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MINIMAL SUPERSOLUTIONS OF CONVEX BSDES UNDER CONSTRAINTS ∗
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Abstract. We study supersolutions of a backward stochastic differential equation, the control pro-
cesses of which are constrained to be continuous semimartingales of the form dZ = Δdt + ΓdW . The
generator may depend on the decomposition (Δ, Γ ) and is assumed to be positive, jointly convex and
lower semicontinuous, and to satisfy a superquadratic growth condition in Δ and Γ . We prove the ex-
istence of a supersolution that is minimal at time zero and derive stability properties of the non-linear
operator that maps terminal conditions to the time zero value of this minimal supersolution such as
monotone convergence, Fatou’s lemma and L1-lower semicontinuity. Furthermore, we provide duality
results within the present framework and thereby give conditions for the existence of solutions under
constraints.
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1. Introduction

On a filtered probability space, the filtration of which is generated by a d-dimensional Brownian motion, we
are interested in quadruplets (Y, Z, Δ, Γ ) of processes such that, for all 0 ≤ s ≤ t ≤ T , the system

Ys −
∫ t

s

gu(Yu, Zu, Δu, Γu)du +
∫ t

s

ZudWu ≥ Yt, YT ≥ ξ,

Zt = z +
∫ t

0

Δudu +
∫ t

0

ΓudWu (1.1)

is satisfied. Here, for ξ a terminal condition, Y is the càdlàg value process and Z the continuous control
process with decomposition (Δ, Γ ). The generator g is assumed to be jointly convex and may depend on the
decomposition of the continuous semimartingale Z. It is our objective to give conditions ensuring that the
set A(ξ, g, z), consisting of all admissible pairs (Y, Z) satisfying (1.1), henceforth called supersolution of the
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backward stochastic differential equation (BSDE) under gamma and delta constraints, contains elements (Ŷ , Ẑ)
that are minimal at time zero. Furthermore, we give conditions relying on BSDE duality for the existence of
solutions under constraints.

Finding the minimal initial value of a supersolution under constraints is closely related to the superreplication
problem in a financial market under gamma constraints, first studied in Soner and Touzi [21]. Indeed, the
classical gamma constraints can be incorporated into our more general framework by setting the generator to
+∞ whenever the diffusion part Γ is outside a predetermined interval. In Soner and Touzi [21], the decomposition
parts of the trading strategies are assumed to be bounded and under similar assumptions, Cheridito et al. [3]
focus on the multidimensional case. In both papers the problem is formulated in a dynamic setting, allowing
the authors to use dynamic programming tools to identify the value functions as unique viscosity solutions of
parabolic partial differential equations. The present paper in contrast focuses on the static case and studies the
problem using purely probabilistic tools. Moreover, instead of a priori bounding the components of the control
process, we opted for incorporating a growth condition on the generator which in turn ensures that our controls
belong to suitable spaces. Let us briefly outline the idea behind our approach. In a nutshell, inspired by the
methods first used in Drapeau et al. [9] and then later in Heyne et al. [13], we begin by considering the operator
Eg
0 (ξ, z) := inf{Y0 : (Y, Z) ∈ A(ξ, g, z)} where z ∈ R1×d is the initial value of controls. We then show that the

set of supersolutions (Ŷ , Ẑ) satisfying Ŷ0 = Eg
0 (ξ, z) is non-empty. In order to do so, we impose a superquadratic

growth condition in the decomposition parts (Δ, Γ ) of controls on the generator g, reflecting a penalization
of rapid changes in control values and accounting for the expression “Delta- and Gamma-Constraints”. The
consequence is twofold. First, it ensures that the sequence of stochastic integrals (

∫
ZndW ) corresponding to

the minimizing sequence Y n
0 ↓ Eg

0 (ξ, z) is bounded in H2. Drawing from compactness results for the space of
martingales H2 given in Delbaen and Schachermayer [8], we obtain our candidate control process Ẑ as the
limit of a sequence in the asymptotic convex hull of (Zn). At this point it is crucial to preserve the continuous
semimartingale structure of the limit object, that is Ẑ = z +

∫
Δ̂du +

∫
Γ̂dW . Here the first novelty of this

paper comes into play since, although following the ideas used in Drapeau et al. [9], it is a priori not clear that
the candidate control has the right structure. To achieve this, we prove two auxiliary results by using once more
the aforementioned growth condition on g.

In a next step, we provide stability results of ξ �→ Eg
0 (ξ, z), the non-linear operator that maps a terminal

condition to the value of the minimal supersolution at time zero, such as monotone convergence, Fatou’s lemma or
L1-lower semicontinuity. This, together with convexity, gives way to a dual representation of Eg

0 as a consequence
of the Fenchel–Moreau theorem, which is the second main novel contribution of this work. Indeed, we use purely
probabilistic methods in order to characterize the conjugate E∗

0 in terms of the decomposition parts of the
controls and show that E∗

0 is always attained. Note that, in contrast to Drapeau et al. [10], in the presence
of constraints identifying the convex conjugate E∗

0 is technically more involved. In particular, for the case of a
quadratic generator we show that it is possible to explicitly compute the conjugate by means of classical calculus
of variations methods, giving additional structural insight into the problem. If we assume in turn the existence of
an optimal subgradient such that Eg

0 (ξ, z) is attained in its dual representation, we can prove that the associated
BSDE with parameters (ξ, g) admits a solution under constraints. Our duality results extend those of Delbaen
et al. [6] and Drapeau et al. [10] obtained in the unconstrained case as the existence of constraints require new
methods in order to characterize the convex conjugate.

Before we continue, let us briefly discuss the existing literature on the subject. Ever since the seminal paper
Pardoux and Peng [18], an extensive amount of work has been done in the field of BSDEs, resulting in such
important contributions as for instance El Karoui et al. [11], Kobylanski [17], Briand and Hu [1]. We refer the
reader to Peng [19], Drapeau et al. [9] for a more thorough treatment of the literature concerning solutions and
in particular supersolutions of BSDEs. There are many works dealing with optimization or (super-)replication
under constraints, see for instance Cvitanic and Karatzas [5], Jouini and Kallal [14], Broadie et al. [2] and
references therein, but the notion of gamma constraints in the context of superhedging was introduced in Soner
and Touzi [21] and then studied in a multi-dimensional setting in Cheridito et al. [3]. We would also like to
refer the reader to Cheridito et al. [4], where the authors treat the related system of BSDEs and SDEs in a
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more abstract fashion, whereas the more recent work Soner et al. [22] provides a dual characterization of the
superreplication problem.

The remainder of this paper is organized as follows. Setting and notations are specified in Section 2. A precise
definition of supersolutions under gamma and delta constraints is then given in Section 3, along with existence
and stability results. We conclude this work with duality results in Section 4.

2. Setting and notations

We consider a filtered probability space (Ω,F , (Ft)t≥0, P ), where the filtration (Ft) is generated by a d-
dimensional Brownian motion W and is assumed to satisfy the usual conditions. For some fixed time horizon
T > 0 the set of FT -measurable random variables is denoted by L0, where random variables are identified in
the P -almost sure sense. By Lp we furthermore denote the set of random variables in L0 with finite p-norm, for
p ∈ [1, +∞]. Inequalities and strict inequalities between any two random variables or processes X1 and X2 are
understood in the P -almost sure or in the P ⊗dt-almost everywhere sense, respectively. We denote by T the set
of stopping times with values in [0, T ] and hereby call an increasing sequence of stopping times (τn) such that
P [
⋃

n{τn = T }] = 1 a localizing sequence of stopping times. For m, n ∈ N we denote by | · | the Euclidean norm
on Rm×n, that is |x| = (

∑
i,j x2

ij)
1
2 . By S := S(R) we denote the set of càdlàg progressively measurable processes

Y with values in R. For p ∈ [1, +∞[, we further denote by Hp the set of càdlàg local martingales M with finite
Hp-norm on [0, T ], that is ‖M‖Hp := E[〈M, M〉p/2

T ]1/p < ∞. By Lp := Lp (W ) we denote the set of R1×d-
valued, progressively measurable processes Z such that

∫
ZdW ∈ Hp, that is, ‖Z‖Lp := E[(

∫ T

0 |Zs|2 ds)p/2]1/p

is finite. For Z ∈ Lp, the stochastic integral
∫

ZdW is well defined, see [20], and is by means of the Burkholder–
Davis–Gundy inequality ([20], Thm. 48) a continuous martingale. We further denote by L := L (W ) the set
of R1×d-valued, progressively measurable processes Z such that there exists a localizing sequence of stopping
times (τn) with Z1[0,τn] ∈ L1, for all n ∈ N. For Z ∈ L, the stochastic integral

∫
ZdW is well defined and is a

continuous local martingale. Finally, for a given sequence (xn) in some convex set, we say that a sequence (x̃n)
is in the asymptotic convex hull of (xn) if x̃n ∈ conv{xn, xn+1, . . .}, for all n ∈ N.

3. Minimal supersolutions of BSDEs under delta and gamma constraints

3.1. Definitions

Throughout this work, a generator is a jointly measurable function g from Ω× [0, T ]×R×R1×d×R1×d×Rd×d

to R∪{+∞} where Ω×[0, T ] is endowed with the progressive σ-field. A control Z ∈ L with initial value z ∈ R1×d

is said to have the decomposition (Δ, Γ ) if it is of the form Z = z+
∫

Δdu+
∫

ΓdW , for progressively measurable
(Δ, Γ ) taking values in R1×d×Rd×d4. A control is said to be admissible if the continuous local martingale

∫
ZdW

is a supermartingale. Let us collect all these processes in the set Θ defined by

Θ :=

{
Z ∈ L :

there exists z ∈ R1×d and progressively measurable (Δ, Γ ) such that

Z = z +
∫

Δdu +
∫

ΓdW and
∫

ZdW is a supermartingale

}
.

Whenever we want to stress the dependence of controls on a fixed initial value z ∈ R1×d, we make use of the
set Θ(z) := {Z ∈ Θ : Z0 = z}. Given a generator g and a terminal condition ξ ∈ L0, a pair (Y, Z) ∈ S × Θ is a
supersolution of a BSDE under gamma and delta constraints if, for 0 ≤ s ≤ t ≤ T , it holds

Ys −
∫ t

s

gu(Yu, Zu, Δu, Γu)du +
∫ t

s

ZudWu ≥ Yt and YT ≥ ξ. (3.1)

4In order to be compatible with the dimension of Z, actually the transpose (
∫

ΓdW )T of
∫

ΓdW needs to be considered.
However, we suppress this operation for the remainder in order to keep the notation simple.
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For a supersolution (Y, Z), we call Y the value process and Z its corresponding control process5. Given z ∈ R1×d,
we are now interested in the set

A(ξ, g, z) := {(Y, Z) ∈ S × Θ(z) : (3.1) holds} .

Throughout this paper a generator g is said to be

(lsc) if (y, z, δ, γ) �→ g(y, z, δ, γ) is lower semicontinuous.

(pos) positive, if g(y, z, δ, γ) ≥ 0, for all (y, z, δ, γ) ∈ R × R1×d × R1×d × Rd×d.

(con) convex, if (y, z, δ, γ) �→ g(y, z, δ, γ) is jointly convex.

(dgc) delta- and gamma-compatible, if there exist c1 ∈ R and c2 > 0 such that, for all (δ, γ) ∈ R1×d ×Rd×d,

g(y, z, δ, γ) ≥ c1 + c2

(
|δ|2 + |γ|2

)
holds for all (y, z) ∈ R × R1×d.

Remark 3.1.

(i) Note that (dgc) reflects a penalization of rapid changes in control values. In contrast to [3] or [4], where the
single decomposition parts Δ and Γ were demanded to satisfy certain boundedness, continuity or growth
properties, we embed this in (dgc) so that suitable L2-bounds emerge naturally from the problem (3.1).

(ii) An example of a generator that excludes values of Γ exceeding a certain level by penalization and fits into
our setting is given by

g(y, z, δ, γ) =

{
g̃(y, z, δ) if |γ| ≤ M

+∞ else,

where M > 0 and g̃ is any positive, jointly convex and lower semicontinuous generator satisfying g̃(y, z, δ) ≥
c1 + c2|δ|2 for constants c1 ∈ R and c2 > 0. This particular choice of g is closely related to the kind of
gamma constraints studied in [3].

(iii) Setting the generator g(·, z, ·, ·) equal to +∞ outside a desired subset of R1×d shows for instance that our
framework is flexible enough to comprise shortselling constraints.

3.2. General properties

The proof of the ensuing Lemma 3.2 can be found in ([9], Lem. 3.2).

Lemma 3.2. Let g be a generator satisfying (pos). Assume further that A(ξ, g) �= ∅ and that for the terminal
condition ξ it holds ξ− ∈ L1. Then ξ ∈ L1 and, for any (Y, Z) ∈ A(ξ, g), the control Z is unique and the value
process Y is a supermartingale such that Yt ≥ E[ξ|Ft]. Moreover, the unique canonical decomposition of Y is
given by

Y = Y0 + M − A, (3.2)

where M =
∫

ZdW and A is an increasing, predictable, càdlàg process with A0 = 0.

The joint convexity of the generator g immediately yields the following lemma.

Lemma 3.3. Let g be a generator satisfying (con). Then, for each z ∈ R1×d, the set A(ξ, g, z) is convex.
Furthermore, from A(ξ1, g, z1) �= ∅ and A(ξ2, g, z2) �= ∅ follows A(ξλ, g, zλ) �= ∅, for zλ := λz1 + (1 − λ)z2 and
ξλ := λξ1 + (1 − λ)ξ2 where λ ∈ [0, 1].

5Note that the formulation in (3.1) is equivalent to the existence of a càdlàg increasing process K, with K0 = 0, such that

Yt = ξ +
∫ T

t gu(Yu, Zu, Δu, Γu)du + (KT − Kt) −
∫ T
t ZudWu for all t ∈ [0, T ], see for example [11, 19].
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Proof. The first assertion is a direct implication of (con). As to the latter, it follows from (con) that
λ(Y 1, Z1)+(1−λ)(Y 2, Z2) ∈ A(ξλ, g, zλ) whenever (Y 1, Z1) and (Y 2, Z2) belong to A(ξ1, g, z1) and A(ξ2, g, z2),
respectively. �

For the proof of our main existence theorem we will need an auxiliary result concerning the stability of the set
Θ(z) under convergence in L2, given that the decomposition parts can be uniformly bounded in L2.

Lemma 3.4. For any M > 0 and z ∈ R1×d, the set

ΘM (z) = {Z ∈ Θ(z) : max {‖Δ‖L2 , ‖Γ‖L2} ≤ M}

is closed under convergence in L2. If a sequence (Zn) ⊂ ΘM (z) with Zn = z +
∫

Δndt +
∫

Γ ndW converges
in L2 to some Z = z +

∫
Δdt +

∫
ΓdW , then there is a sequence ((Δ̃n, Γ̃ n)) in the asymptotic convex hull of

((Δn, Γ n)) converging in L2 × L2 to (Δ, Γ ).

Proof. First observe that for Z ∈ Θ(z) we have

|Zt|2 ≤ 4

(
|z|2 +

∫ t

0

|Δs|2 ds +
∣∣∣∣
∫ t

0

ΓsdWs

∣∣∣∣
2
)

.

Hence, for Z ∈ ΘM (z), this in turn yields E[|Zt|2] ≤ 4(|z|2 + ‖Δ‖2
L2 + ‖Γ‖2

L2) ≤ 4(|z|2 + 2M2) := C < ∞, and
hence ΘM (z) is a bounded subset of L2, since by Fubini’s theorem we obtain that ‖Z‖L2 ≤

√
TC. Consider

a sequence Zn = z +
∫

Δndu +
∫

Γ ndW in ΘM (z) converging in L2 to some process Z. Since ((Δn, Γ n)) are
bounded in L2×L2, we can find a sequence (Δ̃n, Γ̃ n) ∈ conv{(Δn, Γ n), (Δn+1, Γ n+1), . . .} converging in L2×L2

to some (Δ, Γ ) ∈ L2×L2. Furthermore, it holds that ‖Δ‖L2 ∨‖Γ‖L2 ≤ M . Let us denote by (Z̃n) the respective
sequence in the asymptotic convex hull of (Zn). From Jensen’s inequality we deduce that

E

[∫ T

0

∣∣∣∣
∫ t

0

(Δ̃n
s − Δs)ds

∣∣∣∣
2

dt

]
≤ TE

[∫ T

0

∣∣∣Δ̃n
s − Δs

∣∣∣2 ds

]
→ 0,

and thus (
∫

Δ̃nds) converges to
∫

Δds in L2. Applying Fubini’s theorem and using the Itô isometry yield that

E

[∫ T

0

∣∣∣∣
∫ t

0

Γ̃ n
s dWs −

∫ t

0

ΓsdWs

∣∣∣∣
2

dt

]
≤ TE

[∫ T

0

∣∣∣Γ̃ n
s − Γs

∣∣∣2 ds

]
,

where the term on the right-hand side tends to zero by means of the L2-convergence of (Γ̃ n) to Γ . Hence,
(
∫

Γ̃ ndW ) converges to
∫

ΓdW in L2. (Z̃n) inheriting the L2-convergence to Z from (Zn) together with
the P ⊗ dt-uniqueness of L2-limits finally allows us to write the process Z as Z = z +

∫
Δds +

∫
ΓdW ,

we are done. �

Lemma 3.4 yields the following compactness result.

Lemma 3.5. Assume that A(ξ, g, z) is non-empty for some z ∈ R1×d. Let ξ− be in L1 and g satisfy (pos),
(con) and (dgc). Then, for any sequence ((Y n, Zn)) ⊂ A(ξ, g, z) of supersolutions satisfying supn Y n

0 < ∞,
the following holds: There is a sequence (Z̃n) in the asymptotic convex hull of (Zn) that converges in L2 to
some process Ẑ ∈ Θ(z).

Proof.
Step 1: Existence of ((Ỹ n, Z̃n)). L2-convergence of (Z̃n) to Ẑ. First observe that (3.1) and the supermartingale
property of all

∫
ZndW imply that

E

[∫ T

0

gt(Y n
t , Zn

t , Δn
t , Γ n

t )dt

]
≤ Y n

0 + E
[
ξ−
]
≤ C + E

[
ξ−
]

< ∞, (3.3)
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where we put C := supn Y n
0 . Now, using (3.3) together with (dgc) we estimate

‖Δn‖2
L2 + ‖Γ n‖2

L2 = E

[∫ T

0

|Δn
t |

2 dt

]
+ E

[∫ T

0

|Γ n
t |2 dt

]

≤ 1
c2

E

[∫ T

0

gt(Y n
t , Zn

t , Δn
t , Γ n

t )dt

]
− c1

c2
T ≤ 1

c2

(
C + E

[
ξ−
]
− c1T

)
< ∞.

Since the right-hand above is independent of n, we obtain that (Zn) ⊂ ΘM (z) with M := [ 1
c2

(C+E [ξ−]−c1T )]
1
2

and the arguments within the proof of Lemma 3.4 show that the sequence (Zn) is uniformly bounded in L2.
This in turn guarantees the existence of a sequence (Z̃n) in the asymptotic convex hull of (Zn) that converges
to some process Ẑ in L2 and, up to a subsequence, P ⊗ dt-almost everywhere.

Step 2: The process Ẑ belongs to Θ(z). The sequence ((Ỹ n, Z̃n)) lies in A(ξ, g, z), due to (con). Moreover, the
linearity of the integrals within the Itô decompositions of (Zn) yields that Z̃n = z +

∫
Δ̃ndu +

∫
Γ̃ ndW where

((Δ̃n, Γ̃ n)) denotes the corresponding convex combinations of the decomposition parts. In addition, ((Δ̃n, Γ̃ n))
inherits the uniform bound from ((Δn, Γ n)), that is max{supn ‖Δ̃n‖L2 , supn ‖Γ̃ n‖L2} ≤ M . Hence, Lemma 3.4
ensures that Ẑ is of the form

Ẑ = z +
∫

Δ̂du +
∫

Γ̂dW,

with suitable L2-convergence of the decomposition parts by possibly passing to yet another subsequence in the
respective asymptotic convex hull. This finishes the proof. �

3.3. Minimality under constraints

Within the current setup of admissible controls constrained to follow certain dynamics, we are interested
in supersolutions (Ŷ , Ẑ) ∈ A(ξ, g, z) minimal at time zero, that is Ŷ0 ≤ Y0 for all (Y, Z) ∈ A(ξ, g, z). In the
remainder of this work, a major role is thus played by the operator

Eg
0 (ξ, z) := inf {Y0 : (Y, Z) ∈ A(ξ, g, z)} , (3.4)

since any (Ŷ , Ẑ) satisfying Ŷ0 = Eg
0 (ξ, z) naturally exhibits the property of being minimal at time zero. Note

that the definition of a supersolution directly yields that A(ξ1, g, z) ⊆ A(ξ2, g, z) whenever ξ1 ≥ ξ2. Hence,
we immediately obtain monotonicity of the operator E0(·, z), that is ξ1 ≥ ξ2 implies Eg

0 (ξ1, z) ≥ Eg
0 (ξ2, z). The

ensuing Theorem 3.7 provides existence of supersolutions minimal at time zero making use of the fact that the
set {Y0 : (Y, Z) ∈ A(ξ, g, z)} is directed downwards. Parts of it rely on a version of Helly’s theorem which we
state here for the sake of completeness. In order to keep this work self-contained, we include the proof given in
([12], Lem. 1.25).

Lemma 3.6. Let (An) be a sequence of increasing positive processes such that the sequence (An
T ) is bounded in

L1. Then, there is a sequence (Ãn) in the asymptotic convex hull of (An) and an increasing positive integrable
process Ã such that

lim
n→∞ Ãn

t = Ãt, for all t ∈ [0, T ], P -almost surely.

Proof. Let (tj) be a sequence running through I := ([0, T ]∩Q)∪{T }. Since (An
t1) is an L1-bounded sequence of

positive random variables, due to ([7], Lem. A1.1) there exists a sequence (Ã1,k) in the asymptotic convex hull
of (An) and a random variable Ãt1 such that (Ã1,k

t1 ) converges P -almost surely to Ãt1 . Moreover, Fatou’s lemma
yields Ãt1 ∈ L1. Let (Ã2,k) be a sequence in the asymptotic convex hull of (Ã1,k) such that (Ã2,k

t2 ) converges
P -almost surely to Ãt2 ∈ L1 and so on. Then, for s ∈ I, it holds Ãk,k

s → Ãs on a set Ω̂ ⊂ Ω satisfying P (Ω̂) = 1.
The process Ã is positive, increasing and integrable on I. Thus we may define

Ât := lim
r↓t,r∈I

Ãr, t ∈ [0, T ), ÂT := ÃT .
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We now show that (Ãk,k), henceforth named (Ãk), converges P -almost surely on the continuity points of Â. To
this end, fix ω ∈ Ω̂ and a continuity point t ∈ [0, T ) of Â(ω). We show that (Ãk

t (ω)) is a Cauchy sequence in R.
Fix ε > 0 and set δ = ε

11 . Since t is a continuity point of Â(ω), we may choose p1, p2 ∈ I such that p1 < t < p2

and Âp1(ω) − Âp2(ω) < δ. By definition of Â, we may choose r1, r2 ∈ I such that p1 < r1 < t < p2 < r2 and
|Âp1 (ω) − Ãr1(ω)| < δ and |Âp2(ω) − Ãr2(ω)| < δ. Now choose N ∈ N such that |Ãm

r1
(ω) − Ãn

r1
(ω)| < δ, for all

m, n ∈ N with m, n ≥ N , and |Ãj
r2

(ω) − Ãr2(ω)| < δ and |Ãr1(ω) − Ãj
r1

(ω)| < δ for j = m, n. We estimate

|Ãm
t (ω) − Ãn

t (ω)| ≤ |Ãm
t (ω) − Ãm

r1
(ω)| + |Ãm

r1
(ω) − Ãn

r1
(ω)| + |Ãn

r1
(ω) − Ãn

t (ω)|.

For the first and the third term on the right hand side, since Ãm and Ãn are increasing, we deduce that
|Ãm

t (ω) − Ãm
r1

(ω)| ≤ |Ãm
r2

(ω) − Ãm
r1

(ω)| and |Ãn
t (ω) − Ãn

r1
(ω)| ≤ |Ãn

r2
(ω) − Ãn

r1
(ω)|. Furthermore,

|Ãj
r2

(ω) − Ãj
r1

(ω)| ≤ |Ãj
r2

(ω) − Ãr2(ω)| + |Ãr2(ω) − Âp2(ω)|
+ |Âp2(ω) − Âp1(ω)| + |Âp1(ω) − Ãr1(ω)| + |Ãr1(ω) − Ãj

r1
(ω)|,

for j = m, n. Combining the previous inequalities yields |Ãm
t (ω)− Ãn

t (ω)| ≤ ε, for all m, n ≥ N . Hence, (Ãk(ω))
converges for all continuity points t ∈ [0, T ) of Â(ω), for all ω ∈ Ω̂. We denote the limit by Ã.

It remains to be shown that (Ãk) also converges for the discontinuity points of Â. To this end, note that
Â is càdlàg and adapted to our filtration which fulfills the usual conditions. By a well-known result (see for
example [15], Prop. 1.2.26), this implies that the jumps of Â may be exhausted by a sequence of stopping
times (ρj). Applying once more ([7], Lem. A1.1) iteratively on the sequences (Ãk

ρj )k∈N, j = 1, 2, 3 . . ., and
diagonalizing yields the result. �

Theorem 3.7. Assume that A(ξ, g, z) �= ∅ for some ξ− ∈ L1 and z ∈ R1×d and let g satisfy (lsc), (pos),
(con) and (dgc). Then, the set {(Ŷ , Ẑ) ∈ A(ξ, g, z) : Ŷ0 = Eg

0 (ξ, z)} is non-empty.

Proof.
Step 1: The candidate control Ẑ. We extract a sequence ((Y n, Zn)) ⊂ A(ξ, g, z) such that

lim
n→∞Y n

0 = Eg
0 (ξ, z).

Because supn Y n
0 ≤ Y 1

0 < ∞, Lemma 3.5 assures the existence of a sequence (Z̃n) in the asymptotic convex hull
of (Zn) that converges in L2 to some admissible process Ẑ ∈ Θ(z), including L2-convergence of the corresponding
decomposition parts. In particular, we obtain that∫ t

0

Z̃n
u dWu −→

n→∞

∫ t

0

ẐudWu, for all t ∈ [0, T ], P -almost surely. (3.5)

Moreover, up to a subsequence, ((Z̃n, Δ̃n, Γ̃ n)) converges P ⊗ dt-almost everywhere towards (Ẑ, Δ̂, Γ̂ ).

Step 2: The candidate value process Ŷ . If we denote by (Ỹ n) the sequence in the asymptotic convex hull of (Y n)
corresponding to (Z̃n), then all (Ỹ n, Z̃n) satisfy (3.1) due to (con). Let Ãn denote the increasing, predicable
process of finite variation stemming from the decomposition of Ỹ n = Ỹ n

0 + M̃n − Ãn given in Lemma 3.2.
Since (Z̃n) is uniformly bounded in L2 and thus all

∫
Z̃ndW are true martingales, and g satisfies (pos), the

decomposition (3.2) yields
E
[
Ãn

T

]
≤ Y 1

0 + E
[
ξ−
]

< ∞,

as we assumed ξ− to be an element of L1. Now a version of Helly’s theorem, see Lemma 3.6, yields the existence
of a sequence in the asymptotic convex hull of (Ãn), again denoted by the previous expression, and of an
increasing positive integrable process Ã such that limn→∞ Ãn

t = Ãt, for all t ∈ [0, T ], P -almost surely. We pass
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to the corresponding sequence on the side of (Ỹ n) and (Z̃n), define the process Ỹ pointwise for all t ∈ [0, T ]
by Ỹt := limn→∞ Ỹ n

t = Eg
0 (ξ, z) +

∫ t

0 ẐudWu − Ãt, and observe that it fulfills Ỹ0 = Eg
0 (ξ, z) by construction.

However, since Ỹ is not necessarily càdlàg, we define our candidate value process Ŷ by Ŷt := lims↓t,s∈Q Ỹs, for
all t ∈ [0, T ) and ŶT := ξ. The continuity of

∫
ẐdW yields that

Ŷt = Eg
0 (ξ, z) +

∫ t

0

ẐudWu − lim
s↓t,s∈Q

Ãs. (3.6)

Since jump times of càdlàg processes6 can be exhausted by a sequence of stopping times (σj) ⊂ T , compare
([15], Prop. 1.2.26), which coincide with the jump times of Ã, we conclude that

Ŷ = Ỹ , P ⊗ dt-almost everywhere. (3.7)

Furthermore, Ã increasing implies that Ât := lims↓t,s∈Q Ãs ≥ Ãt, for all t ∈ [0, T ] which, together with (3.6), in
turn yields that

Ŷt ≤ Ỹt, for all t ∈ [0, T ]. (3.8)

Given that (Ŷ , Ẑ) satisfies (3.1), we could conclude that (Ŷ , Ẑ) ∈ A(ξ, g, z) and thus Ŷ0 ≥ Eg
0 (ξ, z) = Ỹ0 which,

combined with (3.8), would imply Ŷ0 = Eg
0 (ξ, z) and thereby finish the proof.

Step 3: Verification. As to the remaining verification, we deduce from (3.7) the existence of a set A ∈ FT ,
P (A) = 1 with the following property. For all ω ∈ A, there exists a Lebesgue measurable set I(ω) ⊂ [0, T ]
of measure T such that Ỹ n

t (ω) −→ Ŷt(ω), for all t ∈ I(ω). We suppress the dependence of I on ω and recall
however that in the following s and t may depend on ω. For s, t ∈ I with s ≤ t holds

Ŷs −
∫ t

s

gu(Ŷu, Ẑu, Δ̂u, Γ̂u)du +
∫ t

s

ẐudWu ≥ lim sup
n

(
Ỹ n

s −
∫ t

s

gu(Ỹ n
u , Z̃n

u , Δ̃n
u, Γ̃ n

u )du +
∫ t

s

Z̃n
udWu

)
(3.9)

by means of (3.5), the P ⊗ dt-almost-everywhere convergence of ((Ỹ n, Z̃n, Δ̃n, Γ̃ n)) towards (Ŷ , Ẑ, Δ̂, Γ̂ ), the
property (lsc) and Fatou’s lemma. Using ((Ỹ n, Z̃n)) ⊂ A(ξ, g, z), for all n ∈ N, (3.9) can be further estimated by

Ŷs −
∫ t

s

gu(Ŷu, Ẑu, Δ̂u, Γ̂u)du +
∫ t

s

ẐudWu ≥ lim sup
n

Ỹ n
t = Ŷt. (3.10)

Whenever s, t ∈ Ic with s ≤ t, we approximate both times from the right by sequences (sn) ⊂ I and (tn) ⊂ I,
respectively, such that sn ≤ tn. Since (3.10) holds for all sn and tn, the claim follows from the right-continuity
of Ŷ and the continuity of all appearing integrals, which finally concludes the proof. �

Convexity of the mapping (ξ, z) �→ Eg
0 (ξ, z) is provided by the following lemma.

Lemma 3.8. Under the assumptions of Theorem 3.7, the operator Eg
0 (·, ·) is jointly convex.

Proof. For z1, z2 ∈ R1×d and ξ1, ξ2 ∈ L0, the negative parts of which are integrable, assume that A(ξ1, g, z1) �= ∅
and A(ξ2, g, z2) �= ∅, as otherwise convexity trivially holds. For λ ∈ [0, 1] we set zλ := λz1 + (1 − λ)z2 and
ξλ := λξ1 + (1 − λ)ξ2 so that Lemma 3.3 implies A(ξλ, g, zλ) �= ∅. By Theorem 3.7, there exist (Y 1, Z1) and
(Y 2, Z2) in A(ξ1, g, z1) and A(ξ2, g, z2), respectively, such that Y 1

0 = Eg
0 (ξ1, z1) and Y 2

0 = Eg
0 (ξ2, z2). Since

(Ȳ , Z̄) := λ(Y 1, Z1) + (1 − λ)(Y 2, Z2) is an element of A(ξλ, g, zλ) due to (con), it holds Eg
0 (ξλ, zλ) ≤ Ȳ0 by

definition of the operator Eg
0 . �

6Note that as an increasing process, Ã is in particular a submartingale and thus its right- and left-hand limits exist, compare
([15], Prop. 1.3.14). Consequently, the process lims↓·,s∈Q Ãs is càdlàg.



186 G. HEYNE ET AL.

3.4. Stability results

Next, we show that the non-linear operator ξ �→ Eg
0 (ξ, z) exhibits stability properties such as monotone

convergence, the Fatou property or L1-lower semicontinuity. The following theorem establishes monotone con-
vergence and the Fatou property of Eg

0 (·, z). Similar results in the unconstrained case have been obtained in
([9], Thm. 4.7).

Theorem 3.9. For z ∈ R1×d and g a generator fulfilling (lsc), (pos), (con) and (dgc), and (ξn) a sequence
in L0 such that (ξ−n ) ⊂ L1, the following holds.

• Monotone convergence: If (ξn) is increasing P -almost surely to ξ ∈ L0, then it holds limn→∞ Eg
0 (ξn, z) =

Eg
0 (ξ, z).

• Fatou’s lemma: If ξn ≥ η, for all n ∈ N, where η ∈ L1, then it holds Eg
0 (lim infn ξn, z) ≤ lim infn Eg

0 (ξn, z).

Proof.
Monotone convergence: First, note that by monotonicity the limit Ȳ0 := limn Eg

0 (ξn, z) exists and satisfies
Ȳ0 ≤ Eg

0 (ξ, z). Other than in the trivial case of +∞ = Ȳ0 ≤ Eg
0 (ξ, z) we have A(ξn, g, z) �= ∅, for all n ∈ N, which,

together with (ξ−n ) ⊂ L1 implies (ξn) ⊂ L1. Furthermore, Theorem 3.7 yields the existence of supersolutions
(Y n, Zn) ∈ A(ξn, g, z) fulfilling Y n

0 = Eg
0 (ξn, z), for all n ∈ N. In particular, we have that Y n

0 ≤ Ȳ0 and
ξ−n ≤ ξ−1 , for all n ∈ N. Arguments analogous to the ones used in Lemma 3.5 and the proof of Theorem 3.7
directly translate to the present setting and provide both a candidate control Ẑ ∈ Θ(z) to which (Z̃n) converges
and a corresponding Ỹt := limn Ỹ n

t , and ensure that (Ŷ , Ẑ) belongs to A(ξ, g, z), where Ŷ := lims∈Q,s↓· Ỹs

on [0, T ) and ŶT := ξ. In particular, we obtain Ŷ0 ≤ Ỹ0 = Ȳ0. Hence, as A(ξ, g, z) �= ∅ and ξ− ∈ L1, there
exists (Y, Z) ∈ A(ξ, g, z) such that Y0 = Eg

0 (ξ, z). By minimality of (Y, Z) at time zero, however, this entails
Y0 ≤ Ŷ0 ≤ Ȳ0 and we conclude that limn→∞ Eg

0 (ξn, z) = Eg
0 (ξ, z).

Fatou’s lemma: If we define ζn := infk≥n ξk, then ξk ≥ η for all k ∈ N implies ζn ≥ η for all n ∈ N which in turn
gives (ζ−n ) ⊂ L1, and thus the monotone convergence established above can be used exactly as in ([9], Thm. 4.7)
to obtain the assertion. �

As a consequence of the monotone convergence property we obtain the ensuing theorem providing L1-lower
semicontinuity of the operator Eg

0 (·, z). The proof goes along the lines of ([9], Thm. 4.9) and is thus omitted
here.

Theorem 3.10. Let z ∈ R1×d and g be a generator fulfilling (lsc), (pos), (con) and(dgc). Then Eg
0 (·, z) is

L1-lower semicontinuous.

4. Duality under constraints

The objective of this section is to construct a solution of constrained BSDEs via duality and, for the case of
a quadratic generator, to obtain an explicit form for E∗

0 , the Fenchel–Legendre transform of Eg
0 . Let us assume

for the rest of this section that our generator g is independent of y, that is gu(y, z, δ, γ) = gu(z, δ, γ), and that it
satisfies (lsc), (pos), (con) and (dgc). Let us further fix some z ∈ R1×d as initial value of the controls and set
Eg
0 (·) := Eg

0 (·, z) for the remainder of this section. Whenever we say that the BSDE(ξ, g) has a solution (Y, Z),
we mean that there exists (Y, Z) ∈ A(ξ, g, z) such that (3.1) is satisfied with equalities instead of inequalities.
Observe that Eg

0 (·), being convex and L1-lower semicontinuous, is in particular σ(L1, L∞)-lower semicontinuous,
and thus, by classical duality results admits the Fenchel–Moreau representation

Eg
0 (ξ) = sup

v∈L∞
{E[vξ] − E∗

0 (v)} , ξ ∈ L1, (4.1)

where for v ∈ L∞ the convex conjugate is given by

E∗
0 (v) := sup

ξ∈L1
{E[vξ] − Eg

0 (ξ)} .
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It is proved in the next lemma that the domain of E∗
0 is concentrated on non-negative v ∈ L∞

+ satisfying E[v] = 1.

Lemma 4.1. Within the representation (4.1), that is Eg
0 (ξ) = supv∈L∞{E[vξ] − E∗

0 (v)}, the supremum might
be restricted to those v ∈ L∞

+ satisfying E[v] = 1.

Proof. First, we assume without loss of generality that Eg
0 (0) < +∞. Indeed, a slight modification of the

argumentation below remains valid using any ξ ∈ L1 such that Eg
0 (ξ) < +∞7. We show that E∗

0 (v) = +∞ as
soon as v ∈ L∞\L∞

+ or E[v] �= 1. For v ∈ L∞\L∞
+ , L1

+ being the polar of L∞
+ yields the existence of ξ̄ ∈ L1

+

such that E[vξ̄] < 0. Monotonicity of Eg
0 then gives Eg

0 (−nξ̄) ≤ Eg
0 (0) for all n ∈ N. Hence,

E∗
0 (v) ≥ sup

n

{
nE[−vξ̄] − Eg

0 (−nξ̄)
}
≥ sup

n

{
nE[−vξ̄]

}
− Eg

0 (0) = +∞.

Furthermore, since the generator does not depend on y, the function Eg
0 is cash additive, compare ([9],

Prop. 3.3.5), and we deduce that, for all n ∈ N it holds

E∗
0 (v) ≥ E[vn] − Eg

0 (0) − n = n(E[v] − 1) − Eg
0 (0).

Thus, if E[v] > 1, then E∗
0 (v) = +∞. A reciprocal argument with ξ = −n finally gives E∗

0 (v) = +∞ whenever
E[v] < 1. �

By the previous result, we may use v ∈ L∞
+ , E[v] = 1, in order to define a measure Q that is absolutely

continuous with respect to P by setting dQ
dP := v. Thereby (4.1) may be reformulated as

Eg
0 (ξ) = sup

Q�P
{EQ[ξ] − E∗

0 (Q)} , ξ ∈ L1, (4.2)

where
E∗
0 (Q) := sup

ξ∈L1
{EQ[ξ] − Eg

0 (ξ)} . (4.3)

Note that A(ξ, g, z) = ∅ implies Eg
0 (ξ) = +∞ and hence such terminal conditions are irrelevant for the supremum

in (4.3). Let us denote by Q the set of all probability measures equivalent to P with bounded Radon–Nikodym
derivative. For each Q ∈ Q, there exists a progressively measurable process q taking values in R1×d such that
for all t ∈ [0, T ]

dQ

dP
|Ft = exp

(∫ t

0

qudWu − 1
2

∫ t

0

|qu|2du

)
.

By Girsanov’s theorem, the process WQ
t := Wt −

∫ t

0 qudu is a Q-Brownian motion. The following lemma is a
valuable tool regarding the characterization of E∗

0 .

Lemma 4.2. The supremum in (4.3) can be restricted to random variables ξ ∈ L1 for which the BSDE with
parameters (ξ, g) has a solution with value process starting in Eg

0 (ξ). More precisely, for any Q ∈ Q holds

E∗
0 (Q) = sup

ξ∈L1
{EQ [ξ] − Eg

0 (ξ) : BSDE(ξ, g) has a solution (Y, Z) with Y0 = Eg
0 (ξ)}.

Proof. It suffices to show that

E∗
0 (Q) ≤ sup

ξ∈L1
{EQ[ξ] − Eg

0 (ξ) : BSDE(ξ, g) has a solution (Y, Z) with Y0 = Eg
0 (ξ)}, (4.4)

7Note that the case Eg
0 ≡ +∞ on L1 immediately yields E∗

0 ≡ −∞ on L∞ and is thus neglected.



188 G. HEYNE ET AL.

since the reverse inequality is satisfied by definition of E∗
0 (·). Consider to this end a terminal condition ξ ∈ L1

with associated minimal supersolution (Y, Z) ∈ A(ξ, g, z), that is Y0 = Eg
0 (ξ). Put, for all t ∈ [0, T ],

Y 1
t = Eg

0 (ξ) −
∫ t

0

gu (Zu, Δu, Γu) du +
∫ t

0

ZudWu.

Relation (3.1) implies Y 1
T ≥ YT ≥ ξ and thus Eg

0 (Y 1
T ) ≥ Eg

0 (ξ) and (Y 1
T )− ∈ L1. Furthermore, observe that

(Y 1
T )+ =

(
Eg
0 (ξ) −

∫ T

0

gu (Zu, Δu, Γu) du +
∫ T

0

ZudWu

)+

≤
(
Eg
0 (ξ) +

∫ T

0

ZudWu

)+

due to the positivity of the generator. But since the right-hand side is in L1 by means of the martingale property
of
∫

ZdW , we deduce that (Y 1
T )+ ∈ L1, allowing us to conclude that Y 1

T ∈ L1. On the other hand, (Y 1, Z) ∈
A(Y 1

T , g, z) holds by definition of Y 1. Hence, we conclude Eg
0 (Y 1

T ) ≤ Y 1
0 = Eg

0 (ξ). Thus, Eg
0 (Y 1

T ) = Eg
0 (ξ), and

(Y 1, Z) is a solution of the BSDE with parameters (Y 1
T , g). Observe further that Eg

0 (Y 1
T ) − Eg

0 (ξ) = 0 ≤ Y 1
T − ξ

which, by taking expectation under Q, implies

EQ[ξ] − Eg
0 (ξ) ≤ EQ[Y 1

T ] − Eg
0 (Y 1

T ).

Taking the supremum yields (4.4), the proof is done. �

By means of the preceding lemma it holds

E∗
0 (Q) = sup

ξ∈L1
{EQ[ξ] − Eg

0 (ξ)}

= sup
ξ∈L1

{
EQ

[
Eg
0 (ξ) −

∫ T

0

gu(Zu, Δu, Γu)du +
∫ T

0

ZudWu

]
− Eg

0 (ξ)

}

= sup
(Δ,Γ )∈Π

{
EQ

[
−
∫ T

0

gu(Zu, Δu, Γu)du +
∫ T

0

ZudWu

]}
(4.5)

where

Π :=

{
(Δ, Γ ) ∈ L2 × L2 :

∃ξ ∈ L1 : BSDE(ξ, g) has a solution (Y, Z)

with Y0 = Eg
0 (ξ) and Z = z +

∫
Δdu +

∫
ΓdW

}
. (4.6)

Whenever Q ∈ Q, Girsanov’s theorem applies and we may exploit the decomposition of Z and use that
∫

ZdWQ

and
∫

ΓdWQare Q-martingales in order to express the right-hand side of (4.5) without Brownian integrals. More
precisely,

E∗
0 (Q) = sup

(Δ,Γ )∈Π

{
EQ

[∫ T

0

(
−gu(Zu, Δu, Γu) + qu

∫ u

0

(Δs + qsΓs)ds

)
du

]}
+ zEQ

[∫ T

0

qudu

]
. (4.7)

We continue with two lemmata that allow us to restrict the set of measures in the representation (4.2) to a
sufficiently nice subset of Q on the one hand, and to change the set Π appearing in (4.5) to the whole space
L2 × L2 on the other hand.

Lemma 4.3. Assume there exists some ξ ∈ L1 such that A(ξ, g, z) �= ∅. Then it is sufficient to consider
measures with densities that are bounded away from zero, that is

Eg
0 (ξ) = sup

v∈L∞
b

{E[vξ] − E∗
0 (v)} (4.8)

where L∞
b := {v ∈ L∞ : v > 0 and ‖ 1

v‖∞ < ∞}.
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Proof. The assumption of A(ξ, g, z) being non-empty for some ξ ∈ L1 implies the existence of (Δ, Γ ) ∈ Π and
corresponding Z such that EP [

∫ T

0 gu(Zu, Δu, Γu)du] < ∞ which together with (pos), (4.5) and the martingale
property of all occurring

∫
ZdW under P immediately yields that E∗

0 (P ) < ∞. For any Q � P with dQ
dP =

v ∈ L∞
+ and λ ∈ (0, 1) we define a measure Qλ by its Radon–Nikodym derivative vλ := (1 − λ)v + λ where

naturally dP
dP = 1. Observe that λ > 0 implies vλ ∈ L∞

b . Next, we show that limλ↓0 E∗
0 (vλ) = E∗

0 (v). Indeed,
convexity of E∗

0 (·) together with E∗
0 (dP

dP ) = E∗
0 (1) < ∞ yields lim infλ↓0 E∗

0 (vλ) ≤ E∗
0 (v), whereas the reverse

inequality is satisfied by means of the lower semicontinuity. On the other hand, dominated convergence gives
limλ↓0 E[vλξ] = E[vξ], since |vλξ| ≤ |vξ|+ |ξ| which is integrable. Consequently, the expression {E[vξ]−E∗

0 (v)}
is the limit of a sequence (E[vλnξ] − E∗

0 (vλn))n where (vλn) ⊂ L∞
b and λn ↓ 0. Since Eg

0 (ξ) can be expressed
as the supremum of {E[vξ] − E∗

0 (v)} over all v, it suffices to consider the supremum over v ∈ L∞
b , the proof is

done. �

Lemma 4.4. For each Q ∈ Q such that dQ
dP ∈ L∞

b it holds

E∗
0 (Q) = sup

(Δ,Γ )∈L2×L2

{
EQ

[
−
∫ T

0

gu(Zu, Δu, Γu)du +
∫ T

0

ZudWu

]}
. (4.9)

Proof. Since Π defined in (4.6) is a subset of L2×L2, “≤” certainly holds in (4.9). As to the reverse inequality, ob-
serve first that, since we consider a supremum in (4.9) and Z ∈ L2 whenever (Δ, Γ ) ∈ L2×L2, those (Δ, Γ ) such
that EQ[

∫ T

0
gu(Zu, Δu, Γu)du] = +∞ can be neglected in the following. In particular, since v = dQ

dP ∈ L∞
b , we can

restrict our focus to those elements satisfying E[
∫ T

0
gu(Zu, Δu, Γu)du] ≤ ‖ 1

v‖L∞EQ[
∫ T

0
gu(Zu, Δu, Γu)du] < +∞.

Thus, given such a pair (Δ, Γ ), the terminal condition ξ := −
∫ T

0
gu(Zu, Δu, Γu)du+

∫ T

0
ZudWu fulfills ξ− ∈ L1

due to the martingale property of
∫

ZdW . Furthermore, the pair (−
∫ ·
0
gu(Zu, Δu, Γu)du +

∫ ·
0
ZudWu, Z) is

an element of A(ξ, g, z) by construction and hence Theorem 3.7 yields the existence of (Ȳ , Z̄) ∈ A(ξ, g, z)
satisfying Ȳ0 = Eg

0 (ξ) ≤ 0. Now, using the same techniques as in the proof of Lemma 4.2, we define Y 1 by
Y 1

t := Eg
0 (ξ) −

∫ t

0
gu(Z̄u, Δ̄u, Γ̄u)du +

∫ t

0
Z̄udWu, for all t ∈ [0, T ], where (Δ̄, Γ̄ ) is the decomposition of Z̄, and

obtain that Y 1
T ≥ ξ as well as Eg

0 (Y 1
T ) = Eg

0 (ξ). Consequently,

−
∫ T

0

gu(Z̄u, Δ̄u, Γ̄u)du +
∫ T

0

Z̄udWu = Y 1
T −Eg

0 (ξ) ≥ Y 1
T ≥ ξ = −

∫ T

0

gu(Zu, Δu, Γu)du +
∫ T

0

ZudWu, (4.10)

which, by taking expectation under Q in (4.10) and using (Δ̄, Γ̄ ) ∈ Π , implies

E∗
0 (Q) ≥ EQ

[
−
∫ T

0

gu(Zu, Δu, Γu)du +
∫ T

0

ZudWu

]
. (4.11)

Since (Δ, Γ ) was arbitrary, we have finally shown that E∗
0 (Q) is greater or equal to the supremum over (Δ, Γ ) ∈

L2 × L2 of the right-hand side of (4.11), which finishes the proof. �

The ensuing proposition provides, for a given measure Q ∈ Q with dQ
dP ∈ L∞

b , the existence of a pair of processes
attaining the supremum in (4.5).

Proposition 4.5. For each Q ∈ Q with dQ
dP ∈ L∞

b there exist (ΔQ, Γ Q) ∈ Π and a corresponding control ZQ

of the form ZQ = z +
∫

ΔQdu +
∫

Γ QdW such that

E∗
0 (Q) = EQ

[
−
∫ T

0

gu(ZQ
u , ΔQ

u , Γ Q
u )du +

∫ T

0

ZQ
u dWu

]
. (4.12)

Furthermore, if the convexity of g is strict, then the triple (ZQ, ΔQ, Γ Q) is unique.
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Proof.

Step 1: The integral
∫

qdW is an element of BMO. We begin by proving that, for Q ∈ Q the density
dQ
dP = exp(

∫ T

0
qudWu − 1

2

∫ T

0
|qu|2du) of which belongs to L∞

b , the process (
∫ t

0
qudWu)t∈[0,T ] is an ele-

ment of BMO. Indeed, since the process vt := E[dQ
dP | Ft] is uniformly bounded away from zero, it satisfies

the Muckenhaupt (A1) condition (see [16], Def. 2.2), and therefore
∫

qdW ∈ BMO by means of ([16], Thm. 2.4).

Step 2: L2-boundedness of a minimizing sequence and the candidate (ΔQ, Γ Q). Since the generator g satis-
fies (dgc), it holds for all (Δ, Γ, Z) that

‖Δ‖2
L2(Q) + ‖Γ‖2

L2(Q) ≤
1
c2

(
EQ

[∫ T

0

gu(Zu, Δu, Γu)du

]
− c1T

)
. (4.13)

If we put F (Z, Δ, Γ ) := EQ[
∫ T

0
(gu(Zu, Δu, Γu)du − qu

∫ u

0
(Δs + qsΓs)ds)du], then (4.7) in combination with

Lemma 4.4 implies that the conjugate can be expressed by E∗
0 (Q) = − inf(Δ,Γ )∈L2×L2 F (Z, Δ, Γ )+zEQ[

∫ T

0
qudu].

We claim that, for (Zn, Δn, Γ n) a minimizing sequence of F , both (Δn) and (Γ n) are bounded in L2(Q). Since
in our case the L2-norms with respect to P and Q are equivalent, we suppress the dependence on the measure
in the notation to follow. Assume now contrary to our assertion that ‖Δn‖2

L2 → ∞ and ‖Γ n‖2
L2 → ∞ as n

tends to infinity. This in turn would imply either

EQ

[∫ T

0

qu

∫ u

0

Δn
s ds du

]
→ ∞ and lim sup

n

‖Δn‖2
L2

EQ

[∫ T

0 qu

∫ u

0 Δn
s ds du

] = K (4.14)

or

EQ

[∫ T

0

qu

∫ u

0

qsΓ
n
s ds du

]
→ ∞ and lim sup

n

‖Γ n‖2
L2

EQ

[∫ T

0
qu

∫ u

0
qsΓ n

s ds du
] = L (4.15)

or both, for K, L ∈ R. Indeed, (4.13) would otherwise lead to limn F (Zn, Δn, Γ n) = ∞ and thereby contradict
((Zn, Δn, Γ n)) being a minimizing sequence of F . On the other hand however, an application of Hölder’s
inequality yields

∣∣∣∣∣EQ

[∫ T

0

qu

∫ u

0

Δn
s ds du

]∣∣∣∣∣ ≤
(

EQ

[∫ T

0

|qu|2du

]
EQ

[∫ T

0

(∫ u

0

Δn
s ds

)2

du

]) 1
2

≤ ‖q‖L2

(
EQ

[∫ T

0

∫ u

0

|Δn
s |2dsdu

]) 1
2

≤ T
1
2 ‖q‖L2 ‖Δn‖L2 . (4.16)

Taking the square on both sides above we obtain

(
EQ

[∫ T

0

qu

∫ u

0

Δn
s ds du

])2

≤ T ‖q‖2
L2 ‖Δn‖2

L2
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which in turn implies ‖Δn‖2
L2 (EQ[

∫ T

0 qu

∫ u

0 Δn
s ds du])−1 → ∞, a contradiction to (4.14). As to (Γ n), we argue

similarly and, for (Qu)u∈[0,T ] defined by Qu :=
∫ T

u qsds estimate∣∣∣∣∣EQ

[∫ T

0

qu

∫ u

0

qsΓ
n
s ds du

]∣∣∣∣∣ =

∣∣∣∣∣EQ

[∫ T

0

quΓ n
u Qudu

]∣∣∣∣∣ ≤ EQ

[∫ T

0

|qu||Γ n
u ||Qu|du

]

≤
(

EQ

[∫ T

0

|qu|2|Qu|2du

]) 1
2

‖Γ n‖L2 =

(
EQ

[∫ T

0

|qu|2
∣∣∣∣
∫ T

u

qsds

∣∣∣∣
2

du

]) 1
2

‖Γ n‖L2

≤

⎛
⎝EQ

⎡
⎣
(∫ T

0

|qu|2du

)2
⎤
⎦
⎞
⎠

1
2

‖Γ n‖L2 = ‖q‖2
L4 ‖Γ n‖L2 ,

where we used Fubini’s theorem in the first equality above. Since
∫

qdW ∈ BMO, the L4-norm of q is finite8

and the contradiction to (4.15) is derived analogously to the argumentation following (4.16). Consequently,
there exists a sequence ((Δ̃n, Γ̃ n)) in the asymptotic convex hull of ((Δn, Γ n)) and (ΔQ, Γ Q) ∈ L2 × L2 such
that ((Δ̃n, Γ̃ n)) converges in L2 × L2 to (ΔQ, Γ Q). On the side of (Zn) we pass to the corresponding sequence
(Z̃n) and recall from the proof of Lemma 3.4 that it is bounded in L2. Hence, there is a sequence in the
asymptotic convex hull of (Z̃n), denoted likewise, that converges in L2 to some ZQ = z +

∫
ΔQdu +

∫
Γ QdW .

Of course, we pass the corresponding sequence on the side of ((Δ̃n, Γ̃ n)) without violating the convergence to
(ΔQ, Γ Q).

Step 3: Lower Semicontinuity and convexity of F . In a next step we show that the earlier defined function
F (Z, Δ, Γ ) = EQ[

∫ T

0 gu(Zu, Δu, Γu)du−
∫ T

0 ZudWu] is lower semicontinuous and convex on L2×L2×L2 where
Z = z +

∫
Δdu +

∫
ΓdW . Indeed, the part EQ[

∫ T

0 gu(Zu, Δu, Γu)du] is lower semicontinuous by (pos), (lsc)

and Fatou’s lemma. As to the second part, first observe that L2-convergence of (Z̃n) towards ZQ implies∣∣∣∣∣EQ

[∫ T

0

(Z̃n
u − ZQ

u )dWu

]∣∣∣∣∣ −→
n→∞ 0.

Furthermore, (con) yields that F is convex in (Z, Δ, Γ ).

Step 4: Minimality of (ZQ, ΔQ, Γ Q). We claim that F (ZQ, ΔQ, Γ Q) = inf(Δ,Γ )∈L2×L2 F (Z, Δ, Γ ) which
would then in turn finally imply (4.12). To this end, it suffices to prove that F (ZQ, ΔQ, Γ Q) ≤
inf(Δ,Γ )∈L2×L2 F (Z, Δ, Γ ), since the reverse inequality is naturally satisfied. Observe now that

inf
(Δ,Γ )∈L2×L2

F (Z, Δ, Γ ) = lim
n

F (Zn, Δn, Γ n) = lim
n

M(n)∑
k=n

λ
(n)
k F

(
Zk, Δk, Γ k

)

≥ lim
n

F

⎛
⎝M(n)∑

k=n

λ
(n)
k Zk,

M(n)∑
k=n

λ
(n)
k Δk,

M(n)∑
k=n

λ
(n)
k Γ k

⎞
⎠

= lim
n

F
(
Z̃n, Δ̃n, Γ̃ n

)
≥ F (ZQ, ΔQ, Γ Q)

where we denoted by λ
(n)
k , n ≤ k ≤ M(n),

∑
k λ

(n)
k = 1 the convex weights of the sequence ((Z̃n, Δ̃n, Γ̃ n)) and

made use of the convexity and lower semicontinuity of F .

8Recall that BMO can be embedded into any Hp-space, compare ([16], Sect. 2.1, p. 26).
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Step 5: Uniqueness of (ZQ, ΔQ, Γ Q). As to the uniqueness, assume that there are (Δ1, Γ 1) and (Δ2, Γ 2) with
corresponding Z1 and Z2, respectively, both attaining the supremum such that P ⊗dt[(Δ1, Γ 1) �= (Δ2, Γ 2)] > 0.
Setting (Z̄, Δ̄, Γ̄ ) := 1

2 [(Z1, Δ1, Γ 1)+ (Z2, Δ2, Γ 2)] together with Q ∼ P and the strict convexity of F inherited
by g yields that F (Z̄, Δ̄, Γ̄ ) < F (Z1, Δ1, Γ 1), a contradiction to the optimality of (Z1, Δ1, Γ 1). �

Remark 4.6. Since for a given Q ∈ Q with dQ
dP ∈ L∞

b and a strictly convex generator the maximizer
(ZQ, ΔQ, Γ Q) is unique by the preceding proposition, it has to be (conditionally) optimal at all times t ∈ [0, T ].
Indeed, assume to the contrary the existence of (Δ, Γ ) such that z +

∫ t

0 Δudu +
∫ t

0 ΓudWu = Zt = ZQ
t and

EQ[
∫ T

t −gu(Zu, Δu, Γu)du+
∫ T

t ZudWu|Ft] > EQ[
∫ T

t −gu(ZQ
u , ΔQ

u , Γ Q
u )du+

∫ T

t ZQ
u dWu|Ft] holds true for some

t ∈ [0, T ]. Then, however, the concatenated processes (Z̄, Δ̄, Γ̄ ) := (ZQ, ΔQ, Γ Q)1[0,t] + (Z, Δ, Γ )1]t,T ] satisfy
EQ[

∫ T

0 −gu(Z̄u, Δ̄u, Γ̄u)du +
∫ T

0 Z̄udWu] > EQ[
∫ T

0 −gu(ZQ
u , ΔQ

u , Γ Q
u )du +

∫ T

0 ZQ
u dWu], which is a contradiction

to the opimality of (ZQ, ΔQ, Γ Q) at time zero.

Notice that, for d = 1 and the case of a quadratic generator which is in addition independent of z, that
is gu(δ, γ) = |δ|2 + |γ|2, the processes (ΔQ, Γ Q) attaining E∗

0 (Q) can be explicitly computed and (ΔQ
t , Γ Q

t )
depends on the whole path of q up to time t, as illustrated in the following proposition. It thus constitutes a
useful tool for the characterization of the dual optimizers and its proof is closely related to the Euler–Lagrange
equation arising in classical calculus of variation.

Proposition 4.7. Assume that d = 1 and that g is defined by gu(δ, γ) = |δ|2 + |γ|2. For Q ∈ Q with dQ
dP ∈ L∞

b ,
let (ΔQ, Γ Q) be the optimizer attaining E∗

0 (Q). Then there exist c1, c2 ∈ R such that

ΔQ
t = −1

2

∫ t

0

qsds + c1 (4.17)

Γ Q
t = −1

2
qt

(∫ t

0

qsds + c2

)
, (4.18)

for all t ∈ [0, T ].

Proof. For the purpose of this proof we assume without loss of generality that z = 0, since the initial value
does not affect the optimization with respect to (Δ, Γ ). Hence, the generator only depending on δ and γ in
combination with (4.7) gives E∗

0 (Q) = − inf(Δ,Γ ){F1(Δ)+F2(Γ )} where F1(Δ) := EQ[
∫ T

0
(|Δu|2−qu

∫ u

0
Δsds)du]

and F2(Γ ) := EQ[
∫ T

0
(|Γu|2 − qu

∫ u

0
qsΓsds)du]. We will proceed along an ω-wise criterion of optimality, since

any pair (ΔQ, Γ Q) that is optimal for almost all ω ∈ Ω then naturally also optimizes the expectation under Q.
The uniqueness obtained in Proposition 4.5 then assures that the path-wise optimizer is the only one. We define

J1(Δ) =
∫ T

0

(
|Δu|2 − qu

∫ u

0

Δsds

)
du and J2(Γ ) =

∫ T

0

(
|Γu|2 − qu

∫ u

0

qsΓsds

)
du

and observe that it is sufficient to elaborate how to obtain conditions for a minimizer of J1, as the functional
J2 is of a similar structure. Introducing X(u) :=

∫ u

0 Δsds we obtain X ′(u) := d
duX(u) = Δu and

J1(Δ) = J̃1(X) =
∫ T

0

L(u, X(u), X ′(u))du

where L(u, a, b) = |b|2 − qua. If X is a local minimum of J̃1, then J̃1(X) ≤ J̃1(X + εη) for sufficiently small
ε > 0 and all differentiable η ∈ C([0, T ], R) the derivatives of which are square integrable and which satisfy
η(0) = η(T ) = 0. In particular, with φ(ε) := J̃1(X + εη), it has to hold that d

dεφ(ε)|ε=0 = 0. Using the specific
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form of L we get

d
dε

φ(ε)|ε=0 = lim
h→0

1
h

∫ T

0

[
L
(
u, X(u) + hη(u), X ′(u) + hη′(u)

)
− L

(
u, X(u), X ′(u)

)]
du

= lim
h→0

∫ T

0

[
−quη(u) + 2X ′(u)η′(u) + h(η′(u))2

]
du.

Having assumed η′ to be square integrable allows us to exchange limit and integration, yielding

0 =
d
dε

φ(ε)|ε=0 =
∫ T

0

[−quη(u) + 2Δuη′(u)] du. (4.19)

Using integration by parts we obtain

−
∫ T

0

quη(u)du =
(∫ u

0

−qsds

)
η(u)

∣∣∣∣
T

0

−
∫ T

0

(∫ u

0

−qsds

)
η′(u)du.

The first term on the right-hand side above vanishes and so, by plugging this back into (4.19) we end up with
∫ T

0

(
2Δu +

∫ u

0

qsds

)
η′(u)du = 0. (4.20)

Let us next introduce the constant c := 1
T

∫ T

0
(2Δu +

∫ u

0
qsds)du, of course depending on ω, and observe that,

using
∫ T

0
η′(u)du = 0, Equation (4.20) may be rewritten as

∫ T

0

(
2Δu +

∫ u

0

qsds − c

)
η′(u)du = 0. (4.21)

Moreover, the function

η̄(t) :=
∫ t

0

(
2Δu +

∫ u

0

qsds − c

)
du

satisfies η̄(0) = η̄(T ) = 0 by construction as well as η̄′(u) = 2Δu +
∫ u

0 qsds − c, which is square integrable for
almost all ω ∈ Ω, since Δ and q are square integrable9. Hence, (4.21) applied to our particular function η̄ yields

∫ T

0

(
2Δu +

∫ u

0

qsds − c

)2

du = 0

and we deduce that

2Δu +
∫ u

0

qsds =
1
T

∫ T

0

(
2Δr +

∫ r

0

qsds

)
dr for almost all u ∈ [0, T ]. (4.22)

Specifically, (4.22) shows that, for almost all ω ∈ Ω, there exists a set I(ω) ⊆ [0, T ] with Lebesgue measure T
such that, for all u ∈ I(ω),

2Δu +
∫ u

0

qsds = M, (4.23)

where M of course depends on ω ∈ Ω and is thus a random variable. This in turn implies, for dt-almost all
u ∈ [0, T ], the existence of Ωu ⊆ Ω with P (Ωu) = 1 such that (4.23) holds for all ω ∈ Ωu. In particular, on Ωu

the above M equals an Fu-measurable random variable. We choose a sequence (un) ⊂ [0, T ] with limn un = 0

9More precisely, it holds P (
∫ T
0 |qu|2du < ∞) = P (

∫ T
0 |Δu|2du < ∞) = 1.
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and hence obtain that on Ω̄ :=
⋂

n Ωun , where P (Ω̄) = Q(Ω̄) = 1, M equals an
⋂

n Fun -measurable random
variable and is thus F0-measurable, that means it is a constant on Ω̄, by the right-continuity of our filtration.
Since modifying our optimizer on a Q-nullset does not alter the value of the functional to be optimized, we have
shown (4.17) by putting c1 := M

2 .
As to the case of our optimal Γ Q, assume first that qu �= 0 for all u ∈ [0, T ] and observe that,

with Y (u) :=
∫ u

0 qsΓsds, we obtain J2(Γ ) = J̃2(Y ) =
∫ T

0 K(u, Y (u), Y ′(u))du where we set K(u, a, b) =
(1/qu)2b2 − qua. Thus, an argumentation identical to that above would yield (4.18) in that case. Further-
more, it holds that limqu→0 Γ Q

u = 0, a value that is consistent with the “pointwise” minimization consideration
that arg minΓu

{|Γu|2 − qu

∫
[0,u)

qsΓsds}|qu=0 = 0 and hence justifies expression (4.18). �

For ξ ∈ L1 such that A(ξ, g, z) �= ∅, the following theorem states that, given the existence of an equivalent
probability measure Q̂ ∈ Q such that the sup in (4.2) is attained, the BSDE with generator g and terminal
condition ξ admits a solution under constraints. Conditions guaranteeing that the rather technical assumptions
of the ensuing theorem are satisfied are subject to further research.

Theorem 4.8. Assume that, for ξ ∈ L1 with A(ξ, g, z) �= ∅, there exists a Q̂ ∈ Q with dQ
dP ∈ L∞

b such that
Eg
0 (ξ) = EQ̂[ξ] − E∗

0 (Q̂). Then there exists a solution (Y, Z) ∈ A(ξ, g, z) of the BSDE with parameters (ξ, g).

Proof. Starting with (4.2) in combination with Proposition 4.5, it holds

Eg
0 (ξ) = EQ̂[ξ] − E∗

0 (Q̂) = EQ̂

[
ξ +

∫ T

0

gu(ZQ̂
u , ΔQ̂

u , Γ Q̂
u )du −

∫ T

0

ZQ̂
u dWu

]
. (4.24)

We recall that A(ξ, g, z) �= ∅ and ξ ∈ L1. Hence, by Theorem 3.7 there exists (Δ, Γ, Z) such that

EQ̂

[
ξ +

∫ T

0

gu(ZQ̂
u , ΔQ̂

u , Γ Q̂
u )du −

∫ T

0

ZQ̂
u dWu

]
−
∫ T

0

gu(Zu, Δu, Γu)du +
∫ T

0

ZudWu ≥ ξ

holds true. Taking expectation under Q̂ on both sides of the inequality above yields

EQ̂

[
−
∫ T

0

gu(ZQ̂
u , ΔQ̂

u , Γ Q̂
u )du +

∫ T

0

ZQ̂
u dWu

]
≤ EQ̂

[
−
∫ T

0

gu(Zu, Δu, Γu)du +
∫ T

0

ZudWu

]
.

However, the expression on the left-hand side is maximal for (ZQ̂, ΔQ̂, Γ Q̂) by means of Proposition 4.5 and
thus equality has to hold. Hence, it follows that E∗

0 (Q̂) = EQ̂[−
∫ T

0 gu(Zu, Δu, Γu)du+
∫ T

0 ZudWu]. By plugging
this back into (4.24) we obtain

Eg
0 (ξ) = EQ̂[ξ] + EQ̂[

∫ T

0

gu(Zu, Δu, Γu)du −
∫ T

0

ZudWu]

which is equivalent to

EQ̂

[
Eg
0 (ξ) −

∫ T

0

gu(Zu, Δu, Γu)du +
∫ T

0

ZudWu − ξ

]
= 0.

Since the expression within the expectation is P - and thereby also Q̂-almost surely positive, we finally conclude
that

Eg
0 (ξ) −

∫ T

0

gu(Zu, Δu, Γu)du +
∫ T

0

ZudWu = ξ,

and thus (Eg
0 (ξ)−

∫ ·
0
g(Z, Δ, Γ )du +

∫ ·
0
ZdW, Z) constitutes a solution of the BSDE with parameters (ξ, g). �
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