!

Proof. Consider .7;. We can change variables ¢ = A(&), which yields

7= / (sign, (A(€) — A(u) % Joo ® ) FL(C) - (D — V)pr . dé.
Then observe that
10y < I (Ds = 9) (c(A@an)s ) % Je @ Jr & o) s (1 sy -

We have
(DY = 0x,) (X(A(uaz); ) *x Je ® Jr @ Jry) = X(A(uaz); ) * Je ® (Dz = 02,)Jr @ Jry.

By Taylor expansions,

i L[ 2
(D+—8Ii)Jr(x):A—x/0 (Ax — 2)0;, Jr(z; + 2) dzHJ (x5)
J#i
=: O, ().

By Young’s inequality for convolutions,

||(Flz)/(D:- - 8307) (X(A(UAJU); ) *Je @ Jp ® JTO)HLl(HTxR)

< ||(F1i)/||Loo(R) Ix(A(uaz); ')||L1([O,T]><R;BV(Rd)) ||90||L1(Rd) :

It remains to estimate ||| ;1 (gay:

1 Ax
ol Ly ray = A /’ (Azx — 2)0y, Jr(zi + 2) dz| dz;

A
<—2||J’|| P 1 s
r? 0

— 17 5 (14 55).

from which the estimate of 73 follows. Similar arguments apply to . O

Estimate 5.17. Consider the terms (5.4), (5.5), (5.6), and (5.7) from Lemma 5.1. Suppose A’ > n and set
B:=A"1' Let

71 = [ (s, (¢ = Alwan)) = Ty © 1) R, (O
7= [ (e, (€= Aw) « 7oy © 1) OREA () dC,
7= [ (sgn. (¢ = Alwar)) x 1y ©.07) V- R, (0)C
7= [ (sgn. (¢ = Aw) « 7y 9 1)

x (D+ REVAT(()+ D_ - RS éx(C)) dc,
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where
R, . (C) = RI(A(w),Q) * Jry @ J; and RLZY (C) = RL(A(uaz), €) * Jry ® Jr

£,7,70 £,7,70

for any function f, and R{ is defined in equation (4.5). Then

€
[ Zkll Loo 1270y < 8— 1Tl for k=1,2,

1 Los (120 < 8— (PR Z 1 fillip »

i=1

Py <55 (10 22) 1710 5 -

k=1 i=1
Proof. Consider Z7. Moving the ¢ derivative onto J,,, we have that

(uAlau)

7, = / sign, (¢ — A(uas)) RE (Au), ¢)dc oo @ Jr @ Oy @ Ji.
R

By Lemma 5.5, equation (5.15), Lemma 5.7, and equation (5.20) with f(z) = z,
H%HLOO(HTO) < 4 H‘]To @ Jr ||L1(R><]Rd Hat‘]?"o ® Jr HLl(RxR"’) < 8_ ”J/H

The L* bound on % follows similarly.
Let us consider J3:

(uAT u)

d
7= [ sign. (¢ = Alwar) RE (A, d¢ "5 11y 0.0, @ 1y © 00
i=1 7R

By Lemma 5.5, equation (5.15), Lemma 5.7, and equation (5.20) with f(2) = f;(2),

||%||Loc(nr0)<4 ZHfZHLlpH8x7J”L1 R4) <8_||J/H Z”fZHLlp

i=1

The terms in .7, are estimated in the same way, but in view (5.22) we can utilize the bound
Az
s © DT s < 2101 7 (1457 ). 0

5.4. Concluding the Proof of Theorem 3.2

Recall that Q., ¢f. (5.1), was introduced as an approximation to the contraction functional @, cf. (1.8). Recall
the basic property [10,33]

lu—v| = / Q(u,v; &) d&, u,v € R. (5.23)
R
To argue for this relation, note that
Q(u,v;€) = Ix(u; €)] + [x(v; )| = 2x(u; E)x(v;€) = (x(u; €) — x(v;€))*.

Next, observe that
x(u;8) = x(v;€) = x(u—v;§ —v); (5.24)
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indeed, for any S € C¢(R),
/RS/(E)(X(u; x(v;€))d€ = / S'(€)d¢ = / (0 +v)do (here 0 =& — )
/S/ (o +v)x(u—wv;0)do
/S/ x(u —v; € —v)dE.
Hence, the claim follows:

/<x<u;5> () de = / (ot — v; € — v)| d€ = [u— .
R R

Let us quantify the approximation properties of Q..

Lemma 5.18. Let A’ >1n >0, B= A"', and f = go A. Define

P= | Q(A(u), A(v); O)B'(¢) d¢ — |u — vl

R

M= | Q:(A(u), A(v); ()g'(¢) d¢ — sign (u —v) (f(u) — f(v)),

R

and

N = RQE(A(U),A(U);C) d¢ — |A(u) = A(v)],

for any w and v, and where Q¢ is given by (5.1). Then
Pl<165,  [M|<8S,  |N| <8
n n n

Proof. Because A’ > 0, Q(u,v;&) = Q(A(u), A(v); A(§)). Hence we can use (5.23) and a change of variables to
obtain the identify

P= [ (QuA1), Aw):0) ~ QA Aw): ) B de.
By definition of @ and the equality |x(u;&)| = sign (§) x(u; &),
Q(A(u), A(v); ¢) = sign (¢) x(A(u); ¢) + sign (¢) x(A(v); ¢) — 2x(A(u); O)x(A(v); ().
Thus,
P = [ (sn. (O xe(A():0) = sien (O x(A(w)i ) B'(0) ¢
+ [ iz (€ xe(A0):€) = sign (O x(A():0) B'(Q)d¢
+ Q/R(X(A(H);C)X(A(U);C) — Xe(A(u); Oxe(A(v); €))) B'(¢) d¢
= P+ P, + Ps.

Finding that the measure of the support of the integrand is bounded by 4¢ for Py, P,, and P5, we conclude that

|P| < 16e || B]
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and then the bound on P follows since ||B'[| < n~!.
To prove the inequality for M, note that

s (=) (F(u) = £(0)) = [ sign (=) (x(130) = x(30) (€) ¢
=[xt 6 = X O1 £10) a6
= /R[Sign (€) x(u; €) + sign () x(v; ¢) — 2x(u; O)x(v; Q)] f'(¢) dC.
Changing variables, we arrive at
[ @ Qdc= [ Qua A () d,
and, since sign (¢) v(w; ) = sign (A(C)) x(A(w); A(C)), we find that
M1 < [sien (A(O) x-(A(w): A(Q) — sign (AO) x(A(w: AQ)| 17O de
" /R [sign. (A(0)) xe(A(v): A(Q)) — sigm (A(0)) x(A(w); AQ)] |£(Q)] dC
e (A0 A e (AW AQ)) = (A AOD(AR): A 1F/(C)] .

Each of the three integrands is bounded by 2 and has support where |A(¢)| < &, i.e., where |(| < &/n, hence
|M| < 8¢/n. The proof of the bound on |N| is similar. O

Concluding the Proof of Theorem 3.2. We shall choose a positive test function ¢ < 1, such that |V¢| and |A¢|
are bounded by C'¢. This will be convenient when we estimate terms containing V¢ or Ag. R
A test function with the necessary properties can be defined as follows, fix R > dv/d and define ¢ : R* — R by

o = 11 if |z| < R+ V4,
®= exp((R ++Vd — |z])/V/d) otherwise.

Define ¢ = ¢+ J®" and note that ¢(z) = 1 for z € B(0, R). Note that ¢ is weakly differentiable and satisfies

Ou,p = {_\fz—zﬁg(l‘) lz| > R+ V4,
' 0

lz| < R+ Vd.
It follows that |Ve(x)| < T(]ﬁ(m) In order to bound A¢ we first note that
- 1 d-1Y)\ .
Ap(z) = | = — —— z), for |z| > R+ Vd.
o) = (- S ) o). o el
Furthermore
’ 1 1 d-1
— < (= < = f >d
d2(d Ve > or |z V.

It follows that |A¢| < é(/g(x) whenever |z| > R+ v/d. Hence

|Ad(z)] < éqﬁ(az) for |2| > R +2Vd.
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If || < R+ 2V/d it follows by the lower bound ¢(x) > e~2, that there exists a constant C' = C(d, J) such that
[Ad(x)| < C ()]

The next lemma estimates how far |ua, — u| is from it regularized counterpart
(uAz,u)

/B/(O (xe(A(uaz); €) _XE(A('LL);O)Q d¢ * Sy @ Jr @ Jpy @ Jy.

Lemma 5.19. With the notation and assumptions of Lemma 5.1,

J.

pde <C (7” + 1o+ 19l 11 (ga) %) ) (5.25)

/R B/(Q)Qe o (Alta), Aw); ) dC — ung — 1l

I L

—sign (uaz —u) (f(u) - f (qu))l Vo

I )

[ /R (O Qerra (Alnn), A(w): €) dC
(5.26)

dedt < CT (7" 70+ 16 1 ey %) :

and

[ /R Qe o (Aluas), A(u); ¢) dC
(5.27)

— |A(uaz) — Alu)]| Ad

dadt < CT (r 170 4 101 1 (e %) :

where the constant C' only depends on the initial data, A, and f.
Proof of Lemma 5.19. We establish (5.25) as follows:

J.

odx

/RB/(C)QEWWO (A(qu)v A(u);¢)d¢ — ‘uAac — ul

:/Rd

- "LLAx(t, x) - u(ta x)) JTO (t - S)JT(ZE - y) dyds

<L L

- ‘uA:v(sv y) - u(sa y)|

T
X Iy (t = 8)Jp(x — y) dydsdz

3
< 165 /Rd ¢pdw + 2 <|UO|BV(Rd) + |uae (0, ')|Bv(Rd)> (r+ o).

T
[ ( [ B00- (Ao, Aluls, 0
0 R4 R

¢dx

/R B/(O)Qe(Aluan(s,9), Alus,y)): €) d¢

Iro (t — 8)Jp(x — y) dydse da

The bounds (5.26) and (5.27) are proved in the same way. O
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Writing the equation in Lemma 5.1 as
[ B©0Qunn At [ f(OVQerryde= [ AQursa+ 22,
R R R

we multiply by ¢, integrate over t € [rq, 7] where ro < 7 < T — ¢, and integrate by parts in z, finally obtaining

/Rd/RB/(C)Qs,r,rO d¢¢ ‘::O d:r—/OT /Rd/Rgl(OQE’T’TO.ngddedt
_ / ’ /R d /]R Qermo AddCdadt + / i / £25 sdadt

Combining this with Lemma 5.19 gives

t=T1 T
/ lupz —uld d:r—/ / sign (uay — u) (f(upz) — f(w)) - Vodadt
R4 t=ro ro JRA

§/ / |A(u41)—A(u)|A¢dxdt+/ / S?frogbdxdt—i—CT <T+T0—|—i>’
T0 Rd T0 77

where Cr depends (linearly) on 7T'. Using properties of ¢, this can be rewritten as

A(7) — A(ro) <C/A £y dt + &

where

At) = | |uas(t,2) —ult,z)| ¢(z) da,

_fffo _/ / gar. ¢dadt + Cr <r+ro+%>~

Gronwall’s inequality then implies that
—Ax,T
A7) < Alro) +7e" (A(ro) + 827, ) -

Recall that u depends on 7, and we now make this dependence explicit by writing v and A”. Our aim is to
estimate ua, — u’. By (2.2),

/ |qu(7'7 3 —u(r, -)| dzdt — Cy/n
B(0,R)

< A(7)

<Cr Hqu (ro,+) —uo (ro, - HL1 (RY) +CT5€A::TTO

Az, T
< C(TO + Hqu(Oa ) uO”Ll (R4) + CTSS ,TTo "

Next, we estimate the terms in the integral of £22, ; these are the terms in (5.3)—(5.11). By Estimate 5.11,

e,r 7"07
Az? A
// |second term in (5.3)| dedt < C—Cg (1 + _x) , (5.28)
H;O r T

where C' depends on the initial data.
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The integral of the terms (5.4)—(5.7) is bounded by Estimate 5.17:

// (5.4) + (5.7)|dwdt<C£(i+1(1+&>>.
Y n\ro r r

The integral of (5.8) is bounded by Estimate 5.15 as follows:

// 58|d:cdt<C’—(1+—>-

The integral of (5.9) is bounded using Estimate 5.13:

2
// 59dxdt<0—( +%)-

The term (5.11) is bounded using Estimates 5.8 and 5.9 (if d > 1):

1
(5.11)| dadt < CAzx . 5.29a
// ro ) ( 52\/7”01"‘1) ( )

If d = 1, we can use Estimate 5.10 to achieve the better bound

Jhs

Finally, the term (5.10) is non-positive.
The fraction Az /r will turn out to be uniformly bounded (in fact vanishingly small), so we can overestimate

it by a constant. Thus the bounds (5.28)—(5.29b) give the following estimate for o,

e,r,7r0"

—Az,T € Ar Az Az
SETTOSOT T+TO+ +_+_+—+—+7 .
n e2+/rord

1 1 1
hm (5.11)| dadt < CAx (r_2 +-+ —) : (5.29b)

e—0 T To

nro - nr r r?
If uy € BV(R?), [Juna.(0,-) — wl 1 (ray < |uol gy (ray A, so that

nro - nr r r2

€ Arx Az Az
HuAa:(T,-)—uO(T,-)HLl(B(O’R))SC’T<AJ;+\/_+T+T0+77+—+—+—+— 7>

4.

Now we set r = rog = /1], € = r%; using that r < 1, the above simplifies to

A
Juaz(r, ) —u’(, ')HLI(B(O,R)) <Cr (T T 1711 ) ’
r 2

Finally, minimizing with respect to r yields
_2
|was(r, ) —u’(r, .)||L1(B(O’R)) < CpAxTo+d, 0

Remark 5.20. If d = 1, the above estimate gives a convergence rate of 1/10, which is better than the rate
reported in [24]. However, when d = 1, we can use (5.29b) instead of (5.29a). Then we have no terms with
¢ in the denominator, so we can send ¢ to zero in (5.2)—(5.11) before taking absolute values and integrating.
Proceeding as above, i.e., setting r = ro = /7, this yields the bound

A
H“Aw(T’ ) —u’(r, ')HLl(B(o,R)) =Cr (T - T_Qx) 7

which gives the rate 1/3 [25].
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WELL-POSEDNESS OF DIFFERENCE METHOD

In this appendix we establish the well-posedness of the semi-discrete method. We also collect a series of
a priori bounds.
Introduce

d
lolh = 4293 Joal and Jolpy = 33 Gate, - oal-
«

a =1

If these quantities are bounded we say that o = {04} is in £}(Z?) and of bounded variation. Let u(t) =
{ua(t) }acze and ug = {ua(0)}oeze and define the operator A : ¢1(Z4) — ¢1(Z%) by

d
(A(u))a = ZDZ— [Fi(uayua+eqz) - D:—A(ua)] .

Then (3.1) may be considered as the Cauchy’s problem

du  A(u) =0, t>0,
u(0) = uo.

This problem has a unique continuously differentiable solution for small ¢, since A is Lipschitz continuous for
each Ar > 0. The solution defines a strongly continuous semigroup S(t) on £*. We want to show that this
semigroup is ¢! contractive. This follows by the theory presented in [14], given that A is accretive, i.e.,

Z sign (uq — va) (A(u) — A(v))a > 0.

for any u and v in ¢*(Z) [32,34].
Lemma A.1. The operator A : (*(Z%) — (1(Z%) is accretive.

Proof. By definition
d
(A(u) — A(v))a = ZDZ [Fz(uavuo&ei) — F'(va, vate,) — Dy (A(ua) — A(Ua))] .

i=1
Let 01 F* and 0, F" denote the partial derivatives of F* with respect to the first and second variable respectively.
Since F'* is continuously differentiable there exist for each («,i) some number 7, ; such that

Fi(umua_,_ei) - Fi(vaa ua—&-el) = 81Fi(7'a,ia ua—&-el)(ua - Ua)
and similarly a number 6, ; such that
Fi(va»uaJrei) - Fi(va’va+ei) = 82Fi(vaa0a,i)(ua+ei — Vate;)-

Let wo = uy — v, then

Fi(ua,uwrei) - Fi('UowvoHrEi) :Fi(ua»ucwrei) - Fi(va’ua+ei) + Fi(va’ua+ei) - Fi(vOC’UQ“Fei)
= alFZ(Ta,ia Ue+e; )wa + 82FZ('U047 ea,i)woﬂrei .

Let A’ = a. Then there exist some &, such that

Aua) = A(va) = a(€a)wa-
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Using these expressions we obtain

Zugn —va) (Au) — AW))a

d
= ZZ sign (wq ) Di_ [alFi(Ta,i,uaJrei)wa + 82Fi(va,0a,i)wa+ei]

d
ZZ sign (wq) DD’ (a(€a)we) == Ti — T (A1)
Consider .7 first. Since

Di [81 (TO/ i uoz—&-el)woz + o F (UOM ea,i)wa+e7¢] = A |:81 (TO/ is ua+e7)
- 81Fi(7'a—el,i7 Ug ) Wa—e; + 82Fi(vav ea,i)wa+eq‘, - 82Fi(va—€m90é—€ui)wa )

it follows that

alFi (Tafei,iv UQ)Sigl’l (U)a) Wa—e;

d
IZALxZZ{alF TazauaJre)

i=1

+ aQFZ (Uou ga,i)Sign (woc) Wa+e; — aQFZ (Uafei ) eaei,i)|wa|:|

1 d
_x Z Z O F" (T()A,ia uoz—&-el)
=1 [

+ Z aQFZ (Uom ea,i)Sign (U)a) Wate; — Z a2-FZ4('U047 ea,i) |woc+ei
« «

W | — Z 81Fi(7'a,ia Ugte; )SIEN (Ware;) Wa
«

|

= 2 Z Z |: goHre Slgn (wa) onre, - 2a(£a)|wa| + a(gafei )Sign (’U}a) wa,ei} s

=1 «

Since each F? is monotone, it follows that .7, > 0. Considering 7, we have

from which it follows that 5 < 0. O

Lemma A.2. Suppose F' is monotone for each 1 < i < d. For any positive T, there exists a unique solution
u={uqs} to (3.1) on [0,T] with the properties:

(i) Nu@®ll < luolls-
(ii) For every a € Z¢ and t € [0, T,

irﬁlf{uﬁ’o} < ug(t) < sup{ugo}.
B

(i) [u(®)[pv < [uolpv-
(iv) Ifv ={va} is a solution of the same problem with initial data v, then

[u(t) —v(@)]lr < [luo — voll1-
Proof. Parts (i), (iii) and (iv) follows since S(¢) is a contraction semigroup. Part (ii) follows from [9]. O

Note that the ¢! bound in [(i)] implies that u,(t) exists for all ¢, and not only for ¢ small.
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Lemma A.3. Suppose F' is monotone for each 1 <i < d. If u is a solution to (3.1) and A(ug) € £*(Z?), then

for each h > 0,
[u(t +h) —u®)lle < || A(uo)lerh.

t+h
/ u'(s)ds
t

and so Lipschitz continuity would follow. We claim that

Proof. Suppose that ||u/(¢)|| < C. Then

t+h
lu(t + h) — u(t)]| = < / u/(s)]| ds < Ch,

.,
5l B < 0. (A-2)
Indeed,
a, , 0
ol (0] = 5 I Au(®)]
- %[Axdzsign (u(t))) Au(t))a
= Ax? Zagn )a) OrA(uc(t))a,
and

d
O A(u(t))a = %ZDi [F* (wa(t), tarte, () — DY Aua(t))]

a1F (wa(t), Uate, (t))u;(t) + 82Fi(ua(t),ua+ei (t))uim-ei (t)]

. H'M&

- Z D' Dy afua (1) (1)

i=1

d
== ZDZ— [alFi(ua(t)auaJrEi () A(u(t))a + 02 F* (ua(t), tarte, (t))A(u(t))aJrei]
i=1
d
+ > DD a(ua () Au(t))a-

i=1

Considering the similarity between this computation and (A.1), it is seen that (A.2) holds. We conclude that
llv/ ()] < |l A(uo)|| and so the lemma follows. O
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