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Abstract

We present multivariate generalizations of some classical results on the accuracy
of Poisson approximation for the distribution of a sum of 0–1 random variables.
A multivariate generalization of Bradley’s theorem [7] is established as well.

Keywords: compound Poisson approximation, dependent random variables.

1 Introduction

Let X,X1, X2, ... be a stationary sequence of dependent random variables (r.v.s). The
key object in Extreme Value Theory is the number of exceedances

Nn(u) =
n∑

i=1

1I{Xi>u} .

Investigation of Nn(u) is motivated by applications in finance, insurance, network
modelling, meteorology, etc. (cf. [10, 18]).

In the independent case, Nn(u) has binomial B(n, p) distribution, where p =
IP(X > u) . If p is “small” then L (Nn(u)) may be approximated by the Poisson
Π(np) distribution. The accuracy of Poisson approximation for a binomial distribution
has been investigated by famous authors (see, e.g., [16, 13, 9, 3] and references in [6]).
The case of a sum of dependent 0–1 random variables was the subject of [8, 2, 3] (see
also references in [3]).

The natural measure of closeness of discrete distributions is the total variation
distance (TVD). Recall the definition of the TVD between the distributions of random
vectors X and Y taking values in Zm

+ , where Z+ = IN ∪ {0} :

d
TV
(X;Y ) ≡ d

TV
(L(X);L(Y )) = sup

A⊂Zm
+

|IP(X∈A)− IP(Y ∈A)| .
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Let π be a Poisson random variable with the parameter np . According to Barbour
and Eagleson [2],

d
TV

(Nn(u); π) ≤
(
1− e−np

)
p . (1)

This is probably the best universal estimate of the TVD between binomial and Poisson
distributions; it improves the results of Prokhorov [16] and LeCam [13]. Sharper bounds
are available under extra restrictions (see [9, 19]).

Dependence can cause clustering of extremes, and the Poisson approximation may
no longer be valid. It is known that under a mild mixing condition, the limiting
distribution of Nn(u) is compound Poisson.

The accuracy of compound Poisson approximation for L (Nn(u)) has been evalu-
ated in [1, 14, 17], among others. The feature of the estimate given in [14] is that it
coincides with (1) in the particular case of independent r.v.s.

A natural problem is to investigate the distribution of the vector

Nn = (Nn(u1), ..., Nn(um))

of the numbers of exceedances given a set of distinct levels u1, ..., um . The problem
has applications in insurance and finance. For instance, a stationary sequence {Xi}
of (dependent) random variables can represents claims to an insurance company. Let
N(ui) denote the number of claims exceeding a level ui . It can be of interest to
approximate the probability that the number of claims exceeding ui equals ni , 1 ≤
i ≤ m . This question can be easily addressed if the distribution of the vector Nn has
been approximated.

We show that under natural conditions, the limiting distribution of Nn is neces-
sarily compound Poisson. We evaluate the accuracy of multivariate compound Poisson
approximation for the distribution of Nn . In particular, we improve the corresponding
results of Barbour et al. [4] and Novak [14]. In the case of independent trials, Theo-
rem 2 yields an estimate of the accuracy of multivariate Poisson approximation for a
multinomial distribution. The results allow evident reformulation in terms of random
vectors with 0–1 components, but we prefer the present notation in order to keep in
touch with applications to Extreme Value Theory.

2 Results

We may assume u1> ... >um . Let Fa,b ≡ Fa,b(u1, ..., um) be the σ–field generated by
the events {Xi>uj} , a≤ i≤b, 1≤j≤m. Denote

α(l) ≡ α(l, {u1, ..., um}) = sup | IP(AB)− IP(A)IP(B) | ,
β(l) ≡ β(l, {u1, ..., um}) = sup IE supB |IP(B|F1,j)− IP(B)| ,

where the supremum is taken over all A∈F1,j, B∈Fj+l+1,n, j ≥ 1, such that IP(A)>0.
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Condition ∆m ≡ ∆m{u1, ..., um} is said to hold if

αn ≡ α (ln, {u1, ..., um}) → 0

for some sequence {ln} ⊂ Z+ such that ln/n → 0 as n → ∞ . A vector Y has a
multivariate compound Poisson distribution Π(λ,L(Z)) if

Y =
π∑

i=1

Zi ,

where Z,Z1, ... are i.i.d. random vectors, π is independent of {Zi} and has the
Poisson distribution with parameter λ .

Theorem 1 Assume condition ∆m , and suppose that um ≡ um(n) obeys

lim sup nIP(X>um) < ∞ . (2)

If Nn converges weakly to a random vector Y then Y has a multivariate compound
Poisson distribution.

Let ζ(n), ζ1(n), ζ2(n), . . . be independent random vectors with the common distri-
bution

L(ζ(n)) = L(Nr|Nr(um)>0) , (3)

where r ∈ {1, ..., n} . The proof of Theorem 1 shows that Y
d
= Π(λ,L(ζ)) , where

λ = − lim
n→∞

ln IP(Nn(um) = 0) and L(ζ) is the weak limit of L(ζ(n)) for an appropriate
sequence r = rn .

Denote

p = IP(X>um) , q = IP(Nr(um)>0) , k = [n/r] , r′ = n−rk ,

and let π be a Poisson random variable with parameter kq .
In Theorem 2 below we approximate the distribution of Nn by the multivariate

compound Poisson distribution L(N) , where N =
∑π

i=1 ζi(n) .

Theorem 2 If n > r > l ≥ 0 then

d
TV
(Nn;N) ≤ (1− e−np)rp+ (2nr−1l + r′)p+ nr−1min{β(l);κ(l)} , (4)

where κ(l)=2(1+2/m) {2m−1m2α2(l)}1/(2+m)
if m2(m−1)/2α(l)≤1 , otherwise κ(l)=1.

Barbour et al. [4] evaluated the accuracy of compound Poisson approximation for
general empirical point processes of exceedances in terms of a weaker Wasserstein–type
distance d

W
. Concerning the approximation L(Nn) ≈ L(N) , Theorem 3.1 in [4] yields

d
W
(Nn;N) ≤

(
1.65(1− rp)−1/2 + erp

)
rp+ 2(2rp+ nr−1l)p+ nr−1β(l).
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In the case m = 1 (the 1–dimensional situation), (4) improves a result from [14] (cf.
also [1]). If m = 1 and the random variables {Xi} are independent then (4) with
l = 0, r = 1 yields (1).

As a consequence of Theorem 2, we derive an estimate of the accuracy of multivari-
ate Poisson approximation for a multinomial distribution.

Let i = (i1, ..., im) , where i1 ≤ ... ≤ im . Denote i∗ = (i1, i2 − i1, ..., im − im−1) ,

N∗
n = (Nn(u1), Nn(u1, u2), ..., Nn(um−1, um)) ,

where Nn(u, v) =
∑n

i=1 1I{u ≥ Xi > v} as u > v. Evidently, the distribution of Nn

determines that of N∗
n and vice versa.

The statement of Theorem 2 can be reformulated as follows: if n > r > l ≥ 0 then

d
TV

(N∗
n;N

∗) ≤ (1− e−np)rp+ (2nr−1l + r′)p+ nr−1min{β(l);κ(l)} , (4∗)

where N∗ =
∑π

i=1 ζ
∗
i (n) , random vectors ζ∗(n), ζ∗1 (n), ... are independent and have the

common distribution IP(ζ∗(n) = i∗) = IP(ζ(n) = i) .
If the random variables {Xi} are independent and r = 1 then N∗

n has the multi-
nomial distribution B(n, p1, ..., pm) with parameters p1 = IP(X > u1), p2 = IP(u1 ≥
X>u2), ..., pm = IP(um−1≥X>um) :

IP (N∗
n = (l1, .., lm)) =

n!

l1!...lm!(n− l)!
pl11 ...p

lm
m (1−p)n−l , (5)

where l = l1 + ... + lm ≤ n , p = p1 + ... + pm. Theorem 2 yields an estimate of
the accuracy of multivariate Poisson approximation for the multinomial distribution
B(n, p1, ..., pm) .

Corollary 3 Let π1, ..., πm be independent Poisson random variables with parameters
np1, ..., npm . Denote Y = (π1, ..., πm) . If L (Yn) = B(n, p1, ..., pm) then

d
TV
(Yn;Y ) ≤

(
1− e−np

)
p . (6)
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