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FAMILY OF SURFACES. 383

On the Lines of Equidistance of « Family of Surfaces ;-

Pror. C. E. WEATHERBURN, M. A., D. Sc.

L. tntroduction. — This paper is concerned wilh some properties of
the lines of equidistance of a singly inlinite family of surfacesin Euncli-
dean space. Such a family may be specified by an equation of the
form 9 = const., where ¢ is a point-function in the space occupied by
the surfaces. It is also determined if the unit vector n normal to a sur-
face, is given as a poini-function in the same space, satisfying the
condition of normality

() n. roln==o.
The two methods of representation are connected by the relation
(2) n=1{Vep |

where /7 is the gradient of o, and { is the reciprocal of its magnitude,
so that
!

3 2= o -,
e Y (Ve

The surfaces ¢ = const. are the surfaces of equidistance for Lhe
family © = const.; and the curves in which the former intersect the
latter are the lines of equidistunce for the family. These constitute a
congruence of curves, of which a singly infinile family lie on each
surface ¢ = const. The function ¢ may be called Lhe distance functon
for the original family of surfaces. For it is evident from (2) that the
distance along the normal between consecutive surfaces ¢ and 9 + o
has the value Jdy.
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384 ‘ C. E. WEATHERBURN.

I'rom (2) it also follows immediately, as we have shown (')
elsewhere, that the direction of rot n at any potnt is that of the line of
équrdistance hrough the point. 1or '

ol == rot (b V<?;) = x Ve.

Thus the direction of rot n is tangential to the surface ¢ = const.
and also to the surface ¢ = const., and the result follows.

Further, is we consider the curves which are Lhe orthogonal trajec-
tories of the family of surfaces ¢ = const., and denote the curvature,
the unit principal normal and the unitbinormal by 4, p, b respectively,
since 1 is a unit vector tangent to this curve, we have

—nxroln=n.n=~Ap
and therefore

(4) roln=n x (Ap)=~b.

Thus the magnitude of voLnis the curvature o[ the orthogonal trajec-
tory of the family of surfaces. Incidentally also we have the known
property that the unit tangent to the curve of equidistance is the unit
binormal to the orthogonal trajectory of the surfaces.

* The reciprocal of /£ is the radius of curvature, ¢, of the orthogonal

trajectory. In terms of this the unit tangent, b, to a line of equidis-
tance may be expressed

(5) b= roln.

2. Congruence of lines of equidistance. — We have elsewhere (?)
defined the surface of striction, or orthocentric surface, of a congruence
of curves, as the locus of the points at which the two common normals
to the curve and conseculive curves are perpendicular. It was there
shown that this surface is given by the vanishing of the divergence of
the unit tangent to the curves. Hence, for the congruence of lines of

(') See art. 2 of a paper by the author On Families of Surfaces, recently
communicated to the Mathematische Annalen. ,

(*) In a paper On Congruence of Curves, vecently communicated to the,
Tohoku Math. Journal.



~ FAMILY OF SURFACES. 385
equidistance, the surface of striction is found from the equation

O =divb= div(groin) =\/p. roln,

b

or
(6) Vhovdln =o.
Thus :

The surface of striction of the congruence of lines of equidistance
s given by (G), and is the locus of points at which these curces are tan-
gent to a surfuce [ = const.

Since & is the magnitude of rotn, we may also interpret (6) by
saying that the surface of striction is the locus of points at which the
magnitude of rotn is stationary for displacement along a line of equi-
distance.

Again, we defined the fimit surface of a congruence (') as the locus
of points at which the two common normals to the curve and conse-
culive curves are coincident. At such points the foot of the normal is
stationary for variation ol the consecutive curve. In terms of the unit
tangent, b, this limit surface is given by (*),

(7) div(bdivb+b x roth) =o.
Using the value of b given by (5) we find:

b divb + b x roth = A {/p + p* rotn < rolroln
=— otrotn. (Vrotn). ‘

Hence the equation of the limit surface becomes

(8) , div[p? rotn. (Vrotn)]=o.

If{% denotes diflerentiation in the direction of the line of equidistance,
this may be expressed more concisely

o . {1 d .
(8" (IIV(Z} A lotn> =o.

(}) Loc. cit., art. b.
(*) See art. 6 of a paper On Isometric Systems of Curves and Surfaces,
recently communicated 1o the Amer Journ. of Math.
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‘Since the tangent Lo a line of striction is parallel to rot n, it follows
that

A necessary and sufficient condition that the lines of ecquidistunce
may constitute a normal congruence is that rotn.rot roin vanish iden-
tically. '

If this condition is satisfied, the surfuces orthogonal to these curces
have b as unit normal. Hence the Jirst curvature (or mean curvature)
of a surface of this family has the value ('),

J=—divb=—Ap. roln= ‘/I’.Z V. rotn

and the second curvature (or GGaussian curvature) is given by (?),

ok = div(bdivb + b X rotb)
=-— div[p?rotn. ( rotn)]

= li'("l'rl>
) == — 1y 7%1_»n

and vanishes at the limit surface of the normal congruence.

3. Family of lines on any surface. — The lines of equidistance on
any one surface ¢ =const. constitule a singly infinite family. In
dealing with these it will be convenient to make usc of the two-para-
metric differential invariants, whose theory the author has developed
in a previous paper (*). We shall use a suffix 2 to indicate that the
invariant is a two-parametric invariant for the surface o = const.

First consider the line of striction of the family of curves of equi-
distance on the surface. We have elsewhcre (*) considered some pro-

(') See the author's Diflerential Geometry, p. 226.

(*y Differential Geometry, p. 261, or arl. 2 of a paper On Families of
Curves and Surfaces, recently communicated to the Quarterly Journal of Pure
and Applied Math. .

(*) On Diflerential Inrariants in (Geometry of Surfaces, elc. (Quarterly
Journal of Math., vol. 30, 1923, p. 230-26¢).

(*) Some neww Theorems in Geometry of a Surface (The Mathematical
Gasette, vol. 13, Jan. 1926, p. 1-6).
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perties of a line of striction, and have shown that it is given by the
vamishing of the two-parametric divergence of the unit tangent to the
curves. Now sitce for any vector, V, perpendicular to n,

. .
div V= I(ln;,(_dgvl),

and divrotn vanishes identically, it follows that

Ji\ AV Ab) =0
and therelore
Do YTk 4+ 1°74) + Gk divyb = o,

The second term is zero, hecause b is parallel to the curved = const.
Also, since b is the unit Langent to the curve, div, b vanishes on the
line of striction, and the équation of this line may bhe expressed in the

form
b. V. h=u,

or, since 4 is tangent to the surface o = coust.,
(o) b. Jk=o.

Thus the line of striction is the locus of points at which 4 is stationary
for displacement along a line of equidistance. Ilence,

The line of striction of the curces of equidistance on any surface is
the intersection o f that surface with the surface of striction of the con-
gruence.

The lines of equidistance will be a lfamily of parallels provided (')
div,b vanishes identically. It follows then, as we have pointed out
-elsewhere (*), that

A necessary and sufficientcondition that the linecs of equidistance on
any surface may be a family of parallels, is that I be constant along
each such curve,

The grodesic torsion (i. e. the torsion of the geodesic Langent), <, of

(") On Famdilies of Curves and Surfaces, art. 1.
(*) On Families of Surfares, art. 2.
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a line of equidistance is given by (')

7=b. rolb = (protn). rot,(sroin)
=p?(rotn). rot, roln,

Hence the curves of equidistance will be lines of curcature prosided
(rotm). rotl, mln:u..
The geodesic curcature, k., of a line of equidistance is given by (*).
h.=mn.rol,b=mn.roth,
since Lthe normal resolute is the same for these two invariants. Thus
(10} fe=1. rol(protn)
and the lines of equidistance will be geodesics provided
n. rol(protn)=o.

The second curcature, K, of a surface g = const. may be neatly ex-
pressed in terms of the two-parametric invariants of the functions ¢
and ¢ on this surface. FFor, since p, b are unil tangents to orthogonal
curves on the surface, we have (*)

K =div,(p divp + Db divb).
On substitution of the values (*)

b:i’Jl‘(Hn, p:-—-‘or\7-, I(|grj{'
this reduces to

(11) K =div, (V. loge + 13/, loghy,
where 0 is given by
5 N e Vilogd
=0/ logy = LEL 25,
i 2 U(‘P (Vz I()g.¢)2

The lines of equidistance and their orthogonal trajectories on the

(") Mathematical Gazetle (loc. cit., p. ).
(%) 1bid.,p. 4. _
(*) Ibid., p. 5.
(*)

On Families of Surfaces, art. 2.
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surface = const. will constitute an isometric system of curves provi-
ded 0 is a function of  only ('). In this casc, if we write

.‘// -
F:] —dV,

(1) ' K = div, grad, (logn 4+ 1)
::v::( I - logp).

the equation (11) becomes

t

Then, also, any orthogonal system of curves cutling these at &
variable angle, o, will also be isometric provided (*)

A. Lame Family of surfuces. — The necessary and suflicient con-
dition that a family of surfaces may form part of a triply orthogonal
system, may be expressed in terms of the distance function, ¢, in dif-
ferent ways, We have shown in another paper that, in terms of two-~
parametric dillerential invariants, onc manner of expression is by the
équation (") ' :

, divin x Vn. V) =o,
or '
(13) «_li\'(n X\:\ila):o.
in which we have dropped the suffix 2, the incariants being now all
tyo-parametric, and the function \/{, defined by (*)
Vo =—(Vn). V¥

may be interpreted geometrically as follows. If the two-parametric
gradient, \/J, is resolved into components in the principal directions
for the surface, and these components are multiplied by the principal

("y On dsometric Systems of Curves and Surj'acés, art. 1.

(*y lbid., art. 2. -

(*) See Art. b of a paper by the author On Lamé Families of Surfaces, re-
cently communicated to the Anrals of Mathematics.

(*) Ina paper by the author On small Deformation of Surfaces, ete. ((uar-
terly Journal of Math., vol. 50, 1925, p. 277).

'
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" curvatures in these dlrecuons the resultant of these is the vector \/{.
Now, since the two-parametric rotation of n vanuhes identically ('),
we may write (1 3) as

-

(1) o - n.l'()lvq):().

Then, since both \/4 and its rotation ave tangential to the surface,

it follows that \/¢ is the gradient of some scalar function (?), or else
1s zero; and conversely. H ence the theorem :

A necessary and suf ficient condmon that a family of sui j//ces may

Jorm part of a triply orthogonal system is that the vector Vy may be the
tvo-parametric gradient of some scalar function. -

IFor instance, in the case of a family of parallel surfaces, { is cons-
tant over each surface, and both /¢ and \/¢ vanish identically. Simi-
larly for a family of planes the principal curvatures are zero, so that
\/¥ again vanishes, and (14) is satisfied. In the case of a family of
spheres the principal curvatures are equal and constant for each sur-
face. And when the two components of \/{ are mulliplied by the same
constant, ¢, the resultant vector is the gradient of ¢{. Fach of thesc
families is therefore a LLamé family, as is well known.

| (") Ibdd., p. 2%0.
(%) lbid., p. 258.
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