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Abstract—The paper considers learning systems as optimisa-
tion systems with dynamical information constraints, and general
optimality conditions are derived using the duality between
the space of utility functions and probability measures. The
increasing dynamics of the constraints is used to parametrise
the optimal solutions which form a trajectory in the space
of probability measures. Stochastic processes following such
trajectories describe systems achieving the maximum possible
utility gain with respect to a given information. The theory is
discussed on examples for finite and uncountable sets and in
relation to existing applications and cognitive models of learning.

I. INTRODUCTION

Learning is a process of incorporating new information
by a system in order to improve its performance. Therefore,
the design of such systems is closely related to theories
of optimisation and information. It is not clear, however, if
there exists the best way to incorporate new information, and
which strategies should the system follow if information is
incomplete. This paper argues that despite a very natural link
between the theories of optimisation and information, many
standard techniques do not take into account the information
constraints, and the resulting strategies are not optimal. The
optimality condition derived from the duality of utility and
information can help solve problems of overfitting and the
exploration-exploitation dilemma in the learning systems.

Many learning algorithms and theories are based either on
statistical (asymptotic) or Bayesian approaches to optimisation
under uncertainty. Without uncertainty, optimisation problems
are problems of finding the extrema (minimum or maximum)
of some real functions x : Ω → R, which are called utilities,
costs or fitness functions depending on the area of application.
These functions represent someone’s preference relation on
the underlying choice set Ω, which can be the set of prizes,
errors, states of the world and so on. Sequential optimisation
can be solved in discrete or continuous time using methods of
dynamic programming [5] or the maximum principle [1], [2].

Under uncertainty (i.e. when the elements of the choice set
cannot be observed directly), one often applies the classical
methods of statistical or Bayesian estimation. In many cases,
this means maximisation of some expected utility or likelihood
function, estimated from the observed data [3], [4]. Sequential
problems can be solved using methods of dynamic program-
ming [5], and the theory of conditional Markov processes al-
lows for a significant reduction of variables [6]. These methods

have inspired a number of works on statistical learning and
algorithms in artificial intelligence (AI) and robotics (see [7],
[8] for reviews).

It is important to note, however, that the above mentioned
classical techniques were originally developed in the theory
of optimal control, and they require sufficient knowledge (a
model) of the systems (deterministic or stochastic). There-
fore, they were not designed for the learning systems that
are characterised by incomplete information. Optimality of
many algorithms is asymptotic, meaning that their methods
can be applied only after the probability distributions are
known with sufficient precision. However, a system often
has to make a decision before such information is available.
Furthermore, many problems of learning and choice under
uncertainty violate some of the basic assumptions of the
statistical theory (e.g. the weak low of large numbers), such as
the independence of trials, stationary distributions and so on.
Therefore, conclusions about the convergence of the statistical
techniques may no longer be valid.

It is becoming increasingly apparent that the learning theory
is closely related to the theory of information [9]. The use of
information theoretic concepts has significantly advanced data
and signal processing algorithms [10], [11]. Recently, entropy
and information dynamics has been applied in cognitive mod-
els of learning in human subjects and animals, and it helped
the models to explain experimental data [9], [12]. This paper
presents theoretical considerations of these observations based
on a generalisation of variational problems in information
theory [13], [14], [15].

In the first section of the paper, we develop some gener-
alisations of optimisation problems under uncertainty based
on methods of functional analysis and information theory. It
will be shown that constraints on information define polar
sets in the dual functional spaces. Then we derive optimality
conditions using standard methods of convex analysis and
apply them to systems with dynamical constraints. In the
following section, we discuss the optimal solutions in relation
to the classical (i.e. Bayesian) techniques as well as some
existing parametric stochastic approximation methods. It will
be shown on examples how the constraints on utility or
information can be used to derive the optimal parameter values
defining the optimal strategies. The final example will illustrate
the totality of all optimal measures that corresponds to the
trajectory of the optimal learning system in the pre-dual space.



II. DUALITY OF UTILITY AND INFORMATION

In this section, we shall discuss mathematical duality be-
tween the real functions x : Ω → R (e.g. the utility functions,
used in optimisation problems) and their (pre)-dual functions
y : Ω → R — measures representing the beliefs or information
about the uncertain domain (e.g. the probability measures).
This duality has been known in information theory [13], [14],
[15], where it was used to define the maximum channel
capacity and value of information. Here, we shall apply this
duality to cybernetic systems, characterised by increasing
information dynamics (i.e. learning systems), and define the
optimality conditions for these systems. These conditions and
their implementations will be discussed on examples in the
following section.

The performance of many cybernetic systems is measured
by some real functions x : Ω → R that may represent errors,
costs, utilities and so on. Optimal performance is achieved by
choosing elements ω ∈ Ω corresponding to extreme values
of these functions. In fact, the utility functions represent
the preference relation on the domain Ω — total preorder
(total, reflexive and transitive binary relation) — that is a
more fundamental concept than the utility because not all
preference relations can be represented by real functions. The
necessary and sufficient condition for the existence of a utility
representation of a preference relation on Ω is the existence of
an order-dense countable subset in Ω [3]. Therefore, we shall
consider utility functions as the elements of real functional
space X with countable basis.

Under uncertainty, the choice between the elements of set Ω
is replaced by the choice between lotteries over these elements.
Given a measurable space (Ω,F), where F ⊆ 2Ω is σ-
algebra of subsets, the lotteries can be represented by different
measures — non-negative functions µ : F → R. For example,
measures such that µ(Ω) = 1 are the probability measures.
The choice between the lotteries is solved using the preference
relation defined by the expected utility functional

Eµ{x} =
∫

Ω

x(ω) dµ (1)

Thus, for any probability measures µ and ν, measure µ is
preferred if Eµ{x} ≥ Eν{x}. Maximisation or minimisation
of expected values is used in the Bayesian procedures of
parameter estimation [3], [4] and for optimal control under
uncertainty [5].

One can see from (1) that utility functions x ∈ X are
summable with respect to measures µ, ν being compared.
Moreover, expected value (1) is a continuous linear functional
on the space of measures, and tight (Radon) measures, such
as the probability measures, correspond to non-negative linear
functionals on the space Cc(Ω) of continuous functions with
compact support. Thus, utility functions that we need to
consider are the elements of space X , dual of linear space
Y containing the measures, and Y is the dual of space Cc(Ω)
(i.e. X is the second dual of Cc(Ω), and Y is the pre-dual of X ,
with the inclusion Cc(Ω) ⊂ Y ⊂ X ⊂ RΩ). We denote linear

functionals by bilinear form 〈·, ·〉 : X × Y → R represented
by inner product:

〈x, y〉 =
∫

Ω

x(ω)y(ω) dω

where dω is the reference (e.g. Lebesgue) measure. Other
measures µ that are absolutely continuous with respect to
dω correspond to functions y(ω) = dµ(ω)/dω (the Radon-
Nikodym derivatives or the density functions). Thus, opti-
misation problems under uncertainty can be described as
maximisation of the linear functionals 〈x, y〉 over some sets
Kx ⊆ X or Ky ⊆ Y .

Convex bodies (convex sets with interior points) are defined
by their support or the distance functions. The support function
of convex body Kx ⊆ X is

C(y) = sup{〈y, x〉 : x ∈ Kx} (2)

If x0 ∈ Int(Kx) is some reference function, then the distance
of x ∈ X from x0 is defined as

D(x) = inf{D ≥ 0 : x− x0 ∈ DKx−x0} (3)

where x− x0 denotes the translation to the origin. Similarly,
one can define the support and the distance functions for some
convex set Ky ⊆ Y in the (pre)-dual space. Convex bodies Kx

and Ky are called polar (or dual) if the distance function of
one is the support function of another. The constraints C(y) ≤
C < ∞ on the support function of convex body Kx are also
the constraints on the distance function of the polar set Ky ,
and therefore the constraints either C(y) ≤ C or D(x) ≤
D uniquely define both polar convex sets Kx and Ky . We
now demonstrate how this duality can be used to describe the
optimally learning systems.

Let us characterise the set Ky ⊆ Y that represents the
domain of the optimisation problem under uncertainty. First,
set Ky belongs to non-negative cone of space Y , because
measures are non-negative linear functionals. Second, nor-
malisation condition, such as

∫
Ω

y(ω) dω = µ(Ω) = 1 for
probability measures, corresponds to a cross-section of the
cone, and it is a convex hull (simplex) with the extreme points
corresponding to Dirac δ-measures: δω(dω) = 1 if ω ∈ dω;
δω(dω) = 0 otherwise. Finally, the δ-measures have to be
excluded from consideration under uncertainty, because they
correspond to the complete certainty (i.e. δω(dω) /∈ Ky).
Observe also that without this condition any continuous linear
functional achieves the maximum on a simplex in one of its
extreme points (i.e. the Dirac δ-measures).

The uncertainty excluding δ-measures can be defined by
constraints on the information divergence (also relative en-
tropy) functional [18]:

Cν(µ) =
∫

Ω

ln
dµ

dν
dµ =

∫
Ω

ln
y(ω)
y0(ω)

y(ω) dω (4)

where µ, ν are Radon measures such that µ is absolutely
continuous with respect to ν. Some well-known properties of
information divergence are that it is strictly convex, and its
unique minimum is achieved when measure µ is proportional



to ν (e.g. when y = y0). If the reference measure ν is
sufficiently broad (i.e. belongs to the interior of the simplex
Ky), then the maximum value of information divergence
(possibly infinite) is achieved when µ(dω) ∝ δω(dω). Thus,
the δ-measures can be excluded from set Ky by constraints
on information divergence Cν(µ) ≤ C < ∞. It will be shown
in the next section how these constraints can be interpreted
as the lower bound of the entropy or as the upper bound
of Shannon information. We now apply the Kuhn-Tucker
theorem to formulate the necessary optimality conditions for
problem (2) with set Ky defined by constraints on information
divergence.

Theorem 1: Let X and Y be dual Banach spaces. Given
x ∈ X , the extrema µ∗ ∈ Ky of optimisation problem D =
sup{〈x, µ〉 : Cν(µ) ≤ C < ∞}, where Cν(µ) is information
divergence (4), satisfy the following conditions

µ∗ ∝ ν eβx(ω) , Cν(µ∗) = C , β = C ′(D) (5)

Proof: The Lagrangian function is

L(µ, β) = 〈x, µ〉+ β−1[C − Cν(µ)]

where β−1 is the Lagrange multiplier corresponding to the
constraint Cν(µ) ≤ C. The necessary conditions of extremum
are

∂µL(µ∗, β−1) = x− β−1∂Cν(µ∗) = 0
∂β−1L(µ∗, β−1) = C − Cν(µ∗) = 0

where ∂ denotes the Gâteaux derivative, and ∂Cν(µ) = ln µ
ν .

Thus, the first condition gives β x = ln µ
ν . By considering the

extreme value D as a function of constraint C, its derivative
is D′(C) = β−1, which gives the last condition.

Using the fact that Cν(µ) is strictly convex, one can show
also that the extremum of Theorem 1 is the maximum for
β ≥ 0 and the minimum for β < 0 (because the Lagrangian
is respectively concave and convex). In addition, conditions
β = 0 or x(ω) = const, correspond to the minimum of
information divergence µ∗ ∝ ν. In fact, conditions (5) can be
derived by solving the following dual minimisation problem
C = inf{Cν(µ) : 〈x, µ〉 ≥ D > −∞}.

For normalised measures, the first equation of conditions (5)
becomes

µ∗ = ν eβx−Γ(β)

where function Γ(β) is found from the following integral
equation

∫
dµ = e−Γ(β)

∫
dνeβx = 1, and therefore Γ(β) =

ln
∫

eβ x dν. Thus, Γ(β) is the semi-invariant generating func-
tion of the reference measure ν. One can see that the optimal
measures belong to exponential family. Parameter β ∈ R is
determined by the conditions Cν(µ∗) = C, β = C ′(D) or
〈x, µ∗〉 = D, β−1 = D′(C).

Theorem 2: Maximisation of linear functional 〈x, µ〉 under
the constraints on information divergence Cν(µ) ≤ C corre-
sponds to the canonical equations

D = Γ′(β) , β = C ′(D) (6)

where C = C(D) is the Legendre-Fenchel transform of
potential Γ(β) = ln

∫
eβ x dν.

Proof: Let 〈x, µ∗〉 = D be the value of the linear
functional for the optimal measure µ∗, and let C = C(D)
be the Legendre-Fenchel transform of function Γ(β):

C(D) = sup[Dβ − Γ(β)] , Γ(β) = sup[βD − C(D)]

The first expression above is, in fact, the integral of the
necessary condition of extremum: ln µ∗

ν = β x − Γ(β) over
normalised measure µ∗(Ω) = 1. Canonical equations (6)
follow from the common properties of the Legendre-Fenchel
transform.

The analysis shows that potential Γ(β) is strictly convex,
and therefore its derivative is a strictly increasing function.
Thus, the optimal value of parameter β can be determined
from the constraint 〈x, µ〉 ≥ D using the inverse function
β = (Γ′)−1(D). Similarly, β−1 can be determined from
constraint Cν(µ) ≤ C using potential F (β−1) = −β−1Γ(β),
also know as the free energy. The corresponding Legendre-
Fenchel transforms are

D(C) = inf[Cβ−1−F (β−1)], F (β−1) = inf[β−1C−D(C)]

which give the following conditions: C = F ′(β−1), β−1 =
D′(C). The free energy F (β−1) is both convex and concave
(depending on the sign of β−1). Thus, its derivative has both
increasing and decreasing branches, and its inverse β−1 =
(F ′)−1(C) is a relation.

The necessary conditions of optimality (5) and potentials
Γ(β) or F (β−1) define the optimal measures that minimise
information amount with respect to a given expected utility
constraint, or equivalently maximise the expected utility for the
given amount of information. Let us now extend this duality
to learning systems, which are characterised by an increasing
dynamics of information and expected utility.

Theorem 3: Let C = C(t), D = D(t) be monotone
functions describing the constraints Cν(µ) ≤ C < ∞ on
information divergence or 〈x, µ〉 ≥ D > −∞ on the linear
functional in a dynamical system µ = µ(t), t ∈ [t1, t2]. Then∫ µ(t2)

µ(t1)

〈x, µ(t)〉 dµ(t) ≤ Γ(β2)− Γ(β1)∫ µ(t2)

µ(t1)

Cν(µ(t)) dµ(t) ≥ F (β−1
1 )− F (β−1

2 )

where β1, β2 are determined from C(t1), C(t2) or D(t1),
D(t2) using functions β−1 = (F ′)−1(C) and β = (Γ′)−1(D).

Proof: is shown trivially by substituting the optimality
conditions 〈x, µ∗〉 = D = Γ′(β) and Cν(µ∗) = C = F ′(β−1)
into the integrals, and then applying the Newton-Leibniz
formula.

III. APPLICATIONS AND EXAMPLES

As discussed earlier, the Bayesian approach to optimisation
under uncertainty is to find the extrema of conditional ex-
pectations [3], [4] (i.e. minimisation of risk or maximisation



of the expected utility). In particular, many applications can
be described by set Ω = S × A, where set S is interpreted
as some input variable (e.g. observations of some random
phenomenon), and set A as some output variable (e.g. pa-
rameter estimates, actions or control functions). In this case,
the optimal a∗ ∈ A is often defined by the maximum of
conditional expectation

a∗ = arg max
a∈A

{
E{x | a} =

∫
S

x(a, s)P (ds | a)
}

(7)

where x : A×S → R is some utility function (e.g. minus error
or minus cost). If the maximum exists, then in this case one
has to always choose the optimal value a∗. Thus, the marginal
probability measure on set A is a δ-measure P (da) = δa∗(da)
(i.e. P (da) = 1 if a∗ ∈ da; P (da) = 0 otherwise). This is
clearly a deterministic strategy. We now show that this strategy
does not satisfy the optimality conditions taking into account
the constraints on information (as in previous section).

Indeed, if P (da) = δa∗(da), then P (ds, da) = P (ds |
a)P (da) = 0 for all da such that a∗ /∈ da. According
to equations (5), the optimal measure is zero only if either
ν(ds, da) = 0, x(s, a) = −∞ or β = ±∞. The former two
conditions are not feasible (the reference measure is usually
chosen such that ν(ds, da) > 0); the latter condition implies
β−1 = D′(C) = 0, which means that the maximum of the
expected utility does not change with respect to a change
of information. In fact, condition β → ∞ corresponds to
the maximum value of information divergence (which can
be infinite). This means that deterministic strategies, such
as the decisions simply maximising the expected utility, are
optimal only in systems that have collected all (possibly
infinite) information. In learning systems that do not have full
information β < ∞, and therefore such deterministic strategies
are not optimal. This observation may explain the problems of
‘overfitting’ in many estimation methods based on the classical
Bayesian inference procedures, because they do not take into
account information constraints.

The constraints on information divergence have very impor-
tant statistical interpretations. When µ is a standard probability
measure, and ν is a constant (e.g. ν(dω) = dω), then
information divergence corresponds to minus entropy. The
maximum of entropy is achieved when probability measure is
also constant (i.e. uniform distribution). Therefore, condition
−Cν(µ) ≥ −C is the lower bound of the uncertainty.

Another interpretation of information constraints is as the
constraints on the Shannon information amount between ran-
dom variables a ∈ A and s ∈ S [13]:

Ia,s =
∫

A×S

P (da, ds) ln
[
P (ds | a)

P (ds)

]
(8)

One can see that the expression above corresponds to in-
formation divergence Cν(µ), where µ is the conditional (or
joint) probability measure, and ν is the marginal (product
of marginals) probability. The minimum of Shannon infor-
mation is achieved when variables a and s are independent
(P (ds | a) = P (ds)). Note that optimisation of function (7)

requires at least some dependency between random variables
s and a. In this case, P (ds | a) 6= P (ds) and Ia,s > 0.
In particular, functional (deterministic) dependency s = f(a)
corresponds to δ-functions P (ds | a) and the maximum
information amount (possibly infinite). Thus, the optimisation
problem with constraints on Shannon information are of a
particular interest. Its solution can be written using the general
measure form (5) as follows

Pβ(da | s) = P (da) eβx(a,s)−Γ(β,s) (9)

where Γ(β, s) = ln
∫

A
eβx(a,s)P (da), which follows from∫

A
P (da, ds) = P (ds). In particular, for P (da) = const, the

optimal solution is the canonical Gibbs distribution

Pβ(da | s) =
eβx(a,s)∫

A
eβx(a,s)da

(10)

where da is the Lebesgue measure. Note that for β ≥ 0 and
x(a, s) > −∞, the probability above Pβ(da | s) > 0 for
all a ∈ A. Thus, in any optimisation problem with incomplete
information the deterministic strategies are indeed not optimal.

It has been known for a long time that stochastic tech-
niques are generally more successful in optimisation problems,
where the standard asymptotic techniques preform poorly.
However, the traditional stochastic techniques [16], [17] are
parametric, and the optimal values of parameters controlling
randomisation are not known. In machine learning literature,
this is known as the exploration-exploitation dilemma. The
optimality conditions (5) not only define the optimal family of
probability measures, but also the optimal values of parameter
β controlling randomisation (β−1 is sometimes called the
temperature in analogy with thermodynamics, where the Gibbs
or Boltzmann distributions were first applied). The potentials
Γ(β) and F (β−1) can be used to derive functions to compute
β from the constraints. We now illustrate the method on two
examples, where Cν(µ) is understood as minus entropy.

Example 1: Let Ω be a finite set, µ(ω) = P (ω) be the
probability distribution, and let ν(ω) = 1. Thus, Cν(µ) is
minus entropy. Let Ω = {ω1, ω2} and x(ω) = {c− d, c + d}.
In this case, the corresponding functions become

Z(β) = eβ(c−d) + eβ(c+d) = 2eβc cosh(βd)
Γ(β) = ln Z(β) = ln 2 + βc + ln cosh(βd)
D(β) = Γ′(β) = c + d tanh(βd)

Figure 1 shows the graph of D(β) for c = 0 and d = 1.
Example 2: Let the range of function x : Ω → R be the

interval [c − d, c + d] of the real line, and let us consider
the divergence of probability measure P (dx) with respect to
Lebesgue measure dx. Thus, Cdx(P (dx)) is minus differential
entropy of probability density function p(x), x ∈ [c−d, c+d].
In this case, the optimal density function is the Gibbs distri-
bution p(x) = eβ x−Γ(β), where Γ(β) = lnZ(β), and

Z(β) =
∫ c+d

c−d

eβ xdx =
2eβc

β
sinh(βd)

Γ(β) = β c− ln |β/2|+ ln | sinh(β d)|
D(β) = c− β−1 + d coth(β d)
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Fig. 1. Functions D(β) in Examples 1 (binary set) and 2 (continuous set).

Figure 1 shows the graph of D(β) for c = 0 and d = 1. When
information divergence changes from I1 to I2 corresponding
to β1, β2, the maximum change of utility is

Γ(β2)− Γ(β1) = ln
β1

β2
+ c(β2 − β1) + ln

[
sinh(β2 d)
sinh(β1d)

]
Clearly, zero change of information gives zero change of the
expected utility.

Note that set Ω in Example 1 corresponds to an elemen-
tary algebra of two events, and the corresponding utility
functions and measures are the elements of two-dimensional
function spaces X and Y . However, in Example 2, set Ω
is a continuum, and the corresponding function spaces are
infinite-dimensional. Figure 1 illustrates the similarity between
functions D(β) for these cases. These functions can be used
to compute parameter β from the constraints 〈x, µ〉 ≥ D on
the expected utility or constraints Cν(µ) ≤ C on information.
The constraints can be derived from data at each time moment.
The totality of optimal functions with respect to the dynamic
constraints defines the trajectory µ∗ = µ∗(t) of probability
measures in the (pre)-dual space Y corresponding to the
optimal learning process, because it maximises the expected
utility (or minimises information) at every point.

The properties of the expected utility and information di-
vergence functionals are illustrated on Figure 2 using proba-
bility triangle, which can be explained as follows. Consider
probability measures defined on a set of three elements
Ω = {ω1, ω2, ω3}. Thus, any probability measure on Ω is a
set of three elements P (ω) = {P1, P2, P3}. The charts on
Figure 2 represent P1 on abscissa and P3 on the ordinate
(P2 = 1−P1−P3). The totality of all probability distributions
P (ω) is the triangle (projection of the simplex onto the
P1P3-plane). Let the corresponding set of utility values be
x ∈ {0, 1, 2} representing preference relation ω1 ≤ ω2 ≤ ω3.
The conditions E{x} = const define the level sets of the
expected utility, which are shown by straight lines on the left
chart of Figure 2. Let Cν(µ) = −H{p} be the entropy. The
conditions H{p} = const define the level sets of the entropy
shown on the right chart of Figure 2.

The left chart Figure 3 shows the extrema. The totality of all

extreme measures is shown on the right chart of Figure 3, and
they are exponential distributions parametrised by β. Clearly,
if information constraints change from some initial value C1

to C2, then the optimal trajectory for β ≥ 0 belongs to this
set of exponential distributions. One can also see that the
trajectory belongs to the interior of the probability triangle.
Thus, P (ω) > 0 for all ω ∈ Ω, which confirms that optimal
learning is a stochastic process.

IV. DISCUSSION

This paper considered the problem of optimal learning as
a variational problem of expected utility maximisation with
dynamical information constraints. This work builds on infor-
mation theory, applying it to the problems of optimal learning.
The optimal solutions form a trajectory in the (pre)-dual space,
and it has some relation to stochastic approximation and
optimisation techniques.

This work is related to the previous research of the author
on cognitive models of learning in human subjects and animals
[9], [19]. In these works, the entropy feedback from the
posterior probability was used to control β parameter in action
selection algorithm of the architecture. This modification alone
has significantly improved the performance of the cognitive
models [9], [19]. A similar stochastic control has been im-
plemented in the agent architecture studying optimal action
selection strategies and adaptation of agents in stochastic
environments [20]. The duality methods and information-
theoretic analysis, applied in this paper, allow for a solid
theoretical justification of these results.

It is important to mention the relation of the presented
theory to the methods based on the classical procedures of
Bayesian risk minimisation or expected utility maximisation.
These methods include sequential optimisation under uncer-
tainty based on dynamic programming [5]. It was shown here
that the resulting strategies are optimal only in the case of
complete information; taking into account incomplete informa-
tion leads to different solutions. This observation may explain
problems encountered in many systems, generally referred to
as overfitting and the exploration-exploitation dilemma. Note
that sequential optimisation does not address the problem
of information constraints because new information about
probability distributions can only be obtained through mea-
surements, not through computations.

This work shows how information constraints provide ad-
ditional criteria for optimisation. The resulting theory can
be applied to all optimisation problems under uncertainty
including sequential optimisation and learning. This work is
therefore complimentary to the existing techniques, and their
integration should be the subject of future research.
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