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STRUCTURE ANALYSIS OF SURFACE TRANSFORMATIONS. 3^5 

Structure /Inalrsis of Surface Transformations; 

BY GEORGE D. BIRKHOFF 

(Cambridge, U. S. Λ.), 

AND PAUL A. SMITH 

(.Yew York. Γ. S. Λ. ). 

Introduction. 

It is intended to set forth in this paper certain general facts concerning 
the structure of one-to-one continuous transformations of surfaces into 
themselves, especially as regards the movement of points under inde-
linile iteration. For the most part, the transformations with which 
we shall deal are non-analytic. The restriction of analyticity, 
however, reduces the possible structural complexity to such an extent 
that something like a systematic structure analysis in the general 
analytic case can conceivably be developed. At the end of the paper 
we shall indicate in the briefest way some of possibilities with regard 
to a systematic study of this sort, altho the paper as a whole may be 
regarded as preliminary to such a study. 

Surface transformations which are associated with certain types of 
dynamical problems have the property that they admit an invariant 
area integral. These « conservative » transformations, which have 
been studied by Poincaré ( 11 ) (1 ) and more extensively by Birkholi'( IV), 
possess a fundamental property of regional recurrence. In general, 

(1 ) Tin· roman numerals refer to the list of references found at the end of this 

paper. 

Journ. de Math., tome VII. — Fasc. IV, 1928. 44 
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however, the phenomenon of recurrence does not extend to the entire 
surface, but does nevertheless take place within certain invariant 
subsets. We shall undertake a study of these subsets, — the precise 
nature of the recurrence which takes place within them, the extent to 
which they may be considered as transforming conservatively, the 
general movement of the remaining points of the surface and questions 
of uniform approach. Finally, we shall apply our general principles 
in a brief examination of the structure of simple types of analytic 
transformations. 

1. Preliminary definitions. The general analytic case. — Through-
out this paper, the term « surface » (denoted consistently by S) 
will mean a closed orientable surface of arbitrary genus and the term 
« transformation » (denoted by T) will mean a one-to-one continuous 
sense-preserving transformation of such a surface into itself. 

We shall designate by T
2

, T
:t

, . . . the successive powers of T, and 
by T__

a
, Τ , . .. those of the inverse T_An infinite sequence of 

points of the form 
• · · ) ■ —2» 1 -ι ) ' j 1 π * η · · · 

where Ρ is an arbitrary point of S, and P„ = T„(P), will be called a 
complete sequence. 

If two points Ρ
χ
 and P<j(a<|3) of a complete sequence coincide, 

then so do Pp_
a
 and P. Let k be the smallest positive integer for 

which ·Τ/,(Ρ) = P/,= P. Then Ρ will iterate periodically thru a 
set of k distinct points, and is therefore called a periodic point of the 
order k. 

Any limit point of the infinite sequence Ρ, Ρ,, P
2

, — is called 
an ω-limit point of Ρ and any limit point of the sequence P, P_<, 
P_

2
, ... is an α-limit point. In case Ρ is periodic, each of its images 

is to be considered an α-and an ω-lirait point, and there are no others. 
A complete sequence together with its a-and ω-limit points will be 

called a complete group. 
A set of points Ε is invariant under Τ if Ε and Τ (Ε) are identical 

point sets. A complete group, for example, is a closed invariant set. 
If a point Ρ is contained in an invariant set, so is the complete sequence 
of P. An invariant set, however, need contain no invariant or 
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periodic points. In case Ε is invariant under T
/f

, but not under Τ, 
Τ,, . . ., ΤΛ.__,, it is periodic, and of the order k. 

Suppose that a simply connected region G on S has the property 
that it contains the transformed region T(G) together with the 
boundary of Τ (G). Then G, together with its boundary is contained 
in T_,(G). We shall call G a contracting region under T, or an 
expanding region under T_,. 

We shall now summarize certain facts and deiinitions concerning 
analytic surface transformations. In tlie neighborhood of an invariant 
point Ο, Τ may be represented in terms of a properly chosen coor-
dinate system as follows : 

u% — au -f- bv -h... ( ad — he > ο ), r, = < u dv -4-... 

where the right hand members are convergent power series with 
real coefficients, and //,, e,, are the coordinates of the transformed 
point. 

Let p. arid ν be the roots of the characteristic equation 

λ- — (a H- d)~h + ad — be ~ o. 

We shall say tliat Ο is of general type provided that p. and ν are 
distinct and of modulus different from i. In any other case Ο is of 
special type. If JA and Ν are real, and O< ;Λ ι <^V, Ο is called a 
directly unstable point; if p. <— ι<ν<ο, Ο is inversely unstable. 
All other invariant points of general type are called stable. An 
invariant point which is inversely unstable under T, is directly 
unstable under T.,, while stable and directly unstable points retain 
their type under any power of T. 

The definitions above are independent of the coordinate system. 
They extend, moreover, to periodic points of any order; for example, 
if Ο is of order k, we take the roots JA and ν relative to TA.. 

Suppose Ο is an invariant point of stable type. Then points in the 
neighborhood of Ο converge toward Ο on indefinite iteration of Τ 
(or of T_, ) in such a way that the region bounded by any sufficiently 
small circle about Ο is contracting under Τ (or T_, )(See reference to 
Lattes). 



3/|8 GEORGE D. BIRKHOFE AND PAUL A. SMITH. 

Suppose next that Ο is of directly unstable type. There abut at Ο 
four invariant curves or branches ('), — two a-branches whose points 
converge toward Ο on indefinite iteration of Τ ,, and two <^-branches, 
whose points converge toward Ο on iteration of T. A point con-
tained in a small neighborhood croi O, but not on one of the invariant 
branches, is carried out of σ on repeated iteration of either Τ or T_,. 

The two α-branches are analytic continuations of each other at O, 
and taken together, form an invariant analytic curve without singu-
larities, which at Ο crosses the corresponding curve formed by the 
two ω-branches, if two sufficiently small arcs at

 and a.
2 of the 

two α-branches respectively, abut at O, thcv will not intersect. It 
follows that the two α-branches can nowhere intersect each other; 
for if Ρ were a point of intersection, an image of Ρ under a sufficiently 
great power of T_.ι would be in both a

t
 and a2

 which is impossible. 
Moreover, an α-branch of Ο can noL intersect an α-branch of some 
other point, say Q, for a point of intersection would be carried simul-
taneously toward Ο and Q on indefinite iteration of Τ ,, which is 
impossible. The same holds for the ω-branches. 

An inversely unstable invariant point has α-branches of order 2, 
— they are invariant under T2 but not T. An unstable periodic point Ο 
of order k has a-and ω-branches of order k and 2k, according as Ο is 
directly or inversely unstable, if Ο is of the former Lype, a point on 
any of its branches tends asymptotically toward the complete group, 
of Ο on repeated iteration of Τ (or Τ. , ), and toward Ο itself, on 
iteration of T/,.(or T__.,,.). 

If we consider the totality of α-and (o-branches of all orders 
on S, it is clear from the discussion above, that no a-(or ω-) branch 
can inLersect another a-(or ω-) branch. However, an α-branch 
may intersect an ω-branch, and the points of intersection in such a 
case are called doubly asymptotic (d. a.) points (Poincaré, 11). If 
the two branches which intersect at a d. a. point Ρ actually cross, i. e., 
are not coincident or merely tangent at P, then Ρ will be said to be of 
general type ; in the contrary case, Ρ is of special type. 

(*) First proved b\ Poincaré, (I). With regard to those, invariant branches, see also 
Poincaré (II ) and Lattes. 



STRUCTURE ANALYSTS OF SURFACE TRANSFORMATIONS. 

An analytic surface transformation which admits nod. a. or periodic 
points of special type will he said to belong to the general analytic 
case. The sense in which such transformations may be considered 

« general » is indicated by the fact that a d. a. point of special type 
can be converted into a number of d. a. points of general type bv an 

arbitrarily slight modification of T, but not conversely; the same 

holds for the periodic points. We shall not, however, here consider 

the situation in further detail. 
A (I. a. point is called homoclinic (Poincaré, 11) if the α-and 10-

branches on which it lies issue from the same unstable periodic point 

or from I wo points belonging to one and the sainc periodic group. 
For convenience, let us say that homoclinic points of the former type 
arc simple. 

We shall have occasion to refer later to the following theorem : 

In the general analytic case, an arbitrarily small neighborhood of a 
homoclinic point contains infinitely many periodic points. 

Λ proof of this theorem is given by Birkliolf V) lor tbe case of 
simple homoclinic points ('). The remaining cases are disposed of 
by the following lemma : 

In the general analytic case, an arbitrarily small neighborhood of a 
homoclinic point contains a homoclinic point of simple type. 

We shall briefly indicate the proof. Suppose for concreleness 
that Ρ is a point of intersection of an α-branch of Ο with an co-
branch of Ο ι = Τ (Ο ) where Ο is a directly unstable point of order 2. 

Thus Ρ is a non-simple homoclinic point. The transform of 
the α-branch OP is the α-branch Ο, P, and the transform of the 
co-branch Ο, Ρ is the ω-branch OP,. (See Jig. 1). 

Now Ο is invariant under T
2

, and P,, being 011 an co-branch of (> 
is carried toward Ο on repeated iteration of T,. Moreover, a point 
sufficiently close Ιο Ο and on the proper side of tbe curve OP,, is 
carried toward and beyond Ρ on iteration of T2, tbe successive images 

(') Tin· |>rnοI jri\rn iis-uincs llu· <,\i>(«,nci· of ;IM imaιίίΐιιΙ ΜΐΙ«·μι;ιΙ, lull run 1 >«· 
extended l <> the general ease; details l'or lliis will appear etsewhero. 
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remaining close lo OP. Hence a small arc β crossing OP, al Ρ,, 
will eventually he carried into an arc [iJ,,. which follows along close 
to OP sufficiently far that it will cross PO, near P, say at M. Since 

I'ifc'. ». 

the d. a. point J', is of general type, the α-brancli Ο, P, actually 
crosses OP, at P, and hence β may he taken as an arc of Ο, P,. 
Hence β/;

 is also an arc of the α-branch Ο, P, and VI is Lliereforea 
homoclinic point of simple type. This establishes the lemma for the 
case considered, and there is no difficulty in making the proof general. 

2. The central motions (1 ). 
Consider an arbitrary connected region σ on S. It may happen 

that σ is intersected by none of its images 

.... Ο—Ι, (Γ-.,. C,, G\», .... 

in which case, σ is called a wandering region and its points wandering 
points. A point of S which is conlained in no wandering region is a 
non-wandering poin t. 

No two images of a wandering region can intersect. For if 7, 
and 5y(i<y) intersect, then so do σ and σ7_

{
 which is impossible. 

Consequently any image of a wandering region or point is again wan-
dering, and any image of a non-wandering point, is non-wandering. 

ll.) Cf. Birkhoff, IV. 
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Among the non-wandering points are the a-and ω-limit points. 
Suppose for example thai L is an ω-limit point and let σ be an 
arbitrarily small neighborhood of L. Within a there are infinitely 
many points of some sequence Ρ, P

(
, P

a
, ... If Ρ

Λ
 and Pp(« < β) 

are two of these points in σ, the regions o«j_
a
 and σ obviously overlap, 

and hence σ can not be wandering. 

The totality of non-wandering· points of S constitutes a non-null 
closed invariant set M( towards which all other points tend asymptotically 
on indefinite iteration οf Τ or T..,. 

In the first place, non-vvaiideriiig points must exist on S, for there 
are always α-arid ω-limit points on a closed surface. The set 
S — M' consists only of inner points, and hence M' is closed. 
Since all images of a non-wandering point are non-wandering, M' is 
invariant. Finally, if Ρ is a point of S — M', the sequence Ρ, Ρ,, ... 
tends asymptotically toward M'. For otherwise a number 8>o 
exists and an infinite subsequence of poinls P

a
 ,P«j, . .. each of which 

is at a distance greater than ο from M'. No limit point of the 
subsequence can belong to M* ; but on the other hand, every sue!) 
limit point is an ω-limil point and therefore non-wandering. This 
contradiction proves our assertion. If follows similarly that the 
sequence Ρ, Ρ. . . lends asymptotically toward VP. 

The following theorem concerns the movement of W1 = S — M' as 
a whole, on indefinite iteration. 

THEOREM 1. — Not more than k points of a complete sequence of 
wandering points can be outside a given neighborhood Y o/M1, where k 
depends only on the choice of V. 

Proof. Suppose the theorem false. Then there exist complete 
sequences which have more than Ν points in W'— T, where Ν is 
arbitrary. Thus, for every positive integer η, there is a set E" consis-
ting of at least η points taken from a complete sequence, and all 
contained in W1 — V. We shall pick from each E" a pair of poinls P" 
and Qrt chosen such that the distance P" Q" shall converge to zero 
with ι/n. This is possible since the number of points in E" grows 
indefinitely with n. 
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Now the set W' — V is closed and any limit point L of the 
sequence Ρ', P2, . .., must therefore be wandering. But on the other 
hand a neighborhood of L, however small, will contain a pair Pn Q" ; 
and since Qn belongs to the same sequence asP", a certain power of Τ 
or T_, will carry P" into Q", and herice σ into a region that overlaps ?. 
Therefore L is non-wandering, which is a contradiction, 

It may of course happen that the set VP is identical with S. This is 
the case, for example, when Τ possesses an invariant integral of a 
certain type, as we shall see later. 

Let us suppose now that VP is not identical with S, and let us take 
the set VP as fundamental instead of S. A connected region which 
contains points of VP xvil! be called wandering with respect ίο M1 if the 
set aVP of points common to σ and VP is intersected by none of its 
images under powers of Τ or T. The points of VP which are 
contained in such a region are called wandering with respect ίο VP, and 
their totality will he denoted by W2. The sel. M2 = M1 — W- consists 
of the points which are non-wandering with respect to M1. In 
case \P = VP, we shall say that VP is non-wandering with respect 
to itself. 

The complete analogy which exists between S, VI1, VV, and VP, 
VP, W2, will be seen immediately; VP is a non-null invariant closed 
subset of \P, and toward \P the points of VV- tend asymptotically on 
indefinite iteration of Τ or Τ 

In case VP is not identical with VP, the process may he carried one 
step farther, yielding the set VP of points which are non-wandering 
with respect to VP. We continue Lhus until we arrive at the set VP 
which is non-wandering with respect to itself. In case, however, 
that no such set appears after a finite number of steps, we shall have 
an infinite sequence VP, VP, ... with VP >.M2>». . . The 
set Μω=Μ,Μ

2
.. ., is closed and riot null, and our process applied 

to VÎ" yields Μω_Η*, then M'"^2 and so on. 
In this manner we obtain an ordered aggregate of point sets 

\ J1, .... M">; M'"-< Yl·"», ..., M">\ 

Bach set is a proper subset of all those preceeding it. Such an 
aggregate can be at most denumerable, and hence, when arranged as 
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above in a well-ordered sequence, is associated with a definite ordinal r 
of Cantor's second ordinal class. Thus the sequence above terminates 
with M' which therefore must be non-wandering with respect to 
itself. The points of M' will be called central points, and a complete 
sequence of central points will be called a central motion. 

Among the closed invariant point sets which are non-wandering 
with respect lo themselves, the set M' is maximal in the sense that 
every such set is contained in M'. For if Ε is such a set, we have 

successively E<M', Ε<Μ-, ..., Ε<\1ω, ..., and hence E<Mr. 
Moreover any closed invariant set on S may be taken as the initial set 
in the above process, and hence must contain a subset which is non-
wandering with respect to itself. It follows that every closed invariant 
set contains at least one central motion. This applies in particular to a 
complete group. 

Λ study of the structure of Vlr and the sequence Μ1, \12, . .., which 
determines \i' will occupy much of our attention in what follows. 
We shall first prove a fundamental recurrence property of M' . 

A. point which is both an a-and ω-liinit point of its own 
complete sequence will he called pseudo-recurrent (' ). The characte-
ristic properl y of such a point is that it returns in finitely often into an 
arbitrarily small neighborhood of itself under indefinite iteration of Τ 
as well as Τ ,. All images of a pseudo-recurrent point are pseudo-
recurrenl. Moreover, a pseudo-recurrent point is a central point, for 
its complete group is obviously non-wandering with respect to itself 
and is therefore contained in M'. 

The fundamental recurrence properly of M' may now be slated as 
follows : 

THEOREM Ί. — The sel Κ which consists of the pseudo-recurrent points 
together with the limit points of pseudo-recurrent points is identical 
with M' . 

Proof. First, since pseudo-recurrent points are central motions 
and since Mr is closed, we have E<Mr. 

(') The term « recti i-reni » lias been used elsewhere ί Birkholf. Ill) with a slightly 
different meaning. Recurrent points are pseudo-recurrent, but not conversely. 

Journ. de Math., tome VII,— Fasc. IV, 1928. 4^ 
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It remains to prove that ΜΓ<Ε. We shall show that an arbitrarily 
small neighborhood σ of a central poinl A contains at least one pseudo-
recurrent point, so that A is either pseudo-recurrent, or a limit point 
of pseudo-recurrent points, and is therefore in E. 

The set of central points contained in any small region, — for 
example σ, must intersect images of itself under powers of Τ and T_,, 
for there are no wandering regions with respect to iVP. Hence there 
exist in σ a pair of central points Ρ and Q which are images, one of 
the other, under some power of T. We shall assume that Ρ 
preceeds Q ('). 

Next choose about Ρ a neighborhood ρ so small that both ρ and q, 
the corresponding neighborhood of Q, shall be contained in σ. There 
exists in ρ a pair P' and Q* of central points, images one of the other, 
under some power of T. We shall suppose this time that P1 is 
preceeded by Q\ 

We shall describe one more step in detail. A neighborhoodp* of P1 

is chosen so small that both ρ1 and qs shall be contained in p. In p* 
are P2 and Q2, images one of the other under some power of T, and 
named so that P3 preceeds Q2. The important point in the choice of 
successive pairs P1 and Q' is to name them in such a way that P2n 

preceeds Q3", while P2"-4*1 is preceeded by 
In continuing thus, we choose the successive neighborhoods/),/*1,..., 

in such a way that the diameter of ρ' shall converge to zero as i ->■ *. 
By the manner in which these neighborhoods are defined, we have 

(1) σ>ρ>ρ1>ρ2>..., 

(2) σ> q, p> q\..ρα> q*+\... 

Now there must exist at least one point L with the property that it 
lies in or on the boundary of each neighborhood of the sequence (i). 
We shall show that L is pseudo-recurrent, and thus establish our 
theorem. 

We must show, then, that given an arbitrarily small neighborhood/* 

('j i. c when the complete sequence to which Ρ and Q belong i.s written according 
t.o increasing powers of T. In case Ρ coincides with Q, we shall say that Ρ 
precedes and is preceded by Q. 
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of L, there are in λ images of L under powers of Τ as well as T_,. 
Let α be a positive integer chosen so large that />* together with its 
boundary shall be contained in λ. Then by (i) and (2), the 
regions p*+t, q***, px~^2i cf'"' 1 aI'e all· contained in/ja and hence in λ. 

Suppose that α is even. Then q*"* preceeds paw"< and p**'J 

preceeds q**·. Therefore, since L is in or on the boundary of 
both /?*-"' and p% 1, the image of L under some power of T_, is in or 
on the boundary of ηχΛ 1, hence in λ; and the image of L under some 
power of Τ is in or on the boundary of#*"-, hence in λ. The situation 
is reversed if α is odd. This completes the proof. 

We shall now prove a theorem concerning the distribution of 
pseudo-recurrent points in the following important special case : Τ is 
analytic and possesses an invariant integral defined over a closed 
invariant set E, where Ε is measurable in the sense of Lebesgue and of 
non-zero measure. We assume specifically that the integral is of the 
form 

I φ(Ρ)ί/σ. ο < y. < φ( Ρ ) < β on Ιό, (β finite). 

the function ο being defined and measurable on E. 

The set. o f pseudo-ircurre.nl points contained in Ε is measurable, and 
its me fist ire is equal to m ( Ε). 

Proof. Suppose e is a measurable subset of E, with m(e)^>n. 
Then e. must intersect images of itself under powers of Τ and T_,. 
For if the sets e, e

t
, .. ., were mutally exclusive, the sum 

K ( p (P) dz 

could not be finite, since ^ =j( =j^~. , . . But in contradiction to 

this we have 

^ < P) dy~< j φ ( Ρ ) ch < β m ( Ε ). 

Now let ε,, ε2, .... he a sequence of positive numbers converging 
to zero and let H1 consist of those points of Ε which never come within 
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a distance i' from their initial positions on iteration of T. We shall 

show that w(H') = ο for even i. For suppose that the outer measure 

of FF, say, is o. Then H1 possesses a measurable subset Ή of non-

zero measure (1 ). 
Now, we can obviously choose a simply connected region σ of 

diameter smaller than z, for which m (aFI)>o. By the remark 

above, σΗ must intersect an image of itself under some power of Ύ, 

and this same power of Τ therefore carries some point of σΗ back into σ. 

This is impossible by definition of Η1. Hence m (H) = m (H1) = ο. 
it follows tliaL rri( Κ ) = m(F ), where Κ = F —( M1 -f- Jf - -p . . . ). 

Each point of Κ is clearly an ω-liinit point of its own complete 
sequence. By entirely similar reasoning we arrive with a set L 
with m(L) = m(E), each of whose points is an α-limit point of its 
own complete sequence. 

Since the sets Κ and L are both contained in F, and are in measure 
equal lom(E), they must overlap to the extent that /w(KL) = w(E). 
The points of KL are of course pseudo-recurrent, which establishes 
the theorem. 

For a conservative transformation, M is identical with S, and there-
fore the measure of the pseudo-recurrent points equals the total surface 
area of S. This is closely related to the statement of Poincaré (Π ) 
that in certain dynamical problems, there exists stability in the sense 
of Poisson, except for « motions of zero probability ». 

Τ HEOREM. — At least one point of every set of k successive points of a 
complete sequence falls in a given neighborhood V of the set M'. The 
value of k depends only on V. 

Proof. At least one point of every complete group must fall in V, 
since a complete group contains at least one central motion. Now if 
the theorem were false, there would he sequences of the form P, 
Ρt, . . ., P

N
, Ν being arbitrarily large, which have no points in V. 

Let 
P, P1, .... Pm 
Q, Q„ Q«,. 

.......... 

( See CARATHÉOLORV, Vorlesungen uber reelle Funktionen. 
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bean infinite succession oisucb sequences, with m, <C nri*<i.... Then 
clearly the complete group of any limit point of the set P, Q, . . 
must be entirely outside of V, which is impossible. 

5. The sequence iV, N3, .... — We shall now define the set VI' of 
central motions by means of a new fundamental sequence, and in so 
doing, we shall reveal certain additional properties of VP. 

We shall employ a modification of our earlier process, which 
consists in considering those non-wandering points which are x- or 
ω- limit points. If lo the set of a-and w-limit points of S, we add the 
ordinary limit points of such points, we ohlairi a closed invariant 
set ]V. This set is-of course contained in VP, altlio the two sets may 
be identical. (We shall consider later the conditions under which 
this must happen. ) 

Bv the same argument which we used for VP, it follows that the 
points of S — Ν1 tend asymptotically toward N' on indefinite iteration 
of Τ or Τ. ι ; we do. not., however, have a theorem analogous to 
Theorem I, § 2 for this case. 

Let us now take the sel V as fundamental.* An a-limit point with 
respect lo iS1 is a limit point of some sequence Ρ, Ρ ,, .. ., contained 
in iV. If to the a- and ω- limit points with respect to V, we add 
their limit points (in the ordinary sense) we obtain a closed invariant 
set Ν2 contained in Ν' ; it is easily verified that V- is contained also 
in VP. 

In the light of the preceeding section, the manner of proceedure is 
clear. We arrive eventually with a closed invariant set N', with 
which the process terminates, — i. e. such that N' '= V. 

THEOREM. :— The sels IV and VP are identical. 

Proof. Since N' consists of x- and ω-limit points with respect lo 
itself, and the ordinary limit points of such points, an arbitrarily 

small region σ which contains points of ÏV, contains at least one limit 
point of some complete sequence contained in Χ*. Hence σ V must 
intersect images of itself under powers of Τ or T_,. Thus Ν is non-

wandering with respect to itself and therefore N*< VP (§ 2). 
Next, it is clear from their definition that all pseudo-recurrent 

points belong to N'. Since N* is closed, limit points of pseudo-recurrent 
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points are also contained in Ν*. Therefore, by Theorem 2, § 2, 

Mr < N Hence M' = Nr. 
Between the ordinals r and jr, we have llie relation .*</·; it is 

probable that s may be actually less than r in certain cases. 
We shall now prove a simple lemma preliminary lo obtaining a 

further property of \!r : 

LEMMA. — If Q is a limit point of a complete sequence Σ relative 
to T, it is also a limit point of a complete sequence Σ' relative to Τ/., 
k being any integer, and Σ' being a subsequence of Σ. 

Let Σ be the sequence ..., P_
a

, P..,, Ρ, P,, . . ., and from it let us 
extract a subsequence P

x
, Py, which converges lo Q. The 

subsequences 

.... P_Y, P/, ... (/'=: O.I I - I ) 

constitute a set of k complete sequences of T/. , and each is a subsequence 
of Σ. Taken together, these sequences contain all the points of Σ, 
and hence at least one lof them contains infinitely many points of 
the sequence P

2
, P«j, ... and so lias (> for a limit point. 

Τ IIEORFJI 3. — The sels \ ', N%..., relative lo Τ are identical respectively 
with the sets V, N'J, .. ., relative to T/. Hence the set of (-entrai 
points relative lo Τ is identical to the set relative to T/, . 

Proof. If Q is an a- or co- limit point of T/;, it is of course an a- or 
ω- limit point of T. By virtue of the lemma, the converse is also 

true. Hence Ν1 = iV. Next, if Qisan a-or ω- limit point of T/. with 
respect to N', it is an a- or ω- limit point of Τ with respect lo V. 

Again, the converse of this statement follows from the lemma, and we 

have ]\"-=N2. For suppose Q to be a limit point of a complete 

sequence Σ of T, contained in V. Then by the lemma Q is also a 
limit point of a complete sequence Σ' of T/(

, where Σ' is contained in Σ 
and hence in Ν1. Thus Q is an a- or ω- limit point of T,

;
 with respect 

to N\ as stated. Proceeding in an entirely similar manner for Λ'2, 

_N% ..., the proof of our theorem is established. 
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It is questionable whether or not the theorem holds also for the sets 
Μ', \f% .... 

Before considering under what circumstances the sets M' and N' are 
identical, we shall introduce a new definition. Let abe a connected 
region contained in the open set S — Ν'. As we have seen, the points 
of σ tend asymptotically toward ft' on indefinite iteration. Now it 
may happen that their totality tends toward N' uniformly on iteration 
of T(or Τ ,). By this we mean that given arbitrary positive ε, there 
exists a positive integer Κ such that each point of each <7/(oro-k) 
k > K, is within a distance ε from the closed set ML In such a case 
we shall call σ an to- (or a-) regular region, and its points to- (or a-) 
regular points. Points of S — Ν"' which are contained in no such 
region will be called ω- (or a-) irregular. 

THEOREM. — Points o f Μ' — Ν', if any exist, are A- and to-irregular. 
Proof. Let Ρ be such a point. An arbitrarily small neighborhood 

τ of Ρ is intersected by at least one of its images under powers of T. 
Consequently η contains a point Q, an image of which, say Q^, £^>o, 
is also in σ. Lei us choose a point pair such as QQ* for eacli one of 

a sequence of regions σ1, ..., closing down on P. Let these pairs be 

(2) <>', (?k 

There can not he a finite upper bound for the sequence of positive 
integers m

t
, m.

2l
 .... For if Ν were such a bound, infinitely many 

of the integers of the sequence are equal to some integer AA/, Ο <AA/<N, 

arid from — we could extract a sequence of the form 

( )a« ( >a< ( Oa*. .. . 

But since the sequences Q% ..., and ..., both 

converge to P, it is clear that P,„ coincides with P. Thus Ρ is 
periodic, and hence belongs to V, contrary to hypothesis. 

It follows that there can be extracted from Ζ a sequence of the form 

(>"·, O"» όχ>. ... 

with ο b, < f)2<^.... Each region rf contains all the points of 

this sequence from a certain rank on and hence it is clear that no σ* 

could possibly tend uniformly toward N' on iteration toT. Hence Ρ 
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is ω- irregular. By an entirely similar argument, Ρ is shown to he 
a- irregular. This completes the proof. 

We shall have occasion later to refer to the following theorem. 

THEOREM 4. —If a connected region ρ contains' non-wandering points, 
il is intersected by infinitely r(iany of its images finder powers of Τ as 
well as T_ ,. 

Proof. Let Ρ be a non-wandering point in p. Referring to the 
proof of the preceding theorem, let Q1, Q,^, Q-, . .., he a 
sequence of the type (Σ) and converging to P. As we have shown, 
either there exists no finite upper bound for the sequence /«,, m2, .... 
or else Ρ is periodic. Either situation leads I ο the stated conclusion. 

4. Invariant integrals. — We have seen that an invariani sel Ε over 
which there can he defined an invariant integral of a certain type 
must necessarily consist of central motions. It is probably not true, 
however, that conversely, an invariant integral may always he de lined 
over an invariant subset of ΛΡ. Suppose, for example, that M' is 
identical with S. Then if σ is any connected region on S, the 
regions σ, σ,, σ2, . . ., can not be mutually exclusive. But there is no 
apparent reason whv the regions of SOUK.· infinité subsequence Σ

Χ
. 

σο, . . ., should not he mutually exclusive, — a situation which could 
not arise if Τ were conservative. Indeed, there can not he any purely 
topological condition for a metrical phenomenon such as conser-
vatism. It will be worth while, however, to examine any available 
condition which will shed light on the structure of T. 

Consider the region a. In general there will be some image of σ 

whose area is smaller than that of σ. Hence on dividing S into a* 
number of regions and choosing the proper image of each, S becomes 
compressed, in a sense, into an area smaller than its total surface area. 
We shall show that a necessary and sufficient condition that there 
exist invariant integrals of a certain type on S, or part of S, in that S 
be not compressible into an arbitrarily small area. This is an intuitive 
statement of the results of this section. 

We shall assume now that Τ is analytic, and shall begin by 

introducing of function ?(<?), c being any measurable set on S, 
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defined as follows : let e be divided into a finite number of mutually 

exclusive measurable sets 3', 

e = K di, dx di = 0 for i = i 

Then o(e) is the lower bound of the sum 

2 »*(<) 
/ 

with respect to all possible methods of subdivision of e into finite 

numbers of measurable sets, and all possible choices of the integers n
t
. 

Here we make use of the fact that the property of measurability is 

preserved under analytic transformations. 
It is clear that function ο may be identically zero, in which case, 

S is « compressible into an arbitrarily small area ». This happens, for 
example, when Τ is an analytic transformation of a sphere such that 

each circle parallel to the equator closes down on the north (or south) 

pole on indefinite iteration of Τ (or T_,). On the other hand, for a 
transformation which preserves areas, we have ο (e) = m(c). 

In any case, it follows immediately from the definition, that 

o(e) ^ mie) 

and hence o(e) is bounded, and totally continuous on S. 
The importance of ψ for our purposes is due to the following 

theorem : 

z>(e) is a completely additive function of measurable sets and is 
invariant under T. 

Proof. We first prove the invariance of o. Let e be an arbitrary 
measurable set and suppose that :p(r) < o(e, ). By a proper subdivi-
sion of e into a finite number of measurable sets, together with a 
proper choice of the corresponding integers «,· we obtain a sum 

Km (dni) 

J our η. de Math., tome VII. — Fasc. IV, 1928. 4^ 
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which approximates o(e) to any desired degree of closeness. In 
particular, we may assume by virtue of the assumption o(^)<C ?(*ι ) 
that 

2#η(β;,.) < ®(*i )· 

Now2m(o', is an approximating sum for z>(e
t
 ). Since its value 

i 

is Vw(oj,.), the inequality above contradicts the fact that çp(e,) is the 

lower bound of its approximating sums. Hence 9(e) can not be 
smaller than By interchanging e and /?,, the same argument 
shows that o(<?) can not be greater than 9(^1). Hence 9(c) = z>(e, ). 

Next we w ish to prove that if e and f are measurable sets without 
common points, 

pi -+-/) = ?(<?) +?(/)· 

Let us choose approximating sums 

Sm( £/«({%.), 2/w(;/*.) 

for e, /, and e-\-f respectively. Regardless of how the first two 
sums are chosen, we can always choose the third such that 

K m tiri) < K m (aiai) + Km (pbi)* 

hence it follows that 
ο (e+/)i<p(e) + 9(/). 

Now suppose that 

p (er-»-/)< 9(e)-«-?(/) 

Assuming, as we may, that Zm (γ' .) approximates 9(e /) sufficiently 
closely, it follows that 

(») lm(yi
:
.)<o (e)+ <?(/). 

New approximating sums for 9(c) and 9(/) are furnished by 

lm(e ■/[..) and hn(fy'
Ci

)', 
and since 

y = e/4-//, 
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it follows that 

( 2 ) 1 ni( ·/.. ) — 2m ( σγί. ) + 2 m ( f y',·
l
 ). 

Moreover, ©(e) and ç>(/) being lower bounds of their respective 

approximating sums, we have 

lm{e >/[.. ) I ο ( e ), Itn {/γίΊ )><?(/). 

Combining these relations with (i), we obtain 

1 ni(eγ'
ιΊ

) -h 2,m( ) >Σ/η(*/[■.) 

which contradicts the equality (2 ). Hence 

©(<?+/; = z(e) -4- of/). 

We now seek to deline the circumstances under which the following 
situation will arise : 

Ε is an invariant measurable set of non-zero measure; F(P) is a 
non-negative measurable function defined over Ε and possesses a finite 
upper bound M on E. Moreover F(P) may vanish at most on a set 
of measure zero. 

Finally the integral 

J F(P)da (e < E) 

is invariant under T. (It vanishes only when m\e) = o, by the last 
assumption 00 F). 

.4 necessary and sufficient condition for the existence of a set Ε and 

an associated integral J F( Ρ ) da is that 9 ( S) o. 

We first assume the existence of Ε and JF(P)cfo and prove 

thato(S)>o. 

By the assumptions on Ε and F(P), it follows that^F(P)<fa> o. 

If, now, ®(S) =0, it will follow that j*F(P)d<j = ο which is a contra-

diction. To show this, let Xm(o'
n
.) be an approximating sum for 9(E). 

The assumption ®(S) = o implies that ®(E) = o and that Σ/η(ο^.)<ε. 
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Then 

K F(P)^MY ^<)<ει\ί. 

Now since 

/=Σ/=Σ/' 

(the integral being invariant) it follows that / is smaller than ε M and 

is therefore equal to zero, wich is the desired contradiction. 
That the condition is sufficient follows from the theorem (see 

Carathéodory, loc. cit.) that a bounded totally continuous additive 
function of measurable sets is expressible as the indefinite integral of 
any of its « derivatives ». The function ο is of this type arid we may 
therefore write 

Ο ( e ) ̂  Γ D ( Ρ ) c/σ. 

A derivative is defined as follows : To each point Ρ is associa-
led a sequence of neighborhoods λ'

Γ
, of suitable type closing down 

on Ρ and so chosen that as i ac, 

©(/{> ) 

©(/{> ) 

sliall converge to a unique limit. Different derivatives may result 
from different choices of the regions λ[,. All derivatives are sum-
mable functions, however, and any two of them differ at most on a 
set of measure zero. 

In view of the inequality 9(Xp )<m(Xp) it follows that every deri-
vative of <ρ has the upper bound ι. 

The set G of points for which D(P)>o is measurable and its 
measure is greater than zero, since 

f Ώ(Ρ)άσζ= ( D(P ) do φ(S) > ο. 

Moreover, / D(P)>o for ever k, on account of the invariance 

of <p(tf). Hence on G*, D(P) can vanish only over a set of measure 
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zero. Therefore, ori the invariant sel Ε = G + G, G_, D(P) 
vanishes at most on a set of measure zero. The set Ε and the func-
tion D(P) taken over E, are precisely the set and associated function 
demanded by the theorem, and I he sufficiency of the condition is thus 
established. 

Let ο he an arbitrary measurable set of non-zero measure on S. 

Λ sufficient condition for the existence of an invariant integral 
defined over the whole of S is that 

(A) "l ^ ) >l> ο (/,· = ± ι, ± .) 

where ξ is independent of ο and k. 

This is a corollary of preceeding theorem. In fact, an easy conse-
quence of the condition (A) is that q(e) vanishes only when m(e) = o. 

We shall now add a few remarks concerning linear dependence. 
Let us suppose that Τ admits one or more invariant integrals of the 
type J^F(1 where, to simplify the discussion, the measurable 

function F(P) is assumed to be defined over the whole of S and is 
non-negative tliruout, vanishing at most on a set of measure zero. 
Moreover F(P ) will possess a finite upper bound on S. All invariant 
integrals in this discussion will be of the same type. 

The invariant integrals Jf1 (P) dG, ····> JF"(P) r/α are linearly 
dependent if there exist constants A1, . . ., not all zero, such that 
the function 

A1 F1 -t- Λ" F" 

vanishes « almost everywhere » on S. if no such constants exist, the 
integrals are linearly independent. We shall see how the structure 
of Τ is influenced by the existence of several linearly independent 
integrals. 

A transformation will be called metrically transitive if there exists 
no measurable invariant sel Ε such that o<m(E)<m(S). A 
transformation of this type is also transitive in the ordinary sense; 
that is, for any two mutually exclusive connected regions α and β, 
some power of Τ can be chosen which will carry points of α into points 
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of β. If for some α and β this were not the case, then Ε being the 
invariant set 

9. -\~ GC, -+- a_, -+- . . . , 

we would have ο <m(E)<ra(S — β) < ra(S). 

A necessary and sufficiv.nl condition that no two invariant integrals 
on S be linearly independent is that Τ be metrically transitive. 

The condition is necessary. For suppose that every invariant 

integral depends linearly on the integral J F(P)r/a. Now if there 

existed an invariant set Ε with ο < < w(S), the invariant 

integral J G(P )r/a, where 
G ( Ρ ) = F ( Ρ ) on Ε 

= aF(P) on S-E 

is linearly independent of j F(P)r/a, which is impossible. 

To prove that the condition is sufficient we shall show that if the 
invariant integrals 

l(e)= J F(P)cla and ,l(e)= j G(P)rAr 

are linearly independent, Τ can not be metrically transitive. 
Consider the derivatives 

P(P) = lim-L<^> G'(P) = li,„i^., 

where, as previously, denotes a sequence of neighborhoods of 
suitable type closing down on P. For every P, the sequence Ap is 
assumed to be so chosen that the limits written above, as well as 

ι>«/Μ[Τ(λ{»)] /η[Ί (λρ)] 

shall exist. 
The functions F' and G' are equal almost everywhere to F and G 

respectively. Hence the measurable function Ψ'(Ρ), where 

U' (P) = G ( I ) ι ·>. » J ( λρ ) 
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is well defined and finite on S, except at most on a set of measure 
zero, for the points of which we shall arbitrarily assign the value zero. 

We shall show that lF'(P) is « almost invariant », — i. e. that 

U' (P) = U' (P) 

except possibly for a set of points Ρ of measure zero. For, the deri-
vatives 

F"( P, ) = lini G"( Ρ ) = Iim 

are equal almost every where to F'(P, ) and G'(P, ) respectively. Hence 
the function 

1 ~Jl Τ(λ,'.)1* 

is equal to ̂ (P, ) almost everywhere. But since 

Π ^('ιί· ) ] — ι (^ίΟΐ ·ΐ |Τ('·ί·)1 — ί (^ί·)' 

it follows that Ψ'(Ρ) = Ψ"(Ρ,) for all points P, which proves our 
assertion. 

Let us denote by (β, ΰ), (o<a<b), the set of points for which 
α<Ψ'(Ρ)</κ By the preceeding paragraph, each image of (r/, b) 
under powers of Τ or T_, is of same measure as (//, b). For, the 
[joints Ρ for which lF'(P, ) φ Ψ'(Ρ) are at most of measure zero. 
From this it follows that for every set (a, 6) there exists an invariant 
set of same measure, namely the set 

(a, b) -+- 1 (<7, b) -1- 1 _i (ci, b)-+-.... 

Now since Ψ'(Ρ) is non-negative and finite ihruout, we have 

/«(S)^»i(ο, ι) m(ι, 2) ... 

Hence there exists a positive number Β such that o<^m (ο, B). But 
for no finite number C can we have m(C, C) — m(S). For then we 
would have F'(P) = CG'(P) and hence F(P) = CG(P) almost 
everywhere, which contradicts the assumption of linear independence 
of I and J. It follows that there exists a positive number D such 
thai ο </»(o, D)<^m(S). Since there exists a measurable invariant 
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set of measure equal to m(o, D), Τ can not be metrically transitive. 
This completes the proof. 

Do there actually exist transformations which are metrically 
transitive? A simple example is the transformation of a torus given 
in terms of angular coordination by 

Τ : φ, — φ H- h, Θ, — Θ -Η /»'. 

The constants h and k are incommensurable with 2 χ and with each 

other. Τ moreover admits the invariant integralj*J*d<ç>d@ which is 

reducible to an integral of the type considered. The proof that Τ 
has the properly in question oilers no difficulty. 

«5. Regular regions. — He turning to the definition of ω- regular 
points (§ 5), we see that if any exist, their totality constitutes a set 
of inner points, and falls therefore into a set of maximal connected 
regions or components. Each point on the boundary of a component 
either belongs to N' or is ω-irregular. It follows also from the defini-
tion that the transform of an co-irregular point is again ω-irregular. 
This holds also for points of N1, and hence the transform of a com-
ponent is again a component. Moreover, a component G is cither 
wandering or else periodic or invariant, for if G intersects C/(, then C 
and Cι- must be identical. 

Theorem. — A component of co- {or a-) regular points is either sim-
ply or doubly connected. 

in carrying out the proof, we shall take S to be of genus zero, altho 
the theorem holds for any genus (' ). 

Let C be a component of ω- regular points (essentially the same 
argument will hold for an a- regular component) and γ its boundary. 
There is on S at least one invariant point Ο (2), and we shall consider 
it as the « point at 00. » We can then distinguish between the interior 
and exterior of a simple closed curve drawn on S and not passing 

(!) A proof of this will appear elsewhere. 
(l) First proved by Brouwer (I). 
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thru Ο, — in particular, of any simple closed curve contained in C 
or any image of C. 

We shall consider separately the two cases, (I) G is wandering, 
and (II) G is periodic or invariant. 

I. We shall show in this case that there can not he drawn in C a 
simple closed curve enclosing points of γ, from which it will follow 
that C is simply connected. 

Let α he a simple closed curve in C, and A the region interior to a. 
Let k he the smallest non-negative integer, if any exists, for which A

k 

intersects A. Since a lies in a wandering region, no two of ils 
images can intersect, and hence A is expanding or contracting 
under T

/(
; we shall assume the former, the argument being quite 

similar for both cases. Thus A
h contains A, but has no points in 

common with A ,, A
2

, . .., A,.._,. The limit region 

I) Α Η— Λ/·-(- A2/,·-+- · . · 

is simply connected and invariant under T
/t

. It is clear moreover 
that the k regions 

D;— A/-+- A;
l+

/-t- Α»/· ι-/ —4—. - - (/ — ο, ι, .. ,, /ι — ι ) 

are each of same type as D, and are mutually exclusive. 
Now consider in D the ring r = (αα/{), i. e. the region bounded by 

α and α
Λ
. The images /·,, ..., are contained respectively 

in D,, D
2

, .. ., while r,.· is adjacent to r, to ;*
2

, . .., etc. 
Clearly ris wandering, and hence contains no points of Ν1. Moreover, 
the points of r arc co-regular. For since the area of r

n
 converges to 

zero with ιj n, the points of r
n
 tend asymptotically and uniformly 

toward a
lt
, which in turn, since α is in C, tends uniformly toward N'. 

It follows that r contains no points of γ, nor of any image of γ. 
Hence r lies in C, because α does, and also in Ck because α/,. does. But 
this is impossible since Cfc

 can not intersect C. We conclude there-
fore, that no integer k with the stated property exists, and A must 
accordingly be wandering. But then the area of A„ converges to 
zero with 1/η and hence A tends uniformly to N', since its boundary 
does. Therefore A contains no oj-irregular points and henceno points 

Journ. de Math., tone VII. — Fasc. IV, 1928. 47 
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of γ. Since α is au arbitrary closed curve in C, it follows that 
C is simply connected. 

II. We shall assume for simplicity that C is invariant, — the 
argument for the periodic case being essentially the same. 

Let us suppose that there can be drawn two non-intersecting simple 
closed curves α and β whose interior regions A and Β both contain 
points of γ, but have no points in common. We shall show that this 
situation is impossible, thus proving that C is at most doubly 
connected. 

The closed set «„ tends uniformly toward N1 as η increases indefi-
nitely. Hence for a sufficiently large positive integer a

u
 fails to 

intersect α when n>k. Then by theorem ^, § 3, A contains no non-
wandering points and hence no points of N1. Moreover, no two 
regions of the sequence. 

(2) Α, Λ,. A2/., ... 

can intersect. Hence by the same argument used above, the regions 
Aju tend uniformly toward N1 as / increases without limit. This 
situation holds for each one of the sequences 

Λ/, A.t+h Atf+i, ... (/ = 0,1 /· — 1 ) 

since each is of same type as Σ. The totality of these sequences 
includes all the regions A, A<, Aa, ... which makes it clear that 
A consists of ω-regular points. Since, as we have shown, A contains 
no points of N', it follows that A contains no points of γ, contrary to 
the choice of A. Thus the assumption that A

/t
(n>/·) fails to inter-

sects a, it follows that A is contracting or expanding under some T,„, 
m^k, and hence contains a point Ό invariant under T

m
(Brouwer, I). 

By precisely the same reasoning, there is a point Y in B, invariant 
under T

m/
, τη'>k. 

Let us join α and β by a simple arc τ in C. By tracing a contour 
about the set α+β + τ and sufficiently close thereto, we obtain a 
simple closed curve 0 in C, whose interior region D contains no points 
of γ other than those in A and B. The set D — (A Β -f- α -f- β) 
consists entirely of ω-regular points. 

We may of course apply the same reasoning as above to D. Hence 
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if s is a sufficiently large multiple of mm', the transformation T,leaves 
invariant the points U and V and admits D as an expanding or 
contracting region. 

Consider now the ring r bounded by ο and T,(o). The rings T/r) 
and T_v(;·) are adjacent to r, one within and one without. The limit 
region R consisting of r together with all its images (boundaries 
included) under positive and negative powers of T,, is a doubly 
connected region, invariant under Τ

Λ
. Let I and Ε be its inner and 

outer boundaries. 
We now examine separately the two possibilities as to D. 

(a) I) is expanding under T,. In this case t contains no ω-regular 
points. For any neighborhood ρ of a point Ρ on I contains points in 
the limit ring R, and these points are carried by iteration of T

5 

toward E, whereas all images of Ρ remain on I. Hence from a cer-
tain rank on, each member of the sequence 

0, p,, pov. . . . 

must intersect c, which is at a non-zero distance from Ν1. This makes 
it clear that Ρ can not be ω-regular under T

v
; nor then, under T. 

Now 1 is contained in D. But since 1 contains rio ω-regular points 
iL can not intersect the set D — (A-f β + α + β). Hence 1 is con-
tained in A -j- Β and is at a non-zero distance from α-f- β. But this 
is impossible since every approximating curve Τ/y,(o)(/>= 1,2, .. .) 
encloses the points (J and V, and therefore contains points not in A 
or B. This contradiction excludes the possibility that D be expan-
ding under T,. 

(b) 1) is contracting under Τ,. Whatever points of IN1 there may be 
in D lie in A-f- B. Hence the curve 0, which tends toward N' uni-
formly on iteration of T

v
 must eventually be contained in A or B. 

But this is impossible, since each image of δ encloses the points U and V. 
The contradiction in this final possibility shows that there can not 

exist curves α and β with the stated properties, which completes the 
proof. 

On a surface of genus zero, a regular component of wandering type 
is simply connected, as follows from the proof of the theorem. It 
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can be shown that this result holds for all surfaces of genus different 
from 1. For a torus, however, as we shall show later by an example, 
the regular components of wandering type may be doubly 
connected. 

In a regular component C there are no invariant or periodic points. 
Hence if C is of invariant simply connected type, it follows from a 
theorem of Brower (Hi) that within C, Τ is topologically equivalent 
to a translation. 

if C is invariant and doubly connected, its boundary consist of two 
continua, at least if S is of genus zero. Moreover, from the proof of 
the preceding theorem, each point of C tends asymptotically towards 
one and the same of these continua, on indefinite iteration of Τ or Τ , 
according as C is ω-or α-regular. 

Let W be the set of all ω-irregular points arid A the set of all α-irre-
gular points. 

Theorem 5. — On a surface ο J genus zero, each point of W ( or A ) 

is connected to N' thru W (or A). 

For otherwise it would be possible to draw a simple closed curve ρ 
enclosing points of W (A) buL not of Ν1. Thus c must lie entirely in 
some ω-(α-) regular component C. Since boundary points of C are 
enclosed by c, C must be doubly connected and therefore of periodic 
type. Hence the inner boundary of C, being a closed periodic set, 
must contain points of IV, which is impossible. This establishes the 
theorem. 

We shall now consider some simple examples displaying various 
types of regular components. 

The first is a transformation of a sphere illustrated schematically 
in fig. 2. Here we have taken the plane with a single point at oc for 
our representation of S. The points Β and oc are the only invariant 
points, and the set IV contains only these points. The motion of the 
remaining points is indicated by the arrows. Clearly the points on 
the arc BAoc (excepting Β and 00) are ω- irregular while all others 
are ω- regular. Similarly the points on BCoo are a- irregular and all 
others are α-regular. (We see here that irregular points need not be 
both oc- and <0- irregular.) Hence the region whose boundary consists 
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of Β Ax ( I3Coc) is ari co- (a-) component of simply connected invariant 
type. Finally, the example shows how each irregular point is 
connected to N' thru a continuum of irregular points of same type 
(theorem 5). 

Let us next consider an example in which the regular components 
are of wandering type. It is easily shown (See Poincaré, I) that if a 
sense-preserving transformation of a circle C into itself admits no 
invariant or periodic points, it must he of one of two types. In the 
first type, IV coincides with C, while in the second, N1 is a perfect 
nowhere dense set on C. Let t be a transformation of the second 
type. The set C — lV consists of a denumerable infinity of wander-

Fig. a. 

ing open arcs; suppose one of these is o. Since the end-points of ο 
and of each image of ο are in IN', and since the length of o,

;
 converges 

to zero with ι f /·, it follows that S is an a- and ω- regular « component » 
of wandering type. 

Suppose now that S is a sphere, and that C is a great circle, under-
going the transformation t. We may extend t to the whole of S by 
letting each circle parallel to C undergo the corresponding congruent 
transformation. It is clear that corresponding to the wandering arcs 
of C, we now have wandering simply connect regions, and they are 
a-and ω-regular components of S. 

Suppose finally that S is a torus with angular coordinates θ and φ. 
By letting the circles o = const, undergo congruent transformations 
of the same type as t, we obtain a transformation of S in which the 
regular components are wandering rings hounded by circles of the 
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family θ = const. As wc have already pointed out, regular compo-
nents of this type can only cxisL on surfaces of genus i. 

6. The general analytic case. — Transformations of the general 
analytic case.(§ 1) are free from certain structural complexities and 
therefore seem best suited for study, in an attempt at systematic 
structure analysis. In this paper, we can only make a beginning, 
and must moreover, limit ourselves to the simplest case, — that in 
which the central motions are finite in number. 

Theorem 0. — J η the general analytic case, there must exist at least 
two central motions. 

Proof. There exists in any case at least one central motion \1. 
We shall show that in the general analytic case there must exist 
further central motions. 

If the complete sequence M is not pseudo-recurrent, then there are 
further central motions by theorem 2, § 2. Hence we may suppose M 
to be pseudo-recurrent. If M contains infinitely many points, its 
complete group would be a perfect set and would therefore contain 
central motions other than M, since M is at most denumerable. Hence 
we may suppose M to consist of a single periodic group. For simpli-
city let us suppose that M contains but a single point. There is no 
difficulty in extending the remainder of our argument to the more 
general situation. 

if the invariant point M is of stable type, it is contained in a small 
expanding or contracting region σ. Hence the closed sel S — η is 
transformed into part of itself by Τ or T_,, and therefore contains a 
closed invariant su bset which must contain further central moLÎons(§2). 
Thus we may suppose M to be of unstable type. More explicitly, 
we may suppose M to be of directly unstable type, for if inversely 
unstable, we may replace Τ by T2 in the remainder of the argument, 
making use of theorem 3, § 5. 

We shall show that there exist central points other than the 
directly unstable point M. Consider the sequence Ν', Ν2, .. ., N'=M 
(§ 5 ) and suppose for the moment that s > ι. We may assume that 
each Nl (i<^s) has the property that from it there can be extracted 
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an infinite sequence of points converging to M. For if this were not 
true for N', say, Ν'— M would he a closed (or finite) invariant set 
and would contain central motions other than M. LeL p*,p2, >·.■> 
be a sequence of this type extracted from N'. 

Near M choose four points Λ, Β, C, D on the four invariant branches 
respectively abutting al M. Let Ε be the closed set consisting of the 
four arcs AAU BB,, .. of the four invariant brandies. We assert 
that Ε intersects each N', i^> s. For suppose a point Q is very close 
to M. if Q is on one of the invariant branches, some image of Q will 
certainly fall on E. In the contrary case, Q will move along close to 
an α- (ω-) branch on repealed iteration of T„, (T), (see § 1). 
Hence some image of Q will fall verv close to E. From this it follows 
that out of the set Ρ1, Ρ2, . .and its images, we can extract an 
infinite sequence of the form. 

η. .... 

converging to a point L on E. The sequence is contained in N', and 
hence so is L, since N* is closed. This proves our assertion for N1, 
and the same reasoning applies for each N'(i <V). 

Suppose that the sequence 1,2, ..., ω, ..., of ordinals less than s 
possesses no last element. Their N* consists of those points which are 
common to all the sets jV , N2,. .., N', . .., (i < s). But FN* >EN2^..., 

and hence there is a closed set of points common to the closed 
sets EV(I<F). This set is of course EN* and hence N* contains 
points other than M; that is, there are central motions other than M. 

There remains only the case in which the sequence of ordinals less 
than s possesses a last element a — 1. If Q is a point of N* (or a point 
of S different from M, in case v=i) the sequence Q, Q

t
, ..., 

and Q, Q_,, . .., both converge to M. If we recall (§ I) that points 
in a small neighborhood σ of M and not lying on any invariant branch 
of M are carried out of σ on repeated iteration of Τ or T_,, it becomes 
clear that Q is doubly asymptotic to M in the sense of § i, and is in 
fact a homoclinic point. Hence by the theorem of § 1, there exist 
central motions other than M. This completes the proof. 

Let us suppose that S is a sphere, and examine the structure of T. 
in the case when there are exactly two central motions. 
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To every invariant point of S there is associated a number icalled its 
index, and in the general analytic case i may only take the value 4-1 
or — t. More explicitly, the directly unstable points arc of index — 1 
and all others of index 4-1. On a sphere, the sum of the indices of the 
invariant points (') is always 2. (With regard to the statements 
above, see Birkhoff', II). Hence, in the general analytic case 
there are at least two invariant points. But in the case under 
consideration there are exactly two, say Ρ and Q, since each is a 
central motion. There arc no further periodic points of any order. 
The index of each point, is 1; hence each is of stable or inversely 
unstable type. If one or both were of the latter type, the sum of the 
indices of the invariant points of T2

 would be < 1 which is impossible; 
hence both are of stable type. 

About Ρ may be drawn a small circle enclosing a region expanding 
under Τ or T_,, — suppose under T. The boundary Σ of the simply 
connected limit region 

Of Ο ) -+- cr2 -+*.... 

must contain Q, for otherwise, being a closed invariant set, it would 
contain central motions other than Ρ and Q. 

If Σ contains points other than Q, let ç. be a small expanding (or 
contracting) region containing Q. The closed set Σ — Σρ is carried 
into a part of itself by Τ (or Τ , ) and therefore contains central 
motions other than Ρ and Q, which is impossible. Hence Σ— Q. 

Thus S is divided by a system of concentric analytic closed curves into 
a system of adjacent rings r. /*,, /-

2
, .... The rings /·, 

7-,, .. and r, r.i, ..., close down respectively on the two invariant 
points, and each r

n
 is earned by Τ into the adjacent ring . 

In the general analytic case in which the central motions are finite 
in number, it is probable that a complete structure analysis can be 
effected, as we shall now indicate. 

Let us again take S be a sphere and assume that the number of 
central motions is finite and greater than 2. From the proof of 

(1 ) Assuming them to be linile in number, which they are in the general analytic 
case. 
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theorem 6, it is clear that the central points are finite in number, each 
central motion being either an invariant point or a periodic point 
group. Let k be the least common multiple of the orders of the 
various periodic groups. The central points are invariant under T/,. 

Suppose that of these invariant points, ρ are stable, m directly 
unstable and η inversely unstable, and let ρ', m', η! represent the 
corresponding numbers relative to T

2/f
. Then referring to the discus-

sion above relative to indices, 

ρ — m -+· « — ρ'— m' -\- η'~ a. 

Moreover (§1) /> = />' and m<m'. Hence n<n'. But under T2ft 

there are no points of inversely unstable type; hence n — ri'=o, and 
from this we have/>>2. Let the totality of stable points be Q1, ..., 
Q", (p > 2) 

Containing each Q', there is η small region j expanding under TA. 
or T_/

f
. Each Q' is therefore contained in a simply connected limit 

region A', 
r\l = 5+ \ζ/,(σ) ■+■ ' 85* ( σ) -h ... 

where ? is -h ι or —* 1 according as a is expanding under T/f or T_/;. 
Each A' is invariant under T/,. 

Let the boundary of A' be denoted by α'if — 1,2, ..., ρ). It is 
clear that if σ1, say, consists of only one point, that point together 
with Q are the only central motions of T/( and hence of Τ (theorem 3, 
§ 5), whereas we are assuming that the number of central motions is 
greater than 2. Hence each a' is a closed periodic continuum and 
hence contains central points. 

Each a' contains at least one periodic point of directly unstable type. 

Proof. Consider a1, and suppose σ' is expanding under ΤΛ. Let 
us suppose moreover that a1 contains no points of directly unstable 
type. Then the central points which do lie on a' are of stable 
type. Suppose one of them to be Q2. Then a2 must be contracting 
under T

/;
. For if a2 were expanding, the points of σ2 would tend 

toward Q2 on repeated iteration of T__
/;
 ; but rr contains points of A', 

and those points must tend toward Q' on repeated iteration of T_;., 
wich would be impossible. 

fourn. de Math., tome VII. — Fasc. IV, 1928. 4^ 
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Since then, σ2 is contracting under Tfr and therefore expanding 
under Τ_Λ, the closed set α1 — a1 σ2 is transformed by T_/( into a part 
of itself; hence it contains a closed subset invariant under T/f and 
therefore contains points of stable type other than Q' and Q2. Suppose 
that one of these is Q3. Then the same argument used for σ2, shows 
that σ3 is contracting under TA. Hence a* — α1 σ5 — α1 σ3 contains a 
further stable points, say Q*. Continuing thus, the set of stable 
points is eventually exhausted. When this stage is readied, one 
more application of process must yield a point of direclly unstable 
type on a'. This completes the proof. 

S uppose that the order of the region A ' ism. Then the regions A*,..., 
A'«~» are 0f game type as A1 and together with A' form a periodic set 
of mutually exclusive regions. Similarly, each A' belongs to a 
periodic set of this sort. Two of these sets, however, may overlap. 

One method of proceedure would he to study the properties of a 
maximal set M of periodic sets, all the regions of which are mutually 
exclusive. Within M, the structure of Τ is known. On the boun-
dary of M are a number of direclly unstable periodic points, and it 
can be shown that certain of the α — arid ω — hranclies of eacli of 
these points must also be contained in M. Finally, the remainder 
of S falls into a set of connected regions of periodic or wandering 
type, and these in turn, break up into regular components of various 
types. It is hoped that a complete analysis of this case, as well as 
more complex cases will soon he accomplished. 

References. 

Birkhoff. — 1. Quelques théorèmes sur le mouvement des systèmes dynamiques 
(Bulletin de la Société mathématique de France, vol. 40, 1912.). 

II. Dynamical systems with two degrees of freedom ( Transactions of the 
American Mathematical Society, vol. 18, 1917). 

III. Surface transformations, and their dynamical applications (Acta mathe-
matica, vol. 43, 1920). 

IV. Ueber gewisse Zentralbewegungen dynaniischer Système (Göttinger 
Nachrichten, 1926). 

V. On the periodic motions of dynamical systems (Acta mathematica, 
vol. 50, 1927). 



STRUCTURE ANALYSIS OF SURFACE TRANSFORMATIONS. 379 

BROUWER. — I. Continuous one-one transformations of surfaces in themselves 
( Proceedings of the Section of Sciences, Koninklijke Academie van Wetens-
chappen te Amsterdam, vol. 11-15, 1908-1912). 

II. Beweis des ebenen Translationssatzes (Mathematische Annalen, Bd 72, 
1912)· 

LATTÉS. — Sur les équations fonctionnelles qui définissent une courbe ou une 
surface invariante par une transformation (Annali di Matematica, 3e série, 
vol. 13, 1907). 

Poincaré — I. Sur les courbes définies par les équations différentielles (Journal 
de Mathématiques, 3e série, vol. 7-8, 1881-1882, et 4e série, vol. 1-2, 1885-1886). 

II. Méthodes nouvelles de la Mécanique céleste, vol. 3. 


