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ELECTRODE MODELLING: THE EFFECT OF CONTACT IMPEDANCE

Jérémi Dardé1 and Stratos Staboulis2

Abstract. The most realistic model for current-to-voltage measurements of electrical impedance
tomography is the complete electrode model which takes into account electrode shapes and contact
impedances at the electrode/object interfaces. When contact impedances are small, numerical insta-
bility can be avoided by replacing the complete model with the shunt model in which perfect contacts,
that is zero contact impedances, are assumed. In the present work we show that using the shunt model
causes only a (almost) linear error with respect to the contact impedances in modelling absolute current-
to-voltage measurements. Moreover, we note that the electric potentials predicted by the two models
exhibit different Sobolev regularity properties. This causes, in particular, different convergence rates
for a widely used finite element approximation of the potentials. The theoretical results are backed up
by two-dimensional numerical experiments.

Mathematics Subject Classification. 35Q60, 65N15, 35J25, 65L11.

Received February 9, 2015. Revised June 3, 2015.
Published online February 19, 2016.

1. Introduction

The modelling of current-to-voltage measurements is a fundamental part of Electrical Impedance Tomography
(EIT) in which the aim is to reconstruct information about the conductivity distribution inside a body by
external measurements of electric current and voltage [1,2,4,25]. In practice, through a set of surface electrodes,
currents of prescribed magnitudes are conducted into the object and the voltages needed for maintaining the cur-
rents are recorded. The most accurate mathematical model for a practical current-to-voltage measurement is the
complete electrode model (CEM) which takes into account both the shapes and shunting effect of the electrodes
by modelling the electrodes as medium-sized perfect conductors. Moreover, the quality of electrode contacts is
described in the CEM by contact impedance parameters which model the effect of the resistive layers present
at the electrode/object interfaces. It has been experimentally verified that the CEM is capable of predicting
experimental data to better than .1% [5,24].

In absolute EIT, where conductivity images are computed from fixed-frequency current-to-voltage data mea-
sured on an unchanging object, a major challenge is that the measurement is significantly affected by unknown
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contact impedances. The problem can be tackled e.g. by applying CEM-based iterative (Newton-type) methods
which allow estimating both the conductivity distribution and the contact impedances [15,26,27]. In this tech-
nique, a subtlety arises if a physical contact impedance is very close to zero, as numerical approximation of the
CEM is known to turn unstable in the limit [19]. It has been observed that most numerical instabilities can be
avoided by forcing the contact impedance parameters far enough from zero during the iterations [8]. Another
tempting approach is to replace the CEM by the so-called shunt model (SM) which formally corresponds to
the CEM with zero contact impedances [13, 24]. To rigorously justify either of the stabilization procedures, it
is necessary to demonstrate that the CEM converges controllably to the SM as the contact impedance tends to
zero. Proving and analyzing the convergence is the main research problem of this work.

To put our work into perspective, we note that the relationship between the CEM and other widely used
idealistic models for EIT measurements – the continuum model (CM) and the point electrode model (PEM) – has
already been studied [14,18]. The CM assumes infinite dimensional boundary data and has been used in proving
theoretical stability and uniqueness results on the inverse conductivity problem of EIT. The approximation of
CM boundary data in terms of the CEM as the number of electrodes increase was considered in [18]. In the PEM,
the electrodes are modelled as point sources and the model has some attractive properties (such as conformal
invariance and closed form solutions [11]). However, due to its inbuilt singularity, the PEM is applicable only
in modelling the difference of two electrode measurements. The interpretation of the PEM as a limiting case of
the CEM as the electrodes get small was analyzed in [14]. In conclusion, the work in this paper can be seen as
complementing the above results from the point of view of the SM and the contact impedances.

Let us briefly outline the mathematics in this work. According to electrostatics, conducting a static electric
current through an object Ω free of current sinks or sources invokes in Ω a potential distribution u determined
via the conductivity equation

div(σ∇u) = 0 in Ω. (1.1)

Here σ is the electrical conductivity distribution inside Ω. The effect of contact impedance (resistance) is
modelled in the CEM by a positive z in a Robin-type boundary condition

u + zν · σ∇u = U (1.2)

on each electrode. Here U ∈ R represents the voltage perceived by the electrode and ν denotes the outward
pointing unit normal of the boundary of Ω. As current injection is exclusively confined to the electrodes, one
ends up with a mixed zero-Neumann/Robin (NR) boundary value problem for (1.1). For fixed boundary data U
and σ ≡ 1, the asymptotics of the solution u as z tends to zero has been previously studied in [6]; in particular,
the limit coincides with the solution of the mixed zero-Neumann/Dirichlet (ND) problem. Unfortunately, the
existing theory does not directly imply asymptotics for the solution of the CEM problem because the electrode
voltages are not fixed – they depend on z. Identifying the SM with a subspace projection of the CEM allows
us to prove convergence in an abstract functional analytical framework. It is noteworthy that the obtained
convergence result not only holds for the CEM and SM, but also for their discrete Galerkin approximations.

To obtain an explicit convergence rate, we resort to the existing regularity theory for elliptic mixed boundary
value problems [6, 18, 23]. In general, the solutions of ND and NR problems belong at best to H1+s(Ω) for any
s < 1

2 (ND) and for any s < 1 (NR), respectively. We show that given this Sobolev regularity, the H1(Ω)-error
between the CEM and SM solutions is of order O(zs) with an arbitrary s < 1

2
3. Interestingly, the subspace

projection property of the SM yields a better – of order O(zs) for any s < 1 – rate for the electrode voltage.
In other words, if the CEM is replaced by the SM, the error in the practical electrode measurement data
exhibits almost linear dependence on the contact impedance. Finally, as a side-product, we point out that the
same argument is also applicable to the finite element (FE) approximation of the CEM by piecewise linear
polynomials: we show that the electrode potential U is “log two times” more accurately approximated than the
spatial potential u.

3In [6] the exponent s = 1
2

is shown to be optimal for a generic two dimensional problem for Laplacian with fixed boundary

data (1.2).
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The theoretical results are complemented with two numerical experiments in the plane. In the first one, we
probe the convergence with respect to z. The anticipated convergence rates are detected with a reasonable suc-
cess. In particular, different rates for u and U are observed. In the second numerical experiment, the convergence
rates (with respect to the mesh parameter h) of the FE approximations of the CEM and SM are tracked. The
results indicate that the corresponding rates are indeed different for u and U . Moreover, the dissolution of the
regularity of u as z tends to zero is shown to cause a slowing h-FE convergence rate for the CEM – an analogous
phenomenon is well-known in numerical analysis [7]. The de-regularizing effect of a small contact impedance has
practical significance as one usually aims for good electrode contacts whereas many reconstruction algorithms
rely on repetitive accurate applications of FE-based solvers [8, 16, 26].

The article is organized as follows. In Section 2 we give the precise mathematical definition of the CEM
together with the relevant notation. In the beginning of Section 3 the SM is formulated as a subspace projection of
CEM, and it is proven that the CEM potentials and their Galerkin approximations converge with an unspecified
rate to the SM counterparts as the contact resistance tends to zero. The convergence rates between the models
(in smooth geometry) are then derived in Section 4. The obtained convergence rate as well as the effect of the
magnitude of contact impedance to the convergence of a FE approximation of the CEM are numerically studied
in Section 5. Finally, the concluding remarks are presented in Section 6.

2. Complete electrode model

Let Ω ⊂ Rn, n = 2, 3 be a bounded domain (open and simply connected) with Lipschitz regular boundary
∂Ω. The areas covered by electrodes are modelled by M ≥ 2 mutually disjoint, well-separated sub-domains
{Em}M

m=1 on ∂Ω and their union is abbreviated by E. The conductivity σ ∈ L∞(Ω; Rn×n) is assumed to be
symmetric and such that there are constants σ± > 0 satisfying

σ−|ξ|2 ≤ ξTσξ ≤ σ+|ξ|2 (2.1)

for all ξ ∈ Rn almost everywhere in Ω. In other words, σ is possibly anisotropic and somewhere between
an ideal conductor and resistor. We assume that all electrodes are used for both current injection and voltage
measurement, and we denote the lists of the static electrode net currents and voltages by I, U ∈ RM , respectively.
According to the current conservation law, in the absence of sinks and sources we have the necessary condition

I ∈ R
M
� :=

{
V ∈ R

M :
M∑

m=1

Vm = 0

}
.

The contact impedances at the electrode/object interfaces are modelled by positive real numbers

zm > 0, m = 1, 2, . . . , M. (2.2)

In the following, the maximal and minimal contact impedances are denoted by

z− := min
m

zm, z+ := max
m

zm

and we employ the notation
z = (z1, z2, . . . , zM ) ∈ [z−, z+]M ⊂ (0,∞)M .

The boundary value problem corresponding to the CEM is as follows: given an input current I ∈ RM
� , find

the induced potential pair
U := (u, U) ∈ H1(Ω) ⊕ R

M
� =: H

1
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that satisfies weakly
div(σ∇u) = 0 in Ω,

ν · σ∇u = 0 on ∂Ω \ E,

u + zmν · σ∇u = Um on Em,∫
Em

ν · σ∇u dS = Im, m = 1, 2, . . .M,

(2.3)

where ν : ∂Ω → Rn is the exterior unit normal of ∂Ω. Note that since in practice only potential differences can
be measured, we determine the ground level by fixing U ∈ RM

� . For a thorough physical justification of (2.3)
the reader is advised to consult e.g. [2, 5].

Unique solvability of the variational formulation of (2.3) in the Hilbert space H
1 is a consequence of the

Lax–Milgram’s lemma [9]. The associated bilinear form B = B(σ, z) : H1 × H1 → R is defined by [24]

B(V ,W) =
∫

Ω

σ∇v · ∇w dx +
M∑

m=1

1
zm

∫
Em

(v − Vm)(w − Wm) dS (2.4)

where the boundary restrictions of the appearing functions are identified with their corresponding traces. Thanks
to the zero-mean condition on the second component of H

1, B is bounded and coercive [24] with respect to the
norm ‖ · ‖ induced by the natural scalar product(V ,W)

H1(Ω)×RM =
∫

Ω

(∇v · ∇w + vw) dx + V · W. (2.5)

Consequently we have the following.

Lemma 2.1. For an arbitrary φ ∈ (H1)′ there is a unique U = U(φ) ∈ H1 solving

B(U ,W) = φ(W), ∀W ∈ H
1. (2.6)

Moreover, the solution satisfies
‖U‖ ≤ C max(σ−1

− , z+)‖φ‖(H1)′ , (2.7)

where the constant C > 0 depends only on the geometry.

Remark 2.2. Throughout the article, the symbol C is reserved for denoting generic constants which are inde-
pendent of z. The value of C may change from one occasion to the next.

Let us next return to the boundary value problem (2.3). In order to have a weak version of the co-normal
derivative at hand, we set

H1
σ(Ω) := {v ∈ H1(Ω) : div(σ∇v) ∈ L2(Ω)}, (2.8)

and equip H1
σ(Ω) with the graph norm

‖ · ‖H1
σ(Ω) := ‖ · ‖2

H1(Ω) + ‖div(σ∇·)‖2
L2(Ω).

The weak co-normal derivative γ1(σ) : H1
σ(Ω) → H−1/2(∂Ω) is defined through

〈γ1(σ)v, w〉 =
∫

Ω

σ∇v · ∇w dx +
∫

Ω

div(σ∇v)w dx. (2.9)

In the above formula w ∈ H1/2(∂Ω) is identified with its arbitrary H1(Ω)-extension because the right hand
side is defined only up to addition of an H1

0 (Ω)-function to w. This follows by density since the weak (i.e. dis-
tributional) definition of the differential operator is

〈div(σ∇v), ϕ〉 = −
∫

Ω

σ∇v · ∇ϕdx
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for ϕ ∈ C ∞
0 (Ω) and H1

0 (Ω) = C ∞
0 (Ω)H1(Ω). Using Green’s formula, it is easy to check that γ1(σ) coincides with

the standard co-normal derivative for smooth enough functions and boundaries.
We conclude this section by observing the connection between (2.3) and (2.6).

Theorem 2.3. Let U = U(φI) ∈ H
1 be the solution of (2.6) with the second-member φI(W) := I · W . Then

U = (u, U) satisfies (2.3) with the co-normal derivative replaced with γ1(σ)u. The converse statement also holds.

Proof. The essentials of the proof can be found in [24]. �

Next we focus on the behaviour of U when the contact impedances tend to zero. A natural candidate for the
limit is the solution of the SM, which roughly correspond to the CEM problem (2.3) with vanishing contact
impedances.

3. Convergence to the shunt model

3.1. Shunt model

In EIT, the SM models the idealistic case of perfect conduction between the body and the electrodes. Formally
this corresponds to replacing the Robin’s condition in (2.3) by the Dirichlet condition corresponding to zm = 0.
It turns out that this modification – when analyzed rigorously – causes a drop of a half Sobolev smoothness
degree in the regularity of the solution (see next section for the details). As a consequence, the SM has a slightly
more complicated rigorous definition than the CEM. In particular, the last equation of (2.3) does not hold
anymore as a standard integral. For this reason, we focus on the variational formulation of the SM, equivalent
to the standard formulation, but easier to handle and sufficient for our purposes.

For any closed subspace V ⊂ H1 and φ ∈ V′, the Lax–Milgram’s lemma (cf. Lem. 2.1) guarantees the existence
of a unique element UV = UV(φ) ∈ V which satisfies

B(UV,W) = φ(W) ∀ W ∈ V. (3.1)

Note that UV can be interpreted as the B-orthogonal projection of U onto the closed subspace V. It turns out
that the solution of the SM problem is precisely the solution of (3.1), denoted by U0(φI), corresponding to the
subspace

V = H
1
0 := {W ∈ H

1 : w|Em = Wm, m = 1, 2, . . . , M} (3.2)

and φ = φI from Theorem 2.3. Without going into details, we emphasize that this can, in essence, be shown
by following the same lines of reasoning as in the proof of Theorem 2.3. However, we remind the reader that
the lack of regularity of U0(φI) gives rise to the need for understanding the net current boundary condition in
a weaker sense (see (4.15) for the case of smooth geometry). Notice also that U0 is independent of z although
B is not.

3.2. Convergence result

For the rest of this section, we are interested in the existence and characterization of the limit of the solution
corresponding to the CEM when the contact impedances {zm}M

m=1 tend to zero on all electrodes. We actually
prove a slightly more general result: for any given closed subspace V ⊂ H1, UV always converges as z tends to
zero, and its limit is UV0 ∈ V0, where

V0 := V ∩ H
1
0 = {W = (w, W ) ∈ V : w|Em = Wm, m = 1, 2, . . . , M}. (3.3)

Proposition 3.1. Let V ⊂ H1 be a closed subspace and φ ∈ V′. For UV = UV(φ) ∈ V and UV0 = UV0(φ) ∈ V0

defined according to (3.1), we have
lim
z→0

UV = UV0 (3.4)

in the space H1.
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Proof. For clarity, we abbreviate the z-dependent solutions and bilinear forms by V(z) := UV and B(z), respec-
tively. To perform an indirect argument we assume that (3.4) is false, i.e., there exist sequences

{z(j)}∞j=1 ⊂ (0,∞)M , {V(j)}∞j=1 := {V(z(j))}∞j=1 ⊂ H
1

such that z(j) → 0 in (0,∞)M and V(j) does not converge to UV0 as j → ∞.
According to the uniform (with respect to z) bound (2.7), the function z �→ ‖V(z)‖ is bounded. Hence, by

the Banach–Alaoglu’s theorem, we may assume that there exists a V = (v, V ) ∈ V such that

lim
j→∞

V(j) = V weakly in H
1.

First we show that actually V = UV0 .
Using z

(j)
m ≤ z+, (2.1), and (3.1) we deduce that

M∑
m=1

∫
Em

|v(j) − V (j)
m |2 dS ≤ z

(j)
+ |B(V(j),V(j))| ≤ Cz

(j)
+ ‖φ‖2

V′ → 0 (3.5)

as z(j) → 0. By the (weak) continuity of the trace operator we have

M∑
m=1

∫
Em

|v − Vm|2 dS = lim
j→∞

M∑
m=1

∫
Em

(v(j) − V (j)
m )(v − Vm) dS.

Subsequently, Cauchy–Schwarz’s inequality and (3.5) give v = Vm on every Em, that is, V ∈ V0. Similarly, by
weak convergence, an arbitrary W ∈ V0 satisfies∫

Ω

σ∇v · ∇w dx = lim
j→∞

∫
Ω

σ∇v(j) · ∇w dx = lim
j→∞

B(z(j))(V(j),W) = φ(W),

where the middle equality is a consequence of the vanishing boundary term. Thus uniqueness guarantees the
claimed V = UV0 .

We are ready to derive the contradiction. By coercivity we may estimate

‖V(j) − UV0‖2 ≤ C|B(z(j))(V(j) − UV0 ,V(j) − UV0)|
= C|φ(V(j) − UV0)| (3.6)

with a constant C > 0 independent of j. Note that the equality in (3.6) follows by the symmetricity of σ and
vanishing of suitable boundary terms. Therefore, by weak convergence the right-hand side of (3.6) converges
to zero as j → ∞. This implies strong convergence for the sequence {V(j)}∞j=1 which contradicts the counter-
assumption. �

Remark 3.2. A time-harmonic current input would require taking the reactance into account, i.e., assuming
σ, z as complex valued such that the real parts satisfy (2.1) and (2.2), respectively (see e.g. [24]). In such case,
if (i) σ : Ω → C and z ∈ RM , analogues of all the results in this section can be proven straightforwardly. If
(ii) z ∈ CM , the extra assumption Im zm = o(

√
Re zm), m = 1, 2, . . . , M , is sufficient for adapting the proof

of Proposition 3.1 ((3.5) to be precise) to the associated sesquilinear form [9]. A rigorous investigation of this
phenomenon as well as generalization of the regularity and convergence rate analyses of Sections 4 and 5 to the
complex valued framework are left for future studies.

There are certain special cases of Proposition 3.1 that are of particular interest. First of all, in the case
V = H1 it follows that the CEM solution converges to that of the SM with an unspecified rate as z → 0 in
(0,∞)M . Secondly, any Galerkin approximation of the CEM converges to that of the SM problem as the contact
impedances tend to zero.
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4. Regularity and convergence rates in the smooth setting

4.1. Regularity of the spatial part

In this section we move onwards to study the Sobolev smoothness of the spatial potentials of CEM and
SM in the case when all the predetermined attributes are smooth enough. We show in both cases that the
H1-regularity of the spatial potential is not the optimal. To avoid extra technicality, we assume that ∂Ω, ∂Em,
m = 1, 2, . . . , M are all in the C∞-class. We also suppose that in addition to satisfying (2.1), the conductivity
σ belongs to C∞(Ω; Rn×n).

At this point, we need to enlarge the domain and range of the co-normal derivative γ1(σ)u in smooth domains.
In what follows, we use the generic 〈 · , · 〉 to denote the dual evaluation between any pair H−s(∂Ω) and Hs(∂Ω),
s ≥ 0; if there is danger of confusion, we give further specifications. By density (see [20], Sect. 2, Thm. 7.3), the
operator γ1(σ) : C∞(Ω) → C ∞(∂Ω), ϕ �→ ν · σ∇ϕ|∂Ω extends to a bounded operator

γ1(σ) : Hs
σ(Ω) → Hs−3/2(∂Ω) (4.1)

for any 1 ≤ s < 2. Here Hs
σ(Ω) is the standard generalization of (2.8) for all s ∈ R – it is well-defined given

that σ is C∞-smooth.
Next we introduce a reference problem which will be used to infer the extra regularity of u, u0 ∈ H1(Ω).

Suppose Γ ⊂ ∂Ω is simply connected, non-empty and that ∂Γ is of class C ∞. Then, it is well-known that for
any pair of data g ∈ H1/2(Γ ), f ∈ L2(Ω) and parameter β ≥ 0, there exists a unique vβ ∈ H1(Ω) satisfying
weakly

div(σ∇vβ) = f in Ω, γ1(σ)vβ = 0 on ∂Ω \ Γ, vβ + βγ1(σ)vβ = g on Γ (4.2)

with the case β = 0 in the rightmost constraint interpreted as a Dirichlet condition. Using the properties of the
Dirichlet-to-Neumann map and interpolation of Sobolev spaces, we obtain the following regularity estimate:

Theorem 4.1. The solution vβ ∈ H1(Ω) of (4.2) satisfies for all s ∈ (− 1
2 , 1

2 )

‖vβ‖H1+s(Ω) ≤ C
(‖g‖H1/2+s(Γ ) + ‖f‖L2(Ω)

)
(4.3)

with a constant C > 0 independent of β, g and f .

Proof. For simplicity, we assume that f = 0 as the below reasoning can be adjusted to the general case with
a few simple modifications. The idea is essentially based on the proof of ([6], Cor. 4.4). In the case β = 0, the
unique solution of (4.2) exists and satisfies [6, 23] an estimate

‖v0‖H1+s(Ω) ≤ C‖g‖H1/2+s(Γ ) (4.4)

for all s ∈ (− 1
2 , 1

2 ). We define the associated (partial) Dirichlet-to-Neumann map by

Λ = ΛΓ (σ) : Hs+1/2(Γ ) → (H1/2−s(Γ ))′, g �→ (γ1(σ)v0)|Γ , (4.5)

where
(γ1(σ)v0)|Γ : w �→ 〈γ1(σ)v0, w̃〉, w̃ ∈ H1/2−s(∂Ω), w̃|Γ = w (4.6)

and v0 is the solution of (4.2) corresponding to g and f = 0. Note that as a consequence of the zero-Neumann
condition, (4.6) is independent of the choice of the extension w̃. By the standard characterization of H1/2−s(Γ )
by restrictions (see [20], Sect. 1, Thm. 9.2), (4.1) and (4.4), we see that Λ is bounded.

Suppose for now that β > 0 and vβ solves (4.2) for some g ∈ L2(Γ ) and let Id : L2(Γ ) → L2(Γ ) denote the
identity map. As a consequence of the fact that vβ trivially solves the corresponding mixed Dirichlet/Neumann
problem, we can write

(Id + βΛ)(vβ |Γ ) = g. (4.7)
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The rest of the proof is analogous to that of ([6], Cor.4.4); it relies on studying continuity properties of the
operator4

(Id + βΛ)−1 : (H1/2−s(Γ ))′ → H1/2+s(Γ ), β > 0

for all s ∈ (− 1
2 , 1

2 ) via interpolation of Sobolev spaces [20] and utilization of the continuity of (4.5). �

Remark 4.2. In fact, the interpolation argument of the proof of ([6], Cor. 4.4) yields also a convergence rate

‖vβ − v0‖H1+s(Ω) = O(βt−s)

for any t ∈ [s, 1
2 ). However, this result is not directly applicable to estimating ‖u − u0‖H1+s(Ω) because in the

CEM the electrode boundary data depends on z. Moreover, note that we cannot expand (Id + βΛ)−1 in terms
of the Neumann series because powers Λj, j ≥ 2, are not well defined (cf. [6], Thm. 3.1).

The next theorem shows that (4.3) can nevertheless be used to get an analogous norm estimate for u, u0 ∈
H1(Ω).

Theorem 4.3. The functions u, u0 ∈ H1(Ω), i.e. the spatial parts of CEM and SM solutions, satisfy

‖u‖H1+s(Ω) ≤ C max(σ−1
− , z+)|I|, ‖u0‖H1+s(Ω) ≤ Cσ−1

− |I| (4.8)

for any given s < 1
2 .

Proof. Here we consider only u (u0 can be handled with straightforward modifications). The idea is to use a
suitable partition of unity to get local estimates from Theorem 4.1. We claim that there exists a partition of
unity {ϕp}M

p=1 ⊂ C 2(Ω) satisfying

M∑
p=1

ϕp = 1 in Ω, ϕp|Em = δpm, ν · σ∇ϕp = 0 on ∂Ω. (4.9)

This set functions can be constructed in the following way. First use e.g. the converse of trace theorem [21]
to select functions ϕ̂p ∈ C 2(Ω) such that ϕ̂p satisfies the latter two conditions of (4.9). Then, defining the
functions ϕp ∈ C 2(Ω) by

ϕ1 := 1 −
M∑

p=2

ϕ̂p, ϕp = ϕ̂p, p = 2, 3, . . . , M,

gives a set of functions satisfying also the remaining summability condition (recall that Em ∩Ep = ∅ if m �= p).
We find out that up := uϕp satisfies a boundary value problem of form (4.2). Obviously it holds

div(σ∇up) = 2σ∇u · ∇ϕp + udiv(σ∇ϕp) ∈ L2(Ω) (4.10)

in the weak sense, implying the norm estimate ‖div(σ∇up)‖L2(Ω) ≤ C‖u‖H1(Ω). In addition, a straightforward
calculation reveals

〈γ1(σ)up, g〉 = 〈γ1(σ)u, gϕp〉 +
∫

∂Ω

(ν · σ∇ϕp)gu dS

for any g ∈ H1/2(∂Ω). Therefore, by (4.9) and (2.6) we have

γ1(σ)up = − 1
zp

(up − Up)χp, (4.11)

4For the existence of the inverse operator between these spaces, we refer to [6, 23].
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where χp is the indicator function of Ep. Consequently, Theorem 4.2 can be applied to the boundary value
problem defined by (4.10) and (4.11). Hence, for any given s < 1

2 , the solution up satisfies the norm estimate

‖up‖H1+s(Ω) ≤ C
(‖Upχp‖H1/2+s(Ep) + ‖div(σ∇up)‖L2(Ω)

)
≤ C

(|U | + ‖u‖H1(Ω)

)
≤ C max(σ−1

− , z+)|I|

where the middle estimate follows from (4.10). Eventually, using the summability condition of (4.9) and triangle
inequality, the proof is concluded. �

Thanks to Theorem 4.3 and the regularity of Neumann’s problem, an extra 1
2 degree of smoothness can be

obtained for the CEM solution.

Corollary 4.4. For an arbitrary s ∈ [0, 1
2 ) the function u belongs to H3/2+s(Ω) and moreover

‖u‖H3/2+s(Ω) = O(z−s−ε
− ) as z− → 0 (4.12)

for any ε ∈ (0, 1 − s). Note that the upper bound goes to infinity as z− goes to zero.

Proof. We abbreviate

gm :=
1

zm
(Um − u)|Em ∈ H1/2(Em), m = 1, 2, . . . , M

and let g̃m denote the extension of gm to ∂Ω by zero; the continuity of such an extension ([20], Sect. 1, Thm. 7.4)
implies

γ1(σ)u =
M∑

m=1

g̃m ∈ H1/2−ε(∂Ω), ‖γ1(σ)u‖H1/2−ε(∂Ω) ≤ C

M∑
m=1

‖gm‖H1/2−ε(Em).

By regularity of the Neumann’s problem ([20], Sect. 2, Rem. 7.2) and interpolation between spaces
Ht(Em), (Ht(Em))′ with t ≥ 0 ([20], Sect. 1, Thm. 12.5), we obtain

inf
c∈R

‖u + c‖H3/2+s(Ω) ≤ C

M∑
m=1

‖gm‖Hs(Em) ≤ C

M∑
m=1

‖gm‖θ
H1−ε(Em)‖gm‖1−θ

(Hε(Em))′

where θ = s + ε. Since in the referred interpolation space framework [20] a function gm ∈ L2(Em) is identified
in (Hε(Em))′ with the functional w �→ ∫

Em
gmw dS, it is trivial to show that

‖gm‖(Hε(Em))′ ≤ C‖g̃m‖H−ε(∂Ω).

Consequently, the fact that the Em’s do not overlap each other, the continuity of γ1(σ) from H
3/2−ε
σ (Ω) to

H−ε(∂Ω) (see (4.1)), and (4.8) together yield

inf
c∈R

‖u + c‖H3/2+s(Ω) ≤ C|I|1−θ
M∑

m=1

z−θ
m ‖u − Um‖θ

H1−ε(Em) (4.13)

with θ = s + ε and ε ∈ [0, 1
2 ). By triangle inequality, trace theorem [20] and the fact that Um ∈ R is a constant,

we may further estimate the right hand side of (4.13) using

‖u − Um‖H1−ε(Em) ≤ C
(‖u‖H3/2−ε(Ω) + |Um|).
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Thus, by Theorem 4.3 and (2.7), we get

inf
c∈R

‖u + c‖H3/2+s(Ω) ≤ C|I|
M∑

m=1

z−s−ε
m . (4.14)

In order to manipulate the quotient norm in (4.14), we recall that by basic properties of Sobolev inner
product [28], there holds

(w, 1)H3/2+s(Ω) = (w, 1)L2(Ω) =
∫

Ω

w dx

for all w ∈ H3/2+s(Ω). Thus we have

inf
c∈R

‖u + c‖2
H3/2+s(Ω) = inf

c∈R

∥∥∥∥u − 1
|Ω|

∫
Ω

u dx + c

∥∥∥∥2

H3/2+s(Ω)

= inf
c∈R

{∥∥∥∥u − 1
|Ω|

∫
Ω

u dx

∥∥∥∥2

H3/2+s(Ω)

+ c2|Ω|
}

=
∥∥∥∥u − 1

|Ω|
∫

Ω

u dx

∥∥∥∥2

H3/2+s(Ω)

= ‖u‖2
H3/2+s(Ω) −

1
|Ω|

∣∣∣∣∫
Ω

u dx

∣∣∣∣2
≥ ‖u‖2

H3/2+s(Ω) − ‖u‖2
L2(Ω)

where the last estimate is a direct consequence of Cauchy–Schwarz’s inequality. Applying the above estimate,
(4.14) and (2.7), we obtain

‖u‖H3/2+s(Ω) ≤ C

(
‖u‖L2(Ω) + |I|

M∑
m=1

z−s−ε
m

)
≤ C|I|

(
max(σ−1

− , z+) +
M∑

m=1

z−s−ε
m

)
which implies the claim. �

A special consequence of Corollary 4.4 (together with [20], Sect. 1, Thm. 9.8) is that

γ1(σ)u|Em = z−1
m (Um − u)|Em ∈ H1+s(Em) ⊂ C 0(Em) for all s ∈ (0, 1

2 )

and a C∞-smooth Ω ⊂ Rn, n = 2, 3. That is to say, the boundary current density modelled by the CEM is
continuous and hence also L∞(∂Ω). This is not true for γ1(σ)u0 since it even falls outside of L2(∂Ω). In the
special case σ ≡ 1, n = 2 for (4.2), the drop in Sobolev regularity was fully characterized in [6] (see also [22]) by
classifying the type of the singularities of vβ at the transition points of boundary conditions. Using a singular
decomposition technique, in the case β > 0, it was demonstrated that the most severe singularity is of type
r log r whereas in the case β = 0 it is r1/2 with (r, θ) denoting the polar coordinates centered at the transition
point in question.

4.2. Convergence rates

In order to take advantage of the regularity provided by (4.8) in deriving convergence rates, we need the
following lemma related to the approximation of trivially extended Sobolev functions by bump functions:

Lemma 4.5. Let Γ ⊂ ∂Ω be a connected set with a C∞-boundary. Suppose that g ∈ Hs(Γ ) for some s ∈ [0, 1/2)
and denote by g̃ ∈ L2(∂Ω) the extension of g to ∂Ω by zero. Then g̃ ∈ Hs(∂Ω) and there exists a sequence of
C ∞(∂Ω)-functions supported in Γ that converges to g̃ in Hs(∂Ω).
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Proof. By the density of compactly supported functions for any Sobolev exponent s ∈ [0, 1/2] ([20], Sect. 1,
Thm. 11.1), it is possible to fix a sequence of functions (ϕj)∞j=1 ⊂ C∞

0 (Γ ) which converges to g in the norm
of Hs(Γ ). As the zero extension ϕ̃j remains in C∞(∂Ω), the continuity of the zero extension operator for
s ∈ [0, 1/2) ([20], Sect. 1, Thm. 7.4) implies that g̃ ∈ Hs(∂Ω) and that the smooth functions ϕ̃j converge to g̃
in Hs(∂Ω). �

Considering the smoothness given by Theorem 4.3, the net current condition for the SM can be interpreted
in the following way.

Proposition 4.6. In C∞-regular geometry U0 ∈ H1 satisfies

〈γ1(σ)u0, χm〉 = Im, m = 1, 2, . . . , M (4.15)

where the dual evaluation can be taken between H−s(∂Ω) and Hs(∂Ω) for arbitrary s ∈ (0, 1
2 ) and χm is the

indicator function of Em.

Proof. Let g ∈ C ∞(∂Ω) and s ∈ (0, 1
2 ) be arbitrary. According to Lemma 4.5 we can pick a sequence (ϕj)∞j=1 ⊂

C ∞
0 (∂Ω \ E) such that

lim
j→∞

ϕj = χ∂Ω\E in Hs(∂Ω). (4.16)

By basic properties of Sobolev norm and (4.16) we have

lim
j→∞

‖gϕj − gχ∂Ω\E‖Hs(∂Ω) ≤ ‖g‖C 1(∂Ω) lim
j→∞

‖ϕj − χ∂Ω\E‖Hs(∂Ω) = 0

and hence by continuity
〈γ1(σ)u0, gχ∂Ω\E〉 = lim

j→∞
〈γ1(σ)u0, gϕj〉 = 0

where the last equality is a consequence of the variational problem in H1
0 defining U0 (cf. (3.1)) and the fact

supp gϕj ⊂ ∂Ω \ E. Therefore, it holds

〈γ1(σ)u0, g〉 = 〈γ1(σ)u0, gχE〉 (4.17)

for any g ∈ C ∞(∂Ω). Choosing suitable test functions g that are constants on the electrodes, and recalling (3.1)
and that the electrodes do not overlap, we arrive at the alleged result. �

Equation (4.15) allows us to estimate ‖U − U0‖ by using the coercivity of B to obtain the following:

Theorem 4.7. For any s ∈ [0, 1
2 ), the discrepancy U − U0 between the CEM and SM solutions satisfies

‖U − U0‖ ≤ C|I|zs
+ (4.18)

with a constant C > 0 independent of z.

Proof. As a consequence of (4.15) and (4.17) we write

B(U − U0,W) = −
∫

Ω

σ∇u0 · ∇w dx + I · W

= −
M∑

m=1

〈γ1(σ)u0, wχm〉 +
M∑

m=1

〈γ1(σ)u0, Wmχm〉

= −
M∑

m=1

〈γ1(σ)u0, (w − Wm)χm〉 (4.19)
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for all W ∈ H1 where the middle equality follows from the definition (2.9) of the co-normal derivative. The
choice W = U − U0 further leads to

B(U − U0,U − U0) = −
M∑

m=1

〈γ1(σ)u0, (u − Um)χm〉. (4.20)

Taking the coercivity of B into account, it is sufficient to obtain a bound of the desired form for the right hand
side of (4.20). By the continuity of γ1(σ) and the zero-extension we can estimate

|〈γ1(σ)u0, (u − Um)χm〉| ≤ C‖γ1(σ)u0‖Ht−1/2(∂Ω)‖(u − Um)χm‖H1/2−t(∂Ω)

≤ C‖u0‖H1+t(Ω)‖u − Um‖H1/2−t(Em) (4.21)

for an arbitrary t ∈ (0, 1
2 ). Applying the Robin boundary condition suitably (see proof of Cor. 4.4), we may use

the continuity of γ1(σ) to deduce

‖u − Um‖(Hε(Em))′ = ‖zmγ1(σ)u‖H−ε(∂Ω) ≤ Czm‖u‖H3/2−ε(Ω)

for any ε ∈ (0, t + 1
2 ]. Therefore, by interpolation and trace theorem, we get

‖u − Um‖H1/2−t(Em) ≤ C‖u − Um‖1−θ
(Hε(Em))′‖u − Um‖θ

H1−ε(Em)

≤ Cz1−θ
m ‖u − Um‖θ

H3/2−ε(Ω)‖u‖1−θ
H3/2−ε(Ω)

(4.22)

with θ = 1
2 + ε − t. Finally, applying (4.8) and taking the square root, we obtain (4.18) with s = 1−θ

2 =
1+2(t−ε)

4 . �

Before concluding the section, we point out that convergence rates can be obtained also in other norms. In
particular, the next corollary reveals that the electrode voltages U ∈ RM

� converge “log twice as fast” as the
spatial potential distribution in H1(Ω).

Corollary 4.8. For the solutions U ,U0 ∈ H1 there holds

‖u − u0‖L2(Ω) + |U − U0| ≤ C|I|z2s
+ (4.23)

for any s ∈ [0, 1
2 ). Furthermore, the spatial components satisfy

‖u − u0‖H1+s(Ω) ≤ Cz
1/2−s−ε
+ (4.24)

for any s ∈ [0, 1
2 ) and ε ∈ (0, 1/2 − s).

Proof. The first part is proved using a standard “duality argument” [3]. As both error terms in (4.23) can be
handled separately but analogously, it is sufficient to consider the term |U − U0|. Define V ∈ H1 as the unique
solution to the problem

B(V ,W) = J · W ∀ W ∈ H
1 (4.25)

where J ∈ RM . Then, by (4.25), the fact that B(U − U0,V0) = 0, and symmetry we get

J · (U − U0) = B(V ,U − U0) = B(U − U0,V − V0).

Consequently, expressing the Euclidean norm via maximum yields

|U − U0| = max
|J|=1

|J · (U − U0)| = max
|J|=1

|B(U − U0,V − V0)|. (4.26)
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The idea is to derive a bound for the right-hand quantity without resorting to continuity of B. Instead, we will
apply Sobolev regularity and interpolation to get

|B(U − U0,V − V0)| ≤ C|I||J |z2s
+ (4.27)

for all s ∈ [0, 1
2 ). Combining this with (4.26) would yield (4.23).

Let us demonstrate how to obtain (4.27). Since by (4.19) the modulus of the left-hand side of (4.27) is
bounded by

M∑
m=1

|〈γ1(σ)u0, (v − Vm, χm〉|, (4.28)

it is sufficient to find a suitable bound for this quantity. According to (4.21) and (4.22), we deduce

|〈γ1(σ)u0, (v − Vm)χm〉| ≤ C‖u0‖H1+t(Ω)‖v − Vm‖H1/2−t(Em)

≤ Cz1−θ
m ‖u0‖H1+t(Ω)‖v − Vm‖θ

H3/2−ε(Ω)‖v‖1−θ
H3/2−ε(Ω)

≤ Cz1−θ
m |I||J | (4.29)

for t, ε, θ as in the proof of Theorem 4.7. Combining (4.26), (4.27) and (4.29) we get

|U − U0| ≤ C|I|z2s
+

where s = 1+2(t−ε)
4 can be chosen freely from the interval [0, 1

2 ).
The second part of the claim is again an application of interpolation. Utilizing the partition of unity (4.9)

with Theorem 4.1 (β = 0) we get

‖u − u0‖H1+s(Ω) ≤ C

(
‖u − u0‖H1(Ω) +

M∑
m=1

‖u − u0‖H1/2+s(Em)

)

≤ C

(
‖U − U0‖ +

M∑
m=1

‖u − Um‖H1/2+s(Em)

)
for any s ∈ [0, 1

2 ). Note that the bottom estimate is a consequence of adding and subtracting Um, trivial
estimation, and the electrode boundary condition of u0. By interpolation (cf. (4.22)) we further estimate

‖u − Um‖H1/2+s(Em) ≤ Cz1−θ
m |I|

with θ = 1
2 + s + ε and any ε ∈ (0, 1/2 − s). The claim is a direct consequence of this since by (4.18) we can

estimate ‖U − U0‖ as required. �

To conclude the section, we remark that it is not a difficult task to generalize the above results to the case
where zm → 0 for m in a proper subset of {1, 2, . . . , M}.

5. Numerical tests

We proceed with two numerical examples related to some of the results presented in Sections 3 and 4.
In Section 5.1 we test whether a convergence rate indicated by (4.18) is apparent in the corresponding FE
approximations by piecewise linears. We are also interested whether the numerical electrode voltages converge
noticeably faster than the spatial potentials (which is be expected because of (4.23)). The other example is
presented in Section 5.2. There we numerically study what kind of an effect different values of z ≡ β > 0 have
on the convergence rate of a FE approximation of the CEM with respect to the maximal triangle diameter h.
Although this question is of practical interest on its own, it can also be understood as an indirect numerical
verification of the observed regularity drop (see (4.8) and (4.12)).
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5.1. Convergence test

In the first numerical example, the test object Ω is a regular hexadecagon with all of the 16 corners lying on
the unit sphere. The conductivity is constant σ ≡ 1 and there are M = 8 identical, equidistant electrodes each
of which covers exactly one boundary edge of Ω. We compute approximate solutions using the FE method with
piecewise linear basis functions. Denoting the space defined by the triangle-wise linear polynomials by P1, we
select

V = P1 ⊕ R
M
� ;

this Galerkin’s space is used to compute UV i.e. a FE approximation of the CEM. The corresponding V0 is defined
as in (3.3) and we use it to approximate the SM. For a detailed description of the assembly and computation
of the system matrices, we refer to [26].

In Figure 1 the discrepancies between the CEM and SM are visualized as the constant contact impedance

z = [β, β, . . . , β]T → 0

The examined solutions UV = U (2)
V

and UV0 = U (2)
V0

are computed using the input current

I(2) = [cos(2πm/M)]Mm=1.

Similar rates were also obtained for other input currents. We have also considered the measurement (or resis-
tance) matrix

RV ∈ R
M×M (RV0 respectively)

defined as the unique matrix having the following two properties: it maps every I ∈ R
M
� to UV ∈ R

M
� , where

UV = (uV, UV) ∈ H1 is the corresponding solution to (3.1), and its null space is spanned by [1, 1, . . . , 1]T ∈ RM .
Note that the I(2) defined above is an eigenvector of RV (RV0 respectively) corresponding to the second smallest
eigenvalue [24].

First of all, we observe that the convergence indicated by Proposition 3.1 appears to take place. The estimated
convergence rates in the tabular of Figure 1 are obtained by a least squares fit of linear functions in log β.
Although the results fall below the rates predicted by Theorem 4.7 and Corollary 4.8, we observe that the
obtained estimates are reasonably well in accordance with the theory in the sense that

‖UV − UV0‖ ≈ O(β0.4582)

is far from linear whereas the error
‖RV − RV0‖M×M ≈ O(β0.8011)

decays roughly twice as fast in the limit β → 0.

5.2. The effect on the convergence of FE approximation

We continue working in the same geometry as in the previous example. However, in this case we do not fix
the triangulation of Ω but instead use a set of gradually sharpening uniform triangulations5 to estimate the
convergence rate of the FE approximation by V = P1 ⊕ R

M
� . More precisely, for each member of a set of constant

contact impedances z ≡ β > 0, we compute for UV an estimated convergence rate with respect to decreasing
mesh parameter 0 < h → 0+.

In order to derive a priori error estimates with respect to h, we note that for any given function v ∈ H3/2+s(Ω),
s ∈ (0, 1

2 ), it can be shown using suitable polynomial interpolator(s) [3, 19], that

inf
w∈P1

‖v − w‖H1(Ω) ≤ Ch1/2+s‖v‖H3/2+s(Ω), (5.1)

5The authors admit that this is not reasonable in practical applications. Due to the high regularity of u away from ∂Ω it is
advisable to use adaptive meshing (cf. e.g. [12]).
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10−4 10−3 10−2 10−1
10−3

10−2

10−1

100

Error norm Rate

‖uV − uV0
‖

H
1
(Ω) O(β0.4567)

‖UV − UV0
‖ O(β0.4582)

‖uV − uV0
‖

L
2
(Ω) O(β0.7163)

‖RV − RV0
‖M×M O(β0.8011)

Figure 1. On the left: Discrepancy as a function of z ≡ β = constant. On the right: Conver-
gence rates in different norms. The error in the measurement map is calculated in the operator
norm of RM×M . All the computations were performed using a fixed triangulation such that
away from the boundary the mesh parameter was h = 0.079 and near the boundary h = 0.005.

where the constant C > 0 depends on s. This and the hypothesis that u satisfies (4.12)6 lead to convergence
rates with respect to h. Namely, by Céa’s lemma and the fact that V = P1 ⊕ RM� , we have

‖U − UV‖ ≤ C inf
W∈V

‖U −W‖ ≤ C inf
w∈P1

‖u − w‖H1(Ω) ≤ C|I|h1/2+s (5.2)

with the rightmost constant being of order C = O(β−1/2−s−ε) for any ε ∈ (0, 1− s). Moreover, applying a “dual
technique” as in the proof of (4.23), we obtain that

‖u − uV‖L2(Ω) + |U − UV| ≤ C|I|h1+2s (5.3)

with C = O(β−3/2−s−ε). Because of the constants’ explosion in the limit β → 0+, one may anticipate that (when
using uniform triangulations) the computational detection of rates corresponding to s close to 1/2 becomes
increasingly demanding.

Remark 5.1.

(a) Let κh denote the condition number of the matrix corresponding to the FE discretization of the bilinear
form (2.4). A simple computation shows that

κh ≥ C(Ω, h)
σ+β

where C(Ω, h) > 0 is a constant independent of β. Therefore, inversion of the linear system – and hence
the computation of UV – is ill-conditioned for β close to zero.

6It is well-known that in polygonal domains this is not the case e.g. if the boundary has concave angles. For a detailed discussion
on the topic, see for example [6] and the references therein.
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Figure 2. Convergence rate of the FE approximation by piecewise linears as a function of β.
On the vertical axis is the estimated (by least squares) slope in log h. The L2 and H1-errors are
computed over Ω for the interior potential, and the error in the measurement map is measured
in the operator norm of RM×M . The horizontal lines illustrate the respective estimates obtained
for the SM (dashed, meas. map; dotted, L2(Ω)-norm; solid, H1(Ω)-norm).

(b) Implementation of gradient based EIT reconstruction algorithms usually require a numerical approximation
of U ′, i.e., the Fréchet derivative of U with respect to a finite dimensional σ [8, 16]. Since U ′ depends also
on u, it is often reasonable to use a finer triangulation in the approximation of U ′ than in the simulation of
the electrode data U (see (5.2) and (5.3)).

The exact solution is approximated here by taking V̂ with a mesh parameter ĥ considerably smaller than those
of any of the explored V. In Figure 2 the estimated h-convergence rates are illustrated in different norms as a
function of β. The applied current inputs are chosen as above in Section 6. Again, each one of the estimated rates
is obtained from a least squares fit of a linear function in log h. For comparison, the calculation is performed
also for the SM case i.e. using V0 and V̂0 as Galerkin spaces, respectively.

6. Conclusions

We have demonstrated that the complete electrode model of electrical impedance tomography converges to
the shunt model as the contact impedance z tends to zero. Similar relationship between Galerkin approximations
of the aforementioned models was also proven. For smooth domains and conductivities we pointed out that the
natural H1-based discrepancy between the two electrode models is of the order O(zs), 0 ≤ s < 1

2 . Using a duality
argument, it was possible to demonstrate that the difference between the corresponding electrode measurement
maps is almost linear O(zs), 0 ≤ s < 1. The first numerical experiment verified these rates to a certain extent.
We also pointed out that the spatial part of the shunt model solution has Sobolev regularity of a half degree less
than that of the complete electrode model. The results of the latter numerical experiment support this drop in
regularity, and point out that a widely used finite element technique gives a more accurate approximation for
the complete electrode model when z � 0 than when z is close to zero.
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