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TWO-SIDED INFINITE SYSTEMS
OF COMPETING BROWNIAN PARTICLES

Andrey Sarantsev
1

Abstract. Two-sided infinite systems of Brownian particles with rank-dependent dynamics, indexed
by all integers, exhibit different properties from their one-sided infinite counterparts, indexed by positive
integers, and from finite systems. Consider the gap process, which is formed by spacings between
adjacent particles. In stark contrast with finite and one-sided infinite systems, two-sided infinite systems
can have one- or two-parameter family of stationary gap distributions, or the gap process weakly
converging to zero as time goes to infinity.
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1. Introduction

1.1. Definitions

The article is devoted to systems of Brownian particles on the real line:

X = (Xn)n∈Z, Xn = (Xn(t), t ≥ 0), n ∈ Z,

which evolve according to the following rule: the dynamics of each particle (more precisely, its drift and diffusion
coefficients) depend on its current rank relative to other particles. These systems are called two-sided infinite
systems of competing Brownian particles. Let us define them formally.

A vector x ∈ (xn)n∈Z ∈ RZ is called rankable if there exists a bijection p : Z → Z such that

xp(k) ≤ xp(l) for k ≤ l. (1.1)

The following counterexample shows that not all sequences in RZ are rankable:

x = (xn)n∈Z, xn =

{
n−1, n �= 0;
0, n = 0.

However, if x ∈ RZ is rankable, then we can find a bijection p : Z → Z which satisfies (1.1) and resolves ties
in lexicographic order: if xp(k) = xp(l), but k < l, then p(k) < p(l). This is called a ranking permutation for the
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vector x. Such a permutation is unique up to a shift: for any two ranking permutations p and p′, there exists
an m ∈ Z such that p(k) = p′(k + m) for all k ∈ Z. Suppose we fixed a ranking permutation p for the vector
x ∈ RZ. For each i ∈ Z, the integer k = p−1(i) is called the rank of the component xi.

We operate in the standard setting: a filtered probability space (Ω,F , (Ft)t≥0,P) with the filtration satisfying
the usual conditions. Fix parameters gn ∈ R and σn > 0, n ∈ Z. Take i.i.d. one-dimensional (Ft)t≥0-Brownian
motions Wn = (Wn(t), t ≥ 0), n ∈ Z.

Definition 1.1. An infinite family X = (Xn)n∈Z of continuous adapted real-valued processes

Xn = (Xn(t), t ≥ 0), n ∈ Z,

forms a two-sided infinite system of competing Brownian particles with drift coefficients gn, n ∈ Z, and diffusion
coefficients σ2

n, n ∈ Z, if the following conditions hold true:

(a) the vector X(t) = (Xn(t))n∈Z is rankable for every t ≥ 0;
(b) for every t ≥ 0, we can choose a ranking permutation pt of X(t), so that for every k ∈ Z, the process

(pt(k), t ≥ 0), is (Ft)t≥0-adapted; and the process t �→ Xpt(k)(t), is a.s. continuous;
(c) the components Xn, n ∈ Z, satisfy the following system of SDEs:

dXn(t) =
∑
k∈Z

1 (pt(k) = n) (gk dt + σk dWn(t)) , n ∈ Z. (1.2)

Each process Xn is called the nth named particle, with name n. Each process Yk = (Yk(t), t ≥ 0), defined
by Yk(t) := Xpt(k)(t), t ≥ 0, is called the kth ranked particle, with rank k. By construction, ranked particles
satisfy Yk(t) ≤ Yk+1(t) for all k ∈ Z, t ≥ 0. The processes Wn, n ∈ Z, are called driving Brownian motions
for this system X .

Loosely speaking, in this system each particle moves as a Brownian motion with drift coefficient gk and diffusion
coefficient σ2

k, as long as it has rank k. When particles collide, they might exchange ranks, and in this case they
exchange their rank-dependent drift and diffusion coefficients.

The property (b) is necessary to ensure that particles Xn, n ∈ Z, can change ranks only when they collide
with other particles Xm, m ∈ Z; or, equivalently, ranked particles Yk, k ∈ Z, can change names only when they
collide with other ranked particles.

We can define similar finite systems (Xn)1≤n≤N of N particles, introduced in [3]. These systems are also
governed by the equation (1.2), with the sum over k = 1, . . . , N , instead of over k ∈ Z. As in Definition 1.1, we
denote the kth ranked particle at time t by Yk(t), for k = 1, . . . , N . These ranked particles satisfy

Y1(t) ≤ Y2(t) ≤ . . . ≤ YN (t).

We can also define one-sided infinite systems (Xn)n≥1, where particles are ranked from bottom to top. These
systems were introduced in [23]. They are governed by (1.2), with the sum over k = 1, 2, . . . instead of over
k ∈ Z. Here, the ranked particles Yk, k ≥ 1, satisfy

Y1(t) ≤ Y2(t) ≤ . . .

For finite and one-sided infinite systems, we do not have to impose condition (b) from Definition 1.1. Rather,
we can just rank particles from bottom to top: if we start from assigning rank 1 to the lowest particles, then
such ranking (resolving ties in lexicographic order) is unique, and automatically satisfies the condition (b) above
(with k = 1, 2, . . . instead of k ∈ Z).

Sometimes it is convenient to index particles Xn and Yk in finite systems from M to N , and in one-sided
infinite systems from M to ∞. We shall sometimes use this alternative indexing in this paper, when we prove
our results. In this case, we always indicate that we are using this alternative indexing instead of the standard
one.
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Remark 1.2. For a finite, one- or two-sided infinite system, we say initial conditions are ranked if Xk(0) = Yk(0)
for all k.

Definition 1.3. For finite, one- and two-sided infinite systems, the gap process is defined as follows:

Z = (Z(t), t ≥ 0), Z(t) = (Zn(t)), Zn(t) := Yn+1(t) − Yn(t).

In other words, the component Zn is defined as the spacing between adjacent ranked particles Yn and Yn+1.
Let R+ := [0,∞). The gap process Z takes values:

(a) in the positive orthant RN−1
+ for a system of N particles;

(b) in R∞
+ for a one-sided infinite system;

(c) in RZ

+ for a two-sided infinite system.

Definition 1.4. A stationary gap distribution (for finite, one- or two-sided infinite systems) is defined as a
probability measure π in the orthant (finite- or infinite-dimensional) such that there exists a version of the
system with Z(t) ∼ π for all t ≥ 0.

We study two main topics in this article for two-sided infinite systems: (a) weak existence and uniqueness in
law; (b) stationary gap distributions and long-term behavior for the gap process Z(t), that is, weak limits of
Z(t) as t → ∞. Most of our results in (b) are for the case σn = 1 for all n ∈ Z.

1.2. Notation

The symbol ⇒ denotes weak convergence. For α > 0, Exp(α) stands for the exponential distribution with
rate α, and mean α−1. For x ∈ RZ, we define

[x,∞) := {y ∈ RZ | yi ≥ xi ∀i ∈ Z}.

Take two probability measures ν1 and ν2 on RZ. Then ν1 is stochastically dominated by ν2 if

ν1[x,∞) ≤ ν2[x,∞) for all x ∈ RZ.

We denote this by ν1 � ν2. Same definition applies to probability measures on R∞ and RN for finite N . Two
random variables ξ1 and ξ2 satisfy ξ1 � ξ2 if their distributions P1 and P2 satisfy P1 � P2. Take subsets
I ⊆ J ⊆ Z. For a = (ai)i∈J ∈ RJ , define [a]I := (ai)i∈I . For a probability measure ρ on RJ , let [ρ]I be its
marginal, corresponding to the components indexed by i ∈ I:

(zi)i∈J ∼ ρ implies [z]I := (zi)i∈I ∼ [ρ]I .

Denote the tail of the standard normal distribution by

Ψ(u) = (2π)−1/2
∫ ∞

u

e−z2/2 dz

Fix a T > 0. The modulus of continuity of a function f : [0, T ] → R, corresponding to δ > 0, is defined as

ω(f, [0, T ], δ) := sup
s,t∈[0,T ]
|t−s|≤δ

|f(t) − f(s)|.

The Dirac delta measure at x is denoted by δx. The symbol 0 denotes the origin in RZ.
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1.3. Comparison with known results

We present some known results on existence and uniqueness, as well on the gap process, for finite and one-
sided infinite systems. Then we highlight differences between these results and our new results in this paper for
two-sided infinite systems.

1.3.1. Existence and uniqueness

For finite systems, weak existence and uniqueness in law simply follows from [6]. It holds for any values of
parameters gk ∈ R, σk > 0, k = 1, . . . , N , and for any initial condition. For one-sided infinite systems, we need
to impose certain assumptions on gk, σk, k ≥ 1, as well as on the initial conditions X(0) = x (see [23, 43, 50],
Thms. 3.1, 3.2). The main idea behind the proof of weak existence and uniqueness in law for one-sided infinite
systems is as follows: on a finite time interval, a given particle behaves as if it were only in a finite system of
particles. Theorem 2.1 below states weak existence and uniqueness in law for two-sided infinite systems. The
proof is quite similar to the case of one-sided infinite systems.

1.3.2. Approximation by finite systems

In the paper [43], we have proved that a one-sided infinite system is a weak limit of finite systems, as the
number of particles in these finite systems goes to infinity. This result is used to study the gap process. Two-
sided infinite systems can also be obtained as weak limits of finite systems, see Lemma 2.4. However, the proof
for two-sided systems is much more complicated than for one-sided systems, because there is no bottom-ranked
particle in two-sided infinite systems.

1.3.3. Gap process for finite systems

Consdier a system X = (Xn)1≤n≤N of N particles. Denote by gN the average of all N drift coefficients:
gN := (g1 + . . . + gN)/N . Impose the following stability condition on drift coefficients:

g1 + . . . + gn > ngN , for n = 1, . . . , N − 1. (1.3)

In words, condition (1.3) means that the average of drift coefficients for a few consecutive lower-ranked particles
is larger than the average of all N drift coefficients. It is known from [4,36,43] that, under condition (1.3), there
is a unique stationary gap distribution π. Moreover, Z(t) ⇒ π as t → ∞, regardless of the initial distribution
of Z(0). If condition (1.3) does not hold, then there are no stationary gap distributions for this finite system.
If condition (1.3) holds together with σn = 1 for all n, then this distribution π has an explicit product-of-
exponentials form, see [4]:

π =
N−1⊗
n=1

Exp (μn) , μn := 2(g1 + . . . + gn − ngN ), n = 1, . . . , N − 1. (1.4)

For general σn, 1 ≤ n ≤ N , an explicit form of π is not known.

1.3.4. Gap process for one-sided infinite systems

Consider a system X = (Xn)n≥1. Assume that σn = 1 for all n ∈ Z, and sup |gn| < ∞. It was shown in [47]
that we always have a one-parameter product-of-exponentials family of stationary gap distributions πa, a ∈ R.
In contrast with finite systems, we do not need to impose any stability condition similar to (1.3). Therefore, the
weak limit of Z(t) as t → ∞ depends on the initial distribution of Z(0). For certain cases, we can describe there
weak limits for at least some initial distributions, see [43]. (This last result is also valid when not all diffusion
coefficients σn are equal to 1). However, a complete description of these weak limits for all initial distributions
remains an unsolved problem.
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1.3.5. Gap process for two-sided infinite systems

In this paper, we explore the same questions as above for two-sided infinite systems (Xn)n∈Z, for the case
sup |gn| < ∞. We study stationary gap distributions, as well as weak limits of Z(t) as t → ∞. Most of our
results are for the case of unit diffusion coefficients: σn = 1, n ∈ Z; however, some of our results are for the
general case. The results on weak limits are quite similar to the ones for one-sided infinite systems, with similar
proofs. However, the results on stationary distributions are drastically different from both finite and one-sided
infinite systems. We can have at least three possibilities:

(a) A family of product-of-exponentials stationary gap distributions πa indexed by one real parameter a ∈ R.
An example of this is when all gn = 0, or, more generally, when

∑
n∈Z

|gn| < ∞.
(b) A family of product-of-exponentials stationary gap distributions πa,b indexed by two real parameters a, b ∈

R. An example of this is when gn = 1, n > 0; gn = 0, n ≤ 0.
(c) There are no stationary gap distributions, and Z(t) ⇒ 0 as t → ∞. An example of this is when gn = 1, n < 0;

gn = 0, n ≥ 0.

1.4. Motivation and historical review

These rank-based systems of competing Brownian particles were the subject of extensive research in the last
decade. Finite systems were studied in the following articles: [9, 22, 23, 25, 42] (triple and multiple collisions
of particles); [4, 36], ([43], Sect. 2) (stationary distribution π for the gap process); [24, 26, 44] (convergence
Z(t) ⇒ π as t → ∞ with an exponential rate); concentration of measure, [35, 37]; see also miscellaneous
papers [28, 40, 41, 44].

One-sided infinite systems of competing Brownian particles (Xn)n≥1 were introduced in [36]. The follow-
ing aspects were studied: existenceand uniqueness, [23, 43, 50]; collisions of particles, [23, 43], stationary gap
distributions, [43, 47, 56], long-term behavior and tightness, [43, 56], scaling limits, [13].

Finite systems of competing Brownian particles have various applications: (a) financial mathematics, ([14],
Chap. 5), [10, 16, 29, 31]; (b) scaling limits of asymmetrically colliding random walks (a certain type of an
exclusion process on Z), ([30], Sect. 3); (c) discretized version of a McKean–Vlasov equation, which governs
nonlinear diffusion processes, and is related to the study of plasma, [12, 27, 40, 51].

There are several generalizations of these models: (a) systems with asymmetric collisions, when “particles
have different mass”, studied in [30] (finite systems) and [43] (one-sided infinite systems); (b) second-order
models, when drift and diffusion coefficients depend on both ranks and names, [4,15]; (c) systems of competing
Lévy particles, with Lévy processes instead of Brownian motions driving these particles, [45, 46, 50].

Similar ranked systems of Brownian particles derived from independent driftless Brownian motions were
studied in [2,21,53,54]. The paper [21] studied a two-sided infinite system of competing Brownian particles with
zero drifts and unit diffusions:

gn = 0, and σn = 1 for all n. (1.5)

These particles Xn, n ∈ Z, can be alternatively described as independent Brownian motions. It was shown that
if the initial distribution corresponds to a Poisson point process on the real line with constant intensity, then
Var Y0(t) ∼ ct1/2 for an explicit constant c, as t → ∞. More general results can be found in ([38], Thm. 3.7.1),
when particles in a two-sided infinite system can be fractional Brownian motions or more general processes.
The paper [2] studied asymptotics for the lowest-ranked particle Y1 in a one-sided infinite system of competing
Brownian particles with parameters as in (1.5). See also the paper [20] for totally asymmtetric collisions of
driftless Brownian particles.

Several other papers study connections between systems of queues and one-dimensional interacting particle
systems: [18, 19, 32, 49]. Links to the GUE random matrix ensemble can be found in [5, 34]. Similar one-sided
infinite systems of ranked particles in discrete time were studied in [1, 39]. In particular, in [39] they found
stationary gap distributions for a discrete-time analogue of a one-sided infinite system with parameters (1.5).
See also related papers [7, 8, 33, 52].
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Let us also mention the paper [48] about relation between Dyson’s Brownian motion and finite systems of
competing Brownian particles with parameters as in (1.5). The difference between Dyson’s Brownian motion
and systems of competing Brownian particles is that the logarithmic potential repels particles in the Dyson
model, so that they cannot even hit each other. A recent paper [55] studies two-sided infinite systems of Dyson’s
Brownian particles.

1.5. Organization of the paper

Section 2 contains all our results about existence and uniqueness of two-sided infinite systems, their basic
properties, and approximation by finite systems. Section 3 is devoted to our results about the gap process:
stationary gap distributions and long-term behavior of the gap process, for two-sided infinite systems. Section
4 contains all the proofs. The Appendix contains some technical lemmata and observations.

2. Existence, uniqueness, and basic properties

2.1. Existence and uniqueness

We need some assumption on the initial condition X(0) = x = (xn)n∈Z ∈ RZ; otherwise we cannot hope that
even weak existence holds. Indeed, assume for simplicity that all gn = 0, and all σn = 1. If xn = 0 for every n,
then Xn, n ∈ Z, are simply i.i.d. Brownian motions starting from zero. It is an easy exercise to show that the
sequence X(t) = (Xn(t))n∈Z is not rankable for t > 0. Therefore, starting points Xn(0) = xn for each particle
Xn, n ∈ Z, should be far enough apart. More precisely, they should be in the following subset of RZ:

W :=
{
x = (xn)n∈Z ∈ RZ

∣∣∣ ∑
n∈Z

e−αx2
n < ∞ for all α > 0

}
.

We say that a sequence (an)n∈Z of real numbers has constant tails if there exist n± ∈ Z such that an = an+ for
n ≥ n+, and an = an− for n ≤ n−.

Theorem 2.1. Assume X(0) = x ∈ W a.s., and at least one of the two following conditions holds:

(a) σn ≡ σ > 0, gn → g∞ as |n| → ∞, and
∑

n∈Z
(gn − g∞)2 < ∞; or

(b) the sequences (gn)n∈Z and (σn)n∈Z have constant tails.

Then there exists in the weak sense a unique in law version of the two-sided infinite system of competing
Brownian particles with drift coefficients (gk)k∈Z and diffusion coefficients (σ2

k)k∈Z, starting from X(0) = x.

Remark 2.2. Under assumptions of Theorem 2.1, in both cases (a) and (b), we have:

g := sup
k∈Z

|gk| < ∞, and σ := sup
k∈Z

σk < ∞. (2.1)

2.2. Basic properties

The next statement represents a two-sided infinite system as a weak limit of finite systems, as the number
of particles in these finite systems goes to infinity. Take a two-sided infinite system X = (Xn)n∈Z of competing
Brownian particles with drifts gn and diffusions σ2

n, n ∈ Z, starting from X(0) = x = (xn)n∈Z. Without loss of
generality, assume the initial conditions are ranked: xn ≤ xn+1 for n ∈ Z. For every pair M, N of integers such
that M < N , consider a finite system of competing Brownian particles

X(M,N) =
(
X

(M,N)
M , . . . , X

(M,N)
N

)
(2.2)

with drifts gM , . . . , gN , and diffusions σ2
M , . . . , σ2

N , starting from (xM , . . . , xN ). Define the corresponding system
of ranked particles:

Y (M,N) =
(
Y

(M,N)
M , . . . , Y

(M,N)
N

)
. (2.3)
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Definition 2.3. A sequence (Mj , Nj)j≥1 in Z2 is called an approximative sequence if

Mj+1 ≤ Mj < Nj ≤ Nj+1 for every j ≥ 1,

lim
j→∞

Mj = −∞, lim
j→∞

Nj = ∞.

Take any approximating sequence (Mj , Nj). Then for every k ∈ Z, there exists a jk such that Mj ≤ k < Nj for
j ≥ jk.

Lemma 2.4. Under assumptions of Theorem 2.1, for every finite subset I ⊆ Z and every T > 0, we have the
following weak convergence in C([0, T ], R2|I|):(

[X(M,N)]I , [Y (M,N)]I
)
⇒ ([X ]I , [Y ]I) , (M, N) → (−∞, +∞).

That is, for every approximative sequence (Mj , Nj)j≥1 from Definition 2.3, every finite subset I ⊆ Z, and every
T > 0, we have the following weak convergence in C([0, T ], R2|I|):(

[X(Mj ,Nj)]I , [Y (Mj ,Nj)]I
)
⇒ ([X ]I , [Y ]I) , j → ∞.

We can extend the comparison techniques of [41, 43] for finite and one-sided infinite systems to two-sided
infinite systems. Let us state one result, which is an analogue and a corollary of ([43], Cor. 3.11) It is used later
in this article.

Lemma 2.5. Take two copies, X and X, of a two-sided infinite system of competing Brownian particles, with the
same drift and diffusion coefficients, but with different initial conditions, satisfying conditions of Theorem 2.1.
Let Y and Y be the corresponding ranked versions, and let Z and Z be the corresponding gap processes.

(a) If Y (0) � Y (0), then Y (t) � Y (t) for all t ≥ 0.
(b) If Z(0) � Z(0), then Z(t) � Z(t) for all t ≥ 0.

In the next lemma, we obtain the equation for the dynamics of ranked particles Yk, k ∈ Z. Note that we do not
impose assumptions of Theorem 2.1 here.

Lemma 2.6. Consider any two-sided infinite system of competing Brownian particles with drift coefficients gn

and diffusion coefficients σ2
n, starting from X(0) = x ∈ W. Assume that

g := sup
n∈Z

|gn| < ∞, and σ := sup
n∈Z

σn < ∞. (2.4)

(a) Then for every interval [u−, u+] ⊆ R and every T > 0, there exist a.s. only finitely many n ∈ Z such that
there exists a t ∈ [0, T ] for which we have: Xn(t) ∈ [u−, u+]. In other words, in a finite amount of time,
every finite interval is visited by only finitely many particles.

(b) The ranked particles Yk, k ∈ Z, satisfy the following equations:

Yk(t) = Yk(0) + gkt + σkBk(t) +
1
2
L(k−1,k)(t) −

1
2
L(k,k+1)(t), t ≥ 0. (2.5)

Here, Bk = (Bk(t), t ≥ 0), k ∈ Z, are i.i.d. Brownian motions, and for every k ∈ Z, L(k,k+1) =
(L(k,k+1)(t), t ≥ 0) is the semimartingale local time process at zero of Yk+1 − Yk.

Remark 2.7. Similar equations (2.5) hold for ranked particles in finite and one-sided infinite systems, with un-
derstanding that L(0,1) ≡ 0 for a one-sided infinite system X = (Xn)n≥1, and similarly L(0,1) ≡ 0, L(N,N+1) ≡ 0
for a finite system X = (X1, . . . , XN ).
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An informal description of the dynamics of ranked particles from (2.5) is as follows. The kth ranked particle
Yk moves as a Brownian motion with drift coefficient gk and diffusion coefficient σ2

k, as long as it does not collide
with adjacent ranked particles Yk−1 and Yk+1. When the particle Yk collides with Yk+1, these two particles are
pushed apart by an increase dL(k,k+1) in the semimartingale local time L(k,k+1). This push dL(k,k+1) is split
evenly between these colliding particles: one-half (1/2)dL(k,k+1) is added to Yk+1 to push it up; and one-half
(1/2)dL(k,k+1) is subtracted from Yk to push it down. This way, the rankings Yk ≤ Yk+1 is preserved. Same
principles apply to collision between particles Yk and Yk−1.

One can generalize this model by taking other nonnegative coefficients q+
k+1 and q−k instead of 1/2. These

coefficients should satisfy q+
k+1 + q−k = 1. This way, the share q+

k+1dL(k,k+1) is added to Yk+1, and the share
q−k dL(k,k+1) is subtracted from Yk. For finite and one-sided infinite systems, this was done respectively in [30,43];
However, we shall not study this generalization in our paper.

3. The gap process: Stationary distributions and weak convergence

Define the mapping Φ : RZ

+ → RZ as follows:

Φn(z) =

⎧⎪⎪⎨
⎪⎪⎩

z0 + . . . + zn−1, n ≥ 1;

0, n = 0;

−z−1 − . . . − z−n, n ≤ −1,

n ∈ Z, for z = (zn)n∈Z ∈ RZ

+.

This mapping has the following meaning in our context. Take X = (X(t), t ≥ 0), a two-sided infinite system
of competing Brownian particles. Let Y = (Y (t), t ≥ 0) be the corresponding system of ranked particles, and
Z = (Z(t), t ≥ 0) be its gap process. Then

Yn(t) = Φn(Z(t)) + Y0(t), t ≥ 0, n ∈ Z.

Define the following subset V ⊆ RZ

+:

V := {z = (zk)k∈Z ∈ RZ

+ | Φ(z) ∈ W}. (3.1)

Then the following statements are equivalent: for every t ≥ 0,

X(t) ∈ W ⇔ Y (t) ∈ W ⇔ Z(t) ∈ V .

3.1. Stationary gap distributions for unit diffusions

In this subsection, we assume
σn = 1 for all n ∈ Z. (3.2)

The following theorem is the main result of this paper.

Theorem 3.1. Assume conditions of Theorem 2.1 hold, together with (3.2). For any pair (a, b) ∈ R2 of real
numbers, consider the following sequence:

λ = (λn)n∈Z ∈ RZ, λn = 2Φn+1(g) + a + bn, n ∈ Z. (3.3)

If all λn > 0, then the following is a stationary gap distribution, supported on V :

πa,b :=
⊗
n∈Z

Exp(λn). (3.4)

.
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Remark 3.2. Define the following set:

Σ := {(a, b) ∈ R2 | ∀n ∈ Z, λn > 0}.

Take a probability measure ρ on Σ. Then the following mixture of measures πa,b, (a, b) ∈ Σ:∫
Σ

πa,b dρ(a, b)

is also a stationary gap distribution.

Similarly to ([47], Conjecture 1.3) for one-sided systems, we can state a conjecture which is a converse to
Remark 3.2.

Conjucture 3.3. Under conditions of Theorem 3.1, every stationary gap distribution of the two-sided infinite
system can be represented as in Remark 3.2.

Remark 3.4. Every sequence λ = (λn)n∈Z from (3.3) is a solution to the following difference equation:

1
2
λn−1 − λn +

1
2
λn+1 = gn+1 − gn, n ∈ Z. (3.5)

The converse is also true: every solution to the difference equation (3.5) has the form (3.3) for some a, b ∈ R.

Example 1. Let gn = 0 for all n. In this case, Φn(g) = 0 for all n. Therefore, λn from (3.3) satisfy λn > 0 for
every n ∈ Z, if and only if b = 0, a > 0. This gives us λn = a for all n. The stationary gap distributions have
the form

πa =
⊗
n∈Z

Exp(a), a > 0.

This is actually a well-known result. Indeed, the gap distribution πa corresponds to the Poisson point process
on the real line with intensity a dx. But this Poisson point process is preserved under Brownian dymanics.

Example 2. More generally, assume
∑

n∈Z
|gn| < ∞. Then the sequence Φ(g) = (Φn(g))n∈Z is bounded.

Conditions of Theorem 2.1 (b) are satisfied, because g∞ = 0, and
∑

|gn| < ∞ implies
∑

g2
n < ∞. Similarly to

Example 1, we have λn > 0 for all n ∈ Z, if and only if b = 0, a > −Φn(g) for all n ∈ Z. As in Example 1, we
have a one-parameter family of stationary gap distributions.

Example 3. Take the following drift coefficients:

gn =

{
1, n ≥ 1,

0, n ≤ 0.

Then Φn+1(g) = n ∨ 0, and λn = a + bn + 2(n ∨ 0) for n ∈ Z. We have: λn > 0 for n ∈ Z if and only if
a > 0, b ∈ [−2, 0]. In contrast with Examples 1 and 2, here we have a two-parameter family of stationary gap
distributions.

Example 4. Take the following drift coefficients:

gn =

{
1, n ≤ 0,

0, n ≥ 1.

Then, similarly to Example 3, λn = a + bn + 2(n ∧ 0) for n ∈ Z. There do not exist a, b such that λn > 0 for
all n. In other words, the set Σ is empty: Σ = ∅. This is not accidental: in fact, as we shall see later, this system
does not have any stationary gap distributions at all: regardless of the initial conditions, Z(t) weakly converges
to zero as t → ∞.
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3.2. Long-term behavior of the gap process for general diffusions

In this subsection, we do not assume (3.2). For M < N , define the following quantity:

g[M : N ] :=
1

N − M + 1
(gM + . . . + gN ) .

Assumption 3.5. There exists an approximative sequence (Mj , Nj)j≥1 such that

g[Mj : k] > g[Mj : Nj ], k = Mj, . . . , Nj − 1, j ≥ 1.

Consider a system X(Mj ,Nj) as in (2.2), but without a given initial condition. It follows from (1.3) that, under
Assumption 3.5, the system X(Mj ,Nj) has a unique stationary gap distribution. Denote this distribution by π(j);
this is a probability measure on R

Nj−Mj

+ .

Lemma 3.6. Take a j ≥ 1 and a subset I ⊆ {Mj , . . . , Nj − 1}. For j′ > j, the marginals of stationary gap
distributions π(j), π(j′) satisfy [

π(j′)]
I
�

[
π(j)

]
I
.

Therefore, we can couple all these stationary distributions: take random variables

(z(j)
Mj

, . . . , z
(j)
Nj−1) ∼ π(j), j ≥ 1,

so that the following comparison holds a.s.:

z
(j)
k ≥ z

(j+1)
k for Mj ≤ k < Nj , j ≥ 1.

For every k ∈ Z, define the limits
z
(∞)
k := lim

j→∞
z
(j)
k ∈ R+.

Denote by π(∞) the distribution of the random vector (z(∞)
k )k∈Z in RZ

+.

Remark 3.7. We also note that this limiting distribution is independent of the approximative sequence
(Mj , Nj): if we take two different approximative sequences (Mj, Nj) and (M̃j , Ñj), each satisfying Assump-
tion 3.5, then the resulting limiting distributions π(∞) and π̃(∞) are the same: π(∞) = π̃(∞). The proof is similar
to that of ([43], Lem. 4.2) and is omitted.

Take any copy X = (Xn)n∈Z of a two-sided infinite system of competing Brownian particles with drift
coefficients gn, n ∈ Z, and diffusion coefficients σ2

n, n ∈ Z, starting from any initial conditions. Let Z =
(Z(t), t ≥ 0) be the gap process.

Theorem 3.8. Under Assumption 3.5,

(a) the family of RZ

+-valued random variables Z = (Z(t), t ≥ 0) is tight;
(b) all weak limit points of Z(t) as t → ∞ and all stationary gap distributions are stochastically dominated by

the measure π(∞).

In Theorem 3.8, we do not impose assumptions of Theorem 2.1. If we do impose them, we can get some additional
results.

Theorem 3.9. Under Assumption 3.5 and conditions of Theorem 2.1,

(a) if π(∞) is supported on V, then π(∞) is a stationary gap distribution;
(b) if, in addition, π(∞) � Z(0), then Z(t) ⇒ π(∞) as t → ∞.

If (3.2) does not hold, then generally we do not know an explicit formula for π(j) and π(∞). However, under
condition (3.2), we can show more explicit results. The next subsection is devoted to this.
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3.3. Long-term behavior of the gap process for unit diffusions

In this subsection, we assume (3.2). This allows us to get more explicit results than in the previous subsection.
Without loss of generality, assume j0 = 1. Let

λ
(j)
k := 2(k − Mj + 1) (g[Mj : k] − g[Mj : Nj ]) , Mj ≤ k < Nj , j ≥ 1.

Under Assumption 3.5, these quantities are all positive:

λ
(j)
k > 0, Mj ≤ k < Nj , j ≥ 1.

Under Assumption 3.5 and (3.2), the formula (1.4) gives us

π(j) =
Nj−1⊗
k=Mj

Exp
(
λ

(j)
k

)
, j ≥ 1.

Lemma 3.10. Each sequence (λ(j)
k )j≥jk

is nondecreasing. Consider the limits

λ
(∞)
k := lim

j→∞
λ

(j)
k ∈ (0,∞], k ∈ Z. (3.6)

Then either all λ
(∞)
k , k ∈ Z, are finite, or all are infinite.

Therefore (understanding Exp(∞) = δ0 to be the Dirac mass at zero), we get:

π(∞) =
⊗
k∈Z

Exp
(
λ

(∞)
k

)
.

Depending on whether all λ
(∞)
k are finite or infinite, we get a different long-term behavior of Z(t). The

following result is a corollary of Theorems 3.8 and 3.9.

Theorem 3.11. Under Assumption 3.5, condition (3.2), and assumptions of Theorem 2.1, suppose λ
(∞)
k <

∞, k ∈ Z. Then:

(a) the sequence (λ(∞)
k )k∈Z satisfies assumptions of Theorem 3.1, and therefore

π(∞) =
⊗
k∈Z

Exp
(
λ

(∞)
k

)

is a stationary gap distribution.
(b) any weak limit point of Z(t) as t → ∞, as well as any other stationary gap distribution, is stochastically

dominated by π(∞);
(c) if π(∞) � Z(0), then Z(t) ⇒ π(∞) as t → ∞.

Theorem 3.11(c) provides a partial description of the domain of convergence for the stationary gap distribu-
tion π(∞); that is, for which initial distributions Z(0) we have Z(t) ⇒ π(∞). To the best of our knowledge, it is
still an unsolved problem to completely describe this domain of convergence, as well as domains of convergence
for other stationary gap distributions π.

Example 5. Take the following drift coefficients: gn > 0, n ≤ 0; gn = 0, n ≥ 1, with∑
n≤0

gn < ∞. (3.7)
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Try Mj = −j + 1 for j ≥ 1. Then

g[Mj : k] =
1

k + j

k∧0∑
l=−j+1

gl, k > Mj .

We can find an Nj large enough so that

λ
(j)
k := 2

k∧0∑
n=−j+1

gn − 2
k + j

Nj + j

0∑
n=−j+1

gn > 0, k = −j + 1, . . . , 0. (3.8)

If we take Nj > j2, then (k + j)/(Nj + j) → 0 as j → ∞. Therefore, from (3.7) and (3.8), we get:

λ
(∞)
k := lim

j→∞
λ

(j)
k = 2

∑
n<k∧0

gn < ∞, k ∈ Z.

Thus, we can apply Theorem 3.11.

Theorem 3.12. Under Assumption 3.5 and condition (3.2), suppose all λ
(∞)
k = ∞, k ∈ Z. Then, regardless of

initial conditions, Z(t) ⇒ 0 as t → ∞.

Example 6. In Example 4 above, let Mj = −j + 1, Nj = j, j ≥ 1. From Theorem 3.12, we get:

λ
(j)
k = 2(j + k ∧ 0), and λ

(∞)
k = lim

j→∞
λ

(j)
k = ∞.

4. Proofs

4.1. Proof of Theorem 2.1

Proof of (a). This is similar to that of ([43], Thm. 3.2) and is based on Girsanov change of measure. We shall
not repeat it here in full detail. However, noting that we start the construction from a system X = (Xi)i∈Z of
independent Brownian motions starting from Xi(0) = xi, i ∈ Z, we shall prove the following fact:

Lemma 4.1. For every t ≥ 0, the system X(t) = (Xi(t))i∈Z is rankable, and one can choose ranking permuta-
tions pt, t ≥ 0, which satisfy the property (b) of Definition 1.1.

Proof. Take an interval [u−, u+] ⊆ R and a time horizon T > 0. From ([43], Lems. 7.1, 7.2), the Borel−Cantelli
lemma, and the fact that X(0) = x ∈ W a.s., it follows that a.s. there exist only finitely many n ≥ 1 such that
mint∈[0,T ] Xn(t) > u+, and only finitely many n ≤ −1 such that maxt∈[0,T ] Xn(t) < u−. Therefore, there exist
a.s. only finitely many n ∈ Z such that ∃, t ∈ [0, T ] : Xn(t) ∈ [u−, u+]. In particular, for every t ≥ 0, we have:

lim
n→∞Xn(t) = ∞, lim

n→−∞Xn(t) = −∞. (4.1)

Any two Brownian motions collide on a set of times which a.s. has Lebesgue measure zero. The union of
countably many zero probability events is itself a zero probability event; therefore, a.s.

mes{t ≥ 0 | ∃m, n ∈ Z, m �= n : Xm(t) = Xn(t)} = 0. (4.2)

Now apply ([21], Thm. 3.1) and complete the proof. �

Proof of (b). It is quite similar to the one for one-sided infinite systems, given in ([23,43,50], Thm. 3.1). However,
there are some differences, so we present the full proof here. Without loss of generality, assume xn ≤ xn+1 for
n ∈ Z. By assumptions, the sequences (gn)n∈Z and (σn)n∈Z have constant tails. Therefore, there exist some
n± ∈ Z, g± ∈ R, σ± > 0, such that

gn = g+, σn = σ+, n ≥ n+; gn = g−, σn = σ−, n ≤ n−. (4.3)
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4.1.1. The idea of the construction

In the beginning, we have particles with ranks n− + 1, . . . , n+ − 1, which behave in a complicated way (as
competing Brownian particles), and other particles, which behave simply as independent Brownian motions.
We construct the two-sided infinite system as consisting of three parts: particles with ranks n− + 1, . . . , n+ − 1,
which form a finite system of competing Brownian particles; infinitely many particles with ranks n+, n+ +1, . . .,
which behave as Brownian motions with drift coefficients g+ and diffusion coefficients σ2

+; and infinitely many
particles with ranks . . . , n− − 1, n−, which behave as Brownian motions with drift coefficients g− and diffusion
coefficients σ2

−. As long as a particle Xn from the second or third part does not hit particles with ranks
n−+1, . . . , n+−1, this particle Xn continues to behave as a Brownian motion. If this particle Xn hits a particle
from the first part at a certain time τ1, we remove Xn from the second or third part, and add it to the first
part. We do this for all particles from the second or third part which hit a particle from the first part at this
moment τ1. Then we run this system again, until the next such hitting time τ2. The first part of this system
increases at every time τm.

4.1.2. Formal construction

For every pair (M, N) of integers such that M ≤ N , and for every x ∈ RN−M+1, take a probability space(
Ω(M,N,x),F (M,N,x),P(M,N,x)

)
with a system of N − M + 1 competing Brownian particles:

X(M,N,x) =
(
X

(M,N,x)
M , . . . , X

(M,N,x)
N

)
with drift coefficients (gn)M≤n≤N and diffusion coefficients (σ2

n)M≤n≤N , starting from X(M,N,x)(0) =
(xM , . . . , xN ). Take yet another probability space with i.i.d. Brownian motions W

(j)
k , j ≥ 0, k ∈ Z. Now,

consider the product (Ω,F ,P) of all these probability spaces. Define the infinite system X by induction: we
simultaneously construct an increasing sequence of stopping times (τm)m≥0, and the system X on each time
interval [τm, τm+1], for each m ≥ 0. First, we define

I0 := {n− + 1, . . . , n+ − 1}, τ0 := 0,

J+
0 := {n+, n+ + 1, . . .}, J−

0 := {. . . , n− − 1, n−},
and construct the system of particles: for t ≤ τ1,

Xk(t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X
(n−,n+)
k (t), k ∈ I0;

xk + g+t + σ+W
(0)
k (t), k ≥ n+;

xk + g−t + σ−W
(0)
k (t), k ≤ n−.

Next, we define by induction

τm+1 := inf{t ≥ τm | ∃ i ∈ Z \ Im, j ∈ I0 : Xi(t) = Yj(t)},

Im+1 := Im ∪ {i ∈ Z | ∃ j ∈ I0 : Xi(τm+1) = Yj(τm+1)}.
For each m = 0, 1, . . . let J+

m := J+
0 \ Im, J−

m := J−
0 \ Im. Let n−(m) and n+(m) be the minimal and maximal

ranks of particles Xi(τm) at time τm with names i in Im. It is easy to prove by induction that the set of ranks of
particles Xi(τm) with i ∈ Im is exactly {n−(m), . . . , n+(m)}. Next, for every m = 0, 1, . . . and for t ≤ τm+1−τm,
we define: xm := (Xi(τm))i∈Im , and

Xi (t + τm) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Xi(τm) + g+t + σ+W
(m)
i (t), i ∈ J+

m;

Xi(τm) + g−t + σ−W
(m)
i (t), i ∈ J−

m;

X
(xm, n−(m), n+(m))
i (t), i ∈ Im.

Assume we proved the following statements.
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Lemma 4.2. For every m = 1, 2, . . . and every t < τm, the vector X(t) = (Xi(t))i∈Z is rankable.

Lemma 4.3. For every m = 1, 2, . . . a.s. the set Im is finite.

Lemma 4.4. For every m = 1, 2, . . . and t ∈ [0, τm], there exists a ranking permutation pt of X(t) so that
condition (b) from Definition 1.1 is satisfied on [0, τm].

Lemma 4.5. As m → ∞, we have: τm → ∞ a.s.

Using induction by m, together with Lemmata 4.2, 4.3, 4.4, we get that until τm, this is a system with
required properties. By Lemma 4.5, this statement is true on the infinite time horizon. Uniqueness in law can
be also proved in a straightforward way on using induction by m. This has been done in [23, 50], and we shall
not repeat all details here.

4.1.3. Proof of Lemma 4.2

Fix time horizon T > 0. Let us prove this statement for τm ∧ T instead of τm. We use induction by m. For
m = 0, there is nothing to prove. If Im−1 is finite, it suffices to show that, for a given level u ∈ R, during the
time interval [0, τm ∧ T ],

(a) mint∈[0,τm∧T ] Xi(t) ≤ u for only finitely many particles Xi(t), i ∈ J+
m−1, a.s.

(b) maxt∈[0,τm∧T ] Xi(t) ≥ u for only finitely many particles Xi(t), i ∈ J−
m−1, a.s.

Particles from (a) and (b) are Brownian motions with drift and diffusion g+, σ2
+ and g−, σ2

−, respectively. Apply
([43], Lems. 7.1, 7.2) together with the Borel−Cantelli lemma, and complete the proof of (a) and (b), together
with Lemma 4.2.

4.1.4. Proof of Lemma 4.3

Assume the converse, and denote this event by A∞. If this event happened, then for some m, the set Im−1

is finite, but the set Im is infinite. Therefore, we can represent A∞ as

A∞ =
∞⋃
J

A(m, J), where A(m, J) := {Im−1 = J, Im is infinite}. (4.4)

Here, the union is taken over all finite sets J ⊆ Z. This union is countable. Assume the event A(m, J) has
happened. Then τm < ∞. The fact that Im is infinite means that Xi (τm) is the same for infinitely many values
of i ∈ Z \ J . But even three (let alone infinitely many) independent Brownian motions can collide only with
probability zero. That is, if W1, W2, W3 are independent one-dimensional Brownian motions, then

P (∃ t > 0 : W1(t) = W2(t) = W3(t)) = 0.

Therefore, P(A(m, J)) = 0. Thus, from (4.4) we have: P(A∞) = 0.

4.1.5. Proof of Lemma 4.4

Similar to the proof of Lemma 4.4: we need to apply ([21], Thm. 3.1). The property (4.1) follows from
properties (a) and (b) in the proof of Lemma 4.2. The property (4.2) holds for t ∈ [τm, τm+1] because: (a) for
each of the three parts of the system, we can prove it separately; (b) by construction, on the time interval
(τm, τm+1), particles from different parts of the system (for example, from the first and the second part) do
not collide. Similarly, we can show the property (b) from Definition 1.1 by considering each of the three parts
separately.
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4.1.6. Proof of Lemma 4.5

Fix time horizon T > 0. Assume we proved that

∀ ε > 0 ∃uε : ∀m P
(

max
t≤τm∧T

Yn+−1(t) > uε

)
< ε. (4.5)

The event A = {limm→∞ τm ≤ T } means infinitely many particles Xi hit at least one of ranked particles
Yk, k ∈ I0, during the time interval [0, T ]. Without loss of generality, assume there are infinitely many i ≥ n+

such that this holds. Until each of these hits, Xi behaves as a Brownian motion with drift and diffusion
coefficients g+, σ2

+. Note that Xi(0) ≥ Yn+−1(0) for i ≥ n+. Because they have continuous trajectories, these
particles Xi hit the ranked particle Yn+−1 first among these ranked particles Yk, k ∈ I0. Denote

B(ε) :=
{
∃m ≥ 0 : max

t≤τm∧T
Yn+−1(t) > uε

}
.

Assume the event A \ B(ε) has happened. A particle Xi hit a particle Yn+−1 at some time t ∈ [0, T ], when the
particle Yn+−1 was below the level uε. This particle Xi has continuous trajectories, and therefore it hit the level
uε at some time t ∈ [0, T ]. Moreover, there are infinitely many such particles Xi. In other words, if the event
A \ B(ε) has happened, then infinitely many Brownian motions, starting from xi, i ≥ n+, hit level uε during
the time interval [0, T ]. Because x ∈ W , we have:

∞∑
i=n+

e−αx2
i < ∞ for all α > 0.

Applying ([43], Lems. 7.1, 7.2), and the Borel−Cantelli lemma, we get: P(A \B(ε)) = 0. But from (4.5) we get:
P(B(ε)) < ε. Therefore,

P(A) ≤ P(A \ B(ε)) + P(B(ε)) < ε.

Since ε > 0 is arbitrary, we conclude that P(A) = 0.
Now, let us show (4.5). Consider a (one-sided) infinite system of competing Brownian particles X = (X i)i<n+

with drifts gn, n < n+, diffusions σ2
n, n < n+, starting from X i(0) = xi. (This system is inverted: it has the

top-ranked particle but not the bottom-ranked particle. It is straightforward to adjust definitions, existence
and uniqueness results, and comparison techniques from [43] for this case). From (4.3), we have: gn = g− and
σn = σ− for n ≤ n−. Next, x ∈ W , and therefore∑

n<n+

e−αx2
n < ∞ for all α > 0.

From ([43], Thm. 3.1) (suitably adjusted for the inverted one-sided infinite system), there exists a unique in
law weak version of this system X. Next, fix an m. By construction of the system, until τm, the particle Yn+−1

behaves as a ranked particle in the finite system Y (n−(m),n+(m)). The one-sided infinite system X can be obtained
from this finite system by removing the top n+(m)−n+ +1 ranked particles from the top, and adding infinitely
many ranked particles to the bottom. It follows from comparison techniques, similar to ([43], Cor. 3.11), that
we can couple these two ranked systems so that Yn+−1(t) ≤ Y n+−1(t). It suffices to find uε large enough so that

P
(

max
0≤t≤T

Y n+−1(t) > uε

)
< ε.

4.2. Proof of Lemma 2.4

This proof is somewhat lengthy, and we split it into a few lemmata. In the first subsection, we enunciate
them and show how they combine to form the whole proof. In later subsections, we prove these lemmata.
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4.2.1. Overview of the proof of Lemma 2.4

We follow the proof of ([43], Thm. 3.3), with minor adjustments. Consider an approximating sequence
(Mj , Nj).

Lemma 4.6. For every i ∈ Z, the sequence
(
X

(Mj ,Nj)
i

)
j≥1

is tight in C[0, T ].

Lemma 4.7. For every k ∈ Z, the sequence
(
Y

(Mj ,Nj)
k

)
j≥1

is tight in C[0, T ].

The proofs of Lemmata 4.6 and 4.7 are given later in this subsection. Assuming we already proved these
lemmata, let us finish the proof of Lemma 2.4.

For every j ≥ 1, let W (Mj ,Nj) = (W (Mj ,Nj)
i )Mj≤i≤Nj be the sequence of driving Brownian motions for

the system X(Mj ,Nj) of competing Brownian particles. Then for every finite subset I ⊆ Z, we can extract a
subsequence (M ′

j, N
′
j)j≥1 of (Mj , Nj)j≥1 such that there exist continuous adapted R|I|-valued processes

XI = (Xi)i∈I , Xi = (Xi(t), 0 ≤ t ≤ T ), i ∈ I,

YI = (Yi)i∈I , Yi = (Yi(t), 0 ≤ t ≤ T ), i ∈ I,

WI = (Wi)i∈I , Wi = (Wi(t), 0 ≤ t ≤ T ), i ∈ I,

for which we have the following convergence in C([0, T ], R3|I|),([
X(M ′

j ,N ′
j)

]
I
,
[
Y (M ′

j ,N ′
j)

]
I
,
[
W (M ′

j ,N ′
j)

]
I

)
⇒ (XI , YI , WI). (4.6)

Using the standard diagonal arguments, we can find a subsequence (M ′
j , N

′
j)j≥1 which is independent of I. Then

there exist RZ-valued continuous processes

X = (Xi)i∈Z, Xi = (Xi(t), 0 ≤ t ≤ T ), i ∈ Z,

Y = (Yi)i∈Z, Yi = (Yi(t), 0 ≤ t ≤ T ), i ∈ Z,

W = (Wi)i∈Z, Wi = (Wi(t), 0 ≤ t ≤ T ), i ∈ Z,

such that we have the following equality in law:

([X(t)]I , 0 ≤ t ≤ T ) = (XI(t), 0 ≤ t ≤ T ),

([Y (t)]I , 0 ≤ t ≤ T ) = (YI(t), 0 ≤ t ≤ T ),

([W (t)]I , 0 ≤ t ≤ T ) = (WI(t), 0 ≤ t ≤ T ),

In fact, Wi, i ∈ Z, are i.i.d. Brownian motions, because these are weak limits of i.i.d. Brownian motions in (4.6).
By the Skorohod representation theorem, we can assume a.s. convergence instead of the weak one (possibly
after changing the probability space). By construction, the following sets of points are equal for all t ∈ [0, T ]:

{Xi(t) | i ∈ Z} = {Yk(t) | k ∈ Z}.

Lemma 4.8. For every t ∈ [0, T ], a.s. there is no tie in the vector Y (t) = (Yk(t))k∈Z.

Lemma 4.8 can be equivalently stated as follows: the set {t ∈ [0, T ] | ∃ k �= l : Yk(t) = Yl(t)} has Lebesgue
measure zero. Its proof is postponed until the end of this subsection. The rest of the proof of Lemma 2.4 closely
follows that of ([43], Thm. 3.3), and we do not repeat it here.
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4.2.2. Proof of Lemma 4.6

For j ≥ 1, define

β
(Mj ,Nj)
i (s) :=

Nj∑
k=Mj

1(X(Mj,Nj)
i (s) has rank k) gk, (4.7)

ρ
(Mj ,Nj)
i (s) :=

Nj∑
k=Mj

1(X(Mj,Nj)
i (s) has rank k)σk. (4.8)

We can represent X
(Mj ,Nj)
i for t ≥ 0, Mj ≤ i ≤ Nj , as

X
(Mj ,Nj)
i (t) = xi +

∫ t

0

β
(Mj ,Nj)
i (s) ds +

∫ t

0

ρ
(Mj ,Nj)
i (s) dW

(Mj ,Nj)
i (s), (4.9)

where W
(Mj ,Nj)
i , i = Mj , . . . , Nj , are i.i.d. Brownian motions. From (2.1), (4.7), (4.8), we get:

∣∣β(Mj ,Nj)
i (s)

∣∣ ≤ g,
∣∣ρ(Mj ,Nj)

i (s)
∣∣ ≤ σ. (4.10)

It suffices to apply ([43], Lem. 7.4) and finish the proof.

4.2.3. Proof of Lemma 4.7

Fix a k ∈ Z. For all j, we have: Y
(j)
k (0) = xk. Without loss of generality, we can shift this system and assume

Y
(j)
k (0) = 0 for all j ≥ jk.

Lemma 4.9. For every η > 0, there exist u± such that for every j ≥ jk, we have:

P
(
∀ t ∈ [0, T ], u− ≤ Y

(Mj ,Nj)
k (t) ≤ u+

)
≥ 1 − η. (4.11)

Proof. Take a one-sided infinite system X = (Xn)n≥k of competing Brownian particles with drift coeffi-
cients (gn)n≥k, diffusion coefficients (σ2

n)n≥k, starting from Xn(0) = xn, n ≥ k. From x ∈ W , we have:

∞∑
n=k

e−αx2
n < ∞ for all α > 0. (4.12)

Using (4.3) and (4.12), and applying ([43], Thm. 3.1), we get: this system X exists in the weak sense and is
unique in law. Denote by Y = (Yk, Yk+1, . . .) the corresponding system of ranked particles. One can get the
system X from X(Mj,Nj) by removing the bottom k − Mj particles and adding infinitely many particles to the
top. By comparison techniques (see [41], Cor. 3.9, Rems. 8, 9), if j ≥ jk, we can couple X(Mj ,Nj) and X so that

Y
(Mj ,Nj)
k (t) ≥ Y k(t), t ∈ [0, T ]. (4.13)

Since Y k is continuous on [0, T ], we can find a u− ∈ R small enough so that

P
(

min
0≤t≤T

Y k(t) ≥ u−

)
≥ 1 − η

2
· (4.14)

Comparing (4.13) and (4.14), we get that for all j ≥ jk,

P
(

min
0≤t≤T

Y
(Mj ,Nj)
k (t) ≥ u−

)
≥ 1 − η

2
· (4.15)
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Similarly to (4.15), we can find a u+ large enough so that for all j ≥ jk, we have:

P
(

max
0≤t≤T

Y
(Mj ,Nj)
k (t) ≤ u+

)
≥ 1 − η

2
· (4.16)

Combining (4.15) and (4.16), we get (4.11). �

Lemma 4.10. For j ≥ jk, define the set of names:

I(j)
k :=

{
i ∈ Z | ∃ t ∈ [0, T ] : X

(Mj ,Nj)
i (t) = Y

(Mj ,Nj)
k (t)

}
.

For every η > 0, there exist I−, I+ ∈ Z and Jk ≥ 0 such that for all j ≥ Jk, we get:

P
(
I(j)

k ⊆ [I−, I+]
)
≥ 1 − η.

Proof. Because x ∈ W , we have:

xi → ∞ as i → ∞; xi → −∞ as i → −∞.

Therefore, there exist i± ∈ Z such that for every i ∈ Z,

i ≥ i+ ⇒ xi > u+ + gT ; and i ≤ i− ⇒ xi < u− − gT.

For all i ∈ Z and j ≥ ji, let
A

(j)
i :=

{
∃ t ∈ [0, T ] : X

(Mj,Nj)
i (t) ∈ [u−, u+]

}
.

Applying ([43], Lem. 7.1) and using (4.7)−(4.10), (4.12), we get: for i ≥ i+, j ≥ ji,

P
(
A

(j)
i

)
≤ P

(
min

t∈[0,T ]
X

(Mj ,Nj)
i (t) ≤ u+

)
≤ 2Ψ

(
xi − u+ − gT

σ
√

T

)
· (4.17)

Similarly, for i ≤ i− and j ≥ ji, we have:

P
(
A

(j)
i

)
≤ P

(
max

t∈[0,T ]
X

(Mj ,Nj)
i (t) ≥ u−

)
≤ 2Ψ

(
−xi + u− + gT

σ
√

T

)
· (4.18)

From x ∈ W , we have: ∑
i≥i+

e−αx2
i < ∞, and

∑
i≤i−

e−αx2
i < ∞ for all α > 0. (4.19)

Applying ([43], Lem. 7.2) and using (4.19), we obtain:

∑
i≥i+

Ψ

(
xi − u+ − gT

σ
√

T

)
< ∞, and

∑
i≤i−

Ψ

(
−xi + u− + gT

σ
√

T

)
< ∞.

Find i′+ > i+ large enough and i′− < i− small enough so that

∑
i≥i′+

Ψ

(
xi − u+ − gT

σ
√

T

)
<

η

6
, and

∑
i≤i′−

Ψ

(
−xi + u− + gT

σ
√

T

)
<

η

6
· (4.20)

Comparing (4.17), (4.18), (4.20), we get: for j ≥ Jk := ji′+ ∨ ji′− ,

P

⎛
⎝ Nj⋃

i=i′+

A
(j)
i

⎞
⎠ ≤ η

3
, and P

⎛
⎝ i′−⋃

i=Mj

A
(j)
i

⎞
⎠ ≤ η

3
· (4.21)
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Let I− := i′− + 1 and I+ := i′+ − 1. It follows from (4.21) that for all j ≥ Jk, with probability greater than or
equal to 1 − 2η/3, only the particles X

(Mj ,Nj)
I− , . . . , X

(Mj,Nj)
I+

, among the particles X
(Mj ,Nj)
i , Mj ≤ i ≤ Nj , can

ever visit the interval [u−, u+] during time interval [0, T ]. Using Lemma 4.9, choose u+ and u− so that with
probability greater than or equal to 1−η/3, the particle Y

(Mj ,Nj)
k stays within [u−, u+] during [0, T ]. Then with

probability greater than or equal to 1 − η, the ranked particle Y
(Mj ,Nj)
k can assume only the following names:

I−, I− + 1, . . . , I+. �

Lemma 4.11. Take the integers I± from Lemma 4.10. If the following event happens:{
I(j)

k ⊆ [I−, I+]
}

,

then a.s. for every t ∈ [0, T ], we have: Y
(Mj ,Nj)
k (t) is the (k − I− + 1)st bottom-ranked number among

X
(Mj ,Nj)
I− (t), . . . , X(Mj ,Nj)

I+
(t).

Proof. Fix a t ∈ [0, T ] such that there is no tie at time t in the system X(Mj ,Nj). The set T of these t has full
Lebesgue measure mes(·); that is, mes([0, T ] \ T ) = 0. Let us show that

for i = Mj , . . . , I− − 1, we have: X
(Mj ,Nj)
i (t) < Y

(Mj ,Nj)
k (t). (4.22)

Assume the converse. Recall that X
(Mj ,Nj)
i (0) = xi ≤ Y

(Mj ,Nj)
k (0) = xk. By continuity, there exists an s ∈ [0, t]

such that X
(Mj,Nj)
i (s) = Y

(Mj ,Nj)
k (s). This means that i ∈ I(j)

k . But i < I−, and this contradicts the assumption

that the event
{
I(j)

k ⊆ [I−, I+]
}

has happened. This proves (4.22). Similarly, we can show that

for i = I+ + 1, . . . , Nj, we have: X
(Mj ,Nj)
i (t) > Y

(Mj ,Nj)
k (t). (4.23)

We proved (4.22) and (4.23) for t ∈ T ; if (4.22) and (4.23) are true, then the statement Lemma 4.11 holds for
this t. But since mes([0, T ] \ T ) = 0, the set T is dense in [0, T ]. Apply continuity to prove (4.22) and (4.23)
for all t ∈ [0, T ] (with non-strict inequalities instead of strict ones). Because ties are resolved in lexicographic
order, this completes the proof. �

Lemma 4.12. For every ε, η > 0, there exists a δ > 0 such that for all j ≥ 1, we have:

lim
j→∞

P
(
ω
(
Y

(Mj ,Nj)
k , [0, T ], δ

)
≥ ε, I(j)

k ⊆ [I−, I+]
)
≤ η, (4.24)

Proof. The sequence
((

X
(Mj ,Nj)
I− , . . . , X

(Mj,Nj)
I+

))
j≥Jk

is tight in C
(
[0, T ], RI+−I−+1

)
. The mapping

C([0, T ], RI+−I−+1) → C[0, T ], which maps (f1, . . . , fI+−I−+1) to the Kth ranked among f1(t), . . . , fI+−I−+1(t),
for every t ∈ [0, T ], is Lipschitz continuous. For every j ≥ Jk and t ≥ 0, define Ỹ (j)(t) to be the (k − I− + 1)th
bottom-ranked real number among

X
(Mj ,Nj)
I− (t), . . . , X(Mj ,Nj)

I+
(t).

Then the sequence of stochastic processes

Ỹ (j) = (Ỹ (j)(t), 0 ≤ t ≤ T ), j ≥ Jk,

is tight in C[0, T ]. Applying the Arzela–Ascoli criterion, we get: there exists δ > 0 such that

P
(
ω
(
Ỹ (j), [0, T ], δ

)
> ε

)
≤ η.

Together with Lemma 4.11, this proves (4.24). �
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Let us finish the proof of Lemma 4.7. To show tightness of (Y (Mj ,Nj)
k )j≥1, we use the Arzela–Ascoli criterion.

Fix an ε > 0. We shall prove that

lim
δ→0

lim
j→∞

P
(
ω
(
Y

(Mj ,Nj)
k , [0, T ], δ

)
≥ ε

)
= 0. (4.25)

To this end, fix an η > 0 and let us show that there exists a δ > 0 such that

lim
j→∞

P
(
ω
(
Y

(Mj ,Nj)
k , [0, T ], δ

)
≥ ε

)
≤ 2η. (4.26)

But (4.26) follows from Lemmata 4.10 and 4.12. This completes the proof of Lemma 4.7.

4.2.4. Proof of Lemma 4.8

For simplicity of notation, assume (M ′
j , N

′
j) = (Mj, Nj). Define the event that there is a tie of finitely many

particles at time t:

E1 = {∃ k, l ∈ Z, k < l such that Yk−1(t) < Yk(t) = Yk+1(t) = . . . = Yl(t) < Yl+1(t)}.

Define the event that there is a tie of infinitely many particles at time t:

E2 = {∃w ∈ R : for infinitely many i ∈ Z, Xi(t) = w}.

Then we have:
{Y has a tie at time t} = E1 ∪ E2. (4.27)

Step 1. Let us show that P(E1) = 0. For k, l ∈ Z such that k < l, and for q−, q+ ∈ Q, m = 1, 2, . . . define the
following event:

D(k, l, q−, q+, m) :=
{
Yk−1(s) < q− < Yk(s) = Yk+1(s) = . . . = Yl(s) < q+ < Yl+1(s)

for all s ∈ [t − m−1, t + m−1]
}
.

By continuity of trajectories of Yk−1, Yk, . . . , Yl+1, we can represent

E1 =
⋃

D(k, l, q−, q+, m), (4.28)

where the union in the right-hand side of (4.28) is taken over all

k, l ∈ Z; q−, q+ ∈ Q, q− < q+; m = 1, 2, . . . (4.29)

Therefore, it suffices to show that

P (D(k, l, q−, q+, m)) = 0 for all k, l, q−, q+, m from (4.29). (4.30)

Assume the converse: that the probability in (4.30) is positive. If D(k, l, q−, q+, m) happened, then for large
enough j we have:

Y
(Mj ,Nj)
k−1 (s) < q− < Y

(Mj ,Nj)
k (s) ≤ Y

(Mj ,Nj)
l (s) < q+ < Y

(Mj ,Nj)
l+1 (s), s ∈

[
t − m−1, t + m−1

]
.

By Lemma 5.2 from Appendix, on the time interval [t − m−1, t + m−1], the collection of random processes(
Y

(Mj ,Nj)
k (·), . . . , Y (Mj ,Nj)

l (·)
)
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behaves as a ranked system of l − k + 1 competing Brownian particles with drift coefficients gk, . . . , gl, and
diffusion coefficients σ2

k, . . . , σ2
l , starting from the initial conditions

y(j) :=
(
Y

(Mj ,Nj)
k (t − m−1), . . . , Y (Mj ,Nj)

l (t − m−1)
)

.

We have the following convergence:

lim
j→∞

y(j) = y(∞) :=
(
Yk(t − m−1), . . . , Yl(t − m−1)

)
.

By Feller property given in Lemma 5.3 in Appendix, we have: On the time interval [t−m−1, t+m−1], the system
(Yk, . . . , Yl) also behaves as a ranked system of l − k + 1 competing Brownian particles with drift coefficients
gk, . . . , gl and diffusion coefficients σ2

k, . . . , σ2
l , starting from y(∞). But the probability that such system has a

tie at any fixed time is zero (see [43], Lem. 2.3). This completes the proof of (4.30). Combining (4.28), (4.30),
we get P(E1) = 0.
Step 2. Now, let us show that P(E2) = 0. For u−, u+ ∈ R, introduce the event E(u−, u+, k), which is that
infinitely many particles Xi visited [u−, u+] and collided with Yk during the time interval [0, T ]. Then we have
the following representation

E ⊆
⋃

E(u−, u+, k), (4.31)

where the union is taken over all u−, u+ ∈ Q such that u− < u+ and over all k ∈ Z. Let us show that

P(E(u−, u+, k)) = 0 for all u−, u+, k with u− < u+, k ∈ Z. (4.32)

It is straightforward to check that

E(u−, u+, k) ∩ {I(j)
k ⊆ [I−, I+]} = ∅. (4.33)

Assume P(E(u−, u+, k)) = ζ > 0. Apply Lemma 4.10 to ζ instead of η, and arrive at a contradiction with (4.33).
This contradiction proves (4.32). Combining (4.31) and (4.32), we get P(E2) = 0.

4.3. Proof of Lemma 2.5

Let us show (a); (b) is similar. Take an approximative sequence (Mj , Nj). Define X
(Mj ,Nj) and Y

(Mj ,Nj) as
in Lemma 2.4, but for the system X instead of X . Take approximating sequences of finite systems of competing
Brownian particles for each of these two-sided infinite systems. In the notation of Lemma 2.4, for every finite
subset I ⊆ Z and every t > 0, we have the following weak convergence:

[
Y (Mj ,Nj)(t)

]
I
⇒ [Y (t)]I ,

[
Y

(Mj ,Nj)(t)
]
I
⇒ [Y (t)]I , j → ∞. (4.34)

By comparison techniques from ([41], Cor. 3.11), we get:

[
Y (Mj ,Nj)(t)

]
I
�

[
Y

(Mj ,Nj)(t)
]
I
. (4.35)

Combining (4.34) and (4.35) and noting that stochastic comparison is preserved under weak limits, we prove
that [Y (t)]I � [Y (t)]I for every finite subset I ⊆ Z. Therefore, Y (t) � Y (t).

4.4. Proof of Lemma 2.6

(a) It suffices to show the following two statements:

(a) a.s. there exists only finitely many n ≥ 1 such that mint∈[0,T ] Xn(t) ≤ u+;
(b) a.s. there exists only finitely many n ≤ −1 such that maxt∈[0,T ] Xn(t) ≥ u−.
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Let us show (a); the proof of (b) is similar. By the Borel−Cantelli lemma, it suffices to show

∞∑
n=1

P
(

min
t∈[0,T ]

Xn(t) ≤ u+

)
< ∞. (4.36)

As in the proof of Lemma 4.6, we have: for n ∈ Z,

Xn(t) = xn +
∫ t

0

βn(s) ds +
∫ t

0

ρn(s) dWn(s), t ≥ 0, (4.37)

where for all s ≥ 0, n ∈ Z, ∣∣βn(s)
∣∣ ≤ g,

∣∣ρn(s)
∣∣ ≤ σ. (4.38)

By ([43], Lem. 7.1), if n is such that xn > gT + u+, then

P
(

min
t∈[0,T ]

Xn(t) ≤ u+

)
≤ 2Ψ

(
xn − gT − u+

σ
√

T

)
· (4.39)

But x ∈ W , and therefore
∞∑

n=1

e−αx2
n < ∞ for all α > 0.

Moreover, xn → ∞ as n → ∞, hence there exists an n0 such that xn > gT + u+ for n ≥ n0. Applying ([43],
Lem. 7.2), we have:

∞∑
n=n0

Ψ

(
xn − gT − u+

σ
√

T

)
< ∞. (4.40)

Combining (4.39) and (4.40), we get (4.36), which completes the proof of Lemma 2.6(a).
(b) Similar to the proof of ([43], Lem. 3.5); follows from Lemma 2.6(a) and similar properties for finite

systems.

4.5. Proof of Theorem 3.1

4.5.1. Overview of the proof

Similarly to the proof of the main result in [47], we approximate this two-sided infinite system by finite
systems of competing Brownian particles in stationary gap distributions, with suitably chosen uniformly bounded
drifts. These stationary gap distributions have product-of-exponential form, which match the infinite poduct-
of-exponentials distribution πa,b. Let us describe the desired approximating sequence of finite systems. These
are systems of competing Brownian particles:

X(j) =
(
X

(j)
Mj

, . . . , X
(j)
Nj

)
, j ≥ 1,

with (Mj , Nj) an approximative sequence (chosen later) from Definition 2.3, with Mj ≤ −j < j < Nj for j ≥ 1;
drift coefficients (chosen later)

g
(j)
Mj

, . . . , g
(j)
Nj

; (4.41)

and unit diffusion coefficients
σ

(j)
Mj

= . . . = σ
(j)
Nj

= 1.

We assume the initial conditions for each system X(j) are ranked, and X
(j)
0 (0) = 0. Define the corresponding

vector of ranked particles, and the gap process, respectively:

Y (j) =
(
Y

(j)
Mj

, . . . , Y
(j)
Nj

)
, Z(j) =

(
Z

(j)
Mj

, . . . , Z
(j)
Nj−1

)
.
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Lemma 4.13. For each j ≥ 1, we can choose an approximative sequence (Mj , Nj)j≥1, and drift coefficients
from (4.41), so that the system X(j) has a stationary gap distribution

Z(j)(t) ∼
Nj−1⊗
k=Mj

Exp
(
λ

(j)
k

)
, t ≥ 0,

and the parameters λ
(j)
k , k = Mj , . . . , Nj − 1, j ≥ 1, satisfy

g
(j)
k = gk, λ

(j)
k = λk, −j ≤ k ≤ j. (4.42)

Moreover, there exist constants C0, C1, C2 > 0 such that∣∣g(j)
k

∣∣ ≤ C0, for all j ≥ 1, Mj ≤ k ≤ Nj , (4.43)

|λk| ≤ C1|k| + C2, for all k ∈ Z, (4.44)

∣∣λ(j)
k

∣∣ ≤ C1|k| + C2, for all j ≥ 1, Mj ≤ k < Nj . (4.45)

Lemma 4.14. The distribution πa,b is supported on V.

Similarly to the proof of Lemma 2.4, we need to show the following statements.

Lemma 4.15. For every n ∈ Z and T > 0, the sequence (X(j)
n )j≥jn is tight in C([0, T ], R).

Lemma 4.16. For every k ∈ Z and T > 0, the sequence (Y (j)
k )j≥jk

is tight in C([0, T ], R).

Assume that Lemmata 4.13, 4.14, 4.15, 4.16, are proved. Let us complete the proof of Theorem 3.1. As in
the proof of Lemma 2.4, there exists an approximative subsequence (Mls , Nls) of (Mj , Nj) such that for every
finite subset I ⊆ Z and every T > 0, we have:(

[X(ls)]I , [Y (ls)]I
)
⇒ ([X ]I , [Y ]I), in C([0, T ], R2|I|), s → ∞. (4.46)

Here, X = (Xi)i∈Z is a two-sided infinite system of competing Brownian particles with drift coefficients gn, n ∈ Z

(we have these drift coefficient because of (4.42)), and unit diffusion coefficients, and Y = (Yk)k∈Z is its
corresponding system of ranked particles. From (4.46), for every k ≥ 1,(

Z
(ls)
−k , . . . , Z

(ls)
k

)
⇒ (Z−k, . . . , Zk) in C([0, T ], R2k+1) as s → ∞. (4.47)

For every t ≥ 0 and s large enough so that ls ≥ k, we have:

(
Z

(ls)
−k (t), . . . , Z(ls)

k (t)
)
∼

k⊗
m=−k

Exp (λm) . (4.48)

Combining (4.47) with (4.48), we have: for t ≥ 0 and k ≥ 1,

(Z−k(t), . . . , Zk(t)) ∼
k⊗

m=−k

Exp (λm) .

Thus Z(t) ∼ πa,b for all t ≥ 0. This completes the proof of Theorem 3.1.
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4.5.2. Proof of Lemma 4.13

By Remark 5.4 from Appendix, the sequence (λ(j)
k )Mj≤k<Nj is a unique solution to the following difference

equation similar to (3.5),

1
2
λ

(j)
k−1 − λ

(j)
k +

1
2
λ

(j)
k+1 = g

(j)
k+1 − g

(j)
k , k = Mj , . . . , Nj − 1, (4.49)

together with added boundary conditions

λ
(j)
Mj−1 = λ

(j)
Nj

= 0. (4.50)

Assume that, for some parameters c±j to be determined later,

g
(j)
j+1 = . . . = g

(j)
Nj

= c+
j , g

(j)
Mj

= . . . = g
(j)
−j−1 = c−j . (4.51)

Knowing (4.42), (4.50), (4.49), (4.51), let us solve for λ
(j)
k , j < k < Nj , and c+

j . We have:

1
2
λ

(j)
k−1 − λ

(j)
k +

1
2
λ

(j)
k+1 = 0, k = j + 1, . . . , Nj − 1.

Therefore, (λ(j)
j , . . . , λ

(j)
Nj

) is a linear sequence (arithmetic progression). Together with the second equality
in (4.50), this means

λ
(j)
k = (Nj − k)λ(j)

Nj−1, k = j, . . . , Nj . (4.52)

In particular, letting k = j in (4.52), and applying (4.42), we get:

λj = (Nj − j)λ(j)
Nj−1. (4.53)

Comparing λ
(j)
j and λ

(j)
j+1 from (4.52) and (4.53), we get:

λ
(j)
j+1 =

mj − 1
mj

λj , mj := Nj − j. (4.54)

From (4.42), we get: λ
(j)
j−1 = λj−1. Plug k = j into (4.49) and get:

1
2
λj−1 − λj +

mj − 1
2mj

λj = c+
j − gj . (4.55)

Solve (4.55) for c+
j :

c+
j = −1

2
(λj − λj−1) −

1
2mj

λj + gj . (4.56)

From (3.3) and (2.1), it is easy to see that

sup
j∈Z

|λj − λj−1| < ∞.

It suffices to take mj large enough, say mj ≥ λj (or, equivalently, Nj ≥ j + λj), to make the right-hand side
of (4.56) bounded. Thus, we can ensure that

sup
j≥1

|c+
j | < ∞. (4.57)
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Similarly, by a suitable choice of c−j we can ensure that

sup
j≥1

|c−j | < ∞. (4.58)

Using (4.57), (4.58), and supn∈Z
|gn| < ∞, it is easy to check that (4.43) holds:

sup
j,k

∣∣g(j)
k

∣∣ ≤ max
(
sup
j≥1

∣∣c+
j

∣∣, sup
j≥1

∣∣c−j ∣∣, sup
k∈Z

|gk|
)

=: C0 < ∞.

Thus we constructed a required sequence of finite systems of competing Brownian particles which satisfies (4.42)
and (4.43). The estimate (4.44) follows immediately from (3.3), combined with (2.1). Next, apply (5.3) from
Appendix to our system: for k ≥ 0, we get:

λ
(j)
k = λ

(j)
0 − 2kg(j) + 2

(
g
(j)
1 + . . . + g

(j)
k

)
, (4.59)

where g(j) :=
1

Nj − Mj + 1
(
g
(j)
Mj

+ . . . + g
(j)
Nj

)
. (4.60)

It follows from (4.43) and (4.60) that
sup
j≥1

∣∣∣g(j)
∣∣∣ ≤ C0 < ∞. (4.61)

Note that λ
(j)
0 = λ0 for all j ≥ 1. Combining (4.59) with (4.43) and (4.61), we get:∣∣λ(j)

k

∣∣ ≤ |λ0| + 4|k|C0.

This proves (4.45). The case k ≤ 0 is treated similarly.

4.5.3. Proof of Lemma 4.14

Let z ∼ πa,b, and let x := Φ(z). From (3.1), we have: z ∈ V if and only if x ∈ W . To show x ∈ W a.s., we
need to prove the two following statements:∑

n≥1

e−αx2
n < ∞ a.s. for all α > 0, (4.62)

∑
n≤−1

e−αx2
n < ∞ a.s. for all α > 0. (4.63)

Let us show (4.62); (4.63) is similar. Use that

xn = z0 + . . . + zn−1, n ≥ 1. (4.64)

From the estimate (4.44), we have:
∞⊗

n=0

Exp (C1 + C2n) �
∞⊗

n=0

Exp (λn) ∼ z := (zn)n≥1.

Therefore, we can find independent z̃n ∼ Exp(C1 + C2n), n ≥ 0, such that

zn ≥ z̃n for all n ≥ 0. (4.65)

Comparing (4.64) and (4.65), we get:

xn = z0 + . . . + zn−1 ≥ x̃n := z̃0 + . . . + z̃n−1, n ≥ 1. (4.66)

Take an α > 0 and apply (4.66) to the sum in (4.62):
∞∑

n=1

e−αx2
n ≤

∞∑
n=1

e−αx̃2
n . (4.67)

Apply Lemma 5.1 to (x̃n)n≥1. Together with (4.67), this completes the proof of Lemma 4.14.
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4.5.4. Proof of Lemma 4.15

Similar to Lemma 4.6, except the following observation: initial conditions X
(j)
k (0), k ∈ Z, are in general

dependent on j. Recall that initial conditions of each system X(j) are ranked. That is, X
(j)
k (0) = Y

(j)
k (0) for all

k ∈ Z and j ≥ 1. To adjust the proof of Lemma 4.6, we need only to show the following statement.

Lemma 4.17. Fix a k ∈ Z and take a j ≥ |k|. Then the distribution of X
(j)
k (0) = Y

(j)
k (0) is independent of j.

Proof. Fix a j ≥ 1. Assume without loss of generality that k > 0. Since Y
(j)
0 (0) = 0, we have:

Y
(j)
k (0) = z

(j)
0 + . . . + z

(j)
k−1, n ≥ 0. (4.68)

Here, we consider the following independent random variables:

z
(j)
i ∼ Exp

(
λ

(j)
i

)
, Mj ≤ i < Nj . (4.69)

But λ
(j)
i = λi for i = 0, . . . , k − 1, if j ≥ k. Therefore, the distribution of z

(j)
0 + . . . + z

(j)
k−1 is independent of

j ≥ k, which together with (4.68) for n := k proves independence of the distribution of Y
(j)
k (0) of j ≥ |k|. For

each j ≥ 1, the initial conditions of the system X(j) are ranked, that is, X
(j)
n (0) = Y

(j)
n (0) for all n ∈ Z. In

addition, X
(j)
0 (0) = 0. This completes the proof. �

4.5.5. Proof of Lemma 4.16

This is similar to the proof of Lemma 4.7. However, the systems X(j) do not start from the same initial
conditions; this is their main difference from the systems X(Mj ,Nj) from Lemma 4.7. Therefore, we need to
modify Lemmata 4.9 and 4.10. Fix a k ∈ Z.

Lemma 4.18. For every η > 0, there exist u± ∈ R such that for every j ≥ |k|, we have:

P
(
∀ t ∈ [0, T ], u− ≤ Y

(j)
k (t) ≤ u+

)
≥ 1 − η. (4.70)

Proof. From (4.68), we get:
Y (j)

n (0) = Y
(j)
k (0) + z

(j)
k + . . . + z

(j)
n−1, n ≥ k.

It follows from (4.69) and the estimate (4.45) that we can generate independent random variables

z̃n ∼ Exp(C1 + C2|n|), such that a.s. z̃n ≤ zn, n ≥ k. (4.71)

Define for j ≥ |k| and n ≥ k:
x̃n := X

(j)
k (0) + z̃k + . . . + z̃n−1. (4.72)

Consider a one-sided infinite system X̃ = (X̃n)n≥k of competing Brownian particles with drift coefficients
g̃n := −C0, n ≥ k, where C0 is taken from (4.43); unit diffusion coefficients σ̃n = 1, n ≥ k; starting from
X̃n(0) = x̃n, n ≥ k. By Lemma 5.1, (x̃n)n≥k satisfies

∞∑
n=k

e−αx̃2
n < ∞ a.s. for all α > 0. (4.73)

Therefore, by ([43], Thm. 2.1) there exists in the weak sense a unique in law version of this one-sided infinite
system X̃ . Denote by Ỹ = (Ỹn)n≥k the corresponding system of ranked particles, and assume it has ranked
initial conditions. From (4.71) and (4.72), we have:

Ỹn(0) ≤ Y (j)
n (0), j ≥ |k|, k ≤ n ≤ Nj . (4.74)
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By comparison techniques, [41, 43], we obtain:

Ỹn(t) ≤ Y (j)
n (t), t ≥ 0, j ≥ jk, k ≤ n ≤ Nj .

Indeed, the system X̃ is obtained from X(j) via: (a) removing particles with ranks less than k from the bottom;
(b) adding (infinitely many) particles with ranks greater than Nj to the top; (c) shifting down ranked initial
conditions, as in (4.74); (d) taking smaller values g̃n of drift coefficients, by (4.43). The rest of the proof of
Lemma 4.18 is as in Lemma 4.9. �

Lemma 4.19. For j ≥ |k|, define the set of names:

J (j)
k :=

{
i ∈ Z | ∃ t ∈ [0, T ] : X̃

(j)
i (t) = Ỹ

(j)
k (t)

}
.

For every η > 0, there exist J−, J+ ∈ Z and J0 ≥ 0 such that for all j ≥ J0, we get:

P
(
J (j)

k ⊆ [J−, J+]
)
≥ 1 − 2η.

Proof. We use the notation from the proof of Lemma 4.18. For j ≥ jk and Mj ≤ n ≤ Nj, let x
(j)
n := X

(j)
n (0);

then we can compare:
x(j)

n = z
(j)
k + . . . + z

(j)
n−1 ≥ z̃k + . . . + z̃n−1 =: x̃n. (4.75)

From (4.73), we have: x̃n → ∞, n → ∞. Therefore, there exists an n0 ∈ Z such that for every n ≥ n0, we have:
x̃n > u+ + gT . From (4.75), we get: x

(j)
n > u+ + gT . In the notation of the proof of Lemma 4.10, the estimate

in (4.17) takes the form

P
(
A

(j)
i

)
≤ P

(
min

t∈[0,T ]
X̃

(j)
i (t) ≤ u+

)
≤ 2Ψ

(
x̃i − u+ − gT

σ
√

T

)
· (4.76)

From (4.73) and ([43], Lem. 7.2), we get that

∞∑
n=n0

Ψ

(
x̃n − u+ − gT

σ
√

T

)
< ∞. (4.77)

Combining (4.77) with (4.76), we complete the proof of Lemma 4.19 as in the proof of Lemma 4.10. �

4.6. Proof of Lemma 3.6

Take versions of systems X(Mj ,Nj) and X(Mj′ ,Nj′ ), starting from

X
(Mj ,Nj)
i (0) = X

(Mj′ ,Nj′ )
i (0) = 0 for all i.

The system X(Mj,Nj) is obtained from X(Mj′ ,Nj′) by removing the top Nj′ − Nj particles and the bottom
Mj − Mj′ particles. By comparison techniques (see [41], Cor. 3.10), we have:[

Z(Mj′ ,Nj′ )(t)
]

I
�

[
Z(Mj ,Nj)(t)

]
I
. (4.78)

By ([43], Prop. 2.2), we get:

Z(Mj′ ,Nj′ )(t) ⇒ π(j), Z(Mj′ ,Nj′ )(t) ⇒ π(j′), t → ∞. (4.79)

Combine (4.78) and (4.79), and observe that stochastic comparison is preserved under weak limits. The rest of
the proof of Lemma 3.6 is omitted.
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4.7. Proof of Theorem 3.8

(a) It suffices to prove that for every k ∈ Z, the family (Zk(t), t ≥ 0) is tight in R. Take a j ≥ jk and a system
X(Mj ,Nj), starting from

X(Mj ,Nj)
n (0) = Xn(0), Mj ≤ n ≤ Nj .

Then the corresponding gap process Z(Mj ,Nj) corresponds to a tight family of random variables(
Z(Mj ,Nj)(t), t ≥ 0

)
in RNj−Mj , by ([43], Prop. 2.2). Therefore, the family(

Z
(Mj ,Nj)
k (t), t ≥ 0

)
(4.80)

is tight in R. Now, the system X(Mj,Nj) can be obtained from X by removing top particles (with ranks
greater than Nj) and bottom particles (with ranks less than Mj). Therefore, by comparison techniques from
([41], Cor. 3.10), for every subset I ⊆ {Mj, . . . , Nj − 1}, we get:

0 ≤
[
Z(t)

]
I
�

[
Z(Mj,Nj)(t)

]
I
, t ≥ 0. (4.81)

In particular, letting I = {k} for a k ∈ Z, we get from (4.81):

0 ≤ Zk(t) � Z
(Mj ,Nj)
k (t), t ≥ 0. (4.82)

Combining (4.82) with tightness of the family (4.80), we complete the proof of Theorem 3.8(a).
(b) Take a sequence (tl)l≥1 of positive numbers such that tl ↑ ∞. Assume Z(tl) ⇒ ν for some probability

measure μ on RZ

+. Take a finite subset I ⊆ Z. It suffices to show that[
ν
]
I
�

[
π(∞)

]
I
. (4.83)

Because (Mj , Nj) is an approximative sequence, we have: Mj → −∞ and Nj → ∞ as j → ∞. Take a j
large enough so that I ⊆ {Mj, . . . , Nj − 1}, and consider a system X(Mj ,Nj) as in the proof of (a) above.
Plugging t := tl in (4.81), we have:

[Z(tl)]I �
[
Z(Mj ,Nj)(tl)

]
I
. (4.84)

From ([43], Prop. 2.2), applied to marginals corresponding to the subset I, we have:[
Z(Mj ,Nj)(tl)

]
I
⇒

[
π(j)

]
I
, l → ∞. (4.85)

Since Z(tl) ⇒ ν as l → ∞, we have:

[Z(tl)]I ⇒ [ν]I , l → ∞. (4.86)

Compare (4.84)−(4.86), and observing that stochastic comparison is preserved under weak limits, we
prove (4.83). This, in turn, completes the proof of Theorem 3.8 (b).

4.8. Proof of Theorem 3.9

(a) Similar to the proof of Theorem 3.1: for each j ≥ 1, we construct a finite system of competing Brownian
particles

X̃(j) =
(
X̃

(j)
Mj

, . . . , X̃
(j)
Nj

)
with drift and diffusion coefficients gn, σ2

n, Mj ≤ n ≤ Nj , with ranked initial conditions, and with X̃
(j)
0 (0) =

0. Without loss of generality, we assume M1 < 0 < N1. For each system X̃(j), denote the corresponding
system of ranked particles and the gap process by

Ỹ (j) =
(
Ỹ

(j)
Mj

, . . . , Ỹ
(j)
Nj

)
and Z̃(j) =

(
Z̃

(j)
Mj

, . . . , Z̃
(j)
Nj−1

)
.
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We assume that the gap process is in its stationary distribution:

Z̃(j)(t) ∼ π(j), t ≥ 0. (4.87)

Next, we prove as in Lemma 2.4 that for every finite subset I ⊆ Z and every T > 0, we have the following
weak convergence in C([0, T ], R2|I|):([

X̃(j)
]
I
,
[
Ỹ (j)

]
I

)
⇒ ([X ]I , [Y ]I), j → ∞. (4.88)

As in the proof of Theorem 3.1, we combine (4.87) with (4.88) and complete the proof. We need only to
modify Lemmata 4.18 and 4.19. Fix a k ∈ Z.

Lemma 4.20. For every η > 0, there exist u± ∈ R such that for every j ≥ |k|, we have:

P
(
∀ t ∈ [0, T ], u− ≤ Ỹ

(j)
k (t) ≤ u+

)
≥ 1 − η. (4.89)

Proof. Similar to that of Lemma 4.18. We have:

Ỹ
(j)
k (0) = Ỹ

(j)
0 (0) + z

(j)
0 + . . . + z

(j)
k−1 → z

(∞)
0 + . . . + z

(∞)
k−1, j → ∞.

Therefore, there exists a y0 ∈ R such that Ỹ
(j)
k (0) ≥ y0 for all j ≥ |k|. Now,

Ỹ (j)
n (0) = Ỹ

(j)
k (0) + z

(j)
k + . . . + z

(j)
n−1 ≥ y0 + z

(j)
k + . . . + z

(j)
n−1, n ≥ k. (4.90)

Take a one-sided infinite system X = (Xn)n≥k of competing Brownian particles with drift coeffi-
cients (gn)n≥k, diffusion coefficients (σ2

n)n≥k, and initial conditions

Xn(0) := y0 + z
(∞)
k + . . . + z

(∞)
n−1, n ≥ k. (4.91)

This system exists in the weak sense and is unique in law, because

∞∑
n=k

e−α[Xn(0)]2 < ∞ a.s. for all α > 0. (4.92)

Denote by Y = (Y n)n≥k the corresponding system of ranked particles. From (4.90), (4.91), we have:

Xn(0) ≤ Ỹ (j)
n (0), j ≥ |k|, n ≥ k. (4.93)

By comparison techniques, [41, 43], we obtain:

Y n(t) ≤ Ỹ (j)
n (t), t ≥ 0, j ≥ jk, k ≤ n ≤ Nj.

Indeed, the system X is obtained from X(j) via: (a) removing particles with ranks less than k from the
bottom; (b) adding (infinitely many) particles with ranks greater than Nj to the top; (c) shifting down
ranked initial conditions, as in (4.93). The rest of the proof of Lemma 4.18 is as in Lemma 4.9. �

Lemma 4.21. For j ≥ |k|, define the set of names:

J (j)
k :=

{
i ∈ Z | ∃ t ∈ [0, T ] : X̃

(j)
i (t) = Ỹ

(j)
k (t)

}
.

For every η > 0, there exist J−, J+ ∈ Z, and J0 ≥ 0 such that for all j ≥ J0, we get:

P
(
J (j)

k ⊆ [J−, J+]
)
≥ 1 − 2η.
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Proof. Similar to the proof of Lemma 4.19, except that the role of x = (xn)n≥k is played by (4.91), which
satisfies (4.92). �

(b) Take another copy X of the two-sided infinite system X of competing Brownian particles, with the same
drift coefficients gn and diffusion coefficients σ2

n, but starting from a different initial condition:

Z(t) ∼ π(∞), for every t ≥ 0,

where Z is the corresponding gap process. Then Z(0) � Z(0). By Lemma 2.5(b),

Z(t) � Z(t), for every t ≥ 0. (4.94)

By Theorem 3.8 (a), the family (Z(t), t ≥ 0), is tight in R∞
+ . Take a weak limit point ν: assume tl ↑ ∞ is a

sequence of positive numbers, and Z(tl) ⇒ ν. Substitute t := tl into (4.94), and take weak limits as l → ∞.
Since weak convergence preserves stochastic comparison, π(∞) � ν. On the other hand, by Theorem 3.8 (b)
ν � π(∞). Thus, ν = π(∞). We proved that the family (Z(t), t ≥ 0) is tight, and any weak limit point as
t → ∞ is equal to π(∞). This completes the proof of part (b).

4.9. Proof of Lemma 3.10

First, let us show that the sequence (λ(j)
k ) is nondecreasing. For σn ≡ 1, we can use the notation from

subsection 2.3. Because

z
(j+1)
k ∼ Exp(λ(j+1)

k ) ≤ z
(j)
k ∼ Exp(λ(j)

k ), j ≥ jk, k ∈ Z.

we get: λ
(j)
k ≤ λ

(j+1)
k . Next, from (5.3) applied to the current system, we get:

λ
(j)
k+1 − λ

(j)
k = g(j) + g

(j)
k . (4.95)

Combining (4.43), (4.61), (4.95), we get:

sup
k,j

∣∣λ(j)
k+1 − λ

(j)
k

∣∣ < ∞.

Therefore, as j → ∞, either both limits λ
(∞)
k = limλ

(j)
k and λ

(∞)
k+1 = limλ

(j)
k+1 are finite, or both are infinite.

This completes the proof of Lemma 3.10.

4.10. Proof of Theorem 3.11

(a) By Remark 5.4, it suffices to show that

1
2
λ

(∞)
k−1 − λ

(∞)
k +

1
2
λ

(∞)
k+1 = gk+1 − gk, k ∈ Z. (4.96)

Applying (3.5) from the Appendix to the system X(j), we get:

1
2
λ

(j)
k−1 − λ

(j)
k +

1
2
λ

(j)
k+1 = gk+1 − gk, Mj + 1 ≤ k ≤ Nj − 2, j ≥ 1. (4.97)

Combining (3.6), (4.97), we get (4.96). Apply Theorem 3.1 to finish the proof of Theorem 3.11(a).

(b, c) Immediately follow from Theorems 3.8 and 3.9.

4.11. Proof of Theorem 3.12

We have: π(∞) = δ0. Every weak limit point ν of Z(t) as t → ∞ is stochastically dominated by δ0. Since ν is
supported on R∞

+ , it is equal to δ0. Therefore, every weak limit point ν of the family (Z(t), t ≥ 0), as t → ∞, is
equal to δ0. Combining this with tightness of (Z(t), t ≥ 0) in RZ

+ from Theorem 3.8(a), we complete the proof.
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5. Appendix

Lemma 5.1. Fix c1, c2 > 0, k ∈ Z. Consider a sequence z := (zn)n≥k of independent random variables
zn ∼ Exp(c1 + c2|n|). Fix an xk ∈ R and define the sequence (xn)n≥k as follows:

xn := xk + zk + . . . + zn−1, n ≥ k.

Then a.s. for every α > 0 we have:
∞∑

n=k

e−αx2
n < ∞.

Proof. Let λn := c1 + c2|n|, n ≥ k. Then
∑

n≥1 λ−2
n < ∞, and the numbers

Λn :=
n∑

j=k

λ−1
j ∼ c−1

2 log n, n → ∞,

satisfy
∑∞

n=k e−αΛ2
n < ∞ for all α > 0. Apply ([43], Lem. 4.5) and complete the proof. �

Lemma 5.2. Take a finite, one- or two-sided infinite system X = (Xn)M≤n≤N , with drift coefficients gn and
diffusion coefficients σ2

n, M ≤ n ≤ N . Here, M and/or N can be infinite. Let Y = (Yn) be the corresponding
system of ranked particles. Take some integers p, q such that M ≤ p ≤ q ≤ N . Assume that on some time
interval I ⊆ R+, we have:

Yp−1(t) < Yp(t), Yq(t) < Yq+1(t), t ∈ I.

Then (Yp, . . . , Yq) behaves as a ranked system of competing Brownian particles with drift coefficients gn, p ≤
n ≤ q, and diffusion coefficients σ2

n, p ≤ n ≤ q, on this time interval I.

Proof. Let L(n,n+1) be the local time of collision between particles Yn and Yn+1. Then L(p−1,p) and L(q,q+1) are
constant on I. In other words,

dL(p−1,p)(t) = dL(q,q+1)(t) ≡ 0 on I. (5.1)

Recalling Remark 2.7, we can rewrite (2.5) as

dYn(t) = gn dt + σn dBn(t) +
1
2
dL(n−1,n) −

1
2
dL(n,n+1)(t), p ≤ n ≤ q (5.2)

Here, Bn, p ≤ n ≤ q, are i.i.d. Brownian motions. Combining (5.1) with (5.2), and using ([43], Prop. 2.2), we
complete the proof. �

Fix an N < ∞, and define the wedge

WN := {y ∈ RN | y1 ≤ . . . ≤ yN}.

Lemma 5.3. Take an N < ∞. Fix drift and diffusion coefficients gk, σ2
k, k = 1, . . . , N . For every y ∈ WN ,

denote by Y (y) a process in RN which is the ranked system of N competing Brownian particles with given drift
and diffusion coefficients, starting from Y

(y)
n (0) = yn, 1 ≤ n ≤ N . As x → y in WN , we have: Y (x) ⇒ Y (y) in

C([0, T ], RN) for every T > 0.

Proof. The system Y (y) is actually an SRBM (semimartingale reflected Brownian motion) in the wedge WN ,
with drift vector (g1, . . . , gN ), and covariance matrix diag(σ2

1 , . . . , σ2
N ), starting from y, see [11]. The statement

then follows from the Feller property of SRBM in convex polyhedra from this cited article [11]. �
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Remark 5.4. Let us return to a finite system of N competing Brownian particles with drift coefficients
g1, . . . , gN and unit diffusion coefficients. Under the assumption (1.3), the stationary gap distribution has the
product-of-exponentials form given in (1.4). Note that the sequence of numbers μk, k = 1, . . . , N − 1, satisfy
the following finite difference equation boundary value problem:

1
2
μk−1 − μk +

1
2
μk+1 = gk+1 − gk, k = 1, . . . , N − 1,

with the following boundary conditions: μ0 = μN = 0. The solution to this boundary value problem is unique.
Moreover, we can represent

μk − μl = 2 (gl+1 + . . . + gk) − 2(k − l)gN , 1 ≤ l < k < N. (5.3)
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