
Georgiadou Elli, Siakas Kerstin V., Berki Eleni (2003). Quality Improvement through the
Identification of Controllable and Uncontrollable Factors in Software Development, EuroSPI
2003 (European Software Process Improvement Conference), Graz, Austria, 10-12.12.2003,
pp.IX 31-45

Quality Improvement through
the Identification of Controllable

and Uncontrollable Factors in
Software Development

Elli Georgiadou1, Kerstin Siakas2, Eleni Berki3

1 Middlesex University, School of Computing Science, Trent Park, London, N14 4YZ, UK
(e.georgiadou@mdx.ac.uk)

2 Technological Educational Institution of Thessaloniki, Department of Informatics, P.O. Box 14561,
GR-54101 Thessaloniki, Greece (siaka@it.teithe.gr)

3 Department of Computer Science and Information Systems, P.O.Box 35 (Agora), FIN-40014
University of Jyväskylä, Finland (eleberk@cc.jyu.fi)

Abstract

The software engineering community has moved from corrective methods to preventive
methods shifting the emphasis from product quality improvement to process quality
improvement. Inspections at the end of the production line have been replaced by design
walkthroughs and built-in quality assurance techniques throughout the development
lifecycle. Process models such as the Spiral, V, W and X-Models provide the principles and
techniques for process improvement which, in turn, produces product improvement.

Factors that affect the quality of software need to be identified and controlled to ensure
predictable and measurable software. In this paper we identify controllable and
uncontrollable factors and provide empirical results from a large industrial survey, as well as
conclusions relating to the models and metamodels for the estimation, measurement and
control of the totality of features and characteristics of software.

Keywords

Metamodelling, process improvement, controllable factors, uncontrollable factors,
software quality, development methods, soft & formal methods, software metrics,
culture

mailto:siaka@it.teithe.gr

 Session I: Management of the failure correction process

1 Introduction

Software is at the heart of most modern businesses. Business success depends on the quality, the
cost and the timeliness of the software they use. A Software Quality Management System is the
enabling mechanism within an organisation which co-ordinates and controls the functions needed to
achieve the required quality of product or service as economically as possible. It will involve every
organisational function that directly or indirectly affects a delivered product or service [DTI, 1992]. For
a successful implementation of a Software Quality Management system, weak areas in the current
situation have to be identified and gradually improved by introducing a formal process suitable for the
specific organisation.

A Software Quality Management system requires that software engineering knowledge and discipline
will be applied at all phases of the development life cycle in order to assure software quality. In
Software Quality Assurance (SQA) software metrics are used to help numerically determine the quality
of both the process and the products together with an independent verification and validation (V&V)
usually carried out by the software quality assurance engineers. The right measures visualise different
problems in the organisations and after taking action they are a means of control. Verification is the
process of determining if the products of a given phase of the software development cycle fulfil the
requirements for the next phase regarding consistency, correctness and completeness. Validation is
the process of evaluating software throughout its development process to ensure compliance with
software requirements. Thus software quality assurance engineers are required to possess sufficient
domain knowledge so that they can evaluate the completeness and correctness of system
requirements. They must also have the ability to determine whether the design has incorporated all
requirements accurately. Finally they are responsible for advising management when or whether a
product is reliable and meets quality standards.

There are essentially two approaches that can be followed to ensure product quality, one being quality
assurance of the process by which a product is developed (ISO 9000:2000), and the other being the
evaluation of the quality of the end product (ISO 9126). Both approaches are important and both
require the presence of a Software Quality Management system. The choice of Software Quality
Management system, processes, standards and metrics greatly depends on the organisational culture
and the maturity level of the organisation [Siakas, 2002].

During the last two decades, there has been a change from concentrating on the product to
concentrating on the development process. Software Process Improvement (SPI) has become a
practical tool for companies where the quality of the software is of high value [Järvinen, 1994]. In a
Technical report Herbsleb et al. [1994] showed (with results from 13 organisations) that due to SPI the
products (the number of post-release defect reports were used as a measure) and business value
(ROI, Return On Investment) was improved. It is generally considered that, a well-documented and a
repeatable process is essential for developing software products of high quality. There is also
evidence that the use of standards and process assessment models has a positive impact on the
quality of the final software [Kitchenham and Pfleeger, 1996] Evidence for the emphasis on process is
also hat ISO certification does not certify product quality but that a stated and documented process is
followed.. Similarly, well-known and recognised assessment models like CMM [Paulk et al., 1993;
Paulk, 1993; 1995], BOOTSTRAP [Haase, 1992; Haase and Messnarz, 1994; Kuvaja et al.,1994].

2 The Selection of a Suitable System Development Method
Among the most important criteria for selecting a method is its ‘suitability for modelling the application
domain’ and the ‘ability to transform its characteristics in a consistent and correct manner to a
computable design/software architecture’ [Jackson & Zave, 1993]. Different systems need different
techniques to capture their properties and similar or different languages to model and preserve them.
Most systems’ developers either use methods (with or without automated tools), which are technically
oriented (hard methods) or try to concentrate mainly on human factors by using human activity
oriented methods (soft methods).

 Session I: Management of the failure correction process

According to Holcombe and Ipate, there is “little empirical evidence of the superiority of one method
over another in large-scale projects” and moreover there is “a crisis of intellectual respectability in the
subject”. They continue supporting that “not only the evaluation of the methods used is weak, the
selection of the types of system and problem to focus on is very restrictive. In order to convince, in a
scientific manner, that method A is better than method B in large design projects (and that is where
the problems are), we must present rigorous evidence drawn from carefully controlled experiments of
suitable complexity. This is, more or less, impossible in practical terms. Is there an alternative
approach? The use of theoretical models of computing systems can provide some alternative
approaches ...” [Holcombe & Ipate, 1998].

2.1 Limitations of IS development methods and associated
metamodels

There are two important problems associated with IS methods currently available. Firstly, the absence
of the interconnections between hard and soft problems, which inevitably leads to inadequate
information systems with problematic functionality. Secondly, the design or software architecture of a
system lacks those computational characteristics because they are not specified as an integral part of
it. These characteristics make it reliable, easily re-engineered and maintained. We might ask whether
there is any all-stakeholder-oriented method among the plethora of methods to adequately capture all
the above requirements. And if so, is there any adequate automated support through an Integrated
Computer Assisted Software Engineering (I-CASE) environment during all the phases of the software
engineering lifecycle?

Development methodologies in order to be reliable, need to also have solid foundations in their
generic structure for testing and mapping of the requirements from design to implementation in an
expressible, correct and consistent way. They should also cater for systems and method re-
engineering with principles that accommodate change regarding soft and hard components of the
system such as people’s opinions, systems’ processes, and so on. One of the most important
properties to establish quality assurance of the process models that handle the previous is the ability
to provide formal testing which is also absent from existing frameworks and metamodels [Berki, 2001]

Moreover, considering the principles and different levels of metamodelling abstraction, that Method
Engineering as a discipline caters for, none of the metamodelling environment and notations handles
metadata and metaprocess specification aspects for method modelling considering methods as
dynamic models. This is an invaluable property allowing modellers to keep control on both process
metamodelling and metadata of a method because they can express it at the same time. Arguably,
when we built a method, we need a general and generic process model of abstraction such as to offer
us both generality and specialisation for different application domains [Berki et al., 2001].

Method Engineering is of course a new division/discipline in software development and its emergence
was clear while there was a need to improve process models (methods) for IS development. However,
the efforts were concentrated mostly on issues such as integration of methods, flexibility of method
construction, new theories on requirements management and so on, whilst emphasis was never
placed on the relation of recent disasters of software development such as ‘the millennium bug’, or the
space rockets and railway disasters.

The previous are examples of large software systems infrastructure that we have inherited and there
is an urgent need to re-engineer, test and improve them. These and similar incidents were due to
software design errors and their study and examination revealed that there is urgent need for these to
be addressed at method engineering level and from the metamodelling (and possibly
metametamodelling) point of view.

In the field of method metamodelling most methods’ metamodels are led by rules of modelling
abstraction which concentrate on soft or hard issues for the evaluation of methods, quantitatively or
qualitatively. However, many of implied goals and objectives are not addressed and remain in the wish
lists, whilst it seems that many process-oriented problems in software development remain undefined
or not specified at all, to say the least. Some others such as the problem of testing remain in silence.

 Session I: Management of the failure correction process

“There is no single metamodelling initiative or CASE-Shell tool, which claims to facilitate testing”
[Berki, 2001].

In general, the use of formal methods for developing software-based systems did not lead to quality
information systems, in the past. It soon became clear that analysing and designing a system with
formal methods offers some quality assurance regarding the development of unambiguous,
consistent, correct and verified mathematically-proven specifications, but there were other issues
raised. The most frequently mentioned problem that is associated with the use of most formal methods
in software development is the unfriendly and fragmented approach, which prevents wide
understanding and results in high costs for training and prototype construction and testing.

Huotari & Kaipala summarised results of scientific work within the field of Human-Computer Interaction
(HCI) focusing on cognitive aspects on methods’ use. Their review analyses and synthesises the main
contributions and takes a critical view on how cognitive aspects are considered and what methods are
used. They believe that “Despite a trend of applying cognitive task analysis and other user-centered
system design methods, issues of human cognition and human information processing still need more
attention in the IS research.” [Huotari & Kaipala, 1999].

2.2 The Need for a Multidisciplinary Approach in IS
Development

Exposing the issues that were examined in the previous paragraphs and having research evidence on
the cultural factors that influence software development (Ref. Kerstin’s PhD) we need to consider the
following: The capturing of the needs’ interconnected nature in a holistic question, which will connect
them to the needs of IS. Such a question will draw examples and provide links, opinions and insights
from various related contexts and contents, in order to finally present an integrated solution [Berki et
al., 2003a].

That being the reality, a rigorous and integrated method based on holistic communication rules must
also provide appropriate syntactic and diagrammatic structures to model the semantics, pragmatics
and semiotics of systems’ and stakeholders’ cultural requirements and thus provide the scientific
ground for usability engineering [Berki et al., 2003b].

Therefore, the interest for IS designers should be in identifying and using general and understandable,
groupware-oriented structures that capture adequately the features of specification and computation.
This ca be achieved in terms of specialised and sufficiently general design structures that can capture
the richness and testedness of domain specifications, considering at the same time people’s cognitive
needs for maximum participation and, therefore, empowerment.

It is important for the software developer to state clearly their objectives for software product or the
process improvement, and to specify the product/process response characteristics that reflect these
objectives. The formulation of the problem as well as the production of a list of controlled parameters
and noise variables can be achieved through brainstorming and formulated using techniques such as
the Ishikawa (cause and effect) or fishbone diagram.

Measurable objectives should be chosen such as the number of bugs found during formal inspections
which are conducted during the software life cycle under the specified methodology a company
adopts.

2.3 Sensitisation towards human factors

Throughout its lifetime, Information Systems Engineering has failed to deliver software products at
satisfactory levels of reliability, timeliness and cost. To solve this problem, the Information Systems
industry has turned its attention to the software development process, arguing, like other industries
before it, that a high-quality process will deliver high-quality products. Thus various Software Quality

 Session I: Management of the failure correction process

Management Systems have been proposed and developed. Although all these involved technological
elements (which have generally received much attention), most people now recognise that the
successful development of a quality culture depends more heavily on social factors. Yet these social
factors have been largely neglected. However, in recent years a shift has taken place in software
development by taking more human factors into consideration. Cornford and Smithson [1996] for
example argue that we must see beyond any technology if we are ever to understand what happens
when Information Systems are built or operate. They emphasise that people, people-structures and
people-processes have to be taken into consideration when adopting an Information System’s
perspective both in development and research. A similar approach is emphasised by Klein and
Lyytinen [1985], who state that one of the reasons for an Information Systems’ failure is that the
design conflicts with prevailing organisational culture and attitudes.

One of the human factors is commitment, which has long been argued to play a major role in the
success of software projects since it increases the odds that appropriate actions will be taken
[Ginzberg, 1981; Kautz, 1999; Lucas 1981; Marcus 1981]. Most of the researchers in the field seem
to agree that commitment is one of the most important human factors in determining whether a well-
planned process improvement program will succeed or fail [Dahlberg and Järvinen, 1997; Diaz and
Sligo, 1997; Grady, 1997; Humphrey, 1995; Rodenbach et al., 2000; Stelzer and Mellis, 1998;
Zahran, 1998].

Another human factor is culture. The main objective of the study described above [Siakas, 2002] was
the identification of a number of cultural factors that have a bearing on the successful adoption and
implementation of a Software Quality Management system. The main contribution of the study was the
development of the SQM-CODE (Software Quality Management: Cultural and Organisational Diversity
Evaluation) model, which assesses the fit between national and organisational culture.

3 Case Study

A comparative study was carried out in the form of quantitative and qualitative investigation in four
counties, namely Denmark, Finland, Greece and the UK. The quantitative investigation was a survey
collecting hard data by using a postal questionnaire. In parallel, a qualitative method in form of case
studies was performed in order to address different aspects of the research problem, to confirm the
findings from the questionnaire and to prove the hypothesis.

The questionnaire was sent to organisations developing software for own use or for sale. Totally 307
questionnaires were completed. In addition field-studies were undertaken in several organisations.
Totally 87 interviews were conducted in Finland, Denmark and Greece with software developers at
different levels and with different positions in the organisations. Following the initial verification phase
observations were carried out in a Danish organisation for a period of two month [Siakas and Balstrup,
2000]. The objective of using observations was to investigate in more depth the research problem and
to verify the findings.

3.1 Are measures of the quality of software process kept?

From figure 1 we observe that amongst the organisations taking part in the study Greece is the
country that keeps measures of the quality of the software development process to highest degree.
The sum of the values for quite a lot or very much so is 61.9% for Greece, 44.7% for Denmark, 42.6%
for Finland and 42.5% for the UK.

 Session I: Management of the failure correction process

Figure 1: Measures of the quality of the software process

The significance of the Chi-square is 0.002, which indicates that the null-hypothesis, that the
responses are similar for all countries, can be rejected. This means that we have statistically proved
that there are significant differences in responses depending on country of origin.

3.2 Are measures of the software product kept?

From figure 2 we observe that amongst the organisations taking part in the study Greece is the
country that keeps measures of the quality of the software product to highest degree. The sum of the
values for quite a lot or very much so is 67.3% for Greece, 50.5% for Finland, 50% for Denmark and
47.7% for the UK.

Figure 2: Measures of the quality of the software product

The significance of the Chi-square is 0.042, which indicates that the null-hypothesis, that the
responses are similar for all countries, can be rejected. This means that we have statistically proved
that there are significant differences in responses depending on country of origin.

In order to understand if there is a relationship between measurement of software process and
measurement of software product table 1 is presented.

50,00%
45,00%
40,00%
35,00%
30,00%
25,00%
20,00%
15,00%
10,00%
5,00%
0,00%

Greece Finland UK Denmark

not at all
a little
quite a lot
very much so

0,00%

 Session I: Management of the failure correction process

100
90
80
70
60
50
40
30
20
10

In House Standards yes
In House Standards no

 Measure of quality of software product Total

Measure of
quality of
software
development
process

 not at all a little quite a lot very much
so

not at all 21 11 32
a little 2 71 29 4 106
quite a lot 14 93 7 114
very much
so

 3 6 15 24

Total 23 99 128 26 276

Table 1: Cross-tabulation of measures of the quality of the software process vs. product

From table 1 we observe that measures the quality of the software process also tend to measure the
quality of the software product. There is also a significant correlation on

The Pearson’s correlation is also significant at the 0.01, which proves that there is a significant
relationship between measurement of the quality of the software development process and the
measurement of the quality of the software product.

3.3 What is the degree of impact of international, national or
organisation specific standards and systems on measurement?

Figures 3 to 6 present the impact on the degree of measurement by quality systems, like ISO 9001
and TickIT, as well as in-house standards have any use figures 3 to 6 are presented.

Figure 3: Measurement of quality of software development process vs. in-house standards

From figure 3, which is a cross-tabulation of measurement of the quality of the software development
process and the use of in-house standards we observe that the majority of the organisations, which
have in-house standards measure the quality of the software development process a little or quite a
lot. The surprising element is that 30 (of 275) respondents which responded that they have an in-
house quality system also answered they do not measure the quality of the software development
process at all. The significance of the Chi-square is 0.061.

no
t a

t a
ll

m
ea

su
re

 o
f

qu
al

ity
 o

f s
w

de

v.
 p

ro
ce

ss

qu
ite

 a
 lo

t

 Session I: Management of the failure correction process

From figure 4, which is a cross-tabulation of measurement of software development process and third
party assessment we observe that most of the organisations do not have any third assessment at all.
However this does not seem to have any greater impact on if they measure the quality of the software
development process or not. The significance of the Chi-square is 0.180.

Figure 4: Measurement of quality of software development process vs. third party assessment

From figure 5, which is a cross-tabulation of measurement of the software product and in-house
standards we observe similar results as with figure 3. The significance of the Chi-square is 0.012

Figure 5: Measurement of quality of software product vs. In-house standards

From figure 6, which is a cross-tabulation of measurement of software product we observe similar
results with figure 4. The significance of the Chi-square is 0.254.

 Session I: Management of the failure correction process

Figure 6: Measurement of quality of software product vs. Third party assessment

4 Software Measurement and Software Metrics

"To measure is to know. If you can not measure it, you can not improve it."(William Thomson (later
Lord Kelvin) (1824 - 1907).

Managing the development process requires the collection of suitable metrics which will provide
insights into the strengths and weaknesses of the process. What to measure, how to measure, when to
measure are the fundamental questions which need to be addressed.

According to Kitchenham [1996] “Software Metrics can deliver :support for process improvement,
better project and quality control and improved software estimation”. Direct measurement of quality
factors is often possible very late in the life cycle. For example reliability, which is concerned with how
well as software system functions and meets a user’s requirements, can be measured after that the
software has been used for a stated period of time under stated conditions, while indirect
measurement of quality, like number of discrepancy reports (deviations from requirements) can be
obtained earlier in the life cycle. Other estimates of quality can be made by developers even earlier
than the indirect measurements of quality.

According to ISO-9126 software quality may be evaluated by six characteristics, namely functionality,
reliability, efficiency, usability, maintainability and portability. Each of these characteristics is defined
as a “set of attributes that bear on” the relevant aspect of software and can be refined through multiple
levels of sub-characteristics[6]. Definitions of sub-characteristics are given in Annex A (of the
standard), which is not a part of the International Standard. Attributes at the second level of refinement
are left completely undefined.

In order to achieve improvements in the software process and the software product we need to
understand, measure and hence control the variability to the desirable/achievable degree of
confidence. Measurement is defined as the process of assigning symbols, usually numbers, to
represent an attribute of the entity of interest, by rule [Fenton 1991], [Shepperd 1995]. Entities of
interest include objects, (e.g. code, specification, person) or processes (e.g. analysis, error
identification, testing). Distinct attributes might be length of code, duration, costs. Representation is

much
so

120

100

 Session I: Management of the failure correction process

usually in numbers (or other mathematical objects e.g. vectors). Finally in order to provide objectivity
we need to assign numbers (symbols) according to explicit rules: how to choose which symbol should
represent the attribute. Such rules ensure that the assignment is not random.

Fenton and Pfleeger [Fenton 1997] provide a refined definition of measurement: “Measurement is the
process by which numbers or symbols are assigned to attributes of entities in the real world in such a
way as to characterise them according to clearly defined rules. The numeral assignment is called the
measure.” Hence, in order to understand the definition of measurement in the software context, we
need to identify the relevant entities and attributes which we are interested in characterising
numerically.

4.1 Controllable Factors

In order to understand and control the process we need measurements of both the current and the
desired/new system. Internal metrics [Fenton, 1991] an be obtained in terms of the product (code)
and they are counts (such as LOC, NO of Classes, McCabe Complexity) and ratios (such as No of
calls Module, Average length of hierarchy). Additionally, these metrics can be generated automatically
by using tools such as CANTATA, Testbed and Logiscope.

Attributes such as the morphology, architectural structure, depth of class hierarchy, size of module,
maximum level of module complexity etc. can be contolled through a management mechanism and
specific guidelines to the developers. Controllable design parameters can be found in the software
development process, the software product and the software development environment [Kitchenham,
Fenton, Barbor & Georgiadou].

However, external attributes [Fenton 1991], [Kitchenham, 1996], [Georgiadou 1999, 2001] which are
behavioural such as understandability, maintainability are more elusive and more difficult to measure.
Metrics for these attributes are both qualitative and quantitative. They are almost always obtained
indirectly through the use of surrogate measures [Kitchenham, 1996], [Georgiadou 1993, 2001]. For
example maintainability can be estimated, calculated and controlled through measuring the time taken
for a specified maintenance task. Results obtained by Georgiadou et.al in a series of controlled
experiments provided confidence (through statistical methods) in our ability to effectively use surrogate
metrics [Georgiadou, 93, 94, 97, 98, 2001].

4.2 Uncontrollable Factors

Human factors are unpredictable and mostly difficult, often impossible to control. For example,
performance variability in a human being, such as his/her experience and communication skills
needed in a software development team. The developers’ performance has an effect on producing
quality software products in a similar way to the effect of machines on the manufacturing of products.
It is important to maximize and properly maintain programmers’ performance. The possible control
factors will be conducting educational sessions within and outside a company where software
developers are encouraged to learn the new techniques of their interest or polish their skills.
Recreational events may help developers to get to know each other better and this will be reflected in
better communication and teamwork in an office. At the extreme, the design of the office environment
itself is investigated. Changing the type of chairs in current use to the ones designed to ease backpain
caused by sitting all day will be welcomed by the developers (ergonomics). The temperature and
humidity in the workplace also can affect the developers’ performance. Therefore the suggestions
made here must be investigated in the software industry.

Experimental evaluations carried out by Basili [1986]), Shepperd [1995], Georgiadou [1999, 2001]
attempted to identify design parameters and hence factors, which can be controlled. According to
Taguchi in [Logothetis 1989] it is desirable to choose the set of design parameters, which are less
affected by the variability of these factors. For example, developers’ experience can be controlled to

 Session I: Management of the failure correction process

certain extent by years in profession and looking at the past projects involved. However every
individual is unique. His/her capability, patterns of learning and cognition are likely to be different from
those of others of similar experience. The health of the developers may effect on their performance at
work.

5 Summary and Future Research and Development

The fundamental philosophy of this research work is that it addressed the needs for adequate
expression of process models within various cultural factors and different organisational
communication. In doing so, we interconnected and commented on their dynamic and computational
characteristics connecting them to the coverage of testing and re-engineering.

Our multidisciplinary study reveals the strengths that the holistic nature of such an approach provides
software development with the use of software measurement as the instrument for understanding,
estimating and controlling the quality of specified factors. Bearing in mind that different stakeholders
place different emphasis on software attributes we provide flexible and hence customisable quality
requirements.

The efficiency of a software product such as execution time has high priority as a software quality
factor. To maximize the performance of a product, the choice of machines, operating systems and
programming language has to be included in the list of parameters.

Enhanced Reliability (usually achieved through testing, walkthroughs, reviews and inspections) will
reduce productivity and will therefore increase costs. Both of these cause losses to the sponsor.
Enhanced functionality increases costs (in the short term) and causes losses to the sponsor.

Usability is enhanced through greater understandability, which in turn is enhanced through design
correctness and consistency and through training, on-line help and support all of which reduce
productivity with the exception of CBD which makes extensive reuse of code and increasingly reuse of
designs too.

It is important for the software developer to state clearly their objectives for software product or the
process improvement, and to specify the product/process response characteristics that reflect these
objectives. The formulation of the problem as well as the production of a list of controlled parameters
and noise variables can be achieved through brainstorming and formulated using techniques such as
the Ishikawa (cause and effect) or fishbone diagram.

Measurable and hence controllable objectives should be chosen such as the number of bugs found
during formal inspections, which are conducted during the software life cycle under the specified
methodology a company adopts.

Future investigations will concentrate on the development of meta-CASE tools for the specification,
implementation, re-engineering and metrication of both the process and the product of software
development across problem domains, national, cultural and technical boundaries.

 Session I: Management of the failure correction process

6 Literature

Barbor, N & Georgiadou, E. [2002] Investigating the applicability of the Taguchi Method to Software Development,
Proceedings of Quality Week, San Francisco. USA, July 2002

Basili, V., R. W. Selby, & D. H. Hutchins[1986] Experimentation in Software Engineering. IEEE Trans. on
Software Engineering, SE-12. p. 733-743.

Berki, E., Georgiadou, E., Holcombe, M.[2003a]: “Process Metamodelling and Method Engineering as Tools for
Improved Software Quality Management - A Chronological Review and Evaluation Critique Considering the
Need for a New Scientific Discipline”,In the Proc. of Ross, M., Staples, G. (Eds.) 11th International Conference
on Software Quality Management, SQM 2003, Glasgow, April 2003.

Berki, E., Isomäki, H., Jäkälä, M.:[2003b] “Holistic Communication Modelling: Enhancing Human-Centred Design
through Empowerment”, in the Proc. of the HCI International Conference, University of Crete, Greece, June
2003

Berki, E., Lyytinen, K., Georgiadou, E., Holcombe, M., Yip, J.:[2002] “Testing, Evolution and Implementation
Issues in MetaCASE and Computer Assisted Method Engineering (CAME) Environments”, In the Proc. of
King, G., Ross, M., Staples, G. & Twomey, T. (Eds.) Issues of Quality Management and Process
Improvement, 10th International Conference on Software Quality Management, SQM 2002, Limerick, Ireland,
March 2002.

Berki, E.: [2001]“Establishing a Scientific Discipline for Capturing the Entropy of Systems Process Models, CDM-
FILTERS: A Computational and Dynamic Metamodel as a Flexible and Integrated Language for the Testing,
Expression and Re-engineering of Systems”, Ph.D. Thesis, Faculty of Science, Computing & Engineering,
University of North London, 2001.

Burr A., Georgiadou E.[1995] "Software development maturity - a comparison with other industries", 5th. World
Congress on Total Quality, India, New Delhi, Feb. 1995

Cornford Tony, Smithson Steve [1996]: Project Research in Information Systems, A Student's Guide, MacMillan
Press Ltd, London

Dahlberg T., Järvinen J. [1997]: Challenges to IS Quality, Information and Software Technology Journal, 39 (12):
809-818

Diaz M., Sligo J. [1997]: How Software Process Improvement helped Motorola, IEEE Software, 1997, 14, 75-81

Dorling Alec [1993]: Spice: Software Process Improvement and Capability dEtermination, Software Quality
Journal, 2, 93, pp. 209-224

DTI [1992]: TickIT making a better job of software, Guide to Software Quality Management System Construction
and Certification using ISO9001/EN29001/BS5750 Part 1 (1987): 29 February 1992, Issue 2.0

Fenton, N.E. and Pfleeger, S.L.[1997] ‘Rigorous & Practical Approach’, PWS Publishing Company

Georgiadou E., Sadler C.[1995] "Achieving quality improvement through understanding and evaluating
Information Systems Development Methodologies", 3rd. International Conference on Software Quality
Management, SQM'95, Seville, Spain

Georgiadou, E. [2003b] “Software Process and Product Improvement A Historical Perspective”, International
Journal of Cybernetics, January 2003

Georgiadou, E. [2003b] Towards a Customisable, Multi-layered Software Engineering Quality Model, 11th
International Conference on Software Quality Management, April 2003, Dundee, Scotland

Georgiadou, E., Keramopoulos, E. [2001a]"Measuring the Understandability of a Graphical Query Language
through a Controlled Experiment", 9th International Conference on Software Quality Management, SQM 2001,
April 2001, University of Loughborough, UK.

Georgiadou, E., Milankovic-Atkinson, M. [1999] “A formal experiment to verify Object-Oriented Metrics”,
INSPIRE’99, Crete, Greece

Georgiadou, E.[2001b] Software Measurement for Process and Product Improvement - Controlled Experiments
and Derivation of Reengineering Metrics, Transfer Report (from M.Phil. to PhD.), chool of Informatics and

 Session I: Management of the failure correction process

Multimedia Technology, Faculty of Science Computing and Engineering, University of North London, August
2001

Ginzberg M.J. [1981]: Key Recurrent Issues in the MIS Implementation Process, MIS Quarterly 5: 47-59

Grady R. B. [1997]: Successful Software Process Improvement, Prentice Hall PTR, Upper Saddle River, NJ

Haase Volkmar H. [1992]: Bootstrap - Measuring Software Management Capabilities, First Findings in Europe,
Proceedings of the fourth IFAC/IFIP Workshop, Austria, May 92

Haase Volkmar, Messnarz Richard [1994]: Bootstrap: Fine-Tuning Process Assessment IEEE Software, July
1994, pp. 25-35, 1994

Herbsleb James, Carleton Anita, Rozum James, Siegel Jane, Zubrow David [1994]: Benefits of CMM-Based
Software Process Improvement: Initial Results, Technical Report, CMU/SEI-94-TR-13, August 1994

Holcombe, M. and Ipate, F.:[1998] [2001] "Correct Systems - Building a Business Process Solution", Springer-
Verlag, 1998

Holcombe, M., Bogdanov, K., Gheorghe, M.: “Functional test set generation for extreme programming”, In the
Proc. of the 2nd International Conference on Extreme Programming and Flexible Processes in Software
Engineering [XP2001], pp. 109-113, Sardinia, Italy, 20-23 May, 2001

Humphrey W. [1995]: A Discipline for Software Engineering, Addison Wesley, Reading, MA, USA

Huotari J. & Kaipala, J.:[1999] “Review of HCI Research - Focus on cognitive aspects and used methods”, in the
Proc. of Kakola T. [ed.] IRIS 22 Conference: Enterprise Architectures for Virtual Organisations, Keurusselka,
Jyvaskyla University Printing House, Finland, 1999

Jackson, M. and Zave, P.:[1993] "Domain descriptions", in Proceedings of the 1st International Symposium on
Requirements Engineering, San Diego, Ca, pp. 56-64, 1993

Järvinen J. [1994]: On comparing process assessment results: BOOTSTRAP and CMM, Software Quality
Management, SQM94, Edinburgh, pp. 247-261

Kautz K. [1999]: Software Process Improvement in Very Small Enterprises: Does It Pay Off? Software Process –
Improvement and Practices, 4 [4]: , 209-226

Kitchenham, Barbara, and Shari Lawrence Pfleeger.[1996] "Software Quality: The Elusive Target." IEEE Software
13, 1, Jan. 1996: 12-21

Klein H, K., Lyytinen K. [1985]: The Poverty of Scientism in Information Systems. In Mumford E. Hirschheim R.
Fitzgerald G, Wood-Harper T. [eds.]: Research Methods in Information Systems, Proceedings of IFIP WG 8.2
Colloquium, Manchester Business School, 1-3 Sept. 1984, pp. 131-161, North-Holland, Amsterdam

Kuvaja P., Similä J., Kranik L., Bicego A., Saukkonen S., Koch G. [1994]: Software Process Assessment and
Improvement – The BOOTSTRAP Approach, Blackwell Publishers, Cambridge, MA

Kuvaja Pasi [1999]: New Developments in Software Process Improvement Keynote Speech in Software Quality
Management Conference [SQM 99]: Southampton March 1999

Kuvaja, 1999] and SPICE [Dorling, 1993; Rout, 1995] concentrate on the process instead of the product by
ensuring a disciplined and controlled software development process via independent evaluation.

Logothetis, N. andWynn, H.P., [1989] ‘Quality Through Design: Experimental Design, ‘Off-line Quality Control and
Taguchi’s Contributions’, Oxford Science Publications, 1989.

Lucas H.C. Jr. [11981]: Implementation: The Key to Successful Information Systems, Columbia University Press,
New York

Marcus M.L. [1981]: Implementation Politics: Top Management Support and User Involvement, Systems,
Objectives, Solutions 1: 203-215

Paulk Mark C. [1993]: Comparing ISO 9001 and Capability Maturity Model for Software, Software Quality Journal
2, 1993, pp. 245 - 256

Paulk Mark C. [1995]: The Rational Planning of [Software]: Projects, Proceedings of the First World Congress for
Software Quality, ASQC, San Francisco, CA, 20-22 June 1995

Paulk Mark C., Curtis Bill, Chrissis Mary Beth [1993]: Capability Maturity Model, Version 1.1, IEEE Software, July
1993, pp. 19-27

 Session I: Management of the failure correction process

Rodenbach E., Van Latum F., Van Solingen R. [2000]: SPI – A Guarantee for Success? – A Reality Story from
Industry, PROFES 2000, Oulu, Finland, Springer, 216-231

Rout Terence P. [1995]: SPICE: A Framework for Software Process Assessment, Software Process-Improvement
and Practice, Pilot Issue, pp. 57 – 66

Shepperd, M.J.[1995] Foundations of Software Measurement Prentice-Hall: Hemel Hempstead, England

Siakas Kerstin [2002]: SQM-CODES; Software Quality Management – Cultural and Organisational Diversity
Evaluation, PhD thesis submitted Nov. 2002 for the degree of PhD at London Metropolitan University

Siakas Kerstin V. and Balstrup Bo [2000]: A field-study of Cultural Influences on Software Process Improvement in
a Global Organisation, European Software Process Improvement Conference, EuroSPI '00, Copenhagen 7-9
Nov. 2000

Stelzer D., Mellis W. [1998]: Success Factors of Organisational Change in Software Process Improvement,
Software Process – Improvement and Practice, 4, 227-250

Zahran S. [1998]: Software Process Improvement: Practical Guidelines for Business Success, Addison-Wesley
Pub. Co. Reading, Mass.

 Session I: Management of the failure correction process

7 Author CVs

Elli Georgiadou

Elli Georgiadou is a Principal Lecturer in Software Engineering at Middlesex University,
London. Her teaching includes Software Metrics, Methodologies, CASE and Project
Management. She is engaged in research in Software Measurement for Product and Process
Improvement, Methodologies, Metamodelling, Cultural Issues and Software Quality
Management. She is a member of the University’s Global Campus project (developing and
offering ODL). She has extensive experience in academia and industry, and has been active
in organising/chairing conferences and workshops under the auspices of the British Computer
Society, the ACM British Chapter and various European programmes for Technology Transfer
and development of joint curricula. She established a Distance Mode Initiative between a UK
University and a Hong Kong Institute developing and offering technology-based learning. She
has engaged in developing the pedagogic framework as well as the development of materials.
She designed and carried out evaluations of various ODL initiatives in the UK, Greece, Spain,
Finland, Hong Kong and Cyprus.

Kerstin V. Siakas

Kerstin works as a lecturer since 1989 at the department of Informatics at the Technological
Education Institution of Thessaloniki, Greece. She is born and grown up in the Swedish part of
Finland. She has an extensive industrial experience (since 1975) in software development on
different levels from many European countries and mainly from multinational organisations.
Because of her multicultural background and her work experience her research interest is in
Software Process Improvement and how culture influences software development. She
finished her PhD in November 2002. She has published around 20 papers about her research.

Eleni Berki

Eleni Berki is an Asst. Professor of Group Technologies in Jyväskylä University, Finland. She
completed her PhD in Process Metamodelling and Systems Method Engineering in 2001, in
United Kingdom. Her teaching and research interests include: Process Metamodelling and
Information Systems Engineering, Computational Models and Multidisciplinary Approaches for
Software Engineering, Knowledge Representation Frameworks and Requirements
Engineering. She has worked as a software designer and consultant in industry, and has a
number of academic and industrial project partners in many countries. She has been active in
the development, delivery and coordination of virtual and distance learning initiatives in
collaboration projects in European and in Asian countries.

	Abstract
	Keywords
	2 The Selection of a Suitable System Development Method

	2.1 Limitations of IS development methods and associated metamodels
	2.2 The Need for a Multidisciplinary Approach in IS Development
	2.3 Sensitisation towards human factors
	3 Case Study

	3.1 Are measures of the quality of software process kept?
	3.2 Are measures of the software product kept?
	3.3 What is the degree of impact of international, national or organisation specific standards and systems on measurement?
	4 Software Measurement and Software Metrics

	4.1 Controllable Factors
	4.2 Uncontrollable Factors
	5 Summary and Future Research and Development
	6 Literature
	7 Author CVs
	Elli Georgiadou
	Kerstin V. Siakas
	Eleni Berki

