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JOURNAL 
DE 

MATHÉMAT101ES 
Pt]llES ET APPLIQUÉES. 

Diffo rential Properties of Fonctions of a Complex Variable 
which are invariant under Linear Transformations ; 

BY E.-J. WILCZYNSKI. 

PART II ('). 

VI. — Gogredients. 
The expression 

P — —* 

which whe have found for the pole of the osculating linear function, 
was derived under the assumption that the point of contact was ζ = ο. 
But it is easy to derive a more general formula. Let w = /(ζ) be a 
function of ζ analytic in the neighborhood of ζ = s, and let its expan-
sion at this point be 

ClQ-h (£— z) Λ·> ( ζ — C . 

(') La première Parlie a paru dans ce journal, en Tome I de la neuvième 
série, 1922. 
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If we denote again by ρ the pole of the oscillating linear function 
of w = /(ζ), the point of contact being ζ — τ, we lind 

ρ — Z- — 
so that 
(107) OI iv' 

p = z + a2 = 3 + 2 / w 

is the general expression for the pole of the linear function which 
osculates the function ιν = ^'(ζ) at the point ζ = in this formula 
a,, a

2
 are the coeflicients of ζ — 3 and (ζ—in the expansion 

of /(ζ) in powers of ζ — τ, and w' ami w" are the values of /'(ζ) 
and /"(ζ) for ζ = ζ. 

If we subject the function w =^(ζ) to any transformation of the 
group 

— - aC -f- 3 
X + g 

where α, β, γ, δ are constants, the point of contact 5 and the polo ρ ot 
the corresponding osculating linear function of η ==/(ζ) will be 
transformed into anew point - and the pole ρ of the osculating linear 
function of the function tv = /(ζ). Moreover, it may be verified that 

- xp 4- 3 
y ρ + ο 

We express this by saying that ρ is a cogredienl of ^ with respect 
to the function w = /(ζ), and evidently Ave have obtained in Articles \ 
and 5 a number of other cogredients. 

The general expressions of these cogredients may be obtained as 
follows. 

Let 
7 — /(*<>. »i« *i> · · 0 

be the expression for any cogredicnt when the origin ζ = ο is the 
point of contact, the quantities a

0
, a

n
 a.,, ... being the coefficients of 

the expansion of w — /(ζ) at ζ = ο. Then 

C — « —t— jT( , «1, #4, . . . ) 

will be the expression of the corresponding cogredient when the 
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point ζ = 3 is the point of contact, the quantities a
0

, α
η
 a

a
, ... 

being the coeflicients of the expansion w = / (ζ) in a series of powers 
of ζ-5. 

VU. — Interpretation of the integral invariant ©. 

Let us apply the remark just made to formulae (io3). We find the 
following formulae for I he singular points a and />, of the osculating 
logarithm of =/(ζ), the point of contact being ζ = ζ : 

(ιο8) ,7=1 = — v/a ί «·. - h —, = 7· + ί «Ν « ! > 

whence 

(,09) Vw, z = 1/ V2 (1 / b- z) 

We may therefore write 

(l IO) , - ( v'; «·.
s

 ι^ jf (τ- jèn)
d

=-

We may express this as follows. 

Given, an analytic, function w = /(ζ). Let us select a curve C of 
finite length in the ζ plane, at all of whose points /(ζ) is analytic 
andf'(t) different from zero. Let a and b be the singular points 
of the logarithmic function which osculates /(ζ) at ζ = <3. Then the 
value of the integral 

? — -7= / ( 7— —) dz 

extended over the curve Ç, will remain unchanged if all of the 
points of the ζ plane are subjected to the same linear transfor-
mation. 

If we represent the variables a, />, 3 by the points Α, Β, Ζ of 
the ζ plane, we may write 

(III) 9_
v^i(ZB ZA)rf' 

in terms of the vectors ZA and ZB. 
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We may also express the integral φ in terms of the poles, pi and p2, 
of the singular penosculating quadratics. In fact, by the method 
of Art. 6, we find the generalized expressions 

p1 - z = a2 + Va22 - a - a3, p2-z = a3 
« s a* 

whence 
1 1 2V a2 - a-a3 = 2i 

Pi 3 P\ ~· ai ^/G " 

so that we find the expression 

(na) 0 =
 £ f(_J !_W 

for the integral invariant φ, which is quite analogous to (ι io). 
Both of these formulae for φ may be used to advantage. But they 

cannot be regarded as altogether satisfactory as interpretations of the 
integral φ from our point of view. For, although tbe points z,a,b,p

n
 p.> 

which occur in these integrals are defined invariantly, they occur in 
combinations such as a — ζ which are not invariant under linear 
transformations of the independent variable. 

We now proceed to obtain a new expression for φ w hich is free 
from this objection. Let us divide the curve C. of finite length L, 
into η pieces, by means of points 

3u> 3,, · · · ι 3^_,, .... Z
n
 — L, 

where and L denote the end points, as is customary when defining 
a line integral. We shall put 

^A-H — 

and assume that all of the quantities Szk approach zero, uniformly, 
as infinitesimals of the first order, when η grows beyond bound, 
and that 

lung I ***!={.. 

Let ak and bk be the singular points of the logarithmic function which 
osculates /(ζ) at ζ = zk. We proceed to calculate the double-ratio 
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of ak, bit, —->A-M · find 

\βΑ·ι "Α·> *Ά·1 "A-hI ) — ~ J~ · _ J — _ / 1 Λ-

I H y-

- ^ *z
k
 ' 

zk — " A' 

and this differs from 

J 4- Γ— —-—1 oz
k 

only by an infinitesimal of order higher than the first. Let us put 

(ii3) ; »r, s (. 

Then we may write, making use of (109), 

(»»4) (θ/φ bk, Of ) Zf-i. 1 ) — 1 ^/2 ff ( zk ) àz/c -J- Sk δ-λ·« 

where 

(ii5) lim Sk=:o. 
H —V go 

Thus we have 

(aO, bO, zO , z1) = 1 - V2g(zo) dzo + 

(α,, s„ z
t

) =1 —\Zaff(5,)âc, 4-c,ôc,, 

(116) (α
2

, b«, z.
2

, z
3

) = 1 — y/aer(sa) β^;
3 4-ε8053, 

* 
(an - 1bfi—1

5 ~>/i— 1 > 0"(-« _|) àz
fl

—ι 4- j àz
n

_.j. 

Now there exists a unique linear transformation which converts any 
three distinct points into any three others. Denote by T, the linear 
transformation which converts 

«1, b
x
, Si into a

c>
 6

0
, -, 

respectively. Since T, does not alter double ratios, we may write in 
place of the second equation of (116) 

0'7) (a()i boy -11 -2 ) I \J'1G (-, ) <3s, -+- ε, β·3 1, 
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where s'
t
 is the point which corresponds lo s2

 in the transforma-
tion T<. 

But if A, B, C, D, Ε are five elements, whe have the fundamental 
double-ratio equation 

(118) (A, B, C, D) (A, B, D, Ε) = (A, B, C, E). 

Consequently we deduce, from (117) and the first equation of 
system (116), 

("9) ( Λ 0, 6o, 50> £S ) — V^aff(-o) ί-o] f1 ~^"£0 +■ ε, <5^15 

where 
lim ε'0 = lim ε', — ο. 

η —>- «ο η —ν » 

Let To be the linear transformation which transforms 

a2 b2,ν ̂  into α0> j 

respectively, and let z't be the point which corresponds, by means 
of T

2
 to s3. Then we find, from ( 116) · 

(tf0, b0) 33 ) = I — ) Ô53+ ε2 03«. 

If we multiply both members of this equation by the corresponding 
members of (119), and make use of (118), we find 

(ct
0

, 0«, Co: «'»)= [i-Vaff(5o)d5o.l [>—\Z2crt5i)ô-i] [i — V/a*(-s)d-â] 
+ e;^o+£'i^1+s

,;ôc2, 
lit» ε"0 — lim ε", — lim ε'1 — ο. 

η —y «ο η —ν «β η —> » 

In general, let Τ,· be the linear transformation which converts 

Λ/ι C/ into floi ^o> 1 

where z\ is the point obtained from ζ
Ί by means of We obtain 

finally 
n~\ « — I 

(120) (#0> ^0> ^O» ) — Jjj^ f1
 V^

2 Z{
")

 ε<n-1 dzi, 
i —t) «=0 

where Ί! is obtained from Ζ by means of T„, and where 

lim ε)Μ-1) = ο. 
η —y ν) 
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We now proceed to let η grow beyond bound. We have assumed 

that the curve C is of finite length L, that the function w = /(ζ) is 
analytic in the neighborhood of every point of C and that/'(ζ) is dif-
ferent from zero at all points of G. Under these assumptions the sum 
which occurs in the right member of (120) will approach the limit 
zero, the transformation T

?l
will tend toward a limit T, and the infinite 

product will converge. Thus we find 

(121) 

η — 1 

/r = (α
0

, 6
0

, 5
0

, ζ)= lim ΓΤ [ι — \Ji<7{z
£
) 8s,], 

/ = 0 

where ζ is obtained from Ζ by means of the transformation 

Τ = lim T„. 
η—>· « 

It is noteworthy that we have obtained this cross-ratio k by means 
of an infinite product which is the multiplicative analogon of «definite 
integral. 

We now propose to establish a relation between k and φ. Let us 
think of k as a function of Z, 

fc = k( Z). 

Let us extend the curve C to Ζ -t- h by means of an arc which satisfies 
the assumptions which we have made for C. Then we shall have 

/«'(/-HA) j TyΤ . , 
(k(Z)) 

where ε approaches zero with Λ, and therefore 

log λ-( Ζ 4- h) —logA(Z) — — h\Jia{7u) 4- ε'Λ, 
where 

lim ε'= ο. 
/(->0 

Consequently we find 

rflos^Z)
 = |im log/1 (Z + /0-loSA-(Z)

 =
 _ _ 

so that 

(122) A = e-v7'-,<?, cp = p: logky 

since for Ζ = k reduces to unity and <p to zero. 
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The analytic form of the correspondence Τ between ζ and Ζ is 
given by (121) combined with (122), or explicitly by 

(123) t-n. _ 3,-n. *1dz 
ζ — Ù

9
 />0 

Every analytic function w — f(z) determines a transforma-
tion Τ of curves in the z — plane, which, has just been defined 
geometrically and whose analytic expression, is given by (i23). 

Let R be a simply connected region in the z— plane, such that/(τ ) 
is uniform in R and has no essential singularities in R. Let us assume 
further that j w, z J is different from zero at all points of R, and let C 
be a closed curve all of whose points are in R. 

It involves no essential restriction to assume that ^ = ο is a point 
of R. If z = ο is an ordinary point for the function f(s), we have 

f(z) — «0 -t- λ, s -f- α·2 z1 -b. .., 

and | w
t
 z j will also be expressed by an ordinary power series inz, 

whose constant term is 
§{αχαλ— al) 

— > 

provided α
κ
φ ο. Since | «>, b ! is supposed to be different from zero at 

all points of R, a
t
a

i
 — ai is not zero, and therefore the integral φ, 

taken around a circle of sufficiently small radius with such a point as 
center, is equal to zero. 

Suppose however that 

a 1 — — . . . — Cl/n—ι — ο ( a m ο ) · 
Then 

=/(*) = αβ+α«·rt
M
,.HlS/w+,-h. 

iv' — mamz'"-x +(m + i)a,„+\ ■+■ · · ·, 
w" — m{m — 1 )am 3"'~! -+-. .., 
u'"' — m ( m — ι ) (m — 2 ) a,„ z'"~*+.... 

so that 

w" / w'= — ι)~'[ι + Pjfs)], ~7 =(/« — i)(/n —a)s-s[i + P,(s)], 

j IP, 5 j = — a(m1 — 1 )C—2[ 1 -1- P(s)]. 
y'j w, s \ =. ± i \jnil— 1 z~l [1 -t- Q( 5)], 
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where Ρ,, P

2
, P, and Q represent power series which vanish 

for ^ = o. Since | or, ; J remains different from zero for all points 
in R, we may choose that determination of the square root for 
which 

y/'; «ν, ; ; — *Va(m·-— i) J ι 4-Q(z)|z-1 

NVhe see 1 hat, in this case, the integral Φ· has : = ο as a logarithmic 
singularity, and the value of the integral taken, in the positive sense, 
around a small curve which encloses ζ — ο, will be 

·>. \riπ\/ni-—ι. 

Let us suppose finally that ; — ο is a pole of w~f(z), of 

multiplicity n. Then ^ = o will be a zero of of order //.. 

But ; vr, ζ ! is equal to ;j. Consequently lhe integral will, in 

this case, be equal to 
— ■>. \/->. τ: \//*s — ι. 

We now easily deduce the following consequence from (iu3). 

Let R he a simply connected region in the ζ — plane such that 
sx' -—/(τ) is uniform in 11, and, has no essential singularities in 11. 
Moreover let j cr, ζ J he different from zero at all points of 11. //' 11 
contains no points for which the equation f(~-) = /r has a multiple 
solution, k heing a finite number or ac, then the transformation Τ 
will define ζ as a uniform function of'A for all points Ζ in 11. 
If 11 does contain such points, ζ may he a many-valued function 
of Ζ in the region, hut all of its branches will he connected by 
I inear s u bsli tut ions. 

Il onlv remains to note lhe fact that our mclhod of defining Φ bv 
means of an infinite product, may be applied without essential change 
if we make use of p

i
 and ρ

a
, the poles of the singular penosculaling 

quadratics, in place of a and h. The corresponding formulae may of 
course be obtained directly from lhe equations of this article by 
making use of the relations bctwee the points ζ, a, A, p

n
 ρ

2
 which 

were discovered in Art. ί>. 

Journ. de Math.y tome II. — Kusc. I, njn3. 
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MIL — Introduction of φ as independent variable. 

Having recognized the importance of the integral invariant φ, and 
having explored some of its properties, its seems natural to make use 
οΓ ο as independent variable in all of the formulae which involve inva-
riant relalions of the function u* = f(z). In fact we have already done 
this in our discussion of the intrinsic equation 

We first recall the following formulae, due to Cayley and very 
easy to verify, for the transformation of Schwarzian derivatives such 
as J s, χ J. 

If we transform the dependent variable by pulling .v = F(S), 
we lind 

(124) J s, χ I — 1 .v, S ; +- ; S, .*■ 

Transformation of the independent variable is governed by the 
formula 

(1 11 ·ν. x ! - i ·*, x ! b 

and if we transform both variables simultaneously, we find 

(„C) , .v, * ! = (g)' ! .v, S ; - (§)' ; ,·, χ ;
 +

 (g)* ; s, x 

In particular w e find the formula 

(127) { s, x } =(dS/ ds) 

for interchanging the two variables. Finally we note the follow ing 
familiar equations for linear transformations with constant coeffi-
cients : 

(l58) ={s, x} 

(129) {&x + B} = (yx + g) 

(130) {as + b, a&x + B } = (yx + g) (s, x) 
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Wc arc studying a function w = f(z)> ancl we propose to intro-
duce 

( 131 ) zi = ̂ =J* )J\w
y

 s [dz 

as a new independent variable, so that er becomes a function ofz1, 
According to (i25) we find 

(i 3·.».) ; «·, 5 [; «'> 3ι ! — 1 -, -i ! ] 

= {- ! [| " ' > ( -» vl ι ], 
when ce 

(.33) ι -Ί ι / l ι — ' 'f ( «V, » j pi o, 

a formula which wc have already used in Art. 5. 
λ Y e may also write (i3n) as follows, if we make use of (127), 

(i3/,) ; .ν, 3 ; = ; .ν, -3 ; ; ; + ; zlt ζ 

whence 

(133 ) · R'j 5 ! — ~ r~r, 1 1 ' « ,r> — 1 —; ~' 

provided again that j vv, 3 j φ ο and J er, z
{
 \ φι. 

Let us assume further that J w, r, j φ ο. We may then repeat this 
transformation, putting 

(.36) zt = j \/| »*', s. ί rf-,· 

We find 
( Î =i ! — i 5|, 3

â
 : = l if : (V, 3, ! O, 

(137)'' | ; tv, 3, j = ; η·, 3, ; ; iv, 3.j ; 4- ! s2, 3, 
whence 

(,38) ; IV, 3, : ==—Ûîliii—, lu·, v
4

; = i-{z2, z1} 

or by combining (135 ) and (138), 

(·39) I«·. = ! = —, · ί«·> =.: = ■ - :L,· 
ι — ; .v, 3, ; ; ο·, 31 
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Let us continue in this way. Assume (liai all of ike Schwarzians 
; w, 3 {, ) cc, ~! i» Î w, 3a |, ..., j w, "a-, J are different from zero and 
from unity, α/ïrf 

('4°) =-l—j Zi-l\d--i-U -o=
5 (i = I, 3, A·). 

Urc /mr/ 
, f . | ! ι » 5/ ! —1< 

( l 11 ι «·'/'-1 I 1.1 ( " > I J — ' "h ■*' f — I |1 

and obtain therefore the following two forms for the relation 
between J w, ζ J and | w, ζ& ! : 

(»4^) )»·, vi= !:" , 
1 - Z2 , z1 / z3 z2 

1 / 1 

I - zk, zk - 1 / w zk 

and 
(■43) ; « ν, ζ I,. { = ι ' ' ; 

I - zk - zk - / 1 

1 - {z1 , z } / w , z 

Let us investigate the corresponding question lor the variable k 
which was introduced in Art. 7, namely 

(«33) /i = e-\r*1=c-fis>. 

If we put S = logs, in (i 2.4), we lirid 

(«44) ; »', = ! S, * ! + (§)'; «*, S | = ; S,·*< - i (jg)\ . 

Therefore we iind from (122), 

i /»,
 3

 : = ; 9,
 5

 ; - - j = ; 9, ; : - ; »·,
 5 

or 

(«45) ;9,3!=';«·, .:! + !/,·,
 5

j. 
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From (12:)) vvc find 

and from (122) we find 

so tlint 

( 146 ) ; if, φ ; = ; A·, 9 ! +1 /»·3 ; »·, A ; — 2 k- ; η-, k ; — 1. 

According to («34) wo have 

; „·, s ! [1 - i η·, <?;] = ;©, ; j. 

If we substitute in this equation the values (i'|5) and (i4^) for 
I or, φ \ and \ φ, ; we lind 

! "·· f = 

Let 11s use the notation /i, in place of k and let us repeat the trans-
formation by putting 

k* = l
2
r=^yy/} tr, A

t
 \ dk

x
, 

so that 

w k1 = k2 k1 / 1 - 2 k22 

If we continue in this way, we lind 

(■48) >,;!= TM-TT 

r
 '·* ^'3 j A3, A'g ! 

1 — · . 
I — a kf, 1 »·, k

n
 ;. 

The cases when the continued fractions (ι4^) or (i43) terminate 
are of special interest. We shall discuss the simplest cases of this 
sort. 

If | zn r j = ο, ( 134) shows that either j or, 5 j = ο or J op, ζ | φ ο, 
j w, ! — 1. In the first case op is a linear function of z. In the second 
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case we observe first that v, is not a constant, since 

■•t =y 3 : dz, ; u·, s ; 7^ ο. 

Since } ; j = o, is a non-constant linear function of Since 

; «·, 5i : =i, 
we have therefore 

(l4o) «' = ^ Î-, 3
1=

 ,
 fl '0 

where α, β, γ, δ, «, Λ, e, d are constants. These are the functions 
which may be obtained from an exponential function w = ez by linear 
transformation of both 3 and w. 

To find the intrinsic equation of these functions we observe that 

dz1 / dz = Vw z = ad - dc / cz + d , dw / dz = iV2 

777 ~ 77? ~ <7^v : 5 " 
so that 

0 = Vw z = y eid^l$e ² 
iV' 1 y/a ( <xà — (3y ) é ̂  5> 

and of course 
.c, = φ -+- const. 

The resulting intrinsic equations arc of the form 

(i5o) 0 —\l e" -H me / . 

Let us suppose next that j r
n
 - j φ ο, J 5

a
, s, j = ο. Then we have, 

from ( 141 ), 

(l5 l ) , I»', J.) { — , , v2 J "ΖΠ I J , M', J [ I — j IV, j ] rr O, 

so that either j tr, s, j = ο or j tv, zy \φο,\ tv, -a I = 1· 
In the former case we have from (134) and (133), 

(l J2 ) j Ο', 5| j ~ O, j IV, S j ~ | .3i, .3 j, , 5, j rr 1 , 

and these conditions imply again |52l<s, j=o. But from (i5i>) 
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wo lind 
Λ 5, 4- 6 ΛίΛ^'Ή-β 

Ο ν | 4- « y f>\ i "ι -ι. r) 

giving the general class of functions 

(i53) Atv4- I* . λ'5 4-IV 
C.v + 1)" B C\-4-l>' 

To lind lIιο intrinsic equation of these functions, we put 

; «·, 3 : = σ. 

Thon the second equation of (ι5α) heconies 

σ" 5 , σ'\3= 2O 
σ ·ι \ σ / 

Since 

0-^> » = (..·')>0», 

we find 

(ι.υ) ^ · , ^ J --·ΗΗ· )-j-4- ·Λ·
0

· - .>(^J
 ô

-. 

If we introduce w as independent variable in place of 3, this formula 
becomes 

(
 ^ σ ^ \ σ J "™ '

 J
 ·λΟ*\ών) Γ 

and if we use ο as independent variable, 

(»3;) L_4vy
= !

r
0
,
+
 ,^_,/rfsyi 

L^inall\, if we again make use of the notation 

(.58) |τ=
- 1^

 +
 ;(-τ?Γ.).· 

as in Art. 5, we may write 

(l59) g / o - 5/4 (d'/ d)² = 2 (w')² O²(1 - I) 

The functions which are now studying satisfy the condition (ιοί), 
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that is, I = o. This condition is easy to integrate, and so we find 

(160) 0 = /,·(<? +Ο*, 

k and c being constants, as the intrinsic equation for any function of 
this sort. 

Thus, if | z
{
, ζ j φ ο, [ -2, r, ( = ο, the function κν = /(ζ) is either 

a logarithmic function of the form (i53) with an intrinsic equation of 
form (160) or else 

; <»·, ; a·, ; — 1, ;sâ, :·, ; = o. 

We find therefore 

(»61) iv =—— , 3.=—!—Ç· 

and it only remains to lind the relation between and r. According 
to (i33) we have 

; s, ; = j «ν, s» ; — 1, 
and 

' ·->- ;U.lv ν.+«λΙ~(}".+«)' 

according to (»28) and (i44)· Consequently the relation between ; 
and r, will be obtained from the differential equation 

(.6.0 
(&g - By) 

z"li'~ (7*1+*7-1 

Of course this differential equation may easily be reduced to an 
equation of the Riccali form 

d²z / dz² 
{b0) dz

t
 2* ~ (yc.+ ô)'· !>

 '"'£i 
rfs, 

or else to a linear equation of the second order, namely 

( ar\ d%v 1 —βν)* ~1 
dz² 2 [yz + g)] y = 0 

If/, and/2 are linearly independent solutions of (it>4)> xve niay 
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write 

A y \ -+- Β 
Cj'i ·+■ Dys 

as llie general solution of (i63). 
Tlie intrinsic equations of these functions follow at once form (161). 

We have 

0 — —■> ο — 5, 4- coast., 
a iv 
dzx 

and lind therefore 
• α ν + ft _ j_ αφ-t-ji · s 

(l63, · 
i γ/a (ad — be) (αδ — (Sy ) 

We now return to the general theory. We wish to find the effect of 
the transformation from ^ to upon 0 and o. We have 

ί — -—-,— > — ο ~ J ν ! ,Γ> 5 ! "·3·' 

and we put similarly 

(i66) 6
t
 — 1, φ, — Jy/\ «·, ; clz

x
 — s

t
. 

dTx 
We have found 

I - - i ι . „ I 
\V, C, — 1 I > 

if we again put | ιν, ζ \ = σ, and 

z1, z = 1/2 [e" - d - 5/4 (a'/g)] 

according to (I£>9). Consequently we find 

(167) J Z
t

 J = I, 

and therefore we find ike formulae 

(168) 6
X
 — 0

 V
/T, Oj = z* — ffl do, 

/our«. de Math., tome II. — Fasc. I, iga'i. d 
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which enable us to find the intrinsic equation of w as function 
of ζ, when the intrinsic equation of w = f(z) is given. 

Let us apply the these formulae to the intrinsic equation 

('69) 0 = ao -V b, 

where a and h are constants. We find 

I — ——- , 0 —IL,
 0

 — _L |og(<7C5 4- b). 

Since 0, is a constant, w is a logarithmic function of o. In fact 

w =f —(!L—
t
 L 1οςΛ'(rro -1- b), 0 —1 / k eaw 

We also have 

; .3, U' ' = — Ô2.— —1 / k eaw 

Therefore ; must he a quotient of two independent solutions of 

ci-ζ ι
 ii(w

 0. 
div-2k² 

If we put 

e2aw = x, 1 / Sa²k² = m, 
this equation becomes 

ci - ζ ci ζ 
χ -τ—; m: — ο, 

which has the series 
te 

('70,
 -=2(IÎ7 A = « 

as one solution and 

z2 = z1 / dx / xz² 

as a second independent one. We shall therefore obtain a function 
with a linear intrinsic equation by putting 

(171) —J_, a- = e*«
n
'
t 

and then inverting this relation for w as function of The most 
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general function of this sort will result, of course, if we replace r by a 
linear fractional function of 

This example is only one of several in wich Bessei functions or other 
closely related functions make their appearance. 

W e return once more to our general theory. From (168) wc iind 

²do
{ \/T\ (to A (to J ' 

d²(to* ï \ do* ·.». (to* J Is (to \ do ά do / 

I f we put 

«·>l = - [ d²logO1/ dYo² + 1/2 (dlog O / dy1) ], 

we find therefore 

(173) H1 = 1- 1 / 2 [d²log l / dW² - 1 / 4] 

Thus if 1 is a constant, an important special case which wc shall 
consider more fully later, 1, will be equal Ιο i. 

9. Correspondences defined by the osculating linear function, — 
The simplest cogredient which wc have found is the pole of the oscu-
lating linear function. If r is the point of contact, wc have the formula 

^ ~ " U'" 

for this point. W e now proceed to study the question : as r changes 
its position in the j —plane, how w ill ρ move? Of course, the above 
equation contains the answer to this question since \,v= J\z) is a 
given function of 

In order to find it suffices to differentiate the expression for ρ. 

This is done most conveniently by making use of the formula 

ak = (k + 1) zk 

which w e have already employed. 
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W e find 
a2— a\n't _ . , ort,«r

;t
 _ 3(rt*— «,α

3
) 

p' = 1«, α* 

and therefore 

M)
 2ϋ(„_ _ I ;w, z ; (p - z) ² 

On account of ihe relations between p, and b, whore a and b are 
the singularities of the osculating logarithm, we may also w rite 

<·"> -(:-ξ*)'=-(γΗ)'· 

The zero of the osculating linear function was given by 

(176) e — 3 ? — 3 "i » -,—ΓΓ7* 

W c Unci 
t 

(>77) e'~ — z.\[e- c.)2, 

so that ρ and e are solutions of the same lliccali equation 

(>78) (fk I , ... 
/ dz = -1 / 3 

Let us denote by / the point where the osculating linear function 
assumes the given value A\ It is a simple matter to write dow n the ex-
pression for /, and to verify that I is also a solution of (178). We note 
the familiar fact that the cross-ratio of any four solutions of the same 
Riccati equation is a constant, and obtain the follow ing theorem. 

Let Α,, Αχ», A
3
, A\, be any four constants, and let /, be the 

four points in which the linear function, which osculates w — f{~·) 
at the point z, assumes the values A,, A\,, A.,, A, respectively. If ζ 
moves in any way in the ζ plane, the four points l

t
, /

2
, A,, /> will 

move in such a way as to keep the cross-ratio (7,, /«, l
iy

 Z
3
) constant 

and equal to (A·,, Αχ,, Α.», A\). 

Equations (174^ and (177) also show us that the pole or the zero 
of the osculating linear function will be a fixed point, that is, the 
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same point for all positions of z, if and only if ν ν is itself a linear 
function of -. The same remark applies to the point /. 

If we introduce w or ο as independent variable, in place of -, we 
may write 

<"»> a£ = -;0«U·-z)² , dp dq = -dQ = 1/ 3 O 

giving rise to the new expressions 

- 3 dp / dw iV3 dp/ dw dw 

c8") -
=

J />-·- ' 
for 0 and o. 

If w is given as function of -, we obtain ρ as a function of ^ by 
operations involving differentiations only. If ρ is given as function 
of 3, w can be found by two quadratures, namely, 

(iSi) w = co + c/ eK '' ctz. 

It happens frequently, in the theory of linear differential equations, 
in the theory of automorphic functions, and in many problems of diffe-
rential geometry, that ; w, - | or 0 is given as a function of s, or of w, 
or of o. The equations (i 7/1) and (179) will then be of use in connec-
tion with the determination of the corresponding function w. Thus, 
if ; w, -; is given as function of -, the Uiccali equation (174) λν'11 
determine /), and w may then be found from (181). 

Of course, if one solution, say ρ, of (178) is known, all other solu-
tions may be found by quadratures. If we apply the familiar formulae 
of the theory of the lliccati equation, we obtain the following result. 
If ρ is one solution of (178s), the general solution will he 

i'/'1 «'"· 
Ί TT"-

( ■) λ = /M ; » 

c - / p'/ (p - z) 

where c is an arbitrary constant. 
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We may write 
«I 

e _ - - _ Ρ - z 

I - a1 a1 1 a1 (p - z) 
a0 a. a0 

whence 
w' e—/) _ ι ι ι ι 
ii' ~ {c — z){p — z) ~~ p — z~ e—ζ ~~ z—e z-p 

If we differentiate both members, making use of (174) and (172), we 
find 

-rf.-1 (J-Ci)1 + (S-/»)»' 

whence follows the theorem : 

If e and ρ represent the zero and the pole of the linear function 
which oscillates w = f(z) at the point r, e and ρ will, in general, 
he non constant functions of ζ. /?/v/ the formulât' 

(*83) 

'<*"■ = f(rb;-rh)
d
'' 

d log w / dz = 1 / z - e 

rf* logic 1 1 
dz² (z- e)² (z- e)² 

will hold, though e and ρ were constants. 

Of course it is understood that, in the first of these equations, the 
path of integration is specified. 

We proceed to make some simple applications. Let vr = e"z. Then 

(iS-i) ρ (jf '
 e

 "" a 

Consequently, the zero and pole of the osculating linear function 
of an exponential function e"~ are collinear with the point of con-
tact. They are situated at equal distances on opposite sides of the 
point of contact, and the mutual distances of the three points 
remains constant for all positions of the point of contact. 

We may generalize this theorem by subjecting : to a linear trans-
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formation. To aid us in making the generalisation we remark that, 
according to (i8'i)> there exists a parabolic linear transformation, 
namelv, 

z" zH- — > a 

which makes correspond to ζ'= ζ and ζ' = e, the pointsz" = p 
and z" = 0 respectively. The generalized theorem is as follows. 

Consider a function of the form or = e" If ρ and ζ are the 
pole and the zero of the osculating linear function svhose point of 
contact is c, the circle determined by p

)
 ε, and ζ will pass through, u, 

and all of the circles obtained in this way, for differentvalues of ζ, 
will have a common tangent at a. The pairs (ε, ρ) and (ζ, u) will be 
harmonic. The parabolic linear substitution which has ja as its only 
double point and which makes ρ correspond to v, will also make ζ 
correspond to z. 

In both of these cases, whenever ν describes a circle, ρ and e will 
also describe circles. We now ask the general question; how shall we 
find the most general function w = f(z) such that, when 3 describes 
any circle in the 3 plane the corresponding locus for ρ is also a circle? 

h\>r such functions we must have 

(«85) p = & z + B / yz + g 

where α, β, γ, δ are constants, and therefore 

ivj _ 2 2 (y ζ 0) 
ο*' ρ — ζ ' y z* -f- ( oc — ô) z *+- (3 

Assume 
y 7^ °> (Λ — <$)·- +4 £y^o. 

Then we may write 
w" A, A, 

W .3 — ft, 3 — rta 

where a, and a
3 are the two finite distinct zeros of — γ r- (α — 0) 3 -+- β 

which exist in this case, and where we have the equations 

A j Λ ^ — — 2, Α ι <t* A j ο 1 — 2 — > 
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for A, and Aa. We write 
ô -+- «i -l· ·Λ -

(ι86) Λ, ——ι -h X. Ai — —ι — λ, λ — 

and obtain 

W = /·(Z — <7,)-,+λ(3 (tz -Η /, 

or 

(187) «·_/= —i—(i^V, 

where k and I are arbitrary constants, and wheré λ is determined by 
the coefficients α, β, γ, δ which occur in ( 185). Evidently Ave may also 
regard A as being assigned in advance, the quantities α, β, γ, δ being 
determined subject to this condition. 

We find 

ΰ= λ-\/—τ~(rt,-n8)U=7r) · ·? = ν~log z - a1 / z - a2 

where the constant φ
0
 depends upon the choice of the lower limit of 

the integral ©, and may be equaled to zero if we take specifically 

9 = f ds· 

Consequently the intrinsic equation of power functions of the 
form (187) is 

(188) O = 1 - a2 / k V1-y² / 2 -y V 2/ 1-y² 

In a form more convenient for future reference, we may state this 
result as follows. 

The intrinsic equation of a power function of the form 

w—Im (- —Λ » Xâ~o, ^1, α*ζζζ(ΐι 

is 

O = ae - V2y2 / 1 - y² 
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Let us consider now the case 

y 7^0, ( α — <3 )2 4 β y —o. 
We may write 

«·' y* (3 — α γ ζ —u + (3 — a)'1 

whence 
Λ_ 

»t'=r I-+-m e z~". 

These are the exponential functions discussed previously, and may be 
regarded as limiting cases of the functions just obtained. 

Finally if γ = ο, α — δ ο, we have 

i7 - (α-^ + β' ΰ^°' 

which may be written 
— -

 Λ 

w' ζ — (I 
whence 

IT' — / -ι- m (ζ — «)Λη1 if \yl—I, 

which is again of the form (187) except for differences removable by a 
linear transformation oir If A= — 1 we find a logarithmic function. 

The case γ = α — δ = ο is also easily disposed of. 
Thus the functions, for wich ρ and ζ are connected by a linear 

relation, are the power functions of the form 

'+m(7T+f) 

and the limiting cases in which they become exponentials or loga-
rithms. 

These same functions also have the further property that the sin-
gularities ^ a. and b, of the osculating logarithm are connected 
linearly, with each other and with the point of contact. Consequently 
when ζ describes a circle, ρ, α, and b also describe circles. 

This property of the points a and b may be deduced easily by 
making use of the general formulae for a and b. But we shall find an 
independent proof of this statement later. 

The solution of the corresponding problem about the zero of the 
Journ. de Math., tome II. — Fasc. I, igaS. 4 



26 Ε.-J. WILCZYNSKI. 

osculating linear function is immediate, since e will be the pole of the 

osculating linear function for the reciprocal function —· Therefore the 

functions for which e and ζ are connected by a linear relation are of 
the type 

I / l + m(&z + B / yz + g) 

We now return to tha general theory. We may regard the equation 
connecting ρ and «> as defining a new funct ion of z, namely 

IV, = ρ = .3 + li ̂  , 

and we may consider the pole />, == <γ2 o(its osculating linear function, 
so that 

Wi=Pl — Ζ -t- 3 -y · 

If we continue in this way, we obtain a suite of functions, w, tv,, 
w>

2
, etc. The following two questions present themselves at. once; when 

will the suite be a terminating one, and when will it be periodic? 
The suite will terminate if and only if one of the functions of the 

suite, say <vA, bas a fixed point for the pole of its osculating linear 
function, that is, if and only if tvA is a linear function, 

"V.-= ——1£· 

We may then find wA_, by means of two quadratures, 

U-V-l = Ca-i.o ·+"
 ck-1.1 J tn ""dz 

To determine wA_
a
 we have a similar formula. Thus we obtain finally 

w as a result of 2/c quadratures. 
The same formulae are, of course, applicable to the case where wk 

is any assigned function of z. 
The simplest case of a periodic suite is given by = w. In that 
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case up must satisfy the differential equation 

(>89) 
tv' iv" 2 

iv — ; h~ 2—or —7— ' 

wh.cli has a first integial of the form 

(190 a) tv' logtv'=r logA'(iV — s)s, 

or 

(190 b) A(iv — z)'Uv' ι, 

where A" is an arbitrary constant. 
Let us determine the intrinsic equation of such a function. We 

have 
iv" iv'" / 11 · " \ - 2 (u>' i) 

iv' ο·—r· ' iv' \n·'/ (,ιν—s)s ' 

so that 
·>·ΙΓ' 3 

'"'"i- (..— 5)»'iv" iv'" / 11 · " \ - 2 (u>' i) 
whence 

φ = ± / — = ±L -1 υ-Λ / = ± / /2IV 4- o
0

, 

so that 

,r'~~ —Yo ) 2 
From ( ir)o b) we have 

A(»v — 3)air'= eu" 

so that 

0- — — 2 k <r~u" — — 2 k c-(? . 

If wc write γ'— a A· = </, cp0
 = — b we see that 

('9') 
O = ae 1/2 

is the intrinsic equation of a function w — f(z) which has the pro-
perty (hat, for every z, the pole of the osculating linear Junction is 
given by UP. 

Of course, as in all cases, we may equate h to zero, the lower 
limit of the integral invariant z> being" selected accordingly. We then 
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find 

\ |\· " - le * do, t»\ Ο J — τ; φ-, 
(192) 

I ;
3
,φί = ;.ν,<ρ!—gffl3. 

The effective determination of these functions depends upon integra-
ting- this Schwarzian equation for ζ as a function of <p. If we apply the 
method of Art. 4, according to wich we may replace this problem hv 
an integral equation, we find that the kernel function is equal to 

Κ (φ, ψ) = f·* / c ' dp. 

By means of either method, we sec that both cr and ζ wilt be uniform 
functions of φ. Thus the integral invariant φ is a unifor mi zing 
variable for functions of this class. 

10. Correspondences defined by the osculating log arithm. — We 
now pass to the consideration of some analogous questions connected 
with the cogredients a and />, the singular points of the osculating 
logarithm. We have found the equations 

093) 

1 1 2 9 a* 
a — c· 0 — 0 μ — c c?[ 

- + *
 =ν

/ϊ„
ι9

, 

in Art. 15, whence 

(i94) 

α, 0 \r.i, 

•J = h ax θ d'2. 

If we differentiate the first of these equations, we find 

2 f da \ 6 α·λ ~ r α Γ ω 
-( a - z)² dz a1 a2 

which gives rise to the formula 

(195) ^ =1/V2 w' O' (a - z )² 
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and similarly 

(196) T=- -7= »J0'{/>-■)'■ 

The equation 

('97>da / db = - (a- z / b - z)² 

which follows from (195) and (196), is especially simple and frequently 
useful. It is fundamental when we attempt to determine a func-
tion w == /(-) for which the relation between a and b has been arbi-
trarily prescribed. 

In this connection we note the following formulae, which follow 
from (19'^), (190) and (19b). 

Let a and b denote the singular points of the osculating loga-
rithm ofw = /'(-). lu general a and h are non-constant functions 
of z. But the equations 

C'98) 

I "/î$s[rb-rb]*· 

j dz 9\/'2 L: — a z — ^ J 
! rf? — L (=-«)·+1*—6>*J' 

hold, just as though a, b, and θ were constants. 
As equations (iq5) and (196) show, a and b will be fixed points, 

provided that they are defined at all, if and only if w = f\z) is 
itself a logarithmic function of ζ. 

For the exponential function w = t?As we find again a result of note-
worthy simplicity. We have in this case 

a — z—~
k (1 4-0, *> — a — b =ji. 

Thus, in the case of the exponential function, the triangle azb is a 
right isosceles triangle, right angled at z, and its sides are of cons-
tant length. The corresponding theorem about exponentials of the 

form e may be obtained from this by projective generaliza-
tion. 
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In these cases, just mentioned, both a and b describe circles whene-
ver ζ moves on a circle. We shall solve the more general problem : 
to determine those functions w = /(.s), for which a and b are con-
nected by a linear relation with constant coefficients, so that whene-
ver a describes a circle, b will also describe a circle. 

Let 

(199) mab-h na-hpb-h q— o, 

where m, λ, ρ, and g are constants, and 

np — mq ψά ο, 

be the given relation between a and b. We may assume 

(200) np — mq ~ 1 

without any restriction of generality. We find from (199) 

(201) (mb Η- n) da (ma -hρ) db — o, 

and from (197) 

(202) (b — ;)2rfa + (<? — 3 )- db ~ o. 

If da and db are not both zero, that is, if our function w = f{z) does 
not reduce to a logarithmic function, the consistency of ( 201) and (202) 

requires 

( 2θ3 ) (mb + n) (a — z)2— (ma -hp) (b — -·)· = ο. 

We may write (199) as follows 

( mb -h η) ( ma ρ) = np — mq = 1, 

as a result of which (2o3) becomes, after multiplication by nib -+■ /<», 

(mb -h η )·(α — ζ)- — (b — s)2, 
whence 

(mb -h n) (a —z) =±(b — z). 

We may choose the signs of m and n, consistent with (200), in such 
a way as to have 

(mb -h n) (a — z) = b — s. 



DIFFERENTIAL PROPERTIES OF FUNCTIONS, ETC. 3i 

Therefore, the existence of a linear relation between a and b implies 
the existence of linear relations between a and 3, and between b 
and z, namely 
. ( »ΐΑ5 + (« + ι).Λ+(ρ-ι)5 + 7 = ο, 

( m bζ; -Η {ρ 4- ι) b -h ( η — ι) ζ 4- q — ο. 

If we compute ̂  and ̂  from these equations, and substitute these 

values in (iq5) and (196), we find 

„•'0'= . , 

On the other hand we have from (198) 

w'Oy/a L3 — a c — bi sji >""·2+- (»+/))! -Η 7* 

so that we find 

O' 2 2 2 2 1 1 
0 ~~ M:S+ (N 4-/>) :· 4- q '>i(z — r) (C· —>v) ~~ m{r — s) [ζ — /· s—AJ' 

if we denote by ζ — r and 3 — 5 the factors, supposed distinct, of 
w;â+ (η 4- ρ) ζ 4- q. But this leads us back to the functions consi-
dered in Art. 9, for which there exists a linear relation between 3 

and p. Thus, the functions of the form 

l + m (&z + B / yz + g) 

and the exponentials and logarithms which arise from them as 
limiting cases, are the only ones which have the property in ques-
tion. 

The same class of functions is obtained in answer to the following 
question. We know that for any analytic function, the two point-
pairs (p

n
 p

2
) and (q

n
 q

2
) are harmonic, so that the cross-ratio (ρ,, 

p
2

, q
n
 qf) is constant and, in fact, equal to — 1. But the two cross-

ratios 
Ai — (Pi> Ρ s» -> <7i) — _ _ » 

(205) 
^2= (/>1, Pu 1/t) — z ΤΓ zf—p2 / p1 
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are, in general, not constant. Let us determine those functions for 
which one of these cross-ratios is a contant. 

We find at once 
λ, -f- λ2 — ο, 

so that the constancy of one of the two cross-ratios, λ, orX
3
, im-

plies that of the other. 
To compute the expressions for λ, and X

a
 in terms of a

0
, a

n
 α

2
, a

3
, 

a0
 we may assume the point of contact ζ to be the origin. Then we 

have, according to Art. 4, 

(206) 
A Β 

q1q2 = C q1 + q2—q ' 

where 

(207) A.z=.aia3—α,, Β — C — aia^ — «jj, 

and 

(208) -L (α2-Η <V
A

)' />s =--(««—ty/A). 

Consequently we find from (2o5), putting ζ = ο, 

( 9/ Λο— * ι\ φ — ' 

where 

(210) Ρ a2Q<7,(0«! — Α«3), Ο — a A«
2

— B«
1? 

so that 

1 0 (ι+λ,λ,) - 1'=' 

/n the case under consideraiion -β-- must be a constant. 

If we put ; w, ζ | =σ, wc find 

(212) A = ζ a~i <*■> Β = -«ι«
2

σ Η—γα\σ', 

C = — ̂  α\ σ! -f- ~ α, σ', 

so that 

(2ΐ3) ]>=—7\ Q= ^α'ί(4«
2
σ — α

3
σ'). 
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Consequently ilic above condition reduces to 

(ili) /,
 ηί

σ-»,σ·=ί = 00">'· 

But vvc bave 
\/σ ^ ι σ' α·χ 0' 

I f we substitute these values in (ai4) and integrate, we lind 

9=-îL, 
M' — a 

where a is an arbitrary constant. Therefore we find further 

-' U ' ~ (»c'p " (n· — a)· 
But we have 

; \rA, t\· ; = —· 

Consequently one solution of the above differential equation for z, 
is 

:■ ι— ( ι r — (()'·, 

where 
/•2:=i4-8/2. 

Since / was an arbitrary constant, the exponent /* tnay have any value. 
Moreovei', the differential equation is invariant under linear transfor-
mations upon 3. We obtain again, therefore, the functions of the 
form 

„
 +

 fîi±4V 

with an arbitrary constant exponent r, in harmony w ith our original 
statement. 

Th ese same functions arise also if we demand that the cross-ratio 
(r, ρ, r/

(
, </.,) shall he constant, but we refrain from giving* the proof. 

In the particular case when Q — o, we liiul (z, />, q
n
 q

a)== — t, and 
the function w reduces to a logarithmic function. 

Jour/i. de Math.. Lome li. — Fitsc. I, np.'C ^ 



34 Ε.-J. WILCZYNSKI. 

XI. — Functions for which the quadratic satellite of the point 
of contact is fixed. 

The quadratic satellite τ of the point ζ was defined in Art. Λ 
as the harmonic conjugate of ζ with respect to <7, and gr

2
, the poles 

of the osculating quadratic. We propose to obtain the formula for ̂  

and, 111 particular, discuss briefly the cases when τ is a constant. 
We have 

(2 I 5) ? — Ζ Η 1 — C-f-2j7 — ; + 8 Τ7) 

where we are using again the notations (207) and the further rela-
tion 

(216) A'= k B. 

If we differentiate (215), we find 

(217) τ _ ——^-\7pi ' assuming A ^co. 

This formula may be written in a number of other ways, namely 

(2.8) = ] +.6Ϊ1 °
v 

or 
/ to»· A y d- "1 ί/20 5 Λ/0 y, ΛΙ 

(219) dw dz O dw² 

which may be written 

<220)
 \r*r) T;

=
~

!

<ipo—+(β Λ · 

since 

<22" '=-<4^—J J =--1" îf-iTS-; J· 

Finally we may write 

(222> S=~49 _8-41+(—j .· 
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If τ is a fixed point, wc have τ' = ο. Let us assume that 0 ̂  o, so 
that sv = /(*) is not a linear function, and also that A is not a cons-
tant. Then we must have 

(223) 8 + (-#) -4I = 0· 

The integration of this equation will give us the intrinsic equations 
of the functions under consideration. 

Let us put 

(224)u
 = -ar'

 l=-U + ;"!> 

so that (223) becomes 

(225) -r- -h y U--\- 2 = 0. 

This equation has two constant solutions, namely 

u = +- 2 V 2 / 3 

leading to the intrinsic equations 

( 226) Β — ke V' \ 

According to (188) the corresponding function is a power function 
whose exponent λ is equal to ± 2. That is, the functions which cor-
respond to the intrinsic equations of form (22b) arc rational func-
tions of ; of degree two, whose two poles coincide. It is quite evident 
that quadratic functions of this sort must be solutions of our problem; 
the fixed point τ in this case coincides with the two coincident poles 
of the function. 

If u is not a constant, wc conclude from (22.5) by integration, 
that 

(227) u = ^v^eot — (9 — ;w), 

and 

(228) 0 = /1. sin* ̂  (φ— ni), 
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where ni and η arc arbitrary constants, and where m ma)' he equated to 
zero without essential loss of generality. 

Let us return to equation (217). if Λ' φ <>, τ'= ο, we have 

Λ' Λ" 
9 Λ" V ~°' 

whence follows 

(a29) Λ — ( kζ Η- ί) Κ 

where k and ί are arbitrai')' constants, and this formula also applies 
to the case A' = ο by putting k = o. If now we make a linear trans-
formation of the independent variable 

α : + β 
γ ζ rj 

and compute the resulting value of Λ, which we shall call Λ, wo 
find 

( ,3ο) Λ = + + . 

Since α, β, γ, ο are at our disposal, we may clearly choose them in 
such a way as to make A become a constant, any nonvanishing cons-
tant in fact if Α φ ο, that is, if er is not a linear function of Equa-
tion (21Γ)) tells us that this transformation has the effect of removing 
the fixed point τ to infinity. 

Let us then assume that this transformation has been made, so 
that 

(23 I) Λ = a{ <7
:i
 —- — a — const., 

and therefore 

(232) l\ * Λ ' rr: η, <t·, — a—: o. 
a 

These equations may be written 

(a33) tv'ir"— — (u'")'· — u, w'w"'' —2 w" w"' — o. 

These etjuations are satisfied by <v"'=o, η ' = ± — φι, which 
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corresponds to I he special ease mentioned above, when w is a qua-
dratic lu notion with coincident poles. In all other cases, we may write 
in place of the second equation (233), 

m ■(>) _ 
w" w' 

whence 
,v'"~b{sv'Y, ΰτ/ζο. 

If we snhslitute this value for w'" in (233), we find 

(u·")·-— 1[/>(Η·'):ι — «]· 

We saw that it involved no essential restriction of generality to 
assume any convenient value for the constant a. Let us therefore put 
a == b, so that we obtain 

(»34) 0£r)' - r'f· ··')·-·]"= ,τΐ-Η»·')'- η· 

Consequently or' is a doubly periodic function of z, which is easily 
expressible in terms of the Weierstrass jj function, with the inva-
riants = ο, £

:
, = 4, namely 

(s 35) »'' = j>(v/4 ; + '·)· 

where k is an arbitrary constant. Since — o, these elliptic func-
tions belong to the equi-anharmonie case. But we have 

(230) ,>(„)— — — y-—, 

where ζ and σ are the Weierstrassian ζ and σ functions. Therefore 
we find from (235) 

(»3;) 
•"VHvl-'V'· 

We have obtained the following result. The functions for which 
the quadratic satellite of the point of contact is a Jixed· point, are 
either quadratic functions with coincident poles, or else they can 
he obtained from a linear combination like m%C(a) -h /, where t(u) 
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is an equi-anharmonic We 1er s trass ζ function, by equating u to 
any linear function of z. 

XII. — Enlargement of the group. 

So far we hâve been engaged in studying the effect, upon the func-
tion w — /(~)> of linear transformations of the independent variable z. 
If we consider instead linear transformations of the dependent 
variable we obtain nothing essentially new. For we may regard all 
questions of this king as being connected with linear transformations 
of the independent variable for the inverse function 5= /- ,(w). 
Moreover, the analytic form which these results would assume may 
also be regarded as familiar, since the Schwarzian derivative will be 
the fundamental differential invariant for all such transformations. 

We do obtain something essentially new however, if we consider 
the effect of linear transformations upon both variables at the same 
time. Let us, therefore, consider the group of transformations of the 
form 

(238) 
- az 4- β — <7iv -+-1) 

ys-+- à ' U c ii' -+- d' 

where α, β, γ, δ, a, 6, c, d are arbitrary constants. This group is 
clearly a six-parameter group. 

The integral 

(239) φ =yVl
tT

'> - !
dz

· 

evidently maintains its invariant character under all of the transfor-
mations of our enlarged group. The same thing is not true however 
of 0. We have, from (238), 

(240) "z = '/ τελϊ "3> "iV — ; 7Γ* diV> 

and from (i3o) 

(241) > - 1 — ('Is , _, 
(&g - By²) 
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According to (240) we have 

dz <xè — \eu· -h d) dz ' 
so that 

»> '--ÏÏêf·· 

From this equation we find 

c/logô Γί/logO 2c (eu· -4- dy 

dw L c^v ca' d_ <*d — be ' 

^/TT'- L ^ eir-l-c/ di\' ( or 4- d)-J {ad—bc)%* 

whence we conclude that the function 

(242) I = I / O² [ d² logO / O² ] 

is an absolute differential invariant of the enlarged group (238). This 
function has already presented itself to our attention, and we recall 
two other forms in which is may be written : 

(243) 
'=-[**?-* a (Τ)Ί· 

and 

(•'•44) ~" («r')40* [ dz- a\ dz ) u·' 0 | 

We observe that I is a differential invariant of the fifth order and that 
there exists no differential invariant of the combined transforma-
tions (2.38) which is of lower order. We express this briefly by spea-
king of I as th ν fundanienlal differential hy peri nvariant ofw = /'(s). 

We shall speak of the relation which expresses I as a function 
of o, as the hyper intrinsic equation of the function iv = f(z). This 
hyperintrinsic equation will be the same for all functions which can be 
obtained from vv = /(-) by all of the transformations of our six-para-
meter group. Moreover it is evident that, whenever I is given as an 
arbitrary analytic function of 0, we can always assert the existence of 
infinitely many functions w = /(*) which correspond to the given hy-
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perintrinsic equation, and that all of these functions are transformable 
into each other by means of transformations of the group (a38). ΛΝ c 
can even be more specific in our statement. If we have given the 
hyperintrinsic equation 

(2^5) 1 = 0(φ ) 

and if we put 

(*46) 
(I Id»·ù 

" ' ■· · 

we find from (240) 

(247) d« I , , ^(0) 
(10 >. 

so t hat u may be found by integrating an equation of t he Kiccati type. 
We then find ο from (246) by a quadrature. Tims, //' (he hyperin-
trinsic equation of a function is gice η, its intrinsic equation may 
be found by integrating an equation of the lliccati form, and a 
quadrature. The methods for obtaining the function iv = f{z) itself 
have been discussed previously. 

However, the most symetrical solution of our problem is as follows. 
To find the functions w—J\z) whose hyperintrinsic equation is 
I = G (φ ), integrate the two Schwarzian differential equations 

(248)! «»', φ ' — 1, : c·, 9 ; — I — 1 

and then eliminate z>. 1 
The familiar connection between Schwarzian equations anil linear 

differential equations of the second order enables us to draw some 
simple but far-reaching conclusions. 

Let \\ 1 and \\ be two linearly independent solutions of the linear 
diii 'ereutial equation 

W9) ^
 +

1 / 2 W = 0 

Then will be a solution of the first equation (2 18) and any solution 

of the latter equation will be a linear fractional function of·—· Simi-
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larly, any linear function ofwhere Z, and Z._, are independent solu-

tions of 

( o ) —— -4 - ( I — I ) / = o. 

will lie a solution of the second equation ('2/j8). 
Let us consider now the case when I = 0(φ) is an integral, ratio-

nal or transcendental, function of o. Then wn iva, zn z« will also he 
integral functions of s, and therefore w and 3 will he uniform mero-
morphic functions of Φ. Of course, in special cases, these functions 
may even be holoniorphic. W e have obtained the following theorem. 

If a function ν ν =,/'(") has (he property that its fundamental, 
hype l'invariant I is an integral (rational or transcendental} func-
tion of the integral invariant φ, then this integral invariant is 
a uniforint zing variable for the functional relation w = /'("). 
More specifically, ν ν and ζ will hot h be holoniorphic or meromorphic 
functions of o. 

In all eases the two linear differential equations (249) and (200) 
are very closely related. They have the same singular points, and at 
each of these singular points, the canonical fundamental solutions 
have the same exponents. 

Let us denote the inverse function of sv = f(z) by 3 = f~fw), and 
let 3, 0, I be the corresponding invariants. W e shall then have 

(αδι) ! :·, ο ! 1, ] a·, ο 1 — I — 1. 

and 
dw² = z dw m e z² -dz 

so that 

(202) (to- 4- (fo': υ. 

Consequently we find 

(2D-"») ι s, © , —: — , C·, φ Ι, , >r. ο , - —- : n·, ο ,. 

Journ de Math*, tome II. — Faso. 1. i«ju3. b 
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From these equations, we conclude 

-1 z y = I - 1 - w 

whence 

(*54) l-i-l r_-,. 

Therefore, ike fundamental hyperinea riants of two ineerse functions 
have unity foe their sum. Consequently the inverse of any function 
whose hyperintrinsie equation is I = C will have a hyperintrinsie 
equation of the form ι — I = ( « ( ± is \ 

We proceed to determine those functions for which the hyperinva-
riant I is a constant. In that case the Kiecati equation (2/17) is easily 
integrated. It becomes 
/ ' · \ (aaa) * -p — ι«· : A-Ï. 

if we put 

(356) I ~ - λ5 - . oonst. 

We conclude 

( 307) it 'J - , 1 

unless u should he a constant, equal to dz /λ, in which case the right 
member would be indeterminate. This special case, tt = dz /λ, leads 
to the intrinsic equation 

(358) S = <;*'>·?+■ I1. 

which we have discussed many limes, and to which correspond the 
power functions of the form 

xz + 3 
\yz -+- δ ! 

If u is not a constant, the integration of (2 >7) gives 

<>59) —ρ1 - -· U ~ λ liU) -(ο+ u), 
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where u. is a constant. A further integration gives 

(260) 0 ν coss -Ιΰ + μ), 

where ν is a further constant, as the intrinsic equation of all of those 
functions for which I is a constant while u is not a constant. 

The corresponding functions are again power functions, hut of 
the more general form, defined by 

(2(H) cw ' (i ~~ \ y 5 i ■ <5 ) ' 

where the exponent r is connected with the hyperi avariant I by 
means of the equation 

(262) 
1 

I - — > ΐ 

This may he proved eilher by starling from the intrinsic equa-
tion ( 12(H)) and integrating it, or more easilx, hy observing that I will 
take the constant value given hy (alia) when we put. w=zr, and 
remembering, that all functions obtainable from w = z1' by the trans-
formations of our six. parameter group, have the same hyperintrinsic 
equation. 

Formula (261) becomes unintelligible when I is equal to zero or 
unilx. However in these eases we sec directly, from (248), that 
either 

( ·>6ο ) IOii ^ > 

or 
α .·· »· ,'i 

, x
 aw I ti 

( \\ -j— (( 

and these functions may he regarded as included in t/2(>i) as limiting 
cases. 

If/· — ± 2, w is a rational quadratic function of;, so that we lind 

( >(rj) I - \ 

as the hyperintrinsic equation of all quadratic functions. The 
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intrinsic equation of a quadratic function is either of (he form 

(266) Q=ze V » y 1

 > 

or 

(267) (J — ν oosa
 (<? -+· {*)· 

The quadratic functions which correspond to h ace coincident 
poles, while those which correspond to (2G7) have distinct poles. 

The differential equalion of all quadratic functions, which we found 
in Art. 4 in the form e.

(
 = o, is of course equivalent to i>(>*> ), and max 

therefore be written in aux of the following forms : 

(268) 

d· lotjO ' /(t\o^0\i 

dY² 2 dY■ λ "· 

i/o·* "" 2Î/U'·/ ^= 0 
0" 3 fO'y ,.

Λ

 r/ w" 
0 2 \'j ι 3 v 0 w'=0 

σ" 5 , σ' \ - 2 
τ - ■»■· ο, 

σ — ; κ·, ;· 

We shall henceforth speak of the functions defined bx (2(11) as 
general power functions, and use the word special power function for 
those of the form 

w = l + x z + B / yz 

If a, c, α and γ are all different from zero, we max xx rite the defi-
ning equation (261), of a general power function, in the form 

(a69) ^
 = M('i=£y, 

and, unless / is an integer, w will be a multiform function of;, which 
has ; = ρ and : = σ as its onlx branch points. The inverse function 

will be a multiform function unless ~ is an integer, and will have λ 
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and ut. as its only branch points. If not all of the numbers a, c, α, γ are 
different from zero, the corresponding· branch point is at infinity, and 
the usual changes in the form of (269) should he made. 

We shall use the term branchpoint for each of the points ρ, σ, λ, μ. 

in all cases, even if r or 1 is an integer. We ma ν then characterize the 

special power functions as being those for which the inverse function 
has one of its branchpoints at intinitx. 

\HI. — The osculating power function. 

We have studied in detail the functions for which I is a constant. 
There are number of other interesting eases in which the equations 
(2/18} admit of explicit, integration. In general those eases in which 
the corresponding Uiccati equations are integrable by quadratures, 
lead to functions connected with Bessel functions. But we prefer not 
to develop this theory an\ farther, at present. \\ eshall show instead, 
how to determine the osculating power function, that is, the function 
of the form 

(rrtiqï - — M ( ^ > 

which has contact of the fifth order with a given function cr = /('-) at 
a given point. Of course, we may again, without essential loss of gene-
rality, assume that the origin ; — ο is the point of contact. 

Let us write (269) as follows 

(•>7°) \Y — M7/. Ζ — * £, W - - - , 
:· — σ »»· — y. 

so that 
(371) dfw Mr (p - g ) Zr1 (w - u) 

itζ /. — μ \ ζ — σ / 

and 
tPw dw 

Iχ <ίζΛ — (;· — ΉΡ - σ) '* '/γ· * 
dw Z(z - g)² w y - g 
</ζ 
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From the general properties of the Schwarzian derivative w e have, 

l ι
 w

 - ! _ . vy - ι _ ι γ,- - ■ — / ̂  Y ; // / < — > /»- / ι 

(273) < 
( Ϊ/Λ Z; — i (/*-.)£-*, 

so that 

(»74)
 (,-,.

8)

(p-
g)î 

and 
, : »v, 5 2 ·> 
x ' ' : 1\·, ; ; — ρ ; — σ 

If (269) defines that pow er function which osculates the function 

(276) w = rt0+ avz -I- e.,c-2 + ... 

at r — ο, the expressions (271) to (27a) must reduce for s = 0 to the 
corresponding expressions formed for the function (276), which we 
now refer to as the function or. Therefore we must have 

( ; .v, c ;
0
= 02(

π
.'
()
)·._-. 

<i77) S
+

2i
 =

 l
 +

 i. ' 

and, of course, the hyperinvarianl I must assume the same value for 
3 = 0 for both functions, so that 

(278) /·*==. Y^— · 

We may re-write (277) as follows : 

Q - ;)'-*(·-I.) <«'.».)·. 

i+ ' =2? + ^. 

so that we find the equations 

Î - = —7* + Jf + *»'g 0
O
 — l„), 

( '279 ) )
 n

 » Λ· 
sdf lkzesml lmzesm oike oz oz oz oz 
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where a change in I lie determination of I lie square root would be 
equivalent to a mere change of notation. If we substitute these values 
in (270), (271) and (272), we tind the equations 

(280) 
2wiO V 2 lo 

—r^=- -0"t —»·Λλ'—< ι.>· 

lor the determination of λ and ul, the branchpoints of the inverse of 
the osculating power function, and finally 

08.) n_-;'±=±(ZY, 

or 

ry --
u

." £,· . · \ 

(:>.8:0 M - £ -

^ll 14 || Λ> 

Let us omit the index ο in our further formulae. The quadratic 
satellite of 5 = ο was given h\ 

3 7,7» _ ■ o'i 8 Λ 
(/[+C/.; ' Λ' 

where 

A — r/, rif
;t
—a* - ( n·')3 ; u\ c ; ™ : A (»!·')'·O² 

so that 

A'/ A = 4 w/ w' + 2 O'/ O, 
and consequently 

i w" 0' 
7 "" '' "^7 _i" Ô ' 

AVe also have 
1 1 n" 
/) 2 »r' 

il is the pole of the osculating linear function, so that 

·'» 2 .... ry 

Τ /> »\·' ' rJ 
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Consequently we find, from (277), 

(283) ί+ι=ί+ι ρ σ τ ρ 

Lei ψ be I lie harmonic conjugale of ζ — ο with respect Ιο ρ and σ, so 
that 

(28/i) ^"^ = τ· 

We find, from (283) and (284), 

(285) - + '· -■> 

and therefore the following theorem. 

Construct the harmonic conjugate ψ, of the pole of the osculating 
linear function, with respect to (he point of contact and its quadra-
tic satellite. Then the branchpoints, ρ and σ, of the osculating 
power function will be harmonic conjugates of each other with res-
pect to ψ and the point of contact. 

If the point of contact is a general point z, instead of o, wc 
have in place of (279), 

-- —- -l· 7- H- tv 01/« ( 1 — I ). 

2 / g - z = w / w'+,+*.y,t,-I,, 

whence 

(287) »v'=: ' =(— -Y 

and 

(288) IV:— / —- ( — - ^ it:·. 

a formula which, like the corresponding integral formulae for w in 
terms of ρ and e, or in terms of a and b, is capable of interesting 
applications. 

We wish to sludv however, the variation of ρ and σ with Dille-
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renliation of (286) gives 

-
(
7tr7j3(p-,) = Tp-(^) +-

aJ
r- + "®^(«-D 

+ w' dO / dz V2(2 - I) 
whence 

-(p-zy ~~9,(n' ) °'I + 2 i/-., (0) V Q ^2(, — l)' 

I f we make use of the equation which defines I, tliis reduces to 

1 dp «'0Γ 

(289) (p- z)dt 

and similarly 
/ \ \ da u'f Qlf 

(σ—zf dz~ 2 y 2 ( 1 — 1 ) 

If wc leave aside the cases wr = ο and 0 = 0, in which ρ and σ arc 
not defined, we may say, therefore, that neither of the branchpoints 
of the osculating power function of w = f(~·) can be a fixed point, 
unies f{z) is itself a power function. 

If we introduce ψ as indépendant variable, wc find 

1 dp do 1 da " do 
?'9' (p =)a ~~ 2^2(1 — 1)' (»— '-Y do ~~ 2^2(1—1) 

Initially we note ihc formulae 

(a9a) 
1 dp ι do dp / ρ — z\-

(p — .c)* άψ (α — ζ)- do 01 da \σ—3/ 

Let us consider those functions for which ρ and σ are connected 
by a linear relation with constant coefficients 

(*93) m pa 4- np pa + q z=. o, 

where we may assume 

(a94) np — mq — 1. 

We find, as in the corresponding investigation for the singular 
Journ. de Math., tonte II. — Fasc. I, 1923. 7 
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points of the osculating logarithm (Art. 10), thai there willihen exist 
linear relations with constant coefficients also between ρ and s, 
and between σ and z, namel y 

(395) 
j mpî + («+i)p4-(/)-i).- + 9 = o, 

Ι ηισζ + (/j + i)u + (/i — 1)3 + 7 = 0. 

From the first of these relations, we find 

[ m ζ + η + ι] dp + [ //# ρ + ρ — ι | dz — ο, 

whence 

dp η — ρ m ζ- + ( η + ρ ) ζ + η 
dz ( m ζ + n + ι )3 ' ^ " m ζ + n + 1 ' 

so that we find, from (289), 

(29e) 
n—ρ π·'01' 

|>5!+ (λ + />)- + q\l ~
 2 ̂ (ι — Ι) ' 

r rom (287) we lind 

(297) ; ^ — = tr'0y/2(l— I). 

Elimination of r gives 

(298) (ι — I) _Avl
rf<p 

and therefore 

(299) —0 — 1 
Γ 

as the hyperintrinsic equation of these functions, when n — ρ fo. 

The case η = ρ leads to ^ = ο and therefore corresponds to t lie 

case I = const., when the function reduces to a power function. 
We also find from (296) and (297), by division, 

(3oo) Γ ι 
4(1 — 1) ηιζ* + (n -hp) ζ + q 

If (« + pY — hmq φ o, and if Ave denote by ; — r and ζ — s the 
linear factors of mz2 + («+/?); +y, distinct under this hypothesis, 
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we find 

(3oι ) ι — I = G , /' ,s\ m ο. 

If (// -bp)2 — t\mq = o, and m φ ο, we may wrile 

01:·*+· (n +/)); + (/ = /»(; - y)2, 

and we find instead 

(802) i—] — C e "Ί3-'■'·. 

Finally, il //* = o, we find 

(3o3 ) ι — I — G(ζ — k)" + i' k — — » η -\- υ ο, 

and if η -h ρ is also equal to zero, 

(3o4 ) ι — I = G e'f. 


