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Abstract

Statistics of extremes has been well developed for the case of independent
and identically distributed (i.i.d.) observations. In a growing number of
applications, however, the data appears dependent and heavy—tailed.

We deal with problems of tail index and extreme quantile estimation from a
sample of dependent random variables. Consistency and asymptotic normality
of the corresponding estimators are established under mild mixing conditions.
The accuracy of estimation is shown to be of the same order as if the data
were independent.

We suggest an approach to bias reduction. Besides limit theorems, we
present a procedure of practical estimation.

Key words and phrases: tail index, extreme quantile, heavy tails, dependence, Value—

at—Risk.

1 Introduction

Statistics of extremes aims to estimate the tail probability IP(X > z) when x is
“large”. The other quantities of interest are the tail index and extreme quantiles.
These problems have important applications in finance, insurance, network mod-
elling, meteorology, etc. (see, e.g., [4, 9, 28] and references therein; the fact that
financial data often exhibits heavy tails is discussed in textbooks, cf. [17], ch. 11).

In the case of a parametric family of distributions and i.i.d. data, the maximum
likelihood approach yields natural estimators of the tail probabilities (cf. [9]). Un-
fortunately, one cannot be confident that the distribution belongs to a particular
parametric family. Besides, the assumption of independence appears unrealistic in
a growing number of applications.

The present paper deals with the problems of non—parametric tail index and
extreme quantile estimation from a sample of dependent data. We show that, under
mild mixing conditions, the accuracy of estimation is of the same order as if the
data were independent.



Our main tool is the ratio estimator of the tail index. This estimator seems
to have advantages, both practical and theoretical, over Hill’'s and some other tail
index estimators (see conclusions below).

In section 2 we recall the main properties of the ratio estimator (in the i.i.d.
case) before presenting the results. In Section 3 we present results on tail index and
tail constant estimation from a sample of dependent heavy—tailed random variables
(r.v.s).

Our approach differs from those in [6, 14, 29, 30, 36]. Roughly speaking, we
assume that a mixing coefficient tends to zero not slower than (Inl)~¢ for some
constant ¢ > 1. This condition is fulfilled in many particular parametric models,
including the popular ARCH/GARCH model (for the definition of ARCH/GARCH,
see [9]). We suggest also a procedure of bias reduction.

Section 4 is devoted to the problems of extreme quantile and Fxpected Shortfall
estimation. These problems arise when one measures risk of heavy losses of a port-
folio of risky assets. In particular, Value—at-Risk (VaR) is usually defined as the
q%—quantile for a small ¢. Expected Shortfall (ES) is the corresponding conditional
expectation: if VaR equals y then (we prefer to deal with the right—hand tail)

E(y) = E{X —y|X > y}.

There are two different approaches to quantile estimation. The classical one
suggests using the empirical quantile @,, = F;!, where F,, is the empirical distrib-
ution function. Sharp results on asymptotics of @), in the case of i.i.d. data can be
found in [7, 8, 33], see also references therein. Normal approximation for a weighted
empirical quantile process in the case of dependent data is presented in [6].

The empirical quantile @, (¢) becomes unreliable if ¢ is small, which is not a
rare situation when one estimates risk of heavy losses. In such cases, the Extreme
Value Theory (EVT) approach suggests using the features of the distribution (1)
when constructing a quantile estimator. The EV'T approach seems to be the only
one that works for a “small” ¢ (we allow ¢ = g(n) — 0 as the sample size n — ).

The EVT approach has been discussed in the literature on extremes for a long
time (see [34] and references therein). In the case of a parametric family of dis-
tributions and i.i.d. data, the EVT approach is presented in [9], Section 6.5, and
[18].

We apply the non—parametric EVT approach to the problem of extreme quantile
estimation from a sample of dependent data. We introduce a new quantile estimator
and suggest simple sufficient conditions for the consistency and asymptotic normality
of estimators of the tail index, tail constant and extreme quantiles. We present also
a procedure of practical estimation.

Unless otherwise specified, the limits are as n — oo and >." denotes summation
from 1 to n. We write a,, ~ b, if a,/b, — 1, a, < b, if a,/b, — 0, and a, < b,
if 0 < liminfa,/b, < limsupa,/b, < co; P,y is the distribution function of the
normal N(a;b) law, ® = ® ;.



2 The ratio estimator
We say that the distribution has a heavy tail if

G(z) =TP(X > z) = L(z)zV/° (a>0) (1)
for all large enough x , where the (unknown) function L is slowly varying at infinity:

dim L(at)/L(z) =1 (Vt >0). (2)
The number 1/a is called the tail indez. In the case L(x) = C +o(1), C is called
the tail constant.

Distributions that obey (1) form a non—parametric family of probability laws.
Our purpose is to estimate the index a (equivalently, the tail index 1/a), extreme
quantile (VaR), Expected Shortfall (ES) and the tail constant (when it exists).

In this section we assume that Xi,..., X, are independent random variables
distributed according to (1).

The ratio estimator

an = an() = 3 WX f5) T{X; > 2} ) SOULX; > ) (3)

was introduced by Goldie and Smith [11]. In the case of a parametric family of
distributions IP(X > z) = 27V (z > 1,a > 0), a,(1) is the mazimum likelihood
estimator (MLE). The ratio estimator is also a least squares estimator in the fol-
lowing sense: the function g(a) = X" (In(X;/z) — a)* 1; takes on its minimum at
a=ay(z).

The threshold level x,, needs to be chosen properly. If x,, is too small then the
bias of the ratio estimator is large; if x,, is too large then the bias is small but the
variance is large (since only a small part of a sample contributes to the inference).
The assumption

Pn— 0, np, — 00 (4)

where p, = IP(X > z,), means that z, is neither too small nor too large. It
guarantees the consistency of the ratio estimator in the case of independent data
(see [20]).

Let X, < ... < X(q) be the sample order statistics. Denote z; = X, 41,

where k,, is an integer number. The statistic a,(x}) is Hill's estimator

kn,
Cbg = ]{;1 Z ln(X(i)/X(knJrl)) .
i=1

A number of other estimators of the tail index can be found in [3, 4, 28]. A
comparison of the asymptotic performance of some tail index estimators is given in
[12, 19]. Concerning Hill’s and the ratio estimator, the comparison of rates of tail



index estimation in [19] is in favour of the ratio estimator.

Denote
a =E{n(X/z,)|X >z,}, v=a"/a—1
(we suppress the dependence of a* and v on x,). The ratio estimator (3) is
the sample analog of a*(z,). According to the relation (7) below, a*(z) — a as

T — 00.
It is shown in [19, 20] that

Vipn(an/a—1) = N(0; 1) (5)

if and only if np,v* — 0;if v\/np, — b then /np,(a,/a—1) = N(b;1). In these
limit theorems, /np, may be replaced by N/, where

N, = N,(z,) = Z?:l H{X; > z,}

is the number of exceedances over the threshold =z, .

If v\/np, — 0 then {an/ (1+ann_1/2) ;an/ (1 —ann_lﬂ)} with ®(—¢q.) =
£/2 is the asymptotic confidence interval (a.c.i.) of level 1 — ¢ for the index a.

Asymptotic confidence intervals do not take into account the accuracy of normal
approximation and hence may be far away from exact ones if the sample size is not
large and the rate of convergence in the corresponding limit theorem is not fast. The
non—asymptotic confidence intervals I, = [an/ (1 + yan_l/2> ;an/ (1 - yan_l/Q)}
have been introduced in [25]. Here ®(—y.) = (5/2 — C*Nn_l/2>+ and C, < 0.8 is
the constant from the Berry—Esseen inequality.

The theoretically optimal threshold z%* is the value z, minimizing the main
terms in the asymptotic expansion for the mean squared error IE(a, —a)* = bias*+
variance . The statistic (3) seems to be the only tail index estimator for which the

asymptotics of the bias and the mean squared error (MSE) have been calculated
(see [19, 21]):

E(an,/a—1) =v+0 ((npn)?) , Blan/a —1)* ~ (np,) " +0>. (6)

The condition v\/np, — b # 0 balances the terms on the right-hand side of (6).
Using the relation

E{ln"(X/z,)|X > z,} = a"E!(1 +v;.) ~ a"k! (ke IN), (7)
where

Ve = vg () = /0 T h()e At IR, ho(u) = L (@) Laae™) — 1 (8)

(see [21]), an explicit expression for x%" can be drawn under additional restrictions
on the distribution (1).



Example 1. Consider the following non—parametric family of distributions:
Pusea = {IP POX 5 ) cx (1 oV o)}

If IP € P,p.a then, using (7), one gets v(x) ~ —bd(1 + b)~'z~%* Hence the
asymptotically optimal value of the threshold z, is x%' = (2bch)ﬁ, where
D = (bd/(1+b))?, and

E (a,(«") fa 1) ~ (1 +2b) D75 (2ben) 55 9)

(cf. [23, 24]). The rate nT% is, in a sense, the best possible: a lower bound of that
order can be deduced from Theorem 3.1 of Pfanzagl [27].

For instance, the standard Cauchy distribution belongs to the class P191/x,-1/3
2 = (16n/817)"" and IE (a,(z?") /a — 1)* ~ 3 (16/81)"/% (m/n)*/> .

Adaptive versions of x%" may be constructed by replacing the numbers a, b, ¢, d
with their consistent estimators @, b,¢,d such that |a — a| + b — b| = 0,(1/Inn).

Note that the ratio estimator (as well as some other tail index estimators) is not
shift invariant. It is easy to suggest a modification that has the shift invariance prop-
erty. For instance, consider the estimator a’(x) = >"In((X; — mn)/:zt)]I;‘/Z” I,
where m,, = X[,,/9),,, is the sample median and I = I{X;—m,, > x}. Then P(X;—
my, > ) obeys (1), " ]I;‘/Z” I; —1 and X" ln((Xi—mn)/x)I[;‘/ Y In(X;/x); —
1 as x =z, — oo by the LLN and the properties of slowly varying functions. Hence
ay,(x)/an(x) —= 1. Existing applications, however, present data with natural origin
points, and hence do not provide evidence in support to estimators with the shift
invariance property.

3 Tail index estimation

Given a sample X7,..., X, from a (strictly) stationary sequence X, X7, Xs,... of
random variables (r.v.s) with marginal distribution (1), we want to estimate the tail
index and the tail constant.

Recall the definition of the mixing coefficients p(-) and ¢(-):

p(1) = supsup {corr(€n) : £ € Fry, 1 € Fisioo, B(E +177) < 00},
¢(l) = supsup{|IP(B|A) —IP(B)|: A€ Fi;, B € Firio},

where Fy; = 0{X1,...., Xi}, Fioo = 0{Xit1,...}.
Conditions. Throughout the paper we assume (4) and the following mixing

condition:
> itp(i) < oo (10)

1>1



Besides, in all statements except Propositions 1 and 5 we assume ¢(I) — 0 as
[ — oc.

Mixing conditions of this type are typical in the literature on sums of dependent
r.v.s (cf. [26, 37, 38]). Condition (10) is satisfied even if p(l) decays like (Inl)=°
for some ¢ > 1. Since p(l) < 2¢'/%(1) (see [2]), condition (10) is valid if

ST 2 (i) < 0. (11)

i>1

In many models (like popular ARCH/GARCH processes) ¢(:) decays exponentially
fast (see [5]).

Proposition 1 The ratio estimator is consistent:
(7% T a.

If lim L(z) =C and (Inz,)*(v?* 4+ 1/np,) — 0 then

Tr—00
C, = Ch(xy) = al/ompn™! S I{X; >z}
1S a consistent estimator of the tail constant: Ch — C.

The estimator C,, has been introduced by Goldie and Smith [11]. In the case
of i.i.d. data, sufficient conditions for consistency and asymptotic normality of C,
are given in [11, 19, 20].

Denote 1; = T{X; > x,}, and let

(2

Theorem 2 Suppose that (a* — a)y/ip, — p and IE(X"Y*)* ~ o2np, for some
o€ (0;00), weR. Then

ap, — a

ipr = N(/o:1). (12)

g

Remark 1. In Theorems 2, 7 and Corollary 3 below, \/np, may be replaced by N1/2.

In the i.i.d. case we have ¢ = a, and (12) becomes

(anfa — 1) /ipn = N(pfa; 1) (13)

According to (12), a, = a + &,/\/np,, where the distribution of the r.v. &,
converges to a normal one. If (12) holds together with the convergence of the second
moment and

P(X > 1) =cx /" (140 («7)) (3b > 0) (14)

6



then (8) and (12) imply
MSE (a,,) = E(a, —a)* = O (n_%/“”b))

if z, =< n®(+2) In other words, the rate of approzimation a, ~ a is the same as
if the data were independent.

In the case of dependent data, ¢ usually is not known, and one would want to
replace o by a consistent estimator &.

Denote T}, ; = Z?L(j_l)rﬂ Y1, , and let

[n/r] [n/r]
or=03(n) =N, ' > Ti 15, Ot = im(n) = N;' Y Tioq Ty
=1 j=1

(0<il<mk>1,1<r =r(n <n). Itfollows from (7) and moment
inequalities for sums of dependent r.v.s (see [26, 37]) that there exist constants c
such that Var (Z" Yik_l]li) < cgnp, for every k € IN. In the i.i.d. case,

Var <Zn Yik_l]li) ~ Oknpy Ezn I; Zn Y ~ o1anpn (15)

for some o3, € (0;00), 019 € IR, where Y; = Y; — a*p, . One can expect that (15)
holds also in the case of weakly dependent observations. Sufficient conditions for
(15) can be drawn using results in [16].

Corollary 3 Suppose that 0* = (a01)? + 03 —2a01, >0, 1 < r =r(n) < n and
(a* —a)y/np, — p. If (15) holds for k = 1,2 then Var (X"Y) ~ o’np, and

Qn

— 0 g, = N(p/o;1), (16)

o

where 6% = 6%(n) = (a,01)% + 63 — 20,0612 .

Bias reduction. From a practical point of view, it can sometimes be preferable
to drop the accuracy of approximation in order to eliminate the asymptotic bias
p/o. Note that the accuracy of normal approximation in (12) reduces when we
use the estimator ¢ instead of the unknown o since 6 — o = Op((npn/r)_1/2> .
Therefore, though

P (i < y) = gt ()| < Culopn) 2 (1)

sup
Yy g
(at least in the i.i.d. case, cf. [21, 25]), the right-hand side of (17) may become
C, (np,/r)~Y% if o is replaced by & in the left-hand side. Thus, we do not lose
much if we switch to an estimator a,, such that the rate of normal approximation
any A a 18, in a sense, O((npn/r)’l/Q) :
Denote
Ny, = Z[n/ﬂ L, any = an,(z,) = Z[n/r] Yir/ N -

i=1 =1



Theorem 4 Suppose that r =r(n) € {1,...,n} is chosen so that
7 — 00, Np,/r — 00, v’np, = o(r). (18)

Then

a a
"t 1) \/np, 1), (20 1) /N, ). (1
(" = 1) Vapa/r = NO:1), (25 = 1) Vo = N O (19)
If we assume conditions of Corollary 3 then (18) holds, e.g., when r = g(np,),
where g(z) — o0, g(z)/r — 0 as z — oo. According to (19),

Ing = [ans/ (144N ) san, /(1= 4N )]

is the a.c.i. of level 1 — ¢, where ®(—¢.) =¢/2.

The important question is how to choose the threshold z,, . A simple practical
approach is to plot a,(-) and then choose the estimate from an interval in which
the function a,(-) demonstrates stability. The background for this approach is
provided by the consistency result. Indeed, if the sequence {z,} obeys (4) then so
does {tx,} for every t > 0. Hence there must be an interval of threshold levels
[x_; 2] (formed by a significant number of sample points) such that a,(x) =~ a for
all x € [z_;xy].

We suggest choosing the average value a = mean{a,(x) : x € [x_;x,]}. Then
T, € [x_;x4] can be chosen as a point such that a,(z,) = a. Despite fluctuations
with the choice of z_ and x , the resulting estimate will be almost the same (this is
the advantage of taking average). Examples in [23] show that this procedure works
satisfactorily.

Remark 2. Weak dependence conditions are often expressed in terms of either «,
B, ¢ or p mixing coefficients (the definitions of mixing coefficients can be found,
e.g., in [2, 16]). Using Bernstein’s “blocks” approach, one can check that a, — a
if (10) is replaced by the condition

(npy?) ™ Z 0 2(3) + rp, + [n/r)(Ip. + (D)) — 0 (20)

for some sequences [ =1[(n), r =r(n) such that 1 <l <r <mn.
Conditions of (20)-type appear when one uses Bernstein’s method. Typically,
conditions are formulated in terms of the mixing coefficient «(-) (though in [36, 6],

conditions are given in terms of the stronger coefficient 3(-) ). In particular, Starica
([36], formulas (2.20) and (3.2)) assumes that

nr (1) + kY2 f krnT = 0 (21)

for some € € (0;1/2) and some sequences | = [(n), k = k(n), r = r(n) such that
I1<i<r<n, 1<k<n.



Condition (10) (or (11)) is preferable if the mixing coefficients have the same
rate of decay. To illustrate this point, compare, for instance, (11) with (21) in the
situation where ((I) =< ¢(I) < (Inl)73. Since nr~'3(l) = o(1) and k = o(n/r),
we have k& = o((Inl)%). Therefore, rk~1/27 > r(Inl)=*5%3% > [(Inl)~***3* — oo.
Hence (21) does not hold while (11) is evidently valid.

Sufficient conditions for the asymptotic normality of the ratio estimator can
be deduced also from the results of [30]. Sufficient conditions for the asymptotic
normality of Hill’s estimator (in terms of the mixing coefficient [3(-)) have been
obtained in [36] for the stationary solution of a stochastic difference equation

where {(A;, B;),1 > 1} is a sequence of i.i.d.r.v.s. According to Goldie [10], (14)
holds under some natural assumptions on the r.v.s A;, B;. Starica [36] showed that

VE (a# Ja — 1) = N(0; 1 — 26) (23)

if the sample fraction k, obeys (Inn)*** < k, < n" for some £ > 0, where
§ = Z;‘;lfol]P(Al X ... XA >0v")dv and k= (2/3+¢)ANa/(a+1)Ab/(b+1) <
2b/(2b + 1). We know from the results for the i.i.d. case (see [13]) that the optimal
rate of the sample fraction is k, < n?/**1 . it yields MSE (a#) = O (n_Qb/(1+2b)> :
The assumption k, < n* means that the rate of approximation a# ~ a in (23) is
worse than in the i.i.d. case.

Theorem 3.1 and Corollary 3.3 in [6] imply the asymptotic normality of Hill’s
estimator under mixing conditions similar to those of [36] plus the assumption that
the sample fraction k, obeys the condition In?nIn*(Inn) < k, < n?/*+1) Hence
the rate of approximation a ~ a is again sub-optimal.

4 Quantile estimation

In this section we deal with the problem of extreme quantile (VaR) and Expected
Shortfall estimation from a sample of dependent heavy—tailed data.

Let y, = inf{t : G(t) < ¢} be the upper quantile of level ¢. Given ¢ = ¢(n) — 0,
we want to construct an estimator gy, = ,(n) such that

Ug/Yq —= 1, G(Uq)/a — 1. (24)

Since y, = y,(n) may be so large that only few elements of the sample exceed
it, the sample quantile can hardly be regarded as a reliable estimator. The idea of
the EVT approach is to use a “pilot” level x,, and the properties of a heavy—tail
distribution when constructing an estimator of y, .

More precisely, (1) entails the weak convergence

LIX/Y)X >y) = Fo,

9



where F,(z) =1—2"Y% (2 >1). Hence

N, —1/a
Glyy) = P(X > 2,)P(X > yy| X > 2,) = — <yq> .
n \x,

Let a, be a consistent estimator of the index a. Since G(y,) ~ ¢ by formula (30)
below, one can expect that y, may be well approximated by the statistic

Jg = () = (No/qn)™ @, . (25)
Proposition 5 (consistency of extreme quantile/VaR estimator) Suppose that
(dn - a) ln(pn/Q) T) 07 L('rn)/L(yQ) — 1. (26)

Then (24) holds.

Quantile estimator (25) is similar in nature to that of [39]. Assumption (26)
holds, for instance, if
1 <y,/z, < C, (27)

for some constant C, > 1. The practical procedure is to choose the average value
mean{y,(z) : v € [x_;x4]}, where [x_;z,] is the interval in which the function
Jy(x) demonstrates stability.

The distribution (1) has finite first moment if 0 < a < 1. Denote

E, =3,0,/(1 —a,).
Since E(y) ~ya/(1—a) as y — oo, Propositions 1 and 5 entail the following result.

Corollary 6 (consistency of ES estimator) If 0 < a < 1 and (26) holds then
E, s a consistent estimator of the Expected Shortfall: E,/E(y,) — 1.

For the situation where ¢ is bounded away from 0, Scaillet [31] suggested a
kernel-type estimator of F(q). In such a case, the empirical estimator is believed
to provide better accuracy of estimation. The feature of our result is that the level
q = q(n) is allowed to approach 0.

From now on, g, = y,(an(x,), z,), where a,, is the ratio estimator (3). Denote

2
_ [ 91 012 _ 1 0 . 10
AO_(Ulg o3 >’B_<—a 1>’B*_<—a* 1>'
Theorem 7 Suppose that 02 = (acy)? + 05 — 2a012 > 0 and

In (pn/G(yg)) = d, (a" = a)y/mpn — 11, (yg0"L™"(a) = 1) Vipw > v (28)
for some constants d,u,v. Then
(da/vg — 1) VP = N (dp = v,02) (29)
where 02 = cAc” , ¢ = (a,d) and A= BAB'".

c —

10



The first condition in (28) is of the same style as (27). The second one balances
the asymptotic bias and variance of the ratio estimator (cf. (6)). Concerning the
last relation in (28), note that

Gy, = G(G'(q) ~q (30)

as ¢ — 0 (see Theorem 1.5.12 in [1]). If G(y) is strictly monotone for all large
enough y then ¢ = G(y,), and the last relation in (28) may be rewritten as

(L*(yq)/ L (xn) — 1) \/npy, — V.

2 ~
Notice that 02 = (a(1 — d)o1)” + (do2)” + 2ad(1 — d)oy, and A = ( f}l ;2 ) ’

where 6 = 019 — ac?. In the i.i.d. case, 02 = a?(1+ d?).

Now we want to replace o. in (29) by its consistent estimator. Define 1210, B
and A similarly to Ag, B, A with o1, 09, 012, a replaced by &1, &2, 712 and
a, . Denote 62 = 62(n) = ¢Aer , where ¢ = (an,d,) and d, = a; ' In(g,/x,) .

Corollary 8 Assume the conditions of Theorem 7. If (15) holds then
(9a/vg = 1)6 N2 = N ((dp = v) [0e, 1) . (31)

Remark 3. If L(x) = C + o

the quantile estimator y; =

1+0, ((ln mn)/\/n_pn) while

preferable to y; .

) as x — oo, where C' > 0, then one can suggest
0/a ) ", Using (39), one can check that Yo lYq =

29) yields 9,/y, = 1+ O, (1/,/npn>. Hence g, is

/\/—\*—‘

If there are reasons to believe that the asymptotic bias (du —v)/o. is negligible
then (31) yields the asymptotic confidence interval [g)q/ (1 +7.6¢/N} /2) yq/ (1 - %60/1\7}/2)]
of level 1 —¢, where ®(—~.) =¢/2. In the i.i.d. case, this becomes

[ﬁgq/ <1 + 76\/%21 +In*(gy /) /Ni/2> L@q/ <1 - %\/a2 +1In (yq/xn)/Nl/gﬂ
(32)
We can eliminate the asymptotic bias (du —v)/o. but at a cost of a slower rate
of normal approximation. Let g,, be defined by (25) with a, = a,,,.

Theorem 9 Assume the conditions of Theorem 7. If (15) and (18) hold then
(G /yg — 1) (@nd) " N2 = N (0,1) . (33)
Example 2. Consider the following model:

=&, Xi=ai§+ (1 — ) Xia (i >2), (34)

11



where &,&, ..., a1, Qq, ... are independent random variables, & < X (Vi), L(X)
obeys (1) and IP(a; =1) =1 —P(a; =0) =0 € (0;1) (Vi).

This model was introduced by Smith and Weissman [35]. It is a particular case
of stochastic difference equation (22). It is easy to see that (34) is a stationary
Markov chain, the extremal index equals 6 and clusters have geometric distribution
with the mean 1/0. We have showed in [22] that (k) < (1 — 6)*. Hence (11) and
(10) hold.

We prove in the next section that

Var("Y7) = IO [142007 = 1) (= )] ~ o (207! = 1) 0, (39)

Var(Y" VL) ~ np. (Z _ 1) a2 (2k)! E(é 1L-> (Z:; Y> ~ np, (Z _ 1) a

where k, = 1_(711;9)71 . Hence the conditions of Theorem 2 and Corollary 3 are ful-
filled, and the results of Sections 2 entail
(an/a —1)\/np, = N (m; 2071 — 1) (36)

if v\/np, — m; \/np, in (36) may be replaced by N}/2.

This is a generalization of the limit theorem (13): if a; = 1 then (34) is a
sequence of independent r.v.s, # = 1, and (36) implies (13).

Notice that the accuracy of the approximation a, =~ a is the same as if the data
were independent, but the asymptotic variance of the estimator can only be larger.

If there are reasons to believe that the data can be approximated by the model
(34) then (36) provides an alternative way of constructing asymptotic confidence

intervals. Namely, if 6, is a consistent estimator of the extremal index 6 (see
[15, 40]) then (36) implies

(an/a — 1) NY2(2/6, —1)"V? = N (m,;1) ,

where m, = m(2/0 —1)~'/2 . If the asymptotic bias m, is believed to be negligible
then
lan/ (1472020, = D)2 /N32) sanf (1= 72(260," — 1)/? /N2

is the a.c.i. of level 1 — ¢, where ~. is defined by the equation ®(—~.) =¢/2.
In [23], we illustrate the results of Sections 2-4 by examples of simulated data.

Conclusion. Our simulation results in [23] show that the statistical procedure
based on the ratio estimator perform satisfactorily. This can be a bit surprising in
view of “Hill’s horror plot” (see Figure 3 in [28]). A possible explanation is that
the plot of Hill’s estimator gives the same respect to 25% smallest and 25% largest
elements of a sample — i.e., to its least and most informative parts.

In all our examples (see [23]), 25% smallest elements lie below the threshold
x = 0.5 (and hence should not be given any attention). Approximately half of the
sample elements lie below the threshold z = 1.

12



The feature of the ratio estimator plot is that it reduces the least informative
part of a sample and highlights the most informative part.

The ratio estimator seems to be easier for theoretical investigation as well. For
instance, the bias and the variance of a tail index estimator seems to be known only
in the case of the ratio estimator. For a particular class of slowly varying functions
L, the accuracy of estimation is sharper in the case of the ratio estimator (see [19]).

With no indicator in favor of other tail index estimators, the ratio estimator
appears the basic tool of statistical analysis of heavy tails.

5 Proofs

Below, symbols ¢; denote positive constants; a bar over a random variable means
that it is centered by its expectation. We write &, ~ n, or & = n,(1 + 0,(1)) if

gn/nn e L.

Proof of Proposition 1. The first part of the statement (consistency of the ratio
estimator a,, ) has been given in [24]. We present it for the sake of completeness.

One can check that (10) is equivalent to the condition Y ;51 p(2') < oo (in
particular, this yields p(l) — 0 as | — oo; (11) is equivalent to the condition
D> ©'/2(2") < 00). We use Chebyshev’s inequality, (7) and an estimate of the
variance of a sum of dependent random variables (see Peligrad [26] or Utev [37]).
Given € > 0, denote Z; = Y;* — (I; — p,)e. Then

P(a, —a*>¢) = IP (Zn(Y; —a")l; > ezn ]Ii)
= P (Zn Zi > 5npn) < (enp,)~? Var (Zn ZZ-> )

By Theorem 1.1 in [37], there exists a constant ¢, (depending only on p(-)) such
that

Var N,, < ¢,np,, Var (Zn Y[") < ¢,npy,, Var (Zn Zi) < c¢,nVar Z; < cnp, (37)

(we have used also (7)). Hence IP(a, —a* > €) — 0. Similarly one checks that
IP(a, —a* < —¢) — 0. Remind that a¢* — a as x,, — oco. Hence a, — a.
Now we show that C,, —— C'. Chebyshev’s inequality and (37) yield

Ny /np, — 1. (38)

Hence C, = Cxl/*~1/%(1 + 0,(1)). We have to prove that (a, —a)lnz, — 0. Be-
cause of the assumption, (a*—a)lnxz, — 0. It remains to check that (3" Y;*) (Inz,)/np,
—— 0. The latter follows from Chebyshev’s inequality, the assumption and (37). O

Lemma 10 If (1) = 0 as | — oo and (15) holds then
(N,./(npn) — 1,a, — a*) \/np, = N(0; A). (39)

13



Proof of Lemma 10. Note that

Taking into account (38), we shall check that

Ay —

N, Yy (L ety :
(npn o ) Vi = (x/npn ’ \/npn> — N

Notice that (I;, ;)" = B.(;, where ¢; = (I, Y;)" . Inorder to check that ™, ¢/ /npn =
N(0; Ag) , we apply the following result of Utev [38].

Theorem A. Let {&;,,: 1 <i<k,},>1 be atriangular array of r.v.s, and let ¢, (-)

be the corresponding mizing coefficient. Denote S, = Y2k, in, and let 22 = VarS,.

If sup,, ©n(ljn) — 0 as | — oo for some sequence {j,} of integer numbers and

kn
nh_)nolo]n'z;2 Z]Eginl[ﬂgz,n’ > ezp/jn} =0 (Ve > 0) (40)
i=1

then S, /z, = N(0;1).

Let ¢ = (c1,c3) € IR?. We want to show that

n

> cGi/v/npn = N(0; cAgc”) . (41)

Put & = c;1;+co(Y;—a*p,) and j, = 1. By the assumption, Var (X" &;) ~ onp,, .
To check (40), it suffices to show that

P(Y >eynp, | X >x,) =0, E {YQ]I{Y > e\/NPn }‘X > xn} —0

for any ¢ > 0. According to [1, 32],

Y

L(y)/L(z) ~ exp (/x w(uw)u! du) (42)

as x,y — 00, where w(u) — 0 as u — oo. Therefore,
P(Y > ey/np,|X > x,) = P(X > x,eV") /IP(X > x,)

_ L(xneg‘/np")Lfl(ajn)efs‘/np"/a — e*(E/OA’O(l)),/i’npn 0.

Using this relation and (7), we derive

B2 {Y?I{Y > e\/ipy X > 2} < E{Y|X > 2, } P (Y > ey/ipn | X > 2,) — 0.

14



Hence (40) holds, and Theorem A entails (41) and (39). O

Proof of Theorem 2. Arguments of the proof of Lemma 10 yield also that
SV Var Y Y = N(0;1).

Taking into account (38) and the assumptions of the theorem, we get (12). O

Lemma 11 If (15) holds then
Op —= Ok, 012 — 012 (k€ IN). (43)
Proof of Lemma 11. First, we notice that
E(YY'L) ~orp,  (keNN). (44)

Indeed, denote R,, = Var (ZW”] Tkyj) — [n/r]Var Ty, . By Utev’s Theorem 1.1 [37],
R, = o([n/r|Var T} ;) . Therefore, Var (Z[”/T] Tk,j) ~ [n/r]Var Ty, < ¢inp, , and

Var (Zn Y;k]IZ) = Var (Z[n/r] Tk,j) + o(np,) = [n/r|Var Ty 1 + o(np,,) .

By the assumption, r/n — 0. Thus, VarT;_,; = Var (ZT Y;k’llli) ~ o2rp, , and
(44) follows.

We use Chebyshev’s inequality to prove (43). Note that of —[n/r]IET} | | /np, =
o(1) . Using Utev’s [37] Theorem 1.1 and Corollary 2.3, we get VarTy, < IET}, <
corp, and

Var (Z[n/r] T;i]) < ¢sln/r|Var T3 | < canpy, .

j=1

Hence the probability IP(67 — o7 > 2¢) is not greater than

P <Z[n/r]<T1§Lj - IETI?AJ) — (0% +2¢) Zj:l ;> gnp"> = .

i=1 npn

(Ve > 0). Similarly we check that IP(6} — o < —¢) — 0. Thus, ) — 0y.
It remains to show that 615 — 012. Recall that Y;* =Y; — a*1;. According to
(15),

s ~ (X" 1) (V) =B (X0 7,) (S0 73 ) + ot

Similarly to (44), one can check that IE (3" 1;) (X" Yy, ) ~012rp,. Using again The-
orem 1.1 and Corollary 2.3 from [37], we get Var(zgnz/f] To,jTLj) ~2Var(Tp1T1,1) <
cnp,. Note that

{6'12 — 012 > 25} = {Zgn/f] T(),jTLj > (012 + 25) Zn ]Iz}
C {Zgnz/;] (T()JTLJ' — ]ETOJ'TL]‘) — (0'12 + 25) Zn ]L > 5npn} .
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2Var (Zgnz/lﬂ T()J'Tl,j) +2(o12 + 28)2Var (X" 1) < Ce
(enp,)? T NP,

By Chebyshev’s inequality, TP (615 — 019 > 2¢) is not greater than
— 0

(Ve > 0). Similarly one checks that IP (615 — 012 < —2¢) — 0. The proof is com-
(H]

plete.
Proof of Corollary 3. LLN (38) and Lemma 10 imply
Cn = (an — a*) N2 = N(0;07).
Since (a* — a)\/np, — p, we have
(an — a)]\fi/2 = (o + (a* — a)\/npp\/ No/npn, = N (p; 0°)
O

Taking into account (38) and Lemma 11, we get (16).

Proof of Theorem 4. Using Theorem 1.1 in [37] and (7), we conclude that
[n/]
Var (Zj_ er) ~ [n/r]Var 1y ~ np,/r,
[n/7] | -4 *
Var (ijl Y]T) [n/r]Var Y* ~ a®np, /7 .

Hence N,/ (npn/r) —= 1. The same arguments as in the proof of Lemma 10 entail
=Y* and j, =1 yields

that IP (Y > ey /npn/r ’X > xn> — 0. Theorem A with &; fu
mi oy gL
2j=1 (Y —a*1;,) — N(0;1).

a\/np,/r
(a*/a —1)\/Ny, ~ (a*/a—1)\/np,/r — 0
O

Zg":/f ] ;. . The result follows.

Note that

by (18) and the LLN for N, ,
Proof of Proposition 5. Denote G,, = N,,/n . According to (1) and [1, 32], G~1(2)
27%(z), where ¢ is a slowly varying function. This and (42) entail

(45)

G@q)/QT)l < ?)q/qu’l-

Notice that G(x,) = p, and
)T
Tn q Pn q q* \ Pn q
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Taking into account (38) and the identity p? = z'L%(z,), we deduce

949"/ L (1) Py (pn/q)an_a .
This and (26) yield
Ggd" /L (xn) == 1.
Since y, ~ ¢ *L*(y,) according to (30), we have
Ja/Yq v L (xn)/L(yq) — 1

if (26) holds. The proof is complete. O
Proof of Theorem 7. From (46),

9aq" /L (wn) = (Gn/pn)™ (Pn/@)™ "
= 14+ (Gn/pn— 1) a, + (an —a)In(p,/q) + 0, ,

where 9§, = o, (|1 — G,/pn| + |a, — al) . By Lemma 10,
(949" /L (xn) — 1) \/npn, => N (dp, cAc™).
Hence (4,/yq — 1) \/npn = N (du — v, cAcT). 0

Corollary 8 follows from Theorem 7 and Lemma 11. We should mention only
that

Glrn) 1, y Lz,) 1. y
In =-InZL +1n =-—InZL +0o(1).
Gl ~aam T Ty —a e, TV
Hence a,'In(gy/2,) — d. |

Proof of Theorem 9. Arguments similar to those in the proof of Theorem 7 yield

gq,rqa Gn ) Pn (
—1=|——-1)an,+ (@, —a)ln—+o
Lo(a,) <pn Yo

n

Gy
11— ="
D

+ |apr — a\) :

According to Lemma 10, G,,/p, —1 =0, (1/‘ /npn) . Therefore,

<gj{fn) - 1) \/ 1P /T = (G — a)dy/npp /T (14 0,(1)) + 0,(1).
Because of the assumptions, (y,q*L™%(z,) — 1)\/W ~v/y/r — 0. Hence

(fgq/yq - 1) V npn/r = N(Ov a2d2)

by Theorem 4. The result follows. O
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Proof of relation (35). By the well-known formula (cf. [16]),

n 2 n .
BV =n[BE)?+2)" (1—i/n) EYY] (47)
Notice that ‘
EY7Y, = (1- 0B (12 1), (48)
Indeed, if @ = ... = ;41 = 0 then Y, = Y], and IEYY;:, = IE(Y*)?. Otherwise

the random variables Y and Y}, are independent, and hence IEY['Y;:, = 0.
Relation (35) follows from (47), (48) and (7).

By the same argument, IEY}I1; Y T,y = (1 — 0)'E(Y})*1;, and EL Y, =
EY; 1, = (1 -0)ELY; = (1 —0)'a*p,(1 — p,). Hence

Vaf(Z" Yikﬂi) = nVar(Yk) [1 207 — 1) (1 B 1_(7119_9)n>1
~ 71(2671 _ 1>IEY2k ~ npn(29*1 _ 1)a2k(2k)'

(k> 0). Similarly one can check that

n no B n . B 3 2
EY LYY, = n[ﬂzﬂm +3 (1= D) (BT + mmm)] ~np (5 1) a.
n
The proof is complete. O

Remark 4. Smith ([34], pp. 1181-1182) claims the mean squared error of his
estimator of the tail index can be smaller than that of the ratio estimator in the
case of P, ,.q family of distributions. This seems to be a mistake caused by the
introduction of the artificial parameter o which is linked to the tail index (denoted
—1/k in [34]) by the equation o = —ku. The calculation of the MLE estimators &
and k in [34] is carried out as if o and k were independent parameters. This leads
to the contradiction: since o = —ku, one has a% = k% while a%ln g(y;0,k) #

/{:% Ing(y; o, k) on page 1204 of [34]. As a consequence,

0 0
UIE% Ing(Y;o, k) # k:IE% Ing(Y;o,k)
on page 1180, and the arguments behind the bias calculation fail. Note that the
derivation of the MLE using the density g¢(y; —ku, k) instead of ¢(y;o,k) would
yield the ratio estimator.

Acknowledgements. The author is grateful to L. de Haan, T. Mikosch and C.
de Vries for helpful discussions, and to the referee for useful comments. The main
part of the paper was written at Eurandom. Research was also supported in part
by a scholarship from K.U.Leuven.

18



References

1]

2]

Bingham N.H., Goldie C.M. and Teugels J.L. (1987) Regular Variation. — Cambridge:
Cambridge University Press.

Bradley R.C. (1986) Basic properties of strong mixing conditions. — In: Dependence
in Probability and Statistics (E.Eberlein and M.S.Taqqu, eds.), 165-192. Boston:
Birkhauser.

Beirlant J., Vynckier P. and Teugels J.L. (1996) Excess functions and estimation of
the extreme-value index. — Bernoulli, v. 2, No 4, 293-318.

Csorgd S. and Viharos L. (1998) Estimating the tail index. — In: Asymptotic Methods
in Probability and Statistics (B.Szyszkowicz, ed.), 833-881. Amsterdam: Elsevier.
Davis R., Mikosch T. and Basrak B. (1999) Sample ACF of multivariate stochastic
recurrence equations with applications to GARCH. — Preprint. University of Gronin-
gen, Department of Mathematics.

Drees H. (1999) Weighted approximations of tail processes under mixing conditions.
— University of Cologne: Preprint.

Drees H. and de Haan L. (1999) Conditions for quantile process approximations. —
Commun. Statist. Stochastic Models, v. 15, 485-502.

Einmahl J. (1992) Limit theorems for tail processes with application to intermediate
quantile estimation. — J. Statist. Plan. Infer., v. 32, 137-145.

Embrechts P., Kliippelberg C. and Mikosch T. (1997) Modelling Extremal Events for
Insurance and Finance. — Berlin: Springer Verlag.

Goldie C.M. (1991) Implicit renewal theory and tails of solutions of random equations.
— Ann. Appl. Probab., v. 1, 126-166.

Goldie C.M. and Smith R.L. (1987) Slow variation with remainder: theory and ap-
plications. — Quart. J. Math. Oxford, v. 38, 45-71.

de Haan L. and Peng L. (1998) Comparison of tail index etimators. — Statistica
Neerlandica, v. 52, No 1, 60-70.

Hall P. and Welsh A.H. (1984) Best attainable rates of convergence for estimates of
parameters of regular variation. — Ann. Statist., v. 12, No 3, 1079-1084.

Hsing T. (1991) On tail index estimation for dependent data. — Ann. Statist., v. 19,
No 3, 1547-1569.

Hsing T. (1991) Estimating the parameters of rare events. — Stochastic Processes
Appl., v. 37, No 1, 117-139.

Ibragimov I.A. and Linnik Y.V. (1971) Independent and stationary sequences of ran-
dom variables. — Groningen: Wolters-Noordhoff Publishing, 443 pp.

Luenberger D.G. (1998) Investment Science. — Oxford: Oxford University Press.
McNeil A.J. (1997) Estimating the tails of loss severity distributions using extreme
value theory. — Astin Bulletin, v. 27, No 1, 117-137.

Novak S.Y. and Utev S.A. (1990) Asymptotics of the distribution of the ratio of sums
of random variables. — Siberian Math. J., v. 31, No 5, 781-788.

Novak S.Y. (1992) Inference about the Pareto-type distribution. — In: Trans. 11-
th Prague Conf. Inform Theory Statist. Decis. Func. Random Processes. Prague:
Academia, B, pp. 251-258.

Novak S.Y. (1996) On the distribution of the ratio of sums of random variables. —
Theory Probab. Appl., v. 41, No 3, 479-503.

19



22)
23]
24]
25)
26)
27]
28]
20]

[30]

Novak S.Y. (1998) On the limiting distribution of extremes. — Siberian Adv. Math.,
v. 8, No 2, 70-95.

Novak S.Y. (1999) Inference on heavy tails from dependent data. — Technical Uni-
versity of Eindhoven: Eurandom research report No 99-043.

Novak S.Y. (2000) Confidence intervals for a tail index estimator. — In: “Measuring
Risk in Complex Stochastic Systems”, Lecture Notes Statist., v. 147, 215-222.
Novak S.Y. (2000) On self-normalised sums. — Math. Methods Statist., v. 9, No 4,
415-436.

Peligrad M. (1982) Invariance principle for mixing sequences. — Ann. Probab., v. 10,
No 4, 968-981.

Pfanzagl J. (2000) On local uniformity for estimators and confidence limits. — J.
Statist. Plann. Inference, v. 84, 27-53.

Resnick S.I. (1997) Heavy tail modeling and teletraffic data. — Ann. Statist., v. 25,
No 5, 1805-1869.

Resnick S. and Starica C. (1998) Tail index estimation for dependent data. — Ann.
Appl. Probab., v. 8, No 4, 1156-1183.

Rootzen H., Leadbetter M.R. and de Haan L. (1998) On the distribution of tail array
sums for strongly mixing stationary sequences. — Ann. Appl. Probab., v. 8, No 3,
868-885.

Scaillet O. (2000) Nonparametric estimation and sensitivity analysis of expected
shortfall. — Universite Catholique de Louvain: Preprint.

Seneta E. (1976) Regularly Varying Functions. — Lecture Notes Math., v. 508. Berlin:
Springer—Verlag.

Shorack G.R. and Wellner J.A. (1986) Empirical processes with applications to sta-
tistics. — New York: Wiley.

Smith R.L. (1987) Estimating tails of probability distributions. — Ann. Statist., v.
15, No 3, 1174-1207.

Smith R.L. and Weissman I. (1994) Estimating the extremal index. — J. R. Statist.
Soc. B, v. 56, No 3, 515-528.

Starica C. (1999) On the tail impirical process of solutions of stochastic difference
equations. — Chalmers University: Preprint. http://www.math.chalmers.se/ star-
ica/resume/publil.html

Utev S.A. (1989) Sums of p-mixing random variables. — Trudy Inst. Mat. (Novosi-
birsk), v. 13, 78-100. (in Russian)

Utev S.A. (1990) On the central limit theorem for p-mixing triangle arrays of random
variables. — Theory Probab. Appl., v. 35, no. 1, 131-139.

Weissman 1. (1978) Estimation of parameters and large quantiles based on the k
largest observations. — J. Amer. Statist. Assoc., v. 73, 812-815.

Weissman I. and Novak S.Y. (1998) On blocks and runs estimators of extremal index.
— J. Statist. Planning Inference, v. 66, No 2, 281-288.

20



Appendix

In this section we illustrate the results of Sections 2—4 by examples of simulated data
(cf. [23]). In Examples 1 and 2 below, the marginal distribution IPg is that of |X|, where
X has the standard Cauchy distribution.

Example 1. We simulated 1000 i.i.d.r.v.s according to the distribution IPy.
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Figure 1: Tail index estimation from the distribution IPy. The average value of a,(x), = €
[1;14], is a = 0.998. The asymptotic confidence interval of level 0.95 is [0.91;1.10], and
the non-asymptotic confidence interval is [0.88;1.15].

The first picture of Figure 1 shows that the ratio estimator a,(x) behaves rather
stable in the interval = € [0.5;17]. The curve over the interval [0.5;17] is formed by 701
points (out of 1000). The second picture is even more convincing: it demonstrates the
behavior of the ratio estimator when the threshold x ranges in [1;14]. The corresponding
fragment of the curve is formed by 479 points.

It is reasonable to pick up the estimate of the index a from the interval [1;14].
Following our procedure, we take the average value a of a,(z) in the interval z € [1;14]:
a = 0.998.

Let x, be the threshold corresponding to a (i.e., an(z,) = a). The corresponding
asymptotic confidence interval (a.c.i.) of level 0.95 is [0.91;1.10], and the non—asymptotic
confidence interval is [0.88;1.15].

A number of authors suggested estimating a by the value a(x,), where a(-) is a
chosen tail index estimator, x is a “tuning” parameter and z, is the left end—point of the
interval [x,;z*] where the curve a(x) is “approximately flat” (or the mean excess function
is “approximately linear”). The practical advantage of our procedure is that average is
less sensitive to the choice of end—points of the interval of “regular behavior”.

The plot of the tail constant estimator C’n() is presented in the first picture of Figure
2. Estimator C,(z) seems to be stable when z € [1.5;3.5]. The corresponding fragment
of the curve is formed by 229 points, the average value of C’n(ac) in that interval is 0.585
(C = 2/7 ~ 0.637). The plot of Cy(-) looks undersmoothed. The plot of a smoothed
version C7(-) of the estimator C,(-) is shown in the second picture.
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Figure 2: Tail constant estimator C,, = 0.585 (the actual value of C' is 2/ ~ 0.637).

The plots of the quantile estimator (25) are given in Figure 3.

The first picture presents ¢, for the case g = 0.05, the true value is y, = 12.7. The plot
demonstrates stability in the interval = € [1.5;14] (formed by 345 points). The average
value of g, in that interval is 10.5 (the empirical 0.95% quantile equals 9.9).

The second picture displays ¢, for the case ¢ = 0.01; the true value is y, = 63.66.
The plot looks stable in the interval [5.5;18]. The corresponding fragment of the curve is
formed by 67 points, the average value of g, in that interval is 59.9 (the empirical 0.99%
quantile equals 41.3).
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Figure 3: Quantile estimator (25). The first picture: gy, = 10.5. The true value is
yq = 12.7, the empirical 0.95% quantile equals 9.91. The second picture: g, = 59.9. The
true value is y, = 63.66, the empirical 0.99% quantile equals 41.3.

Let a be the tail index estimate obtained at the step of tail index estimation (in our
example, @ = 0.998). It can sometimes be worth using the estimator

Jq = Ug(@n) = (Nn/qn)& T,



instead of (25). The simulation results are presented in Figure 4. The plots demonstrate
stability in the interval = € [1.5;4] (formed by 256 points). The average value of ¢, in
that interval is 11.20 (the true value is y, = 12.7), and the corresponding 0.95%-a.c.i. is
[9.10;14.56] (the 0.95%-a.c.i. (32) is [8.63;13.46]).
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Figure 4: Quantile estimation: g, = 11.2, the true value is y, = 12.7. The asymptotic
confidence interval of level 0.95 is [9.10; 14.56].

Example 2. We have simulated 1000 r.v.s according to the model (34) with the marginal
distribution Py and € = 1/2. The plot of a,(z) is presented in Figure 5. The ratio
estimator demonstrates stability in the interval x € [1.5;14], formed by 322 points. The
average value of a,(z) in that interval is 1.025.
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Figure 5: Process (34) with the standard Cauchy marginal distribution, # = 1/2, n =
1000. The ratio estimator a = 1.025.

The tail constant C' = 2/m ~ 0.637 can be estimated as well. Recall that a is the
accepted tail index estimate (in our case, a = 1.025). It can sometimes be worth using

the estimator C,(x,) = x}l/dNn/n instead of C,(z).



The estimation results are presented in Figure 6. The plot of the estimator Cr(z) is
less volatile than that of C)(z). The average value of Cy,(x) as x € [2;12] is 0.62, the
interval is formed by 300 points.
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Figure 6: Tail constant estimators Co(z), Cu(z) and a smoothed version of Cy,(z). The
average value mean{Cy(x) : x € [2;12]} = 0.62 (the true value is 0.637).

The results of quantile estimation are given in Figure 7. Both ¢, and g, yield
satisfactory estimates. The plot of g,(z) is stable in the interval x € [2;11] (formed
by 249 points). The average value of g, in that interval is 13.34 (the true value is
yq = 12.7). The plot of g4(x) is stable as x € [2;18] (the interval is formed by 279
points), mean{gq(z) : x € [2;18]} = 13.28.
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Figure 7: Quantile estimation: g, = 13.34, g, = 13.28, the true value is y, = 12.706.

The plot of the estimator a,, is given in Figure 8 below. We simulated 1000 points
according the model (34) with 6 = 3/4. The estimator looks stable in the interval [2;80]
(formed by 316 points). The average value of a,, = mean{a,(z) : = € [2;80]} = 0.93.
The practical suggestion for the choice of r is to take the minimal integer exceeding
the average cluster size (, which can be estimated as ¢, = 1/6,, where 6, is a con-
sistent estimator of the extremal index 6 (cf. [15, 40]). This yields the 0.95%a.c.i.
I, = [0.81;1.08].
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Figure 8: Process (34) with = 3/4 and n = 1000. Tail index estimator d,, = 0.93.
The 0.95%a.c.i. I, = [0.81;1.08].

Example 3. The ARCH(b|c) process is defined as a solution of the stochastic difference

equation
Xp = Zny/b+cX2 (n>2),

where {Z;} is a sequence of normal N(0;1) r.v.s, b >0, ¢ > 0. With a special choice of
the initial r.v. X, the process is stationary, and

P(X|>2z)~Cz™Y" (2 — 0). (49)

Explicit expressions for the constants a and C' are given in [10] and [9], section 8.4. In
particular, a = 0.5 and C =137 if b=c=1.

We simulated 10000 r.v.s from the ARCH(1|1) process with X; = Z; and then esti-
mated a from the absolute values of the last 1000 observations (which can be considered
as a stationary sequence). The estimation results are presented in Figures 9 and 10.

15

10

3

ARCH(1]1)
RATIO ESTIMATOR

-10

-15

0 200 400 600 800 1000 0 5 10 15
TIME THRESHOLD

Figure 9: ARCH(1|1) process, n = 1000. The ratio estimator & = 0.51 (the true value
is a =0.5).



The ratio estimator a,(x) behaves stable in the interval = € [2;4]. This interval is
formed by 179 points (out of 1000). The average value of the ratio estimator in that
interval is @ = 0.51. Another interval of stable behavior of ay(z) is [5;11]. We reject it
since it is formed by 51 points only.

Figure 10 presents the plots of tail constant estimators C‘n(x) and Cp,(z). The interval
[2;3] (formed by 127 points) seems to be the only interval of stable behavior of Ci,(z).
The average value of this estimator as x € [2;3] is 0.9996 (the true value is C' = 1.37).
The estimator C,(x) is more stable in the interval [2;9] (formed by 243 points). The
average value of Cp(z) as = € [2;9] is 1.09.
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Figure 10: ARCH(1]1) process, tail constant estimators C, = 0.9996 and C,(z) = 1.09
(the true value is C' = 1.37).



