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Differential Properties of Fonctions of a Complex Fariable
which are Invartant under Linear Transformations;

By E.-J. WILCZYNSRI.

PART II ().

V1. — Cogredients.
The expression

which whe have found for the pole of the osculaling linear function,
was derived under the assumption that the point of contacl was 5 = o.
But it is easy lo derive a more general formula. Let « = f({) be a

function of { analytic in the neighborhood of { = s, and let its expan-
sion at this point be

Qg+ ay(3—3)+ay(T—z3)P+....

(') La premiére Partie a paru dans ce journal, en Tome I de la neuviéme
série, 1922.
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2 E.-J. WILCZYNSKI.

If we denote again by p the pole of the osculaling linear function
of w = f(¥), the point of contact being { = 3, we find

-
p—z= a,
so that
a, W
10 =3 ~— == 9 —
(107) P + +2mg

is the general cxpression for the pole of the lincar function which
osculates the function w = £({) at the point ¥ =z In this formula
‘a,, a, are the coefficients of { — z and (I—3)* in the expansion
of £(T) in powers of { — z, and w’' and w” are the values of f7(%)
and f"({) for { ==,

If we subject the function w = £({) to any transformation of the
group

(15X {IX == =)

where a, 83, y, § are constants, the point of contact z and the pole p ot
the corresponding osculating linear function of o = /(L) will be
transformed into @ new point s and the pole p of the nsculating linear
function of the function « = £(T). Moreover, it may be verificd that
- _ap+5
p= ﬁ,—_l_—:
We express this by saying thal p is @ cogredient of = with respect
to the function & = f(%), and evidently we have obtained in Articles 4
and 8 @ number of other cogredicnts.
The general expressions of these cogredients may be obtained as
follows.

Let
7:f(x0s X 11’ [} )

be the expression for any cogredicnt when the origin {=o is the
point of contact, the quantities «,, ,, «,, ... being Lhe coefficients of
the expansion of w = f({) at { = o. Then

c=s3+ fla,, ay, ay, +..)

will be the expression of the corresponding cogredient when the



DIFFERENTIAL PROPERTIES OF FUNCTIONS, ETC. 3

point { = 3 is the point of contact, the quantities a,, @,, a,, ...
being the coefficients of the expansion w = /() in a series of powers

of { —z.
VII. — Interpretation of the integral invariant ¢.

Let us apply the remark just made to formulae (103). We find the
following formulae for the singular points @ and b, of the osculating
logarithm of w = £({), the point of contact being { = 5 :

R o’ ’ Q w —
(lOS) (-z—-—-——-;_.n‘l /):\’,\I’ [-:-;:-‘T-+\/3\tr»‘${,
whence
e 1 1 1
10 /1w 3| —— — —_——— ],
(r09) Vit = \/2(0-—5 a—-:)

We may therefore wrile

o3 S
T e L L. 3
(110) (,?;_l/:u Vi .,‘,d.«_.\/;L <[»——; a—:‘)do.

We may express this as follows.

Given an analytic function w = f({). Let us select a curve C of
finite length in the C plane, at all of whose points f(L) is analytic
and f'(L) different from zero. Let @ and b be the singular points
of the logarithmic function which osculates f({) at ( = 3. Then the
value of the integral

o= 7= [ (s — e

extended over the curve G, will remain unchanged if all of the
points of the T plane are subjected to the same lnear transfor-
malion.

If we represent the vaviables @, 6, s by the points A, B, Z of
the € plane, we may write

.

(111) ¢ = \/ / (ﬁ-—zl()d:

in terms of the vectors ZA and 7B
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We may also express the integral ¢ in terms of the poles, p, and p.,
-of the singular penosculating quadratics. In fact, by the method
of Art. 6, we lind the generalized expressions

——
. @+yal—ea ay—\ai —a,ay
—_— s —— — 3 = —m—
Py as P N ay
whence
1 1 ayal —a,a AU p—
- - Vas 1 “‘_—.\"I TS
Pe— 3  Pr— s @ 6

so that we find the expression

(r1a) cp:ﬁ[(——l—-:————-—l——-)ds,
A g \Pr— S pPy—3

Jor the integral incariant ¢, which is quite analogous to (110).

Both of these formulae for » may be used to advantage. But they
caunot be regarded as altogether satisfactory as interpretations of the
integral ¢ from our point of view. For, although the points 3, a, b, p,, p.
which occur in these inlegrals ave defined invariantly, they occur in
combinalions such as @ — s which are not invariant under linear
transformations of Lhe independent variable.

We now proceed to obtain a new expression for ¢ which is free
from this objection. Let us divide the curve C. of finite length L,
into # pieces, by means of points

ly
Soy Sy S Ceey Sh=qy SRy cies  Sp—1y 3"——l|,

where 3, and Z denote the end points, as is customary when defining
a line integral. We shall put

Shr = Sp + 05y,

and assume that all of the quantities &5, approach zero, uniformly,
as infinitesimals of the first order, when n grows beyond bound,
and that

lim Y | 85| = L.

Let a, and b, be the singular points of the logarithmic function which
osculates f({) at { =3, We proceed to calculate the double-ratio
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of @y, by, 5k, 3pey. We find

L\ Sk— Qg Sp— @ __ Bk— Qg 34— b+ 95,
(ar, gy 54y ki) =

Bp— by Spe— b 3p— b4 34— ap 405,

Sp— [)/,~ ,
- 83‘.

Sp— ag

and this diffefs from

I I
— 03
l+[ak—:k bk—:k] k
only by an infinitesimal of order higher than the first. Let us put
(113) c=w, 5}

Then we may write, making use of (109),

(114) (ang Uiy Sky Saa1) =1—V20(3k) 054 + €4 034,
where
(115) lim ¢, —o.

> ®

Thus we have

) =1—\20(3) d3, =+ g, 03¢,
(ar, by, 21, 3) =1—\20(5,)03, + &, 05y,
)

(116) :1—\/20(32)332 + €2 05,

(an—i, bueis Zn-1s Z) =I1— \/2 a(5n-1) 65/1—1 =+ &n—y 831&»1-

Now there exists a unique linear transformation which converts any
three distinct points into any three others. Denote by T, the linear
transformation which converts

a, b, 3 into ae, by 3

respectively. Since T, does not alter double ratios, we may write in
place of the second equation of (116)

(117) (@ys bos 515 59) =1—/20(5,) 03, + ¢, d3,,
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where z/, is the point which corresponds to 3, in the transforma-
tion T,.

But if A, B, C, D, E are five elements, whe have the fundamental
double-ratio equation

(118) (A, B, C, D) (A, B, D, E) =(A, B, G, E).

Consequently we deduce, from (r17) and the first equation of
system (116),
(119) (@, by, 5y, 53) = [l — \/20(;0)650] [1 —Va20(5) 6:,] —+ €} 05 + ¢, 63y,
where

lim & = lim & = o.

n—-» n—>w

Let T, be the linear transformation which transforms

asy, by, 3 into @y by, 3

~ay

respectively, and let 3| be the point which corresponds, by mcans
of T, to z,. Then we find, from (116) .

(@ boy 3y, 55) = 1—20(52) 05+ €5 03,

If we multiply both members of this equation by the corresponding
members of (119), and make use of (118), we find

(@os boy 30y 53) = [I——~\/2o‘(50)6$0] [t = V2o (7) 05, ] [1— Vaa(s) SEN

-t £ 050+ &} 03, + ¢ 03,

lim &) = lim ¢, = lim ¢, = o.
n—yo n—>eo n—>wo

In general, let T; be the linear transformation which converts
ai, b, s into a, by 3,

where 3, is the point obtained from z; by means of T.—,. We obtain
finally

n—i n—1

(120) (@qy by 54, L") :II [1—- Veo(s,) 6;,~] +2 =1 s,

i=v i=0
where Z!' is obtained from Z by means of T,, and where

lim g~V =o.
n—y
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We now proceed to let n grow beyond bound. We have assumed
that the curve C is of finite length L, that the function w = f() is
analytic in the neighborhood of every point of C and that f/(¢)is dif-
ferent from zero at all points of C. Under these assumptions the sum
which occurs in the right member of (120) will approach the limit
zero, Lhe transformation T, will tend toward « limit T, and the infinite
product will converge. Thus we find

n—1

(121) k= (aq, by, 30, ) :,lli;nw u [1 — \/20‘(51) 6:,~],
where C is obtained from 1 by means of the transformation
T=1mT,.
n—»m

It is noteworthy that we have obtained this cross-ratio # by means

of an infinite product which is the multiplicative analogon of @ definite
integral.

We now propose to establish a relation between % and ¢. Let us
think of & as @ function of Z,

k= k(Z).

Let us extend the curve C to Z + /A by means of an arc which satisfies
the assumptions which we have made for C. Then we shall have

/l(Z -+ /l) - f—————
= 1—\aa(L)h +eh,
where ¢ approaches zero with /4, and therefore

logh(Z + h) —logh(Zy=— h\/20(Z) ¢k,

where
limé¢'==o.
. h=>0
Consequently we find
dlogh(Z) _ . logh(Z +h)—logh(Z) -
—az = 3 ==V29(Z)
so that
(r122) k=e V9, o= — —I-logk,

v

since for Z = 5,, k reduces to unity and ¢ to zero.
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The analytic form of the correspondence T belween { and Z is
given by (121) combined with (122), or explicitly by

Al et
2 | b = &
0o— Qy ¥ ‘/:)\1“ E

(123) Sl

C— by 5p— by

e

Every analytic function w = f(3) -determines a transforma-
tion T of curves in the z — plane, which has just been defined
geometrically and whose analytic expression is given by (123).

Let R be a simply connected region in the 5 — plane, such that f(z)
is uniform in R and has no essential singularities in R. Let us assume
further that |, z| is different from zero at all points of R, and let C
be a closed curve all of whose points are in R.

It involves no essential restriction to assume that 5 = o is a point
of R. If s = o is an ordinary point for the function f(z), we have

JGE)=a+az+ a3t +...,

and }w, 3| will also be expressed by an ordinary power series in z,
whose constant term is
6(a a,~— al)
ay
provided a, = o. Since | w, 3| is supposed Lo be different from zero at
all points of R, a,a, — a} is not zero, and therefore the integral o,
taken around a circle of sufficiently small radius with such a point as
center, is equal to zero.
Suppose however that

= Ay=...=Q@p;=0 (a, Z o).
Then
W = f(3) = g+ @ 5 Ay 3 AL
W= M, s () A 3
w'=m(m—1)a,s"*+...,
b w=m(m—1)(m—2)a,s" 34+, ..,
so that
! i .
o= (m—1)s—"[1+ Py(35)], e =(m—1)(m—a2)s—2[1+ Py(35)],

fw, s} =—a(m*—1)57[1 +- P(5)].

Viw s =xiVaym' =151+ Q(s)]
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wheve P,, P,, P, and Q represent power series which vanish
for s =o0. Since |w, 5! remains different from zero for all points

in R, wec may choose that determination of the square root for
which

Whe sce that, in this casc, the integral ¢ has : =o as a logarvithmic
singularity, and the value of the integral taken, in the positive sense,
around a small curve which encloses s = o, will be

=TT
G\ 2T \/nr‘— 1.

l.et us suppose finally that z=:0 is a pole of w=f(3), of

. . . r . 1
multiplicity 2. Then s=o0 will be a zero of = of order .

. 1 ) . . .
But |, 31 is equal to gﬁ’ :; Conscquently the integral will, in
this case, be equal to
—ayarnynt—1.

We now easily deduce the following consequence from (123).

Let R be a simply connected region in the s — plane such that
w=f(3) ts uniform in R, and has no essential singularities in R,
Moreover let |, =\ be different from sero at all points of R.1f R
contains no points for which the equation f(z) =k has a multiple
solution, k being a finite number or «=, then the transformation v
will define C as a uniform function of 1. for all points 7 in R.
I/ R does contain such points, ¢ may be @ many-valued function
of Lin the region, but all of its branches will be connected by
linear substitutions.

It only remains to note the fact that our method of defining 5 by
. means of an infinite product, may be applied without essential change
if we make use of p, and p,, the poles of the singular penosculating
quadratics, in place of @ and 0. The corresponding formulae may of
course be oblained directly from the equations of this article by
making use of the relations betwee the points 3, «, b, p,, p, Which
were discovered in Arl. 3.

Journ. de Math., tome 11, — Fasc. 1, 1923,

te
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VIII. — Introduction of ¢ as independent variable.

Having recognized the importance of the integral invariant ¢, and
having explored some of its properlies, its scems natural to make use
ol » as independent variable in all of the formulae which involve inva-
riant relalions of the function w = f(s). In fact we have already donc
this in our discussion ol the inlrinsic equation

We first recall the following formulae, due lo Cayley and very
easy to verify, for the transformalion of Schiwarzian derivatives such
as |s, x .

If we transform the dependent variable by putling s = F(5),
we find

dS\2 ,
(124) 'S, 1:5::<$> bo, S48, .

Transformation of the independent variable is governed by the
formula

« dX\*, ; , o
(123) h‘,:p(:( )H.s’,)\;—}.r,\;j,

dr

and if we transform both variables simultaneously, we find

. dS\* dX\?, , ax\\?, -
(126) 1% ‘T’:<CT’L‘> 2‘7S;_<E> l‘Ll71\))+<;i‘_t) 1S, X

In particular we find the formula

' ds\*
(127) soi=— () o]

for interchanging the two variables. Iinally we note the following
familiar equations for lincar (ransformations with constant coeffi-
cients : ‘

(128) ggﬁ—:-ga.z‘%::s,x‘f,
ax+p|_ (yr+d)t =
(129) Sy ’Y\Z‘—f-ai(_(aa--ﬁ‘/)ﬁi's,t v
. n N
(130) fas-+ b ocx—&-p(_(yx—&—o)‘gs"v:.

|es+d’ yx+0)  (ad— By)?
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\We ave studying a function w = f(z), and we propose to intro-
duce

(131) sl::(g:—_-f Vi, slds

as « new independent variable, so that « becomes @ function of z,.
According to (125) we find

Q, i [N I i,_;_l_!‘\l.-l__i.-l'
(132) Py s = o Ly 3 3,50

— b -l e ) [
.-.-,”',os[;”, Spy T S "lii

whence

(133) by sl — s s = if vy 3] o,

a formula which we have already used in Avt. 3.
We may also write (132) as follows, if we make use of (127),

(13%) ORI MR NSO AT S P T
whence
l-l - \_I
. . 5 3
(133) Py 3= — vy S == -
. E— vy 5y AR

rovided again that }w, 3! %20 and | w, 3,| £ 1.
P <] AR B [ |

Let us assume further that jw, 3,15 0. We may then repeat this
transformation, putting

-
(136) :-._,:/ Vi, 5l ds,.
.
We find
(137) {110, Sal — 5, Syt =1 it Wy 5 ZEo,
137 |
/ ! P S TR S0y Fal ok Sy T
whence
) Sa Sl' S 'll
b k3 f VA W
(138) Sy § == - — LAy Sy == s —
L= 1y Sy Y Sy

or by combining (135) and (138),

/s

- - !
(139) tn',:.{:-—--—’—l’—‘——‘—. Loy 3,

Vo= ~
I Sas 9y
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Let us continue in this wav. Assume that all of the Schwarsians
W S0 W S Iy Sa Wy Sy | are different from sero and

Srom unily, and put

(140) :i:/\/; Wy S dS Ly, =3 (i=1,2, ..., k)
We find

an ‘ i
. l :"') Sieqs |,|’_" W, -‘i:] =% Fin :‘

and obtain therefore the following two forms for the relation
between yw, st and ) wy 340

SR
§-I ::
A Copy =l — N \
("'2) l“)‘"l'— v -
l_,.s‘?|‘\'l‘ ’
l—tz:’) S
l—
 Shy Sy
I-— d \,
by
‘“3-‘1\‘;
and
V- - i
r o - ) by Shecl
(143) Py Sl = —
1. L R S S I

=,

PRy
’

)

[A]

w0

Let us investigate the corvesponding cuestion fov the varviable &
which was introduced in Avt. 7, namely

(122) k= e=Viz = =35,

[fwe pul S =logs, in (124), we lind

- S\ . S)\?
a8 eset=18, et (Z) e i =180 - ()

e da

Thevefore we find from ((22),

{hy 5=, Q. 51— ll(___l(_(l\_:/.'l@_, ')]-: LT

2
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From (123) we find
1
k= (G Tmei =t gl
and from (122) we find

‘%=~_\/5/;. hol=—1,

so that
(146) )_n‘,cp;:_—:/(,?‘\_*_g/‘.z;”.’ k== ok, k=1,
According to (134) we have

by st [y 9] = e, 50

Il we substitute in this equation the values (145) and (146) for
yw, o and (o, 31, we lind
v Y
l! \ 3 P —'_,_\_._.
(147) AR t—ak*w, b

Let us use the notation &, in place of & and let us repeat the trans-
formation by putting

ks:e_‘/'zl") Ly :f\/: wy Ay dky,
so that
(/.. A. l‘
by k= e
1—ahiiwy Ay

1
! \

If we continue in this way, we find
iAy 3
R /n;‘ ) /\‘2, /\‘] z

I A3} Ay, Ayl
I-——.

(148) b, 3l =

F—2hi b, hyl.

The cases when the continued fractions (142) or (143) terminate
are of special interest. We shall discuss the simplest cases of this
sort,

If !z, z! =0, (134) shows that either |, s =oor |w, 5|0,
'w, 5,1 =1. In the first case v is a linear function of 5. In the second
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case we observe first that z, is not a constant, since
:‘:f\/]n";‘\d;, Ly 3o,

Since | 5,, 5! = o, 3, is a non-constant linear function of z. Since

LWy =1,
we have therefore
s )
el\-.-l as — ‘I
(149) e 2EVAp ez b ad—besZo,
¢ yeiVisig g s +d ad -— By #o,

“where a, B, v, 8, @, b, ¢, d are constants. These ave the functions
which may be obtained from an expouential function w = ¢* by linear
transformation of both s and w-.

To find the intrinsic equation of these functions we observe that

ds, — ad — bc da 1’\/5(0“‘}__6?)0:\/5:‘
€y i Mbe e Dfalad—pp e
ds (cs+-d) ds, (yeivis o)

dv  dw dzy  dw

= om =TT

ds " ds ds T d3

so that
]

\/: w, 3! (Ye,-\,'i S 6)2
= = — ——
o iVa(ad — By)e'vis
and of course
3= ¢ -+ const.

The resulting intrinsic equations arc of the form

Lids —Liviio\?
(150) 0:(/6"’ Y me ?)

Let us suppose next that | z,, 5|0, | 5,, 5, | = 0. Then we have,
from (141),

(151) U A T 1 Py S 1=ty 3l =0,

so that either {w, s, | =oor}w, 5,10, v, 5| =1.
In the former casc we have (rom (134) and (133),

(152) iy 5| =0, iy sl=sy, 8 3,5 ==,

[3]

y

and these conditions imply again |z,,35,|=o0. But from (152)
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we lind
as+b 248
= e— S&= 7

prusy ) = N
(‘:,-{-d 7(3\231.*.0

giving the general class of functions

Aw+ B Nz B
Ao+ | —loe -

53 o .
(ll)\)) (:1\'—{—]) - h(“':_'_l)l

To lind the intrinsic equation of these functions, we put

LWV S =0

Then the second equation of (152) becomes

¢ 3 UIY
04 —_— = | -] ==ag.
(l)l) a ‘/IKO',*
Since
G e
0= S‘—, o= (w')0,
o
we find
. g d/d"\?  nen g '0'\)‘J W g
BY — =] (WP, =3 ) —
(133) . f|<o'> AW Y20 g »(\0" N

It we introduce w as independent variable in place of =, this formula
becomes

. " S/ \? LT v o2 3 dONY
(1o0) z_ =) =a(w' NP s = = ’
c i\e i 0 dwd alt\dw/
and il we use p as independent vaviable,
N g 5/ \} " G fdDN?
o= — =) =2 P s = = = .
(7) G .II(O'> () | + dor  a\de/ |
FWinally, if we again make use of the notation
: “dtlogh v fdlog0\Y
158 o | ——2 - ~ D )
(135) I_ do? a\ do / ’
as in Arl. 3, we may write
s PR WO e
. o) =manyl R — 1),
(159) - () = en -

The functions which are now studving satisfv the condition (134),



16 ‘ E.-J. WILCZYNSKI.

that is, I = o. This condition is easy to integrate, and so we find
(160) 9=1I(9 + )}

k and c being constants, as the intrinsic equation for any function of
this sort.

Thus, if |z, 3| 0, ! 34, 5,{ =0, the function & = f(3) is either
a logarithmic function of the form (153) with an intrinsic cquation of
form (160) or else

:""*\ 20, :“') :‘2::1x i B2y ;l::0°
We find therefore
o pae s
—_— Se= ’
celVin d 731+ 0

and it only remains to find the relation between 3, and z. According
to (133) we have

!
\

l}:;l"‘ 31

4

[ i
] v 1,

and

iV

B ~
v, 513:30 Tard 51‘:""1l ( '/—a l+5>“ Gty
2 dsl

Y3+ 0 (ys1+ o“)"’

according to (128) and (144). Consequently the relation between s
and =, will be obtained from the differential cquation

(162) V3

[X]

- xd— By )
! (-/: o)

y <1

Of course this differcatial equation may easily be reduced to an
cquation of the Riccati form

ds

- ay 1, (ad—By) . d5}
(163) 72?1 2 (/ l_*_a) -1, = .(j_:s_ )
as,

or else to a linear equation of the second order, namely

N v 1[(ad—fy) ] _
(164) ds? +3 WEESR "=

If y, and y, are linearly independent solutions of (164), we may
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write

__Ay+By,
v (;;)’l -+ Dy’
as the general solution of (163).

The intrinsic equations of these functions follow at once form (161).
We have

1
0:;{_‘:, @ = 3, + const,,
and lind therefore
LI gk
g (ro+d)lee” T pde T

(163)

iya(ad — be) (a8 — By)

‘We now return to the general theory. We wish to find the effect of
the transformation from z to 3, upon 0 and . We have

/0, S-E- —_—
/R ALALLN ;,:u:[\/;\\'\:;d:_.
w .
and we put similarly
. \/‘ Wy 3y . T .
(166) 6, = -—'—([‘T—-’ o, = [ Viw, 3l ds = 3.
a3,
We have found
i - ]
by gyl — L L R U R L AL Y
o LWy 3 )

if we again put }w, 5| =, and

PR = _; l% —%<%>2] =(WNrG=1),

according to (159). Consequently we find

=1,

(167)

and therefore we find the formulae

(168) 0 =0yl, oy=s5= [\/i da,

Journ. de Math., tome 1I, — Yasc. I, 1923, 3
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which enable us to find the intrinsic equation of w as function
of 3, when the intrinsic equation of w = f(3) is given.
Let us apply the these formulae to the intrinsic equation

(169) =ao+ b,
where @ and ) arve constants. e find

a? a 1
= —— 01: - 0, = ‘-I::|0g((ﬂ?+b).
2(ayp + b)? Va ' ‘a

Since 0, is a constant, w is a logarithmic function of 9. In fact

dO — ! ol " . ! N
w= [ e T glshlag ) s e

We also have

1 .
18 W = s e,

\

Therefore = must be a quotient of Lwo independent solutions of

(1.:; UV - e
;?‘_‘T_' -_ m e I=0
1f we put
e = p, h‘%m o= m,
this equation becomes
.)7(1-)—3'-4— i:- — m==0
dx® ' dx T
which has the series
(170) 5= S mk sk
(Ay
k=0
as one solution and
. dx
Sa = 35 E?

as a second independent one. \We shall therefore obtain a function
with a linear intrinsic equation by putting

dx

(171) s= [ —> @ = e,

and then inverting this relation for « as function of z. The most

.
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general function of this sort will result, of course, if we replace = by a
linear fractional function of .

This example is only one of several in wich Bessel functions or other
closely related functions make their appeavance.

\We return ouce more to our general theory. I'rom (168) we find

dlogl, (’dlogO 1 dlogl]
_— —_ y

do, VIN do a do
d*loghy v (cflogd v & logl) _oaodl (dlog@ l_dlogl)
TdeY T ( ot Ta Tdet ] 2l do\ do r dy

If we put
2 oo ’ o e
(152) L= — [(I log 8, +£(¢llo‘,0‘> "

'~y 2
eh

we find therefore

(193) =l — 2

2

“drlogl 1 /dlogl\Y
St G dy /]

Thus if 1 is a constant, an important special case which we shall
consider more fully later, 1, will be equal to 1.

9. Correspondences defined by the oseulating lincar function. —
The simplest cogredient which we have found is the pole of the oscu-
lating linear function. If = is the point of contact, we have the formula

for this point. We now proceed to study the question : as s changes
its position in the s—plane, how will p move? Of course, the above
equation contains the answer to this question since w = f(3) is a
given function of =.

In order to find d——’_’ it suffices to diflerentiate the expression for p.
This is done most conveniently by making use of the formula

ah=(h +1) g,

which we have alrcady employed.
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We find
P=1+4 Qutry — @, @y — aai—3a,ay _3ai—aa)
« a; at
and therefore
3(a}—a,ay) . 1
(174) P’:—'!"(',TA(P——S)‘:—;U\',;;(p_:,):_
1 R

On account of the relations between z, p, and 0, where @ and 4 are
the singularities of the osculating logarithm, we may also write

. , ."1__ 2 l__ 2
(l70) p:.‘:~~(; _—l:) = (l—)—_——f_’) .

The zero of the osculating linear function was given by

a,a a2un
(176) T L
!— —
a,a aj e a(n')?
We find
,
(‘77) "'::_";;“'s s{{e—3),

so that p and ¢ are solutions of the same Riccali equation

({)\ 1 0 N

(178) (—E:-—;,n',:{()\—:)n

Lct us denote by / the point where the osculating linear function
assumes the given value A. Itis a simple matter to write down the ex-
pression for /, and to verify that /is also a solution of (178). \We note
the familiar fact that the cross-ratio of any four solutions of the same
Riccati equation is a constant, and obtain the following theorem.

Let by, &y, &y, by be any four constants, and let 1, 1,, 1y, I, be the
Sour potnts in «which the linear function, whick osculates w = f(3)
at the point 3, assumes the values k,, ky, k,, k, respecticely. If z
moves in any way in the s plane, the four points i, L., 1, I, will
move in such a way as to keep the cross-ratio (I, Ly, l;, l,) constant
and equal to (k,, ky, ky, k).

Equations (174) and (177) also show us that the pole or the zero
of the osculating lincar function will be a fixed point, that is, the
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same point for all positions of s, if and only if w is itself a lincar
Sunction of 3. The same remark applies to the point /.
- 1f we introduce w or 9 as independent variable, in place of z, we
may write
dp dp

- ______'_:‘ - )2 A S __..g
(159) aw =" = SH(p— 3>

giving rise to the new expressions

- %’ 1\/3\/((" dw
L}
(180) M= (————,'_ 3 9 /
for 0 and 2.

Lf w is given as function of =z, we obtain p as a function of 3 by
operations involving difterentiations only. If p is given as function

of z, w can be found by two (uadratures, namely,

‘=

Y =
(1) W=y clfe‘l"“"ds.

It happeus frequently, in the theory of lincar differcntial equations,
in the theory of automorphic functions, and in many problems of diffc-
rential geometry, that | w, x| or 0 is given as a function of =, or of w,
or of 9. The equations (174) and (179) will then be of use in connec-
tion with the determination of the corresponding function w. Thus,
if ;w, 31 is given as function of 3, the Riccati equation (174) will
determine p, and & mzy then be found from (181).

Of course, if one solution, say p, of (178) is known, all other solu-
tions may be found by quadratures. 1f we apply the familiar formulae
of the theory of the Riccali equation, we obtain the following result.
If p is one solution of (178), the general solucion will be

s"ﬂ'_"_:‘

PR

,["ll'
('_/(p-—v)’e‘ ds

where ¢ is an arbitrary constant.

(18a) l=p+

’
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We may write

a,
€— 3= Qs = pP—= s
l-—ﬂ—(ll 1——(—’-'-(1»—:)
(10(?3 (Io
whence
W e—p o (L 1
n‘?w(f'——:)(p-:)_p--;_e-—:.—;—c‘:—-p'

[f we differentiate both members, making use of (174) and (172), we
lind
?logw 1 1

& T (s—e) + (s 3!

.
f

<

e

whence follows the theorem :

If ¢ and p represent the zero and the pole of the lincar function
which osculates w = f(3) at the point 3, ¢ and p will, in general,
be non constant functions of z. But the formulace

: t 1
logw = [ — —— }ds,
J\s—e s—p

(183) dlogw — LI
d= s—e F—p
d*loga 1 1
o - el )
U ds (s—e)  (s—p)

will hold, just as though e and p were constants.

Of course it is understood that, in the first of these equations, the
path of integration is specilied.
We proceed to make some simple applications. Let w = ¢**. Then

(18H =34+ -~ e—3— =

Consequently, the sero and pole of the osculating linear function
of an exponential function e are collinear with the point of con-
tact. They are situated at equal distances on opposite sides of the
point of contact, and the mutual distances of the thiree points
remains constant for all positions of the point of contact.

\We may generalize this theorem by subjecting = to a linear trans-
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formation. To aid us in making the generalisation we remark that,
according to (184), there exists a parabolic linear transformation,
namely,

i

u

+
_lw

which makes corvespond to =3 and 3'=¢, the points "=
and 3" = s respectively. The generalized theorem is as follows.

Consider a function of the form w = o";":&. If p and < are the
pole and the zero of the osculating linear function whose pornt of
contact s 3, the cirele deternidned by p, <, and s will pass through u.,
and all of the cireles obtained in this way, fordifferentvaluesof s,
will have a common tangent at w.. The pairs (¢, p) and (3, w) will be
harmonic. The parabolic linear substitution which has p. as its only
double pornt and which makes p correspond to z, will also make =
correspond (o s.

In both of these cases, whenever : describes a circle, p and e will
also describe circles. \Ve now ask the general question; how shall we
find the most general function w = f(z) such that, when = describes
any circle in the = plane the corresponding locus for p is also a circle?

I'or such functions we must have
o Qx as -
(183) pP= ?3—:8@’

where a, B, v, ¢ are constants, and therefore

»

A 2(y5+ 90)
W p—3T —ysit(x—0)s+ P

Assunme
YEL (z—0) 4+ 4By =o.
Then we may write
o' A, A,

wl T

’
s—a, I—ay

where @, and @, are the two finite distinct zeros of — yz* + (¢ — ) s +f
which exist in this case, and where we have the equations

)
A+ A==, A+ Njay=2 -,
7



24 E.-J. WILCZYNSKI,

for A, and A,. We write

(186) Ay=—i1d A=m—1—), A= —— 1,

and obtain
W= /;f(: — a5 —ay) " ds + |,
or

. A\
(187) we—{= A <“ (l,) s

where & and [ are arbitrary constants, and wheré A is determined by
the coefficients «, 8, v, ¢ which occur in (185). Evidently we mayalso
regard A as being assigned in advance, the quantities «, 8, v, ¢ being
determined subject to this condition.

We find

1 l’_‘)\‘ S = -2 i |—_)\= s—a,

where the constant g, depends upon the choice of the lower limit of
the integral 9, and may be equated to zero if we take specilically

c;::f Vi, sidas.

2

Consequently the intrinsic equation of power functions ol the
form (187) 1s

—a, P — A - /.'T—:(?—?u)
(188) f="1 T ‘\/—T—v Vie .

In a form more convenient for future reference, we may state this
result as follows,
The intrinsic equation of a power function of the form

- )
s —a\" . .
w:l—i—m(_——«—')s M=o, =1, asZ g
>
s
/2
G=ae Vi-r®,
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Let us consider now the casc

- ) 7#0,  (a—d)2+4By=o.
We may write
o —ay(ys+e) b

- = Iy
!

s —a) s—u (3—a)

18
whence

w={+me ¢

These are the exponential functions discussed previously, and may be
regarded as limiting cases of the functions just obtained.
Finally if y = 0, « — ¢ # o, we have

W' 20

VS e=9s+p 07O

which may be wrilten

w A
=,

w! 5—a
whence
w="A--m(3— a)\+ if Azt —,

which is again of the form (187) exceptfor differences removable by a
linear transformation oir z. [f A =—1 wefind a logarithmic function.
The case y =a — & = o is also easily disposed of.
Thus the functions, for wich p and = are connected by a lincar
relation, are the power functions of the form

as+ 3y
{+ m<7T£ )
and the limiting cases in which they become exponentials or loga-
rithms.

These same functions also have the further property that the sin-
gularities, a and b, of the osculating logarithm are connected
linearly, with each other and with the point of contact. Consequently
when = describes a circle, p, a, and b also describe circles.

This property of the points @ and b may be deduced easily by
making use of the general formulae for @ and b. But we shall find an
independent proof of this statement later.

The solution of the corresponding problem about the zero of the

Journ. de Math., tome 1[. — Fasc. [, 1923. 4
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osculating linear function is immediate, since ¢ will be the pole of the
. . . . N . I .

osculating linear function for the reciprocal function —. Therefore the

functions for which e and s are connected by a linear relation are of
the type
1

- %
l+m<a;+—§>
ys+4a

‘We now return to th~ general theory. We may regard the equation
8 Y !
connecting p and w as defining a new function of z, namely

w'

W=P =32
and we may consider the pole p, = «, ol i¢s osculating linear function,
so that
Wy

Wy=py =3+ 2 \—‘—,—,I
[l we continue in this way, we obtain a suite of functions, w, w,,
w,, etc. The following two questions present themselves at once: when
will the suite be a terminating one, and when will it be periodic?

The suite will terminate if and ounly if one of the functions of the

suite, say v, has a {ixed point for the pole of its osculating lincar

function, that is, if and only if &, is a linear function,

‘We may then find w;_, by means of two quadratures,
oz
a f o
Whet = Ck—10 clc——l.lj U‘/‘“k “ds.

To determine w;_, we have a similar formula. Thus we obtain finally
w as a result of 2k quadratures.

The same formulae are, of course, applicable to the case where oy
is any assigned function of z.

The simplest case of a periodic suite is given by w, = w. In that
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case w must satisly the differential equation

! »
(14 1 4 2
(|89) ")_"::—-}-2:‘—’;, or — = ]

w' W —3

which has a first integral of the form

(1go @) w —logw/ = logh(w — z)3,
or
(1go b) (o —z)wl e =,

where A is an avbitrary constant.
Let us determine the intrinsic equation of such a function. We

have
a’ 2 w” ‘P a(w'—1)
W= F_<F> - (n'—-:)”
so that '
-
)n‘.v,:“):—-(—“‘%‘:)g) 0?:—:‘7-(—‘-“2:7)?
whence

vaan! ds v~ W ds .
cp:i LVaw A == -—t\/'.'. —_—_—:t:\/an"—i—o‘.,
Ww— 3z 2 \/“.' !
so that
1
W= ;((p——(@u)“.

From (190 ) we have
h(w — 3yl == e

so that
( 50 o
P ok eV = —aker T
LE we write y'— 2h = «, 3,= — b we sce that
i = {(P-+ 1
{191) 0—*(10'?

is the intrinsic equation of @ function w = f(3) which has the pro-
perly that, for ecery s, the pole of the osculating linear function is
given by w.

Of course, as in all cases, we may equale b to zero, the lower
limit of the integral invariant o being selected accordingly. Ve then
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1
] —= 9 ‘ . 1 T,
w=—=fe * (/c?, (L0 = — = — 202,

=0, Q0 —1=—

)

The effective determination of these functions depends upon integra-
ting this Schwarzian equation for x as a function of ¢. If we apply the
method of Art. 4, according to wich we may replace this problem by
an integral equation, we find that the kernel function is equal to

l-[@ﬂ_*_»"{i] ? ~§p§

Ko, d)=1¢" ¢ ' dp.
% 4,
By mecans of cither method, we see that both w and z will be uniform
Junctions of o. Thus the integral invavianl ¢ is a wuniformising
variable for functions of Lhis class.

10. Correspondences defined by the osculating logarithm. — We
now pass to the consideration of some analogous questions connected
with the cogredients @ and 0, the singular points of the osculating
logarithm. We have found the equations

1 ] 2 20:3
«

“+ fonnd frameny )
- O— = —3 '
(193) . ’ "
. -
? — :;__—__; -+ (T:_——-:- :\/2(“9.

in Art. 3, whence

‘ :

\ 2 —_—_ﬁ—u,O\/;‘
<

a—s o«
194
(194) ' 2 2% a0ys
b—s a, v

If we differentiate the first of these equations, we find

*'-2_—)? (da——d):%———4—05—2\/—2-(120—0,\/50',

T (a—3)p \d= a, at
which gives rise to the formula

(1g5) Z_‘_.‘:_'__u-'e'(a—;)ﬁ,
-~ 2
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and similarly
db Uomi e
(196) | F:__——;/—;n 0 (b — )%

The equation
(197) a=—(7=)
db b —:

which follows from (195) and (196), is especially simple and frequently
useful. It is fundamental when we attempt to determine a func-
tion w = f(s) for which the relation between a and b has been arbi-
trarily prescribed.

In this connection we note the following formulae, which follow
from (193), (195) and (1906). :

Let a and b denote the singular points of the osculating loga-

rithm of w = f(3). In gencei al @ and b are non-constant junctwm
of 5. But the equations

o 1 1
v=J m[‘:—a“':z]d

das 1 i
(198) -(??__5—\7;‘ :‘——a—“s—()_’
dw

_,',[__ ! ]
Z T gal GG—alR T G=0)Y

hold, just as though a, b, and § were constants.

As equations (195) and (196) show, @ and b will be fixed pounts,
provided that they are defined at all, if and only if w= f(z) is
itself a logarithmic function of s.

For the exponential function w = ¢** we find again a lesultol note-
worthy simplicity. We have in this case

a—:.:;((l—i—i), b—::z(l—z'), a—b= =,

Thus, in the case of the exponential function, the triangle asb is a
rzoht isosceles triangle, right angled at s, and Ltsszdes are of cons-
tant length. The correspondmg theorem about exponentials of the

form ¢ *~* may be obtained from this by projective generaliza-
tion.
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In these cases, just mentioned, both a and & describe circles whene-
ver z moves on a circle. We shall solve the more general problem :
to determine those functions w = f(z), for whick a and b are con-
nected by a linear relation with constant coefficieats, so that whene-
ver a describes a circle, b will also describe a circle.

Let
(199) mab + na + pb+ q=o,
where m, n, p, and ¢ are constants, and
np — mq = o,
be the given relation between a and 6. We may assume
(200) np —mg=—1u

wilhout any restriction of generality. We find from (199)

(201) (mb + n)da+ (ma+p)db=o,
and from (197)
(202) {(b—3)da+(a—z3)*db=o.

If da and db are not both zero, that is, if our function w = f(z) does
not reduce to a logarithmic function, the consistency of (201)and (202)
requires

(203) (mb + n)(a— 3)1— (ma—+p) (b—z)t=o.
‘We may write (199) as follows
(mb + n) (ma +p)=np—mqg=1,
as a result of which (203) becomes, after multiplication by mb + »,

(mb+n)*(a—:)2=(b—3),

“

whence
(mb+n)(a—s3)==x(b—:3).
We may choose the signs of m and 7, consistent with (200), in such

a way as to have
(mb+n)(a—sz)=b—:.
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Therefore, the existence of a linear relation between a and b implies

the existence of linear relations between a and z, and between b

and 3, namely

(204) mas+(n+1)a+(p—1)s+q=o,
mbs+{(p+1)b+(n—1)s+q=o.

If we computez and hom these equations, and substitute these
values in (195) and (19()), we find

W= o 2op)
[mz*4+(n+p)s4+q]

On the other hand we have from (198)

W= { L S J—‘—l— it
¢2 s—a s—0b ~\/§ m:2+(n+p):+q’
so that we find

0 2 2 2 B 1
me:-‘*’-&—(n-y—p):-}—q m(s—r)(s—s) m(r——s)'\:—rws—sJ’

if we denote by = — 7 and 5 — s the factors, supposed distinct, of
ms® -+ (n+ p) s+ q. But this leads us back to the functions consi-
dered in Art. 9, for which there exists a linear relation between z
and p. Thus, the functions of the form

as+ 8
l+m<y~+6> ’

and the exponentials and logarithms which arise from them as
limiting cases, are the only ones which have the property in ques-
tion.

The same class of functions is obtained in answer to the following
question. We know that for any analytic function, the two point-
pairs (p,, p.) and (g,, ¢,) are harmonic, so that the cross-ratio (p,,
P2y 415 g2) is constant and, in fact, equal to — 1. But the two cross-
ratios

M= (P Py 5 1) = i— B P,
(205) S—pP: q1— Pt

lh= , Pay 5, =STP TP Pe
2= (P1> P2y 51 ¢3) 5 —p: Ga—pr
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are, in general, nol constant. Let us determine those functions for
which one of these cross-ratios is a contant.

‘We find at once
X] + )\2: o,

so that the constancy of one of the two cross-ratios, A, or A,, im-
plies that of the other.

To compute the expressions for A, and A, in terms of a,, a,, a,, a,,
a,, we may assume the point of contact z to be the origin. Then we
have, according to Art. 4,

(206) 11192:%’ '71‘*-‘/2:‘2"

where

(207) A=aia;—al. B=aa,—a,a;, C=a,a,—al,
and ,

(208) p,:t—;:(a,-’r-i\/x), Pr= ;::(ag—i\/K).

Consequently we find from (205), putting z = o,

_ prA—Bp,+Cp:  P4iQYA

20! A )\q—‘—,, — = ]
(209) TP A—Bp+Cpl T P QYK
where
(210) P=a,Q+ a,(Ca;—Aay), Q=12Aa,—Baq,,
so that

l—7\])\-3 2__ .‘\Qg
(211) (l+7\1>\2> =—pr"

AQ

In the case under consideration —5;- must be a constant.

If we put ) w, 5| =g, we find

! 1 P
(212) A_Ga,o', B_éa‘a,o’—*— PR
C:-—La*o*—'r-J—ala.,a’
36 ! 2f 7
so that

(213) l’:~—l-1§a§a’, Q= E{Z‘-a',"([mgc—a,c’).
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Consequently the above condition reduces to

3
a,c®

ath e
(214) ha,0 — a,6'

— {=consl,

But we have

’ ’
a, 4
V9 g, g _ L,
o

a, /i

2
o -

I we substitute these values in (214) and integrate, we find

§— ol

b
W—ua

where ais an arbitrary constant. Therefore we find further

=
2]

T T
TTo(ayr T (Ww—a)?
Butl we have
1 — A
k= .

a?

Cousequently one solution of the above differential equation for 3,

is

e (1)"',
where

e R AR
Sinee Lwas an arbitrary constant, the exponent & may haveany value.
Morcover, the differential equation is invariant under linear transfor-
mations upon 3. We obtain again, therelore, the functions of the

form
(o::. - 3)”
(A4 ——=
N7 S0,
with an arbiteary constant exponent #+ in harmony with our original
stalement.

These same functions arise also 1f we demand that the cross-ratio
(2, Py o yy) shall be constant, but we vefrain from giving the proof.
tn the particular case when Q = o, we lind (3, p, ¢,, 2) = — 1, and
the function sw reduces to a logarithmice function.

o

Journ, de Math.. tome 1. — Fasc. [, g3,
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XI. — Functions for which the quadratic satellite of the point
of contact is fixed.

The quadratic satellite 7 of the point z was defined in Art. 4
as the harmonic conjugate of z with respect to ¢, and ¢,, the poles

of the osculating quadratic. We propose to obtain the formula for Zl—i

and, in particular, discuss briefly the cases wlien 7 is a constant.
‘We have

212
215 T — =540
(213) ¢+ ¢ B

A A
———~-+SP,

where we are using again the notations (207) and the further rela-
tion
(216) A'=4B.

If we differentiate (215), we find

ne_ "
21 v= M, assuming Az o,
7 (.‘\')‘ ;2

This formula may be written in a number of other ways, namely
Y

ANE D (p! )2 02 g” 5O\? w’ 0
(218) (K) = — 3a (') 0—16‘\—0-——[;&5) ]+16;7 k
or
dlogA\? dt __ "1 dt0 5 [daNe R N
(219) (—————) E__-lﬁla - ——-,'—0_,<——> —+-..0J,

dw

which may be written

dlogAN® dr __— Tors i 1 d0NY
(220) ( T > (—r =4 [60 ~—-|l0 +<é m) J)
since

(221 = ! “dlogf WAL __’([z|0g@ L/ log0\e
=g T (T ) = *5( g >J

Finally we may write

dlogA\*dz a p dlogO\?
(222) ( L >E_—40*L8—4l+< o )l

1]
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If 7 is a fixed point, we have v = o. Lct us assume that 03 o, so

that «w = f(s) is not a lincar function, and also that A is not a cons-
tant. Then we must have

dlogf\? _
(223) 8-|—< o >—41_0.

The integration of this equation will give us the intrinsic equations
of the functions under consideration.
Let us put

, __dlog0 _ de v,
(224) u = o ) l__-—<d—q>+-2-u>>
so that (223) becomes

du 3 _
(225) I?—f-zu +2=o0.

This equation has two constant solutions, namely

u=1=2 gh

leading to the intrinsic equations
+2 \/fzi;:
(226) 0=*re 8

According to (188) the corresponding function is a power function
whose exponent A is equal to == 2. That is, the functions which cor-
respond to the intrinsic cquations ol form (2206) are rational func-
tions of z of degree two, whose two poles coincide. It is quite evident
that quadratic functions of this sort must be solutions ol our problem;
the fixed point = in this casc coincides with the two coincident poles
ol the function.

If « is not a constant, we conclude from (225) by integration,
that

(227) u:%\/(-icot\/z—g(cp—m).
and

(228) 0=n sin%-?ﬁ((p——m),
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where mand n arve arbitrary constants, and where m may be equated to
zero without essential loss of generality.

Let us return to equation (217). I A’ 0, 7'= 0, we have

AAY
a9y~ =0

whence lollows

(239) A==(hz+{) 5,

where & and £ ave arbitrary constants, and this formula also applies
to the case A= o by putting & = o. If now we make a lincar trans-
formation of the independent variable

- asi+5

R

and compute the resulting value of A which we shall call A, we
find

=y 0P (yr )M (A0S
(ado) P T i P g

Sinece @, B, v, ¢ are at our disposal, we may clearly choose them in
such a way as to make A hecome a constant, any nonvanishing cons-
tant in factif A = o, that s, il & is not a lincar function of z. Equa-
tion (215) tells us that this transformation has the effeet of removing
the fixed point 7 to infinity.

Let us then assume that this transformation has been made, so
that

(231) A=a,a;,~a}=a=consl.,
and thevefore

(232) B

N=a,a, — a,ay— o,

LN -

These equations may be written

53

" 4 LN o
(233) what — (W) =, At o n" o= o,

. - ” X 2 .
These equations ave satisfied by @”"=aq, o' == \/— 5 which

/
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corresponds Lo the special case mentioned above, when « is a qua-
dralic function with coincident poles. In all other cases, we may write
in place of the second equation (233),

TR w’

—_— 2 — =0,
w w’ |

whence
“'r/l: [)(I\‘I )’!’ 1) ./'7/..‘:().

If we substitute this value for «” in (233), we find
(w'Y= s[b(w")*-a]
D] :

We saw that it involved no essential resteiction of generality to
assuime any convenient value for the constant @. Let us therefore put
a = 0, so that we obtain

/(ln"\)’-’ 2 ., ;
Y 2 IV e ST A Y — AT
(Y G i
Consequently w” is a doubly periodic function of z, which is easily
expressible in terms of the Weierstrass p lunction, with the inva-

riants 2, = o, g, = 4, namely

ar = E- . .
(239) wi=p (\/(_)\.+/.>’

where A s an arbitrary constant. Sinee g, = o, these clliptic func-

el

tions belong to Lhe equi-anharmontie case. But we have

. o dl(u)  d*logoiu)
(236) pli)=— e T du?

where { and ¢ are the Woeierstrassian 7 and ¢ functions. Therclore
we find from (235)

[

(237) n\‘::-~\ %I(\/ (E::-l—/\')-!—l.

We have obtained the following vesult. 7The functions for which
the quadratic satellite of the point of contact is a fived point, are
ctither quadratic functions with coincident poles, or else they can
be obtained from a linear combination like m¥(u) + I, where J(u)
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is an equi-anharmonic Weierstrass ¢ function, by equating u to
any linear function of =.

XII. — Enlargement of the group.

So far we have been engaged in studying the effect, upon the func-
tion w= f(s), of linear transformations ol the independent variable z.
If we consider instead linear transformations of the dependent
variable w, we obtain nothing essenlially new. IFor we may regard all
questions of this king as being connected with lincar transformations
of the independent variable for the inverse function z = f~'(w).
Moreover, the analytic form which these results would assume may
also be regarded as familiar, since the Schwarzian derivative will be
the fundamental differential invariant for all such transformations.

‘We do obtain something essentially new however, if we consider
the effect of linear transformations upon bolh variables at the same
time. Let us, therefore, consider the group of transformations of the
form
_as+f — _av-+b

(238) sS= m, W= m,

where o, 8, v, 8, a, b, ¢, d ave arbitravy constants. This group is
clearly a six-parameter group.
The integral

(239) cp:f\/;‘!f,:.{d;

evidently maintaius its invaviant character under all of the transfor-
mations of our enlarged group. The same thing is not true however

of 0. We have, from (238),

N Rl ) A —__ ‘ad—bc
(240) d-* = (7: - 6)2 d#y d“' = (———*—-——-—(:n‘ = ({)1 dl\ sy
and from (130)
(241) T = QIO
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According to (240) we have

(—i——n'__ad~l)c<y:+6 2 dy

d: ~ wd —Py\cw+d, ds’
so that :
= (ew+d)?
(262) ===

From this equation we find

dlogd  [dlogd 2¢ | (ew +d)?
dv | dw ew+d| ad—bc’

d*logh _ [d?logd Lo dlogl L2 e? (ew-+d)*
dor L anr T ew -+ d dw (e +d)*] (ad — bc)”

whence we conclude that the function

_ 1 d*logh 1 (dlogf\?
(242) l—‘”@il an?® _;( dw >]

is an absolute differential invariant of the enlarged group (238). This
function has alveady presented itself to our attention, and we recall
two other forms in which is may be written :

d*logf 1 /dlogf\®
43 —_—— 2 P B s
(249) t= [dcp* +2< dy >]’
and
(244 | = I d*logh 1 'r’llng0>’ g
244 ==l i) —w

We observe that Lis a differential invariant of the fifth ovder and that
there exists no differential invariant of the combined transforma-
tions (238) which is of lower order. We express this briefly by spea-
king of Las the fundamental differential hy perincariant of w = f(3).

We shall speak of the relation which expresses | as a function
of 9, as the hyperintrinsic equation of the function « = f(z). This
hyperintrinsic equation will be the saune for all functions which can be
obtained from w == f(3) by all of the transformations of our six-para-
meter group. Moreover it is evident that, whenever I is given as an
arbitrary analytic function of 9, we can always assert the existence of
infinitely many functions w = f(3) which correspond to the given hy-
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pevintrinsic equation, and that all of these functions are transformable
into each other by meaas of transformations of the group (238). We
can even be more specific in our statement. 11 we have given the
hyperintrinsic equation

(245) 1= G(o)
and if we put

; _dlogl
(246) [ R -—m——- )

we find (rom (245)

(,{” L o — Lo Go).

(247) do %
so that « may be found by integrating an equation of the Riccati type.
We then find ¢ from (246) by a quadratuve. Thus, if the hyperin-
(rinsic equation of a function is given, (ts inlrinste equation may
be found by integrating an cquation of the Biccart form, and «a
quadrature. The methods for obtaining the function & = f(z) itself
have been discussed previously.

However, the most symetrical solution of our problem is as follows,
To find the functions w = f(3) whose hyperintrinsic equation is
I =G(9), integrate the two Schwarsian differential equations

(248) oy ol =1, Vs oi=l—

and then eliminate .

The familiar connection between Schwarzian equations and linear
differential equations of the second order enables us to draw some
simple but far-reaching conclusions.

Let W, and WV, be two lincarly independent solutions of the linear
differential equation

¥ AW
(249) e ~+ ;l\\ = 0.
W W, . o . » .
Then w il be a solution of the livst equation (248) and any solution
X . d

. . . . ! . . . N | US
of the latler equation will be a limear fractional function ol W Simi-
1
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. . . A . r .
larly, any linear function of 7 where Z, and Z, are independent solu-
4
tions of
(")‘:)0) .(.]._-_/‘;.{‘ .'l;(l~—-l)7.—_—u.

dy

will be a solution of the second equation (248).

Let us consider now the case when | = (x(9) is an integral, ratio-
nal or transcendental, function of 2. Then wy, &y, 3y, z, will also he
integral functions of 2, and therefove w and 3 will be uniform mero-
morphic functions of ». Ol conrse, in special cases, these functions
may even be holomorphic. We have obtained the following theorem.

If a function w = f(z) has the property that its fundamental,
hyperincariant |is an integral (rational or transcendental) func-
tion of the integral invarianl g, then this integral invariant is
a uniformizing variable for the functional relation w = f(3).
More specifically, w and s will both be holomorphic or meromorphic
Junctions of 3.

In all cases the two linear differential equations (249) and (250)
arc very closely related. They have the same singular points, and at
each of these singular points, the canonical fundameutal solutious
have the same exponents.

Lel us denote the inverse function of w = /() by 3= f~'(«w),and
let '—‘5, 0, 1 be the corresponding invariants. \We shall then have

(251) :3._?::'i. ;\\',Q::i—l.
and
do'= s, widnt= — w3 dit=— L,
so that
(252) (I;S -+ (I(‘j'z 210,

Consequently we lind

.~ \ - R \ (/0 ! . . ' T .
(:200) ,:.(?.:.',:.Q‘(——__ ==, 0, B N LA

dy

Jowra de Math., tome Ll — Faseo 1 gl s)
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I'rom these equations, we conclude

— :,:.):.':-I:_;l——l‘ — o ==,

whence

(‘!:)4) [ EH BEENN

Therefove, the fundamental hyperincariants of two incerse functions
have wnipy- for their swm. Consequently the inverse of any function
whose hyperintrinsic equation is L= G (3), will have ahyperintrinsic
equation of the form 1—l=G{% i3
p . ! . . .

We proceed to determine those functions for which the hyperinva-
riant | is a coustanl. In that case the Riccati equation (247) is easily
integrated. It becomes

. s 1 .
209 :xf——l e L AR SR
7
“w
if we put
. 1.
(256) I = 3 22 const,
We conclude
. e
ads {oon -
(257) = it

unless « should be a constant, equal to 2= /A, in which case the right
member would be indeterminate. This special case, « === 74, leads
to the ntrinsic equation
(238) § = gErrF L

which we have discussed many limes, and to which correspond the
powet (unctions of the form

Cx3 is 3\
(22
‘,:-i-—b

If « is not a constant, the integration of (257) gives

. dlog? i R A
(239) — = — o tan (g + u),

(/?
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where u. is a constant. A further integration gives

-

i
(260) D zivcosd = (9 -+ @),
2

where visa further constant, as the intrinsic equation of all of those
Junctions for which Uis « constant while wis not a constanl.

The corresponding functions are again power functions, but of
the more general form defined by

. an -4 a3\
(261) Y, _<7: i 6) ’

A\l
where the exvponent r is connected with the hyperineariant 1 by
means of the equation

r 1

(2062) | R A

This may be proved either by starting from the intrinsic equa-
tion (260) and integrating it, or more easily, by observing that I will
take the constant value given by (262) when we put &= 3", and
remembering, that all functions obtainable from o = z" by the trans-
formations of our six paramcter group, have the same hyperintrinsic
equation.

Formula (261) becomes nnintelligible when 1 is equal to zero or
anity. However in these cases we sce divectly, from (248), that
either

aw -i- b
163 == low
( ) cw o 2
or
N ans b
(264) —_—
o

and these functions may be regarded as included in (261) as limiting
cascs.

I 7 === 2, wis a rational guadratic function of 3, so that we find

(265) l -

(X1 RASN

as the hyperintrinsic cquation of all quadratic functions. The
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intrinsic equation of a (uadratic function is either of the form

-9 /(i T
(266) e VY
or

The quadratic functions which correspond to (266) have colneident
poles, while those which correspond to (267) have distinet poles.

The differential equation of all quadratic functions, which we found
in Art. 4 in the form ¢, = o, is of course equivalent to (263 ), and may
therefore be written in any of the following forms :

U logh vidlog\: 4

o7 - = ey,
do? 2\ do Jd
d?( 3 "d-’;j‘-‘ ‘

A
]
=24
%)

=

<

Q a9 o

We shall henceforth speak ol the functions defined by (261) as
general power functions, and use the word special power function lov
those of the form

w4

[ 23 -t ,3)'

yi+q

If @, ¢, @ and v are all different from zero, we may write the deli-
ning equation (261), of a general power function, in the form

W2 3 —p\"
(269) n‘_6‘_&1(:_6) ;

and, unless 7 is an integer, w will be a muliform function of 3, which
has = = p and 3 =5 as its only branch points. The inverse function

. .o v . L. . . -
will be a multiform function unless - is an integer, and will have A
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and w as its only branch points. If not all of the numbers a, ¢, o, v are
different from zero, the corresponding hranch point is at infinity, and
the usual changes in the form of (269) should be made.

We shall use the term branchpoint for each of the points 5, o, A, @

. “p 1. . - .
in all cases, even if r or ;1S an integer. We mav then characterize the

spectal power functions as being those for which the inverse function
has one ol its branchpoints at intinity .

\lll. — The osculating power function.

\We have studied in detail the functions for which [ is a constant.
There are number of other interesting cases in which the equations
(248) admit of explicit integration. In gencral those cases in which
the corvesponding Riccati equations are integrable by quadratures,
lead to functions connected with Bessel functions. But we prefer not
to develop this theory any [arther, at present. W e shall show instead,
how to determine the osculating power (unction, that is, the function
ol the form
(26g) vk :M(:‘_p)r,

We— i S—G

which has contact of the fifth order with a given functionw = /(3)at
a given point. Of course, we may again, without essential loss of gene-
vality, assume that the origin 3 = o is the point of contact.

Liet us write (26q) as follows

(270) W — \Zr, 7. = :—10—» W= :z s
) i—0 w—

so that
- (/11‘_-\'/'(9——!7),r NN A%
(270 ds = r—g z ('—-o\’
and

oty dw

Tl e
- ds*  (r—1)(p—0) Tz 2
(272) dv T (s —g) now i —a

s
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From the general properties of the Schwarzian derivative we have,

d ‘—/dZ 2\'1"»_(P—~o‘)2\'7"l
M_(I)ELL\_Etjvj,L“

s
u
i

-~

=
w0
f

L\_‘
1

[/ . l ) ’ i)
L L= s ()

so that
(t—r3)(o—0c)?
(274) 3=
2s—p)(s—0a)
and
. LA 2 2
279 —_— e —
(279) Ty :-—0 1—a

[f (269) defines that power function which osculates the function
(276) Wy @3+ @y

at 3 = o, the expressions (271) to (275) must reduce for 3 =0 to the
corresponding expressions formed for the function (296), which we
now refer to as the function w. Therefore we must have

. o [0 —0\?
Py 3= 03 (wy)i= ;U—-l"’)( ) :

(277) °
277 / "
/4 A A DL

6, wy, p o

and, of course, the hyperinvariant I must assume the same value for
s = o for both functions. so that
L
2= ,.2._...____‘\ .
/ ) lu—-l

—

‘We may ve-write (277) as follows :

1 \* S p e
<P_ - E> =201 — L) (v, 6,)7,

o
1 oW J_

M J
o 3 wh g,

2 l" 0' ’ /

k 2= :__ - 0—" -+ 0y, Ga Vva(r— L)
0

(279)

0 . _
G-‘ o e 4~ 02 L Do \/”(I =1
[ 0
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where a change in the determination of the square root would be
equivalent to a mere change of notation. If we substitute these values
in (270), (271) and (272), we lind the equations

/ K
o P
e 2 Gy — 2
. 7 o 0
Wy — W Jo
8 0= ¢
(280) ) ,
e, g, S —
= = o — ey Gy,
Wy— 4 0

for the delermination of X and w, the branchpoints of the inverse of
Lhe osculating power function, and finally

Wy — A AN
(281) \| I (_) ,
\V0-~ P \p/
or
T,
v, ey U /- | W
-7 Ay Oay = ol o 4 7 WG (= 1)
(282) M= ~ o r{. )
TN B I
N -t ) . N 4
0“ oo v w, 9“ »

Let us omil the index o in our further formulae. The quadratic
salellite of 5 = o was given by

o 2 Al
1+ (s (ha, — taay
where
A=aa,—aj-- (l—i(\\")‘-'; weoslo Il; )i,
so that
A W’ o'
T == +2 —0':

and consequently

We also have
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Consequenlly we find, from (277),

(283)

Let ¢ be the harmonic conjugale of 7 = o with respecl 1o ¢ and g, s0
that

(284) St

We find, from (283) and (284%),

(285) -+

and thercfore the following theorem.

Construct the harmonic co;g/'uga/;s by of the pole of the osculating
linear function, with respect to the point of contact and its quadra-
tic satellite. Then the branchpoints, o and o, of the osculating
power function will be harmonic conjugates of cach otherwith res-
pect to Y and the point of contact.

11 the poinl of contacl is a general point =, nstead of z==0, we
D Y ]
have in place of (279),

" sy -
— %_, -+ -j,; 4w e —1.
286 ' .
( ) 2 w0 T T
=Tty 4+ wiiyva—1},
whence
1 Co 1
289 o= — ( —_ ),
(257) Wagr—I) \s—a  $--0y
and
(288) I\‘;::‘/ __l*__._ ( ! - T ! )(/S.
OVa(i—1) \s—o S0

a formula which, like the corresponding integral formulae for w in
terms of p and ¢, or in terms of @ and b, is capable of interesting
applications.

We wish 1o study however, the variation of 2 and 5 with z. Diffe-
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renliation of (286) gives

AN

" RANE) 2 o
- "-3‘-..(9'—1):— ,__<ﬂ_’> +d log§ +w'0\/2(1—1)

(—=r il 7
—_ —al
= —\/2([—1)+ W J(\/;—_(_l__—-_l)) s
whence
de' e d*logh H"\? w' g aw' 01
——(P—:)"’_?'(" P+ —m _(5> TV I T VaG=1)

1f we make use of the equation which defincs I, this reduces to.

. dp wor
(289) (p—3s)rds 2ya(1—1)
and similarly
. do w' ol

(290) (e—sr ds — ayati—=1)

If we leave aside the cases w’ =0 and ) = o, in which g and ¢ arc
nol defined, we may say, therefore, that neither of the brano/rpomts
of the osculating power function of w = f(z) can be a fixed point,
unles f(s)is zlself a power function.

Il we introduce ¢ as indcpendant variable, we find

Ldl L dl
291) : dp "W 0—- , ‘_ig___ w O-d—(p .
(p—3) do 2\/3(1—1) (6 —3) do aya(1—1)

IYinally we note the (ormulae

1 do 1 do dp p—:\)‘-‘
(292) (9_3)2%4—(6_;)2"@’—0» - = (cr-————: :

Let us consider ihose functions for which p and s are connected
by a linear relation «with constant coefficients

(293) moeg + np+ pe+q=o,
where we may assume
(29%) np —mq=r,

We find, as in the corresponding investigalion for the singular
Journ. de Math., tome 1I. — Fasc. I, 1923, 7



5o E.-J. WILCZYNSKI.

points of the osculating logarithm (Art. 40), thattherewill then exist
linear relations with constant coefficients also between p and s,
and between ¢ and =, namely

( mpz+(n+Dp+(p—1s+g=o,

"
(299) | mes+(p+1)e+(n—1)s+g=o,

I'rom the first of these relations, we find

[ms+n+1]do+[mp+p—1]ds=o,
whence
dp n—p L mE+(n4p)s+gq
ds — (ms+n+ ) pos== ms—+n—+1 ’
s0 that we find, from (289),
n—p _wigr

(296) [I?lZ?—i—(ll—f—p).S""quﬁz\/g(l__l).

From (287) we find

- n—p T
(297) oy R a2 (1 — D).

Elimination of s gives

R -
- 4\/’—"
(298) (r—1) (ll_-n——_—_;dcp,
and therefore
2y/2 —_—
— /i —=1) =
(299) i—pe T alWu—=h=1

as the hyperintrinsic equation of these functions, when n —p #o.

m d ¥
Fhe case n = p leads to d—ff =o0 and therefore corresponds to the

casc | = const., when tlie function reduces to a power function.
We also find from (296) and (297), by division,
I 1

(300) 4(1-l):_m:“+(n+~p):+q'

Il (n+p)*— 4ing o0, and il we denote by z—7r and s — s the
linear factors of m3z*+ (n + p) s + ¢, distinct under this hypothesis,
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we find

4

(i:l')lll(!’—f)

(301) 1—1=Ce¢ . riis. miEo.
I (n+p)*— by =o0,and m = o, we may wrile

m4(n+p)s4+g=m(z—r)?
and we find instead

(302) L— 1= Ce¢ ™7,

Finally, if m = o, we find

0 — -~ n;; — -—*(I
(303) 1 — 1 =C(s — A)rr, A_Iz~hp’

and if n + p is also equal to zero,

(304) i —1=Cev.

n--p=to,

(&)



