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STRUCTURE ANALYSIS OF SURFACE TRANSFORMATIONS. 345

Structure Analysis of Surface Transformations;

By Georce D. BIRRHOFF

i (Cambridge, U. S. A.),

AND Paur. A. SMITH

(New York, .8, A),

Introduction.

[tisintended tosctforth in this paper certain general facts concerning
the structure of one-to-one continuous transformations of surfaces into
themselves, especially as regards the movement of points under inde-
finite iteration. For the most part, the transformations with which
we shall deal are non-analytic. The restriction of analyticity,
however, reduces the possible structural complexity Lo such an extent
that something like a systematic structure analysis in the general
analytic case can conceivably be developed. At the end of the paper
we shall indicate in the bricfest way some of possibilities with regard
to a systematic study of this sort, altho the paper as a whole may be
regarded as preliminary to such a study.

Surface transformations which are associated with certain types of
dynamical problems have the property that they admit an invariant
area integral. These « conservative » transformations, which have
been studied by Poincaré (11)(') and more extensively by Birkhoff(1V),
possess a fundamental property of regional recurrence. In general,

(1) The roman nwmerals refer to the list of references found at the end of this
paper.
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346 GEORGE D. BIRKHOFF AND PAUL A. SMITIL.

however, the phenomenon of recurrence does not extend to the entire
surface, but does nevertheless take place within certain invariant
subsets. We shall undertake a study of these subsets, — the precise
nature of the recurrence which takes place within them, Lhe extent to
which they may be considered as transforming conservatively, the
“general movement of the remaining points of the surface and questions
of uniform approach. Finally, we shall apply our general principles
in a brief examination of the structure of simple Lypes of analytic
transformations.

1. Preliminary definitions. The general analytic case. — Through-
out this paper, the term « surface » (denoted consistently by S)
will mean a closed orientable surface of arbitrary genus and the term
« transformation » (denoted by T) will mean a one-to-one continuous
sense-preserving transformation of such a surface into itsell.

We shall designate by T,, T, ... the successive powers of T, and
by T_,, T_,, ... those of the inverse T_,. An inlinite sequence of

points of the form
cey p--z, Pwl) P: Pn PE:

where P is an arbitrary point of S, and P, = T,(P), will be called a
complete sequence. ‘

If two points P, and Pg(o << f) of a complete sequence coincide,
then so do Ps_, and P. Let £ be the smallest positive integer for
which -T\(P)=P,=P. Then P will iterate periodically thru a
set of k distinct points, and is therefore called a periodic point of the
order k.

Any limit point of the infinite sequence P, P,, P,, — is called
an w-limit point of P and any limit point of the sequence P, P_,,
P_,, ... is an a-Irmit point. In case P is periodic, each of its images
is to be considered an «-and an w-limit point, and there are no others.

A complete sequence together with its o-and w-limit points will be
called a complete group.

A set of points E is invariant under T if E and T (E) are identical
point sets. A complete group, for example, is a closed invariant set.
If a point P is contained in an invariant set, so is the complete sequence
of P. An invariant set, however, need contain no invariant or
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periodic points. In case Eis invariant under T, but not under T,
T,, ..., Ty, il is periodic, and of the order . '
Suppose that a simply cennected region G on S has the property
that it contains the transformed region T(G) together with the
houndaryof T (G). Then G, together withits boundary is contained
in T_(G). We shall call G a contracting region under T, or an
expanding region under T_,, '
We shall now summarize certain facts and definitions concerning
analytic surface transformations. Inthe neighborhood of aninvariant
point O, T may be represented in terms of a properly chosen coor-

dinate system as follows :

= au + by +. ..

o= ot do . (ad — b > 0),

where the right hand members are convergent power series with
real coefficients, and u,, v,, are the coordinates of the transformed
point.

Let w and v be the roots of the characteristic equation

W—(d4-d)h+ad — be=o.

We shall say that O is of general type provided that pand v are
distinct and of modulus different from 1. [In any other case O is of
special type. 1f w.and vare real, and o < u<1 <v, O is called a
directly unstable point; if p. < —1<v<o, O is inversely unstable.
All other invariant points of general type are called stable. An
invariant point which is inversely unstable under T, is directly
unstable under T,, while stable and directly unstable points retain
their type under any power of T.

The definitions above are independent of the coordinate system.
They extend, moreover, to periodic points of any order; for example,
if O is of order £, we take the roots w and v relative to T,.

Suppose O is an invariant point of stable type. Then points in the
neighborhood of O converge toward O on indefinite iteration of T
(or of T_,) in such a way that the region bounded by any sufficiently
small circle about O is contracting under T (or T, ) (See reference to
Lattés).
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Suppose next that O is of directly unstable type. There abut at O
four invariant curves or branches ('), — two a-branches whose points
converge toward O on indefiniteiteration of T |, and two w-branches,
whose points converge toward O on iteration of T. A point con--
tained in a small neighborhood 5ol O, but not on one of the invariant
branches, is carried out of & on repeated iteration of either T or T_,.

The two a-branches are analytic continuations of each other at O,
and taken together, form an invariant analylic curve without singu-
larities, which at O crosses the corresponding curve formed by the
two w-branches. [f two sufficicntly small arcs «, and a, of the
two a-branches respectively, abut at ), they will not intersect. Tt
follows that the two z-branches can nowhere intersect cach other;
for if P were a point of intersection, an image of P under a sufficiently
great power of T_, would be in both «, and a, which is impossible.
Moreover, an «-branch of () can nol intersect an z-branch of some
other point, say Q, for a point of intersection would be carried simul-
taneously toward O and Q on indefinite iteration of T ,, which is
impossible. The same holds for the w-branches.

An inversely unstable invariant point has x-branches of order 2,
— they are invariant under T, but not T. Anunstable periodic point O
of order k has «-and w-branches of order £ and 24, according as O is
directly or inverscly unstable. If O is of the former Lype, a poinl on
any of its hranches tends asymptotically toward the complete group,
of O on repeated iteration of T (or T_,), and toward O itself, on
iteration of T, (orT ;).

If we consider the tolality of a-and -branches of all orders
on S, it is clear from the discussion ahove, that no a-(or w-) branch
can intersecl another 2-(or w-) hranch. However, an z-hranch
may intersect an w-branch, and the points of intersection in such a
case are called doubly asymptotic (d. a.) points (Poincaré, II). If
the two branches which intersect ata d. a. point P actually cross, i. ¢.,
are nol coincident or merely tangent at P, then P will be said ta be of
general type ; in the contrary case, P is of special-type.

(1) First proved by Poincaré, (I). With regard to these invaviant branches, see also
Poincare (1) and Latiés,
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An analytic surface transformation which admits nod. a. or periodic
points of special type will be said to belong to the general analytic
case. The sense in which such transformations may be considered
« general » is indicated by the fact that a d. a. point of special type
can be converted into a number of d. a. points of general type by an
arbitrarily slight modification of T, but not conversely; the same
holds for the periodic points. We shall not, however, here consider
the situation in further detail.

A d. a. point is called homoclinic (Poincaré, 11) if the z-and «-
branches on which it lies issue from the same unstable periodic point
or from two points helonging to one and the same periodic group.
For convenience, let us say that liomoclinic points of the former type
are stmple.

We shall have oceasion to vefer later to the following theorem :

In the general analytic case, an arbitrarily small nexghborhood of a
homoclinic point contains infinitely many periodic points.

A prool of this theorem is given by Birkhofl (V) for the case of
simple homoclinic points (').  The remaining cases are disposed of
bv the following lemma:

In the general analytic case, an arbitrarily small neighborhood of «
homoclinge point contains a homoclinic point of sinple type.

We shall briefly indicate the proof. Suppose for concreteness
that P is a point of intersection of an z-branch of O with an -
branch of O, =T (O) where O is a directly unstable point of order 2.
Thus P 1s a non-simple homoclinic point. The transform of
the z-branch OP is the a-branch O, P, and the transform of the
w-branch O, P is the w-branch OP,. (Sece fig. 1).

Now O is invariant under T, and P, being on au w-branch of O
is carried toward O on repeated iteration of T,. Mm'eoifer, a point
sufficiently close to O and on the proper side of the curve OP,. is
carried toward and bevond P on iteration of T,, the successive images

(1) The prool given assumes the existence ol an invariant integeal, but can be
extended to the general case: details for this will appear elscwhere.
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remaining close to OP. Hence a small arc 3 crossing OP, aL P,,
will eventually be carried into an arc 3, which follows along close
to OP sufficiently [ar that it will cross PO, near P, say at M.  Since

Fig. 1.

0

the d. a. point P is of gencral type, the a-branch O, P, actually
crosses OP, at P, and hence § may he taken as an arc of O, P,.
Hence B, is also an arc of the a-branch O, P, and M is therefore a
homoclinic point of simple type. This establishes the lemma for the
case considered, and there is no difficulty in making the proof general.

Q. The central motions ().
Consider an arbitrary connected region ¢ on S. It may happen
that ¢ is intersected by none of its images

O—yy Oys Gy, Gy

in which case, 5 is called a «wandering region and its points wandering
points. A point of S which is conlained in no wandering region is a
non-swandering point.

No two images of a wandering region can intersect. For if 5;
and 5;(r <j) intersect, then so do s and o;_;, which is impossible.
Consequently any image of a wandering region or point is again wan-
dering, and any image of a non-wandering point is non-wandering.

(1) Cf. Birkhoff, IV,
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Among the non-wandering pomts are the z-and w-limit points.
Suppose for example that L is an w-limit point and let ¢ be an
arbitrarily small nexghborhood of .. 'Within ¢ there are infinitely
many points of some sequence P, P, P,, ... If P, and Py(e <)
are two of these points in o, the regions a4, and ¢ obviously overlap,
and hence 5 can not be wandering.

The totulity of non-wandering points of S constitutes a non-null
closed invariant set M* towards which all other pointstend asymptotically
on indefjinite iteration of T or T_,.

In the first place, nou-wandering points must exist on S, for there
are always z-and w-limit points on a closed surface. The set
S—M' consists only of inner points, and hence M' is closed.
Since all images of a non-wandering point are non-wandering, M* is
invariant. Finally, if P is a point of S — M', the sequence P, P,, ...
tends asymptotically toward M'. For otherwise a number >0
exists and an infinite subsequence of points P, ,Ps, ... each of which
is at a distance greater than < from M'. No limit point of the
subsequence can belong to M'; hut on the other hand, every such
limit point is an w-limit point and therefore non-wandering. This
contradiction proves our asscrtion. If follows similarly that the
sequence P, P, ... tends asymptotically toward M',

The following theorem concerns the movementof W'=15 — M' as
a whole, on indefinite iteration.

Tueorem 1. — Not more than k points of u complete sequence of
wandering points can be outside a given neighborhood V of M', where k
depends only on the choice of V.

Proof. Suppose the theorem false. Then there exist complete
sequences which have more than N points in W' —T, where N is
arbitrary. Thus, for every positive integer n, there is a set E” consis-
ting of at least n points taken from a complete sequence, and all
containedin W' — V. We shall pick from each E a pair of points P"
and Q" chosen such that the distance P* Q" shall converge to zero
- with 1/n. This is possible since the number of points in E” grows
indefinitely with n.
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Now the set W'—V is closed and any limilt point L of the
sequence P', P?, . .. must therefore be wandering. But on the other
hand a nelghborhood of I., however small, will contain a pair P Q";
and since Q" belongs to the same sequence as P*, a certain power of T
or T_, will carry P* into Q", and hence ¢ into a region that overlaps 3.
Therefore [. is non-wandering, which is a contradiction,

[t may of course happen that the set M' is identical with S. This is
the case, for example, when T possesses an invariant integral of a
certain type, as we shall see later.

l.et us suppose now that M' is not identical with S, and let us take
the set M' as fundamental instead of S. A connected region which
contains points of M' will be called wandering with respectto M* if the
sel. 5M' of points common to s and M' is intersected by none of its
images under powers of T or T_,. The points of M' which are
contained in such a vegion are called wandering with respectto M, and
their totality will he denoted by W2, Theset M2= M' — W* consists
of the points which are lmn—w:mdcring sweth respeet to M'.
case M'=M?*, we shall say that M' is non-wandering with respect
to itself.

The complele analogv which exists between S; M', W' and M',
M2, W2 will be seen immédiately ; M? is a non-null invariant closed
subset of M', and toward M? the pointsof W?* tend asymptotically on
indefinite iteration of T or T .

In case M* is not identical with M', the process mav he carried onc
step farther, vielding the set M* of points which are non-wandering
with respect to M2, We continue thus until we arrive al the set M*
which is non-wandering with respect to itself. In case, however,
that no such set appears after a finite number of steps, we shall have
an infinite sequence M', M2 ... with M'>M*>... The
set M»=MM,.. ., is closed and not null, and our process applied
to M yields M“~* then M”** and so on.

In this manner we obtain an ordered aggregate of point sets

Mu’ cees M”’; M-t e “».'w’ cey Mm‘?

lach set is a proper subset of all those preceeding it. Such an
aggregate can he at most denumerable, and hence, when arranged as
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above in a well-ordered sequence, is associated with a definite ordinal »
of Cantor’s second ordinal class. Thus the sequence above terminates
with M" which therefore must be non-wandering with respect to
itself. The points of M” will be called central points, and a complete
sequence of central points will be called a central motion.

Among the closed invariant point sets which are non-wandering
with respect Lo themselves, the set M is maximal in the sense that
every such set is contained in M". For if E is such asel, we have
successively ESM', E<M?, ..., E<M», ..., and hence ESM"
Morecover any closed invariant set on S may be taken as the initial set
in the above process, and hence must contain a subset which is non-
wandering with respect to itself. 1t follows that every closed invariant
set contains at least one central motion. This applies in particular to a
complete group.

A study of the steucture of M7 and the sequence M', M2, .. ., which
determines M7 will occupy much of our attention in what follows.
We shall first prove a fundamental recurrence property of M’

A point which is both an z-and o-limit point of its own
complete sequence will he called pseudo-recurrent ('). The characte-
ristic property of such a point is that it returns infinitely often into an
arbitrarily small neighborhood of itself under indefinite iteration of T
aswellas T, All hinages of a pseudo-recurrent point are pseudo-
recurrent.  Moreover, a pseudo-recurrent poinL is a central point, for
its complele group is obviously non-wandering with respect to itself
and is therefore contained in M".

The fundamental recurrence property of M” may now be stated as
follows :

Tueonen 2. — The set 1 which consists of the pseudo-recurrent points
together with the limit points of pseudo-recurrent points is identical
with M".

Proof. First, since pseudo-recurrent points are central motions
and since M" is closed, we have E<M",

(') The term « recurrent » has heen used elsewhere ( Birkhioff, 111) with a slightly
different meaning. Recurrent points are psendo-recurrent, but not conversely,

Journ. de Math., tome VII, — Fasc. 1V, 1928. 45
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It remains to prove that M'SE. 'We shall show that an arbitrarily
small neighborhood o of a central poinL A contains at least one pseudo-
recurrent point, so that A is either pseudo-recurrent, or a limit point
of pseudo-recurrent points, and is therefore in E.

The set of central points contained in any small region, — for
example ¢, must intersect images of itself under powers of T and T_,,
for there are no wandering regions with respect to M".  Hence there
exist in ¢ a pair of central points P and Q which are images, one of
the other, under some power of T. We shall assume that P
preceeds Q (). ‘

Next choose about P a neighborhood p so small that hoth p and ¢,
the corresponding neighborhood of (), shall be contained ins. There
exisls in p a pair P* and Q' of central points, images one of the other,
- under some power of T. We shall suppose tlus time that P! is

- preceeded by Q.

We shall describe one more stepin detail. A neighborhood p* of P*
is chosen so small that both p* and ¢' shall be contained in p. In p
are P? and Q% images one of the other under some power of T, and
named so that P? preceeds Q*. The important point in the choice of
successive pairs P and Q‘is to name them in such a way that P*
preceeds Q*:, while P?#+' is preceeded by Q**+'.

In continuing thus, we choose the successive neighborhoods p, p', ...,
in such a way that the diameter of p shall converge to zero as ¢ — .
By the manner in which these neighborhoods are defined, we have

(1) e>p>p'>p>
(2) C>ZHP>GH - P>

Now there must exist at least one point L with the property that it
lies in or on the boundary of each neighborhood of the sequence (1).
We shall show that L is pseudo-recurrent, and thus establish our
theorem.

We must show, then, that given an arbitrarily small neighborhood 7.

(1) i. ¢ when the complete sequence to which P and Q belong is written aceording
to incrcasing powers of T. In case P coincides with Q, we shall say that P
precedes and is preceded by Q.

’
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of 1., there are in 7. images of L under powers of T as well as T_,.
Let z be a positive integer chosen so large that p* together with its
boundary shall be contained in 2. Then by (1) and (2), the
regions p*+'  ¢**'  p*=2, ¢*~* are all contained in p* and hence in 2.

Suppose that « is even. Then ¢*' preceeds p*' and p*+*
preceeds ¢***. Therefore, since L is in or on the boundary of
hoth p**!' and p**, the image of L. under some power of T_, isin or
on the boundary of 4**, hence in 7.; and the image of I. under some
power of T isin oron the boundary of ¢*-*  hence ina. The situation
is reversed if z is odd.  This completes the proof.

We shall now prove a theorem concerning the distribution of
pseudo-recurrent points in the following important special case : T is
analvtic and possesses an invariant inlegral defined over a closed
invariant set E, where I is measurable in the sense of Lebesgue and of
non-zero measure. Ve assume specifically that the integral is of the
form

/'cp(P)da', oo ey s on Lk, (B finite).

the function o heing defined and measurable on E.

The set of pseudo-recurrent points contained in Vo is measurable, and
its measure ts equal to m (E).

Proof. Sappose ¢ is a measurable subset of E; with m(e)> .
Then ~ must intersect images of itself under powers of T and T_,.
For if the sets e, ¢,, ..., were mutally exclusive, the sum

2 [go(l—‘)r/':

could not be finite, since / :—./ :/:. ... Butin contradiction to

this we have

E [Q(l’)r/rr:g [@(l’)(/agﬁm(liy
ey g
/

Now let 2\, 2., .... be a sequence of positive numbers converging
to zero and let H' cousist of those points of E which never come within
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a distance ¢ from their initial positions on iteration of T.  We shall
show that m (H') = oforevery (. For suppose that the outer measure
of H', say, is >0. Then H' possesses a measurable suhset H of non-
zero measure ('). ’

Now, we can obviously choose u simply connected region 5 of
diameter smaller than z, for which m(_cﬁ)>o. By the remark
above, sH must intersect an image of itself under some power of T,
and this same power of T therefore carries some point of sH back into 5.
This is impossible by definition of H'. Hence m(H)=m(H')=o.

It follows that m(k)=m(E), whereh =I5 —(H' 11" 4., ).
lach point of K is clearly an w-limit point of its own complete
sequence. By entirely similar reasoning we arrive with a set 1.
with m(L)=m(E), each of whose points is an «-limit point of its
own complete sequence.

Since the sets K and L are both contained in E, and are in measure
_equal to m (E), they must overlap to the extent that m (KL) = m (E).
The points of KL are of course pseudo-recurrent, which establishes
the theorem. ' |

For a conservative Lransformation, I is identical with S, and there-
fore the measure of the pseudo-recurrent points equals the total surface
area of S. This is closely related to the statement of Poincaré (11)
that in certain dynamical problems, there exists stability in the sense
of Poisson, except for « motions of zero probability ».

THEORENM. — A¢ least one point of every sel of k successive points of a
complete sequence fulls in a given neighborhood \ of the set M".  The
value of k depends only on V.

Proof. Atleast one point of every complete group must fall in V,
since a complete group conlains at least one central motion.  Now if
the thcorem were false, there would be sequences of the form I,
P,, ..., Py, N being arbitrarily large, which have no points in V.
Let

PPy, ol Py,

0, 0, ..., 0

R

(') See CarATEODORY, Vorlesungen iiber reelle Funktionen.,
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be an infinite succession of such sequences, with m, <m,<<.... Then
clearly the complete group of any limit point of the set P, Q, ...,
must be entirely outside of V, which is impossible.

3. The sequence N*, N, . ... — We shall now define the set M" of
central motions by means of a new fundamental sequence, and in so
doing, we shall reveal certain additional properties of M.

We shall employ a maodification of our carliec process, which
consists tn considering those non-wandering poinis which are - or
- limit points. If Lo the set of a-and w-limit points of S, we add the
ordinary limit points of such points, we obtain a closed invariant
set N'.  This set is-of course contained in M’ altho the two sets may
be identical. (' We shall consider later the conditions nnder which
this must happen.) '

By the same argument which we used for M*, it follows that the
points of S — N' tend asymptlotically toward N' on indefinite iteration
of T or T_,; we do not, however, have a theorem analogous to
Theorem 1, § 2 for this case.

Let us now take the set N' as fundamental.® An - limit poiot with
respect 1o N' is a limit point of some sequence P, P . ..., contuined
in N'. {fto the z- and w- limit points with respect to N', we add
their limit points (in the ordinary sense) we obtain a closed invariant
sel N* contained in N'; it is easily verified that N* is contained also
in M2, ,

In the light of the preceeding section, the manner of proceedure is
clear.  We arrive eventnally with a closed invariant set N*, with
which the process terminates, — i. e. such that N7 ' = N\,

Tueoren. — The sets N and N are identical.

Proof. Since N* consists of z- and w-limit points with respect Lo
itself, and the ordinary limit points of such points. an arbitrarily
small region s which contains points of N*, contains at least one limit
point of some complete sequence contained in N*.  Hence 5V must
intersect images of itself under powers of T or T_,. Thus \ is non-
wandering with respect to itself and therefore N* <M (§ 2).

Next, it is clear from their definition that all pseudo-recurrent
points belong to N*. Since N*is closed, limit points of pseudo-recurrent
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points are also contained in N*. Therefore, by Theorem 2, § 2,
M"<N-. Hence M’=N".

Between the ordinals » and s, we have the relation s<ry it is
probable that s may be actnally less than rin certain cases.

We shall now prove a simple lernma preliminary (o obtaining a
further property of M’ :

Lemma. — If Q is a limit point of a complete sequence X relative
to T, it is also a limit point of a complete sequence X' relative Lo T,
k being any integer, and X' heing a subsequence of X.

Let  be the sequence ..., P_,, P_,, P, P,, ..., and from it letL us
extract a subsequence P,, Py, ..., which converges to Q. The
subsequences

.o P—-M%—/' P../.- ie P/, [’1»4_,,'. P:/;_v_;. ce. (i==o.1.....h 1 )

conslitule a set of k complete sequences of T, and each is a subsequence
of £. Taken together, these sequences contain all the points of X
and hence at least one ®f them contains iufinitely many points of
the sequence P, P+, ... and so has () for a limit point.

Tueorem 3. — The sets N', N2, .. relative to'T are identical respecticely
with the sets N', N2, ..., relative to V. Hence the set of central
potnts relative to T is identical to the set relative (01 .

Proof. If Q is an a- or w- limit point of T, it is of course an %- or
w- limit point of T. By virtue of the lemma, the converse is also
true. Hence N'=N". Next, if Qis an - or w- limit point of T, with
respect to N', it is an «- or w- limit point of T with respect to N'.
Again, the converse of this statement follows from the lemma, and we
have N*=N¢. For suppose () to be a limit point of a complete
sequence X of T, contained in N'. Then by the lemma Q is also a
limit point of a completesequence X’ of T, where £’ is conlained in X
and hencein N'.  Thus Q isan - or w- limit point of T, with respect
to N’, as stated. Proceeding in an entirely similar manner for N*,

N2, ..., the proof of our theorem is established.
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[L is cquestionable whether or not the theorem holds also for the sets
MM L '

Before considering under what circumstances the sets M' and N' are
identical, we shall introduce a new definition. T.et s be a connected
region contained in the open set S — N'. As we have seen, the points
of 5 tend asymptotically toward N’ on indefinite iteration. Now it
may happen that their totality tends toward N' uniformly on iteration
of T(or T ). By this wemean that given arbitrary positive ¢, there
exists a positive integer K such that each point of eachk s.(or 5_.),
k> K, is within a distance z from the closed set N'. In such a case
we shall call 5 an w- (or 2-) regular region, and its points w- (or o-)
regular points. Points of S —N' which are contained in no such
region will be called w- (or -) irregular.

Tueorem. — Points of M' — N', if any exist, are u- and o-irregular.
Proof. l.et P besuch a point.  An arbitrarily small neighborhood
5 of P is intersected by at least one of its images under powers of T.
Consequently 5 contains a point ), an image of which, say Q,, £>o,
is also in 5. Lel us choose a point pair such as QQ, for each one of
a sequence of regions 5', 5%, . .., closing downon P. Let these pairs be

(3) [ LU § T RO § CO S

There can not be a finite upper bonnd for the sequence of positive
integers m,, m,, .... For if N were such a bound, infinitely many
of the integers of the sequence are eqqual to some integer m, 0o <m<N,
and from X we could extract a sequence of the form

0%, Q% (% )%

wme st

But since the sequences Q¥, Q%, ..., and Q%, Q% ..., both
converge to P, it is clear that P, coincides with P. Thus P is
periodic, and hence belongs to N', coutrary Lo hypothesis.

It follows that there can be extracted from X a sequence of the form

), (‘)2:’ ), (.)Z:, ...

with 0 < b, <b,<.... Each region ' contains all the points of
this sequence from a certain rank on and hence it is clear that no &
could possibly tend uniformly toward N* on'iterationtoT. Hence P

-
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is - irregular. By an entirely similar argument, P is shown to be
o~ irregular. This completes the proof.
We shall have occasion later to refer to the following theorem.

TneoreM 4. —If a connected region p contains non-wandering points,
it is intersected by infinitely many of us images iinder povers of T as
well as T_,.

Proof. Let P be a non-wandering point in p. Referring to the
proof of the preceding theorem, let Q', Q}, Q2 Q2 ..., be a
sequence of the type (£) and converging to P. As we have shown,
either there exists no finite upper bound for the sequence m,, m,, .. ..

orelse P is periodic.  Either situation leads to the stated conclusion.

4. Invariant integrals. — We have seen that an invarian| set E over
which there can be defined an invariant integral of a certain type
must necessarily consist of central motions. It is probably not true,
however, that conversely, an invariant integral mayv alwayvs be defined
over an invariant subset of M'. Suppose, for example, that V" is
identical with S. Then if 5 is anv connccted region on S, the
regions g, 6,, 7, ..., can not be mutually exclusive.  But there is no
apparent reason why the regions of some infinite sabsequence 7,.
54, ..., should not be mutually exclusive, — a sitnation which could
nol arise if T were conservative. Indeed, there can not be any purely
topological condition for a metrical phenomenon such as conser-
vatism. It will be worth while, however, to examine auy available
condition which will shed light on the structure of T.

Consider the region s. In general there will be some image of 5
whose area is smaller than that of 5. Hence on dividing S into a*
number of regions and choosing the proper image of each, S becomes
compressed, in a sense, into an arca smaller than its total surface area.
We shall show that a necessary and sufficient condition that there
exist invariant integrals of a certain type on S, or part of S, 1n that S
be not compressible into an arbitrardy small area. This is an intuitive
statement of the results of this section.

We shall assume now that T is analvtic, and shall begin by
introducing of function 3(e), ¢ being any measurable set on S,
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defined as follows : let ¢ be divided into a finite number of mutually
exclusive measurable sets </,

e:Zaf, . ¥di=o for i

Then p(e) is the lower bound of the sum

¥ mian)

i

with respect to all possible methods of subdivision of ¢ into finite
numbers of measurable sels, and all possible choices of the integers n;.
Here we make use of the fact that the property of measurability is
preserved under analytic transformations.

It is clear that function » may be identically zero, in which case,
S 1s « compressible into an arbitrarily small area ». This happeuns, for
example, when T is an analytic transformation of a sphere such that
each circle parallel to the equator closes down on the north (or south)
pole on indefinite iteration of T (or T_,). On the other hand, for a
transformation which preserves areas, we have o (e) =m(¢).

In any case, it follows immediately (rom the definition, that

o(ey<m(e)

and hence 9(¢) is bounded, and totally continuous on S.

The imporlance of 7 for our purposes is due to the following
theorem :

2(¢) s a completely additive function of measurable sets and is
tnvariant under T.

Proof. We first prove the invariance of 9.  Let e he an arbitrary
measurable set and suppose that o(¢) < 2(e,). By a proper subdivi-
sion of ¢ into a finite number of measurable scts, together with a
proper choice of the corresponding integers ; we obtain a sum

Em(&fu)

Journ. de Math., tome VII. — Fasc. IV, 1428. 46
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which approximates ¢(¢) to any desired degree of closeness. 1In
particular, we may assume by virtue of the assumption ¢(e)<2(e,)
that

Zm(a )< ol(e).

Nome(a‘; )n—i 18 an approximating sum for 2(e,). Since its value

i

iszm(é?ﬁ,i), the inequality above contradicts the fact that ¢(e,) is the

lower bound of its approximating sums. Hence 3(e) can not he
smaller than ¢(¢,). By interchanging ¢ and e,, the same argument
shows that 9(e) can not be greater than o(e,). Hence p(e)=25(¢,).

Next we wish to prove that if ¢ and f are measurable sets without
common points,
. 9(e+f)=9v(e)+ ()

Let us choose approximating sums
Im(oh), Zm(Bh). Em(y)

for e, f, and e+ f respectively. Regardless of how the first two
sums are chosen, we can always choose the third such that

Zm(76) S Zm (o) + Zm(fh,);

hence it follows that

o(e+f)<o(e) +9(f).
Now suppose that

e+ fy<o(e)+eo(f)

Assummg, aswe may, that Em (.,) approximates (¢ + f) sufficiently
closely, it follows that

(1) Em(yly<o(e)+o(f).
New approximating sums for ¢(c) and ¢( /) are furnished by

Emey) and Em(fyl);
and since

./i: e7i+f71,
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il follows that
(2) Im(yl)y=2Zm(ey.)+Zm(fy.).

Moreover, v(c)and (/) heing lower hounds of their respective
approximating sums, we have

Imieyi)zole),  Em(f70)29()
Coxﬁbining these relations with (1), we obtain
Sm(eyl) +Zm(fyL) > Zm(yl)
which contradicts the equality (2). Hence
ole+f)=c(e)+a(f).

‘We now seek to define the circumstances under which the following
situation will arise :

E is an invariant measurable set of non-zero measure; F(P) is a
non-negative measurable function defined over E and possesses a finite

upper bound M on E. Moreover F(P) may vanish at most on a set
of measure zero.

Finally the integral
fF(P)da (e<E)
is invariant under T. (1t vanishes only when m{¢) = o, by the last
assumption on F).

A necessary and sufficient condition for the cxistence of a set E and

an associated integral f F(P)ds is that 9(S) > o.

We first assume the existence of E and f F (P)dc and prove
that 2(8) > o.

By the assumptions on E and F(P), it follows thath(P)da> 0.
£
Lf, now, 2(8) =0, 1t will follow thath(P)da:o which is a contra-
E

diction. To show this, let Tm(c.) be an approximating sum for (E).
The assumption ?(S)= o implies that »(E)=o0 and that Zm(c}) <e.
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Then
2’[ F(P)do< MY m(3)) < e M.
N = el
i on; i

f:?f—":\/‘ "
v e S

on;

Now since

(the integral being invariant) it follows that f is smaller than ¢M and
E

is therefore equal to zero, wich is the desired contradiction.

That the condition is sufficient follows from the theorem (see
Carathéodory, loc. cit.) that a bounded totally continuous additive
function of measurable sets is expressible as the indefinite integral of
any of its « derivatives ». The function ¢ is of this type and we may
therefore write

q(e):fD(P)c{a.

A derivative is defined as follows : To each point P is associa-
led a sequence of neighborhoods 7} of suitable type closing down
on P and so chosen that as ¢ — o,
ok
m(lh)
shall converge to a unique limit. Different derivatives may resull
from different choices of the regions 7. All derivatives are sum-
mable functions, however, and any two of them differ at most on a
set of measure zero.
In view of the inequality ¢(2p)Sm(Ap) it follows that every deri-
vative of ¢ has the upper bound 1.
The set G of points for which D(P) > o is measurable and its
measure is greater than zero, since

fD(P)da':'/.D(P)da:: e(S)>o.
¢ s

Moreover, f D(P)>o for ever £, on account of the invariance
G

of o(¢). Hence on G, D(P) can vanish only over a set of measure
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zero. Therefore, ontheinvariantsel E= G+ G, + G_,+...,D(P)
vanishes at most on a set of measure zero. The set E and the func-
tion D(P) taken over E, are precisely the set and associated function
demanded by the theorem, and the sufficiency of the condition is thus
established. :

I.et ¢ be an arbitrary measurable set of non-zero measure on S.

A sufficient condition for the cxistence of an incariant integral
defined ocer the whole of S is that

m(oy)

(A) m(o)

>t>o0 (A= E0, ...

where & is tndependent of ¢ and k.

This is a corollary of preceeding theorem. In fact, an easy conse-
queunce of the condition (A) is that ¢(¢) vanishes only when m(e)=o.
We shall now add a few remarks concerning linear dependence.
Let us suppose that T admils one or more invariant integrals of the

Lype f F(P)ds, where, 1o simplify the discussion, the measurable

function () is assumed to be defined over the whole of S and is
non-negalive thruout, vanishing at most on a set of measure zero.
Moreover I'(P) will possess a finite upper bound on S.  Allinvariant
integrals in this discussion will be of the same type.

The invariant integrals f F'(P)ds, ..., f F(P)ds are lincarly
dependent if there exist constants A', ..., \” not all zero, such that

the function
ATF 4 - AR

-

vanishes « almost everywhere » on S.  [f no such constants exist, the
integrals ave lincarly independent. We shall see how the structure
of T is influenced by the existence of several linearly independent
integrals.

A transformation will be called metrically transitive if there exists
no measurable invariant set E such that o <m(E)<m(8). A
transformation of this type is also trausitive in the ordinary sense;
that is, for any two mutually exclusive connected regions « and 8,
some power of T can be chosen which will carry points of zinto points
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of 3. If for some « and {3 this were not the case, then E being the

invariant set
O Oy Oy a ey

we would have o <m(E)<m(S — ) < m(8S).

A necessary and sufficient condition that no two incariant integrals
on S be lincarly independent is that T be metrically transitive.

The condition is necessary. For suppose that every invariant
integral depends linearly on the integral f F(P)ds. Now if there
existed an invariant set E with o <m(E)<m(S), the invariant
integralfG(P)a’c, where

G(P)=F(P)on E
=2F(P)yon S— L
is linearly independent of | F(P)ds, which is impossible.

" To prove that the condition is sufficient we shall show that if the
invariant integrals

l(e):fl?(P)da and J(e)= /'G(l")(/a'

are linearly independent, T can nol be metrically transitive.
Consider the derivatives

D : I()‘i)) : J()\b)
F(P)=lim ——~ G'(P)y=I ‘
(") L;T n(kp) (F) i:E m(ap)

9

where, as previously, A, denotes a sequence of neighborhoods of
suitable type closing down on P. For every P, the sequence 4} is
assumed to be so chosen that the limits written above, as well as
. I[T(A) . J[T(M
A o m[[T()\{s )]] i m[['r((x;;))]]

shall exist. ‘

The functions F’ and G’ are equal almost everywhere to F and G
respectively. Hence the measurable function ¥'(P), where

F(P) . 1(h)
LG :
G'(P)  ismd(7h)

W(P)=
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is well defined and finite on S, except at most on a set of measure
zero, for the points of which we Shd]] arbitrarily assign the value zero.
We shall show that U”(P) is « almost invariant », — i. e. that

(D)= W(DP,)

except possibly for a set of poibnts P of measure zero. For, the deri-
valives
» 1[ l(’[!)l ) J['F(Z]ll)l
F/(P)=lim 1L "(P) = lim —— -t
o= iron) W=l oG
are equal almost every where to l*'(P yand G'(P,)respectively. Hence

the function '
F'(P,) —lim 1[T(3))

prpy—=-_t 17 —_——
(ry) G'(P,) i->b~]|_'l‘()"l")]

is equal to W”'(P,) almost everywhere. But since
HT@E)=104),  J[TO)=T04),

it follows that W' (P)=U"(P,) for all points P, which proves our
asserlion.

Let us denote by (a, 4), (0<a<h), the set of points for which
aSU7(P)<bh. By the preceeding paragraph, each image of («, b)
under powers of T or T_, is of same measure as («, 0). TFor, the
points > for which W' (P,)=£ ¥/(P) arc at most of measure zero.
From this it follows Lhat for every set (a, 0) there exisls an invariant
set of same measure, namely the sel

{a, b+ T(a, by +T_ (a, b)+..
Now since W/(P) is non-negative and finite thruout, we have
m(8)< rn(o', +mr, 2)+....
Hence Lhere exists a positive number B such that o <m (o, B). But
for no finite number C can we have m(C, C)=m(S). For then we
would have F'(P)=CG'(P) and hence F(P)=CG(P) almost
everywhere, which contradicts the assumption of linear independence

of [ and J. It follows that there exists a positive number D such
that o < m(o, D)< m(S). Since there exists a measurable invariant
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set of measure equal to m(o, D), T can not be metrically transitive.
This completes the proof.

Do there actually exist transformations which are metrically
transitive? A simple example is the transformation of a torus given
in Lerms of angular coordination by

T:¢y=¢ 44, 0,==0+ /.
The constants & and £ are incommensurable with 2% and with each

olher. T moreover admits the invarianl integralffdgo d® which is

reducible to an integral of the type considered. The proof that T
has the properly in question offers no difficulty.

8. Regular regions. — Returning to the definition of w- regular
points (§ 3), we see Lhat if any exist, their tolality constitules a sel
of inner points, and falls therefore into a set of maximal connected
regions or components. Each point on the boundary of a component
either belongsto N' or is w-irregular. It follows also from the defini-
tion that the transform of an w-irregular point is again w-irregular.
This holds also for points of N*, and hence the transform of a com-
ponenl is again a component. Morcover, « component C is cither

svandering or else periodic or invariant, for if C intersects C;, then C
and C, must bhe identical.

Tueorem. — A component of w- (or a-) regular poinis is ecther stn-
ply ordoubly connected.

In carrying out the proof, we shall take S to be of genus zero, altho
the theorem holds for any genus (').

Let C be a component of w- regular points (essentially the same
argument will hold for an «- regular component) and v its boundary.
There is on S at least one invariant point O (?), and we shall consider
it as the « point at c. » We can then distinguish between the interior
and exterior of a simple closed curve drawn on S and not passing

(1) A proof of this will appear elsewhere.
(*) First proved by Brouwer (I).
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thru O, — in particular, of any simple closed curve contained in C
or any image of C.

We shall consider separately the two cases, (I) C is wandering,
and (II) C is periodic or invariant.

I. We shall show in this case that there can not be drawn in C a
simple closed curve enclosing points of v, from which it will follow
that C is simply connected.

Let  be a simple closed curve in C, and A the region interior to «.
Let £ be the smallest non-negative integer, if any exists, for which A,
intersects A. Since o lies in a wandering region, no two of ils
images can intersect, and hence A is expanding or contracting
under T,; we shall assume the former, the argument being quite
similar for both cases. Thus A, contains A, but has no points in
common with A, Ay, ..., A\, The limit region

Dz A= A Ayt

is simply connected and invariant under T,. It is clear moreover
that the % regions

Di= Aj4- Apgi+- Agj it (i=o,1, .., k—1)

are each of same Lype as D, and are mutually exclusive.

Now consider in D the ring r=(«ay), i. e. the region bounded by
o and oy The images r,, r, ..., r,_, are contained respectively
in D, D, ..., Dy, while r; is adjacent 1o r, 7, to ry, ..., etc.
Clearly ris wandering, and hence contains no points of N*.  Moreover,
the points of 7 are w-regular. For since the area of r, converges to
zero with 1/n, the points of r, tend asymptolically and uniformly
toward a,, which in turn, since 2 is in C, tends uniformly toward N*.

It follows that r contains no points of y, nor of any image of y.
Hence 7 lies in C, hecause « does, and also in C, because «,does. But
this is impossible since C, can not intersect C. 'We conclude there-
fore, tl.lat no integer k fwth the stated property exists, and A must
accordingly be wandering. But then the area of A, converges to
zero with 1/n and hence A tends uniformly to N', since its boundary
does. Therefore A contains no w-irregular points and henceno points

Journ. de Math., tome VII. — Fasc. IV, 1928, 47
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of y. Since « is an arbitrary closed curve in C, it follows that
C is simply connected.

II.  'We shall assume for simplicity that C is invariant, — the
argument for the periodic case being essentially the same.

Let us suppose that there can be drawn two non-intersecting simple
closed curves = and {3 whose interior regions A and B both contain
points of v, but have no points in common. We shall show that this
situation is impossible, thus proving that C is at most doubly
connected.

The closed set «, tends uniformly toward N' as n increases indefi-
nitely. Hence for a sufficiently large positive integer £, a, fails to
intersect « when n2/4. Then by theorem %,§ 3, A contains no non-
wandering points and hence no points of N'.  Moreover, no two
regions of the sequence.

() A, Ae Ag

can intersect. Hence by the same argument used above, the regions
A tend uniformly toward N' asj increases without limit. This
situation holds for cach onc of the sequences

/\,‘, A/,-_H-, /\%.4_/. P (l’:ﬂ. e vvd b— I)

since each is of same type as Z. The totality of these sequences
includes all the regions A, A,, A,, ... which makes it clear that
A consists of w-regular points.  Since, as we have shown, A contains
no points of N', it follows that A contains no points of y, contrary to
the choice of A. Thus the assumption that A,(r2+) fails to inter-
sects «, it follows that A is contracting or expanding under some T,
m2k, and hence contains a point U invariant under T, (Brouwer, I).
By precisely the same reasoning, there is a point V in B, invariant
under T, m'2 4. ,

Let us join « and 3 by a simple arc ~in C. By tracing a contour
about the set «+ 5+~ and sufficiently close thereto, we obtain a
simple closed curve ¢ in C, whose interior region D contains no points
of v other than those in A and B. The set D — (A + B+ a4 3)
consists entirely of w-regular points.

‘We may of course apply the same reasoning asabovetoD. Hence
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if s is a sufficiently large multiple of mm’, the transformation T, leaves
invariant the points U and V and admits D as an expanding or
contracting region.

Consider now the ring 7 bounded by 2 and T,(2). The rings T,(r)
and T_,(r) are adjacent to r, one within and one without. The limit
region R consisting of r together with all its images (boundaries
included) under positive and negative powers of T,, is a doubly
connected region, invariant under T,. Let I and I be its inner and
outer houndaries.

‘We now examine separately the two possibilities as to D.

(a) D is expanding under T;. In this case [ contains no w- regular
points. For any neighborhood ¢ of a point P on I contains points in
the limit ring R, and these points are carried by iteration of T,
toward E, whereas all images of P remain on I. Hence from a cer-
tain rank on, each member of the sequence

,o) p.ﬁ pQw

musl intersect ¢, which is at a non-zero distance from N'.  This makes
it clear that P can not be w-regular under T,; nor then, under T.

Now 1 is contained in DD.  But since I contains no w-regular points
il can not interscct the set D — (A 4 B4 2+ ). Hence [ is con-
tained in A + B and is at a non-zero distance from o~ 3. DBut this
is impossible since every approximating curve T,,(3)(p=1, 2, ...)
encloses the points [J and V, and therefore contains points not in A
or B. This contradiction excludeq the possnblhty that D be expan-
ding under T,.

(b) D is contracting under T,,  'Whatever points of N' there may be
in D lie in A 4+ B. Hence the curve ¢, which tends toward N' uni-
formly on ileration of T, must eventually be contained in A or B.
But thisis impossible, since cach image of ¢ encloses the points Uand V.

The contradiction in this final possibility shows that there can not
exist curves o and 3 with the stated properties, which completes the
proof.

On a surface of genus zero, a regular component of wandering type
is simply connected as tollows from the proof of the theorem. It



372 GEORGE D. BIRKHOFF AND PAUL A. SMITH.

can be shown that this result holds for all surfaces of genus different
from 1. For a torus, however, as we shall show later by an example,
the regular components of wandering type may he doubly
connected.

In a regular component C there are no invariant or periodic points.
Hence if C is of invariant simply connected type, it follows from a
theorem of Brower (1IT) that within G, T is topologically equivalent
to a translation.

If Cis invariant and doubly connected, its boundary consist of two
continua, at least if S is of genus zero.  Moreover, from the proof of
the preceding theorem, each point of €@ tends asymplotically towards
one and the same of these conlinua, on indefinite iteration of TorT. ,
according as C is w-or o-regular.

Let W be the set of all w-irregular points and A the set of all a-irve-
gular points.

TreEOREM 5. — On a surface of genus sero, each point of W (or A)
is connected to N' thru W (or A). :

For otherwise it would be possible 1o draw a simple closed curve ¢
enclosing points of W (A) but not of N'.  Thus ¢ must lie entirely in
some w-(-) regular component €. Since boundary points of C are
enclosed by ¢, C must be doubly connected and therefore of periodic
type. Hence the inner boundary of C, being a closed periodic set,
must contain points of N', which is impossible.  This establishes the
theorem.

We shall now consider some simple examples displaving varions
types of regular components. _

The first is a transformation of a sphere illustrated schematically
in fig. 2. Here we have taken the plane with a single point at o for
our representation of S. The points B and cc are the only invariant
points, and the set N* contains only these points. The motion of the
remaining points is indicated by the arrows. Clearly the points on
the arc BA«w (excepting B and o) are w- irregular while all others
are - regular. Similarly the points on BCoo are «- irregular and all
others are a-regular. ('We sec here that irregular points need not be
both a- and - irregular.) Hence the region whose boundary consists



STRUCTURE ANALYSIS OF SURFACE TRANSFORMATIONS. 373

of BAw (BCe) is an w- (a-) component of simply connected invariant
type. Finally, the example shows how each irregular point is
connected to N' thru a continuum of irrcgular points of same type
(theorem 5). .

Let us next consider an example in which the regular components
ave of wandering type. It is casily shown (Sce Poincaré, I) that if a
sensc-preserving transformation of a circle (0 into itsell admits no
invariant or periodic points, it must be of one of two types. In the
first type, N' coincides with (i while in the second, N' is a perfect
nowlere dense set on C. Let ¢ be a transformation of the second
type. The set C— N' consists of a denumerable infinity of wander-

Fig, 2.

J
A

ing open arcs; suppose one of these is 2. Since the end-points of 2
and of each image of ¢ arc in N', and since the lengtli of 2, converges
Lo zero with 1/ £, it follows thal S is an ¢- and w- regular « component »
ol wandering type. ‘

Suppose now that S is a sphere, and that Cis a great cirele, under-
goiug the transformation 1. We may extend ¢ to the whole of S by
letting each circle parallel to C undergo the corresponding congruent
transformation. It is clear that corresponding to the wandcring arcs
of C, we now have wandering simply connect regions, and they are
a- and w- regular components of S.

Suppose finally that S is a torus with angular coordinates 8 and o.
By letting the circles o = const. undergo congruent transformations
of the same type as ¢, we obtain a transformation of S in which the
regular components arc wandering rings bounded by circles of the
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family 6 = const. As we have already pointed out, regular compo-
nents of this type can only exist on surfaces of genus 1.

6. The general analytic case. — Transformations of the gencral
analytic case (§ 1) are free from certain structural complexities and
therefore secem best suited - for study, in an attempt at systematic
structure analysis. In this paper, we can only makc a beginning,
and must moreover, limit oursclves to the simplest case, — that in
which the central motions are finite in number.

Tueoren 6. — /n the general analytic casé, there must exist at least
Lo central motions. '

ProoJ. There exisls in any case at lcast one central motion M.
We shall show that in the gencral analytic case there must exist
further central motions.

If the complete sequence M is not pseudo-recurrent, then Lhere are
further central motions by theorem 2, §2. Hence we may suppose M
to be pseudo-recurrent. [f M contains infinitely many points, its
complete group would be a perfect set and would therefore contain
central motions other than M, since M is at most denumerable. Hence
we may suppose M to consist of a single periodic group. IFor simpli-
city let us suppose that M contains but a single point. There is no
difficulty in extending the remainder of our argument to the more
general situation.

If the invariant point M is of stable Lype, it is contained in a small
expanding or contracting region . Hence the closed set S — 5 is
transformed into part of itself by T or T_,, and therefore contains a
closed invariant subset which must contain further central motions(§2).
Thus we may suppose M to be of unstable type. More explicitly,
we may suppose M to be of directly unstable type, for if inversely
unstable, we may replace T by T, in the remainder of the argument,
making usc of theorem 3, § 3.

We shall show that there cxist central points other than the
directly unstable point M.  Consider the sequence N, N2, ..., N°=M
(§ 9) and suppose for the moment that s >1. We may assume that
each N* (¢ <s) has the property that from it there can be extracted
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an infinite sequence of points converging to M. For if this were not
true for N', say, N'— M would be a closed (or linite) invariant set
and would contain central motions other than M. Let p', p?, ...,
be a sequence of this Lype extracted from N'. :

Near M choose four points A, B, (C, D on the fourinvariant branches
respectively abutting at M. Let E be the closed set consisting of the
four arcs AA,, BB,, ..., of the four invariant branches. We assert
that E intersects cach N'; i>5s. For suppose a point Q) is very close
to M. If Q is on one of the invariant branches, some image of (Q will
certainly fall on E. In the contrary case, Q will move along close Lo
an «- (w-) branch on repeated iteration of T_, (T), (see § 1).
Hence some image of Q@ will fall very close to E.  From thisit follows
that out of the set ', P2, ..., and its images, we can extract an
infinite sequence of the form.

21 22
Pi. Pj,

converging Lo a poinl L on E. The sequence is conlained in N', and
hence so is L, since N' is closed. This proves our assertion for N,
and the same reasoning applies for each N/(¢ <s).

Suppose that the sequence 1, 2, ..., », ..., of ordinals less than s
possesses no last element. Their N* consists of those poinls which are
common toallthesets N' ) N* ... N/, ..., (i<s). BatEN'2EN?2...,
and hence there is a closed set of points common to the closed
sets EN(i <{s). This set is of course EN’ and hence N* contains
points other than M; that is, there ave central motions other than M.

There remains only the case in which the sequence of ordinals less
than s possesses a last element s — 1. [f Qisa point of N (or a point
of S different from M, in case s=1) the sequence Q, Q,. ...,
and Q, Q_,, ..., both converge to M. If we recall (§ 1) that points
in a small neighhborhood 5 of M and not lying on any invariant branch
of M arc carried out of 5 on repeated iteration of T or T_,, it becomes
clear that Q is doubly asymptotic to M in the sense of § 1, and is in
fact a homoclinic point. Hence by the theorem of § 1, there exist
central molions other than M. Tlis completes the proof.

Let us suppose that S is a sphere, and examine the struclure of T.
in the case when there are exactly two central motions.
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To every invariant point of S there is associated anumber i called its
index, and in the general analytic case £ may only take the value 41
or —t. More explicitly, the directly unstable points are of index —1
and all others of index + 1. Oun a sphere, the sum of the indices of the
invariant points (') is always 2. (With regard to the statements
above, see Birkhoff, II). Hence, in the general analytic case
there are at least two invariant points. But in the case under
consideration Lhere are exactly two, say P and Q, since each is a
central motion. There arc no further periodic points of any order.
The index of each point is 1; hence each is of stable or inversely
unstable type. If one or both were of the latter type, the sum of the
indices of the invariant points of T, would be < 2 which is impossible;
hence hoth are of stable type.

About P may be drawn a small circle eaclosing a region expanding

under TorT_,, — supposc ander l' The houndar3 2 of the simply
connected limit region
G+ G, + Oyt

must contain Q, for otherwise, being a closed invariant set, it would
contain central motions other than P.and Q.

If T contains points other than Q, let ¢ be a small expanding (or
contracting) region containing Q. The closed set £ — X, is carried
into a part of itself by T (or T_,) and therefore contains central
motions other than P and Q, which is impossible. Hence X=().

Thus S is divided by « system of concentric analytic closed curves inlo

a system of adjacent rings ..., v 4, r_y Py Fyy ... Theringsr,
Py oo.gand v, r o ..., close doswn respectively on the two invariant

points, and each r, is carvied by T into the adjacent ring r, _,.

In the general analytic case in which the central motions are finite
in number, it is probable that a complete structure analysis can be
effected, as we shall now indicate.

Let us again take S he a sphere and assume that the number of
central motions is finite and greater than 2. From the proof of

(1) Assuming them 1o be linite in number, which they are in the general analytic
case.
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theorem 6, it is clear that the central points are finite in number, each
central motion being either an invariant point or a periodic point
group. Let £ be the least common multiple of the orders of the
various periodic groups. The central points are invariant under T,.

Suppose that of these invariant points, p are stable, m directly
unstable and n inversely unstable, and let p’, m/, n’ represent the
corresponding numbers relative to T,,. Then referring to the discus-
sion above relative to indices,

p—m—+ ==, p—m+n'=2

Moreover (§ 1) p=p' and m<m'. Hence n<n'. But under T,
there are no points of inversely unstable type; hence n= n'=o0, and
from this we have p22.  Let the totality of stable points be Q' ...
Qr, (pz2).

Containing each Q’, there is & small region &' expanding under T,
or T_,. Each Q' is therefore contained in a simply connected limit
region A/,

’

Al=6 4+ Ty(g) + Tyrle)+...

where ¢ is + 1 or — 1 according as 5 is expanding under T, or T_,.
Each A'1is invariant under T,.

Let the boundary of A7 be denoted by a/(i=1,2,...,p). Itis
clear that if 5', say, consists of only one point, that point together
with () are the only central motions of T, and hence of T (theorem 3,
§ ), whereas we are assuming that the number of central motions is
greater than 2. Hence each «' is a closed periodic continuum and
hence conlains central points.

Each o' contains at least one periodic point of directly unstable type.

Proof. Consider «', and suppose &' is expanding under T,. Let
us suppose moreover that 2' contains no points of directly unstable
type. Then the central points which do lie on «' are of stable
type. Suppose one of them to be Q2. Then 5*> must be contracting
under T,. For if 5* were expanding, the points of 5* would tend
toward Q? on repeated iteration of T, ; but 5? contains points of A",
and those points must tend toward Q' on repeated iteration of T_,,
wich would be impossible.

Journ. de Math., tome VII. — Fase. 1V, 1928. [(8
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Since then, 52 is contracting under T, and thereforc expanding
under T_;, the closed set o' — «'5* is transformed by T_, into a part
of itself; hence it contains a closed subset invariant under T, and
therefore contains points of stable type otherthan Q' and Q*. Suppose
that one of these is Q°. Then the same argument used for ¢?, shows
that ¢° is contracting under T,. Hence «' —a's*— «'5* contains a
further stable points, say Q*. Continuing thus, the set of stable
points is eventually exhausted. When this stage is reached, one
more application of process must yield a point of directly unstable
typeon a'. This completes the proof.

Suppose thatthe orderoftheregion A'ism. ThentheregionsA®, ...,
A= are of same Lype as A' and together with A* form a periodic set
of mutually exclusive regions. Similarly, each A’ belongs to a
periodic set of this sort. Two of these sets, however, may overlap.

One method of proceedure would he to study the properties of a
. maximal set M of periodic sets, all the regions of which are mutually
exclusive. Within M, the structure of T is known. On the houn-
dary of M are a number of directly unstable pericdic points, and it
can be shown that certain of the 2 — and @ — branches of each of
these points must also be contained in M. Finally, the remainder
of S falls into a set of connected regions of periodic or wandering
type, and these in turn, break up into regular components of various
types. It is hoped that a complete analysis of this case, as well as
more complex cases will soon he accomplished.
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