
                             Elsevier Editorial System(tm) for Neurocomputing

                                  Manuscript Draft

Manuscript Number: 

Title: Processing with Cell Assemblies

Article Type: Special Issue: Artificial Brains

Keywords: Cell Assemblies; fLIF Neurons; Structured Program Theory

Corresponding Author: Dr Emma Byrne, Ph.D

Corresponding Author's Institution: Middlesex University

First Author: Emma Byrne, Ph.D

Order of Authors: Emma Byrne, Ph.D; Christian  Huyck, PhD

Abstract: Cell assemblies (CAs) were posited by Hebb almost 60 years ago as the unit of 

representation in the brain. Recent results in the field of neuroscience indicate that CAs are likely to 

exist, at least in the mammalian brain. The CABot project uses simulations of CAs formed from 

individual neurons as a basis for learning and behaviour. This paper proves that a network of CAs, 

as described by Hebb and as implemented in CABot, is complete with respect to structured 

program theory. It follows that such a network is capable of executing any procedure that can be 

written as an algorithm.



Processing with Cell Assemblies

Emma Byrnea,∗, Christian Huycka

aSchool of Engineering and Information Sciences, MiddlesexUniversity, The Burroughs, London NW4 4BT, United Kingdom

Abstract

Cell assemblies (CAs) were posited by Hebb almost 60 years ago as the unit of representation in the brain. Recent results in the
field of neuroscience indicate that CAs are likely to exist, at least in the mammalian brain. The CABot project uses simulations of
CAs formed from individual neurons as a basis for learning and behaviour. This paper proves that a network of CAs, as described
by Hebb and as implemented in CABot, is complete with respectto structured program theory. It follows that such a networkis
capable of executing any procedure that can be written as an algorithm.

1. Introduction

The cell assembly (CA) has long been proposed as the ba-
sis of memory, or what Hebb called “The simplest instance of a
representative process” [1, p 60]. CAs are sets of neurons that
may be spatially distributed but that have high mutual inter-
connectivity. As a result, when a small subset of the neuronsin
a CA fire, activity tends to propagate to other members of the
assembly. Firing in the assembly is sustained over a period of
time by these same inter-connections. Recent biological find-
ings indicate that CAs can be found in a number of organisms
(e.g [2]).

CABot (theCell Assembly roBot) is a neurocognitive agent
that operate in a virtual environment; the current agents (CABot1
and CABot2) operates in a simple computer game. These agents
take commands from a user via natural language, and future
agents will interact via dialogue. The neural basis of CABot
is a network of model CAs, built from model fatiguing Leaky
Integrate and Fire (fLIF) neurons.

CABot is entirely implemented in fLIF neurons (see Section
2 for details), and cell assemblies (CAs) emerge from these (see
Section 3). Previous work has shown that the CA architecture
can use variable bindings [3], store sequences of stimuli [4],
and learn rules [5]. It has also been demonstrated that CAs can
implement any finite state automata [6].

Structured program theory [7] demonstrates that any system
that can carry out the operations of sequence, selection andit-
eration can execute any algorithm This paper will demonstrate
that networks of model CAs are complete with respect to struc-
tured program theory. As a result, any algorithm can be imple-
mented in a network of CAs that is connected as described in
this paper.

This paper will: introduce the CA model; define three types
of transition between CAs (sequence, selection and iteration);
and will prove that CAs can be used to implement any program.
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Whilst this paper will give specific examples from the CABot
agent, the definitions and proofs here are sufficiently general
to apply to CAs in any suitably connected network, natural or
artificial.

2. fLIF Neurons

The CABot architecture is built on the fatiguing Leaky In-
tegrate and Fire (fLIF) neuron model, which is an idealised
model of a biological neuron. The fLIF neuron is a simple, rel-
atively biologically faithful extension of the Integrate and Fire
(IF) neuron model [8, 9]. The fLIF model is efficient enough to
enable 100,000 neurons to be simulated on a PC in real-time.

The IF neuron is a model of a spiking neuron: at a given
timestep, if the activation that reaches the neuron passes acer-
tain threshold, then the neuron fires. Maass and Bishop ex-
tended this model to include a leak component [10], based on
the fact that some of the activation in a biological neuron ‘leaks
away’ over time if the neuron does not fire. This model is more
biologically accurate than the simple IF neuron, and it precludes
firing caused by the accumulation of trivial amounts of activa-
tion over very long periods of time. The fatigue component [11]
models the mechanism by which repeated firings lead to an in-
crease in the threshold level of activation that a neuron must
surpass in order to fire.

There are a number of biological features that the fLIF model
does not address, such as the opening of ion transfer channels,
or synaptic delays. These features are below the level of gran-
ularity required for this model of spiking behaviour. The fLIF
neuron therefore represents processes that take place in around
10ms of biological time.

A fLIF neuron is described by three sets of equations that
define:

1. Firing, in response to the integration of activation levels
2. The leaking of potentiation
3. The fatiguing of neurons due to their firing

The following sections review the IF, LIF and fLIF neuron mod-
els.
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2.1. Activation and firing

Model IF neurons integrate activation that is propagated
from upstream (pre-synaptic) neurons. LetEb be the level of
activation energy for neuronb. If that activation reaches a thresh-
old the neuron fires: it emits activation energy to neurons down-
stream. For notational convenience we define a firing flag that
indicates whether a neuron fires at a given timestep.

Definition 2.1. Let θ be the firing threshold for a neuron. For
simplicity we assume a universal firing threshold that is the
same for all neurons, but this need not be the case. Neuron
b firesat timet, and thefiring flagφb is set as follows:

if Eb(t) ≥ θ then φb(t) = 1

else φb(t) = 0

In an IF neuron, the level of activation in the neuron is a
weighted sum of the number of presynaptic neurons that fire:

Definition 2.2. Let wab be the strength of the connection from
neurona to neuronb (which may have a negative value).

Eb(t) =

n
∑

a=1

wab × φa(t − 1)

Implicit in Definition 2.2 is the discrete nature of the model.
All of the neurons have a chance to fire, and the activity is
passed to other neurons for reintegration in the next cycle.No
activity persists in the neuron from cycle to cycle.

2.2. Leak

The Leaky Integrate Fire (LIF) model is more biologically
faithful than the IF model neuron. LIF neurons model the accu-
mulation of activation in a neuron over time. The leak compo-
nent models the observation that accumulated activation “leaks
away”. The leak component can be modeled such that the LIF
neuron does not fire as a result of integrating trivial amounts
of activation over a long time. If a neuron does not fire then
the activation energy of that neuron at timet in a LIF neuron
is the sum of activation from pre-synaptic neurons in the previ-
ous timestep and the leaky accumulation of activation over all
previous timesteps.

Definition 2.3. Letd > 1 be a decay constant, which represents
the leaking of activation from a neuron over time. Letb be a
neuron and lett be a timestep.

If φb(t) = 0

Eb(t + 1) =
1

d
Eb(t) +

n
∑

a=1

wab × φa(t)

However, if neuronb fires att, all of its activation leaks
away.

If φb(t) = 1

Eb(t + 1) =

n
∑

a=1

wab × φa(t)

With the activation energy that a LIF neuron receives fixed
at some constant valueV , the total activation energy of that
neuron is bounded:

lim
t→∞

ET
a (t) = V ×

(

1 +
1

d − 1

)

(1)

2.3. Fatigue

Immediately after firing, a biological neuron undergoes a
brief refractory period of 2-3ms. This element of fatigue occurs
at< 10ms intervals and so is not represented in the model. Af-
ter repeated firings, the neuron experiences longer term fatigue
in which the response of that neuron diminishes. The higher the
fatigue level, the lower the probability that the neuron will fire.
In the fLIF model, this feature of the biological cell is modeled
with a fatigue level, that uses afatigue constantand afatigue
recovery constant. Thus, it is possible to model the reduction
in the spiking rates of a fatigued neuron.

Definition 2.4. Fb(t) is the fatigue levelof neuronb at time
t. Let F r be a recovery constant that decreases the fatigue if
a neuron does not fire. The overall fatigue level has a lower
bound of 0.

If φb(t) = 0

Fb(t) = max{0, Fb(t − 1) − F r}

Let F c be a fatigue constant, which increases the fatigue
level if a neuron fires.

If φb(t) = 1

Fb(t) = Fb(t − 1) + F c

Note thatF c andF r are positive and may take identical
values. The ratio between the fatigue constant and the fatigue
recovery rate determines the maximum proportion of the neu-
rons in a CA that may be firing on average at any time. For the
purposes of the CABot model, all neurons in a network have
the same values forF c andF r, with the value ofF b(t) entirely
dependent on the firing behaviour of neuronb in previous time
steps.

Taking fatigue into account in the model, a neuronb fires at
time t if and only if:

Eb(t) − Fb(t) ≥ θ (2)

3. Cell assemblies

A CA is a set of neurons within a network that have high
mutual synaptic strength. As a result when (relatively) fewof
the neurons in the assembly fire, mutually reinforcing activa-
tion tends to propagate to the rest of the CA. The CA will then
‘reverberate’, maintaining the activation pattern for a time, even
in the absence of external stimuli. This reverberation serves not
only to allow patterns of activity to persist, but also facilitates
the strengthening of links between neurons, aiding learning.

Hebb first suggested the CA both as a support to learning
and as the basic unit of neural processing thus: “[A] repeated
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stimulation of specific receptors will lead slowly to the forma-
tion of an ‘assembly’ of association-area cells which can act
briefly as a closed system after stimulation has ceased; thispro-
longs the time during which the structural changes of learning
can occur and constitutes the simplest instance of a representa-
tive process (image or idea).” [1, pp 60].

Definition 3.1. A CA is a set of neurons that, through high
mutual interconnection, maintain neural firing for a significant
period of time when neurons outside the CA are not contribut-
ing to its activation.

The relationship between CA activation and neuron firing
is not straightforward. Firstly, neurons in a CA may fire with-
out the CA being active: if the set of currently firing neuronsin
a CA is insufficient to create sustained firing in other neurons
in the assembly, then the CA is not active (see Definition 4.5).
Secondly, it need not be the case that any particular neuron in a
CA fires continuously, or indeed at all. During assembly acti-
vation, each cycle may see a different subset of the neurons in
the assembly firing.

Each neuron may belong to multiple CAs, and cell assem-
blies may recruit new neurons via learning. In these proofs,we
make the simplifying assumption that each neuron belongs toat
least one cell assembly and that membership is fixed. This does
not affect the generality of the definitions or proofs.

4. Neuron firings and CA ignitions

This section will define the types of activation that are found
at the neuron level and at the CA level. The terms used in the
following definitions are given in Table 1.

A, B CAs (with or without sub-
scripts). For the purposes of the
following proofs, CAs can be
treated as sets of neurons.

a ∈ A, b ∈ B Individual neurons (with or
without subscripts).

wab Connection weight from neuron
a ∈ A to neuronb ∈ B.

φa(t) Firing flag: 1 if neurona fires at
timestep (t), 0 otherwise.

ηA(t) Activation flag: 1 if CA A is
active at timestep t and 0 other-
wise.

XA Ignition threshold: the propor-
tion of neurons in CAA that
need to fire in a given cycle to
start ignition.

p Persistence window: the number
of timesteps that intra-assembly
activation must persist for the as-
sembly to be active.

Table 1: The terms used in this paper.

4.1. Inter- and intra-assembly activation

Where there are weights between neurons in one cell as-
sembly and another, activation spreads between CAs.

Definition 4.1. Let A andB be CAs and letA 6= B. There is
inter-assembly activationfrom A to B at timet if and only if
∃a ∈ A, ∃b ∈ B such that:

wab 6= 0 and

φa(t) = 1

Note thatwab may be negative, that is, inter assembly acti-
vation includes inhibition as well as excitation.

Activation also spreads within a CA.

Definition 4.2. Let B be a CA. There isintra-assembly activa-
tion at timet if and only if ∃bi, bj ∈ B such that:

wbibj
6= 0 and

φbi
(t) = 1

Note thatwbibj
may be negative: intra-assembly activation in-

cludes the effect of inhibitory links.

Biological neurons integrate activation energy over a time
window (modeled here as a number of discrete timesteps), from
the firing of pre-synaptic neurons. In order to analyse the dy-
namics of a CA it is necessary to distinguish the activation en-
ergy a neuron receives from internal activation alone, fromthe
activation energy a neuron receives from internal and external
activation.

Definition 4.3. Let EI
b (t) be theinternal activation energyof

neuronb at time t. This activation energy comes from intra-
assembly activation only.

EI
b (t + 1) =

1

d
EI

b (t)

+
∑

bi∈B

wbib × φbi
(t)

wherewbibi
= 0 for anyi.

Definition 4.4. Let ET
b (t) be thetotal activation energyfor

neuronb at time stept. This activation comes from both intra-
and inter-assembly activation.

ET
b (t + 1) =

1

d
ET

b (t)

+
∑

bi∈B

wbib × φbi
(t)

+

N
∑

n=1

,
∑

a∈An

wab × φa(t)

wherewbi,bi
= 0 for anyi andAn 6= B.
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4.2. Ignition, activation and extinguishing of CAs

Typically a CA ignites, is active for some time and then
is extinguished:XA is an upper bound on the proportion of
neurons firing inA which is sufficient to sustain the firing of
neurons inA by internal activation. Depending on interconnec-
tions, each cell assembly may have different values ofXA.

Definition 4.5. Let A be a CA and let|A| be the number of
neurons inA. XA is the activation threshold forA.

XA ≤

∑

a∈A φa(t)

|A|

such that∀tj ∈ [t, t + p]:

∃a ∈ A s.t.EI
a(tj) ≥ θ

A CA is activewhilst the number of neurons active is greater
than the thresholdXA. The activation flagηA(t) = 1 at timet,
if and only if, the proportion ofa ∈ A that fire is greater than
XA at time(t). OtherwiseηA(t) = 0

A CA ignitesat the first timestep in which the level of acti-
vation exceeds the thresholdXA, after a period of quiescence.
These neurons may be receiving activation from outside the
CA, but the CA is ignited only when the neurons in the CA
are able to sustain activation in the absence of external input.

A CA becomesextinguishedon the timestep that internal
activation is no longer sufficient to fire at least some of its neu-
rons for a time periodp, due to lack of internal support, fatigue,
inhibition, or a combination of these factors. Note that a CA
can ignite and become immediately extinguished without ever
becoming active, due to the presence of external inhibition.

5. CA processes

Structured program theory [7] proved that it is possible to
decompose any program into three basic operators: sequence,
selection and iteration. The following sections will demonstrate
that an appropriately connected network of CAs, whether bio-
logical or synthetic, can implement these three operations. This
result shows that CAs can, in theory, implement any known
program. Examples of these operations in the CABot agents
are given, but these definitions are general and apply to any
suitably connected network of CAs.

For the sake of simplicity, in the definitions and proofs be-
low, the postcondition of an operator is always a single CA. The
purpose of this paper is to show that programs can be imple-
mented with CAs. It is therefore sufficient to prove that there
exist sequence, selection and iteration operations with single
CA postconditions. These definitions and proofs also apply
where pre- and postconditions are sets of CAs. Whilst sets of
CAs would allow more efficient (fewer neurons) implementa-
tion of programs, proof is more complex. We leave these proofs
to the interested reader.

The operators described here are restricted to sequence, se-
lection and iteration. There are many other processes that acell

assembly may execute. For example, the ignition in turn of CAs
A1, A2, A1, A4, A1 is not a sequence, selection or iteration, but
it can be implemented in a CA network. However, demonstrat-
ing that the sequence, selection and iteration operators can be
implemented is sufficient to demonstrate that CA networks are
complete with respect to structured programme theory, and so
these other processes are not addressed in this paper.

For all definitions and proofs below, assume that only the
listed CAs are active. Also assume that, aside from the con-
nections mentioned in the proof, there are no other sources of
activation for the postcondition CA. As a result, no other active
CAs can lead to spurious activation or inhibition. Recall that
(at least)XA neurons fire for the duration that CAA is active.

5.1. Sequence

A network of CAs performs asequenceif the ignition of one
CA at timet deterministically leads to the ignition of another,
distinct, CA at timet + τ (Figure 1).

Definition 5.1. Let A andB be CAs. Letτ ≥ 1 be a time
increment value.〈A ; B〉 is asequence stepif and only if ∀t:

if ηA(t) = 1 it follows that:

ηB(t + τ) = 1

Steps in a sequence can be concatenated to make longer se-
quences.

Definition 5.2. Let 〈A1 ; A2〉, · · · , 〈An ; An+1〉 be a set
of sequence steps.

[〈A1 ; A2〉, · · · , 〈An ; An+1〉]

is a sequence if and only if, for each subsequence of 2 consecu-
tive steps, the postcondition of stepn is the precondition of step
n + 1:

[〈Ai ; Aj〉, 〈Aj ; Al〉]

If the second CA in a step inhibits the first, leading to strictly
feedforward activity, this is a strict sequence (Figure 1).Strict
sequences are built of paired selection steps and suppression
steps. A suppression step occurs when a CA deterministically
causes another to extinguish.

Definition 5.3. Let A andB be CAs. Letτ ≥ 1 be an incre-
ment value. 〈A ⊢ B〉 (A is suppressedby B) if and only if
∀t:

if ηB(t) = 1 it follows that

ηA(t + τ) = 0

In a strict sequence, each CA causes the previous CA to be
extinguished (see Figure 1).

Definition 5.4. Let SA = [〈A1 ; A2〉, · · · , 〈An ; An+1〉]
be a sequence. If, for every sequence step〈Ai ; Aj〉 in this
sequenceSA, 〈Ai ⊢ Aj〉 thenSA is a strict sequence.

4



In the CABot1 system [12], theErasenetwork is a strict se-
quence. The Erase network is a timing sequence that selectively
erases connections by allowing some weights to weaken whilst
reinforcing others. There are 18 CAs in the Erase network, each
of which fires in sequence, in which activation spreads from
the first to the last CA over a number of timesteps. As CAn
becomes active, it sends excitation downstream, and inhibition
upstream, such that, after several timesteps, CAn + 1 becomes
active and CAn is extinguished.

Figure 1:A1, · · · , An are CAs. Lines with arrowheads denote excitatory con-
nections. Lines with diamond heads denote inhibitory connections. On the left,
a standard sequence[〈A1 ; A2〉, · · · , 〈An−1 ; An〉]. On the right, a strict
sequence[〈A1 ; A2〉, 〈A1 ⊢ A2〉, · · · , 〈An−1 ; An〉, 〈An−1 ⊢ An〉].

Theorem 5.1. Any step in a sequence can be implemented by
a network of CAs.

Proof. Assume[〈A ; B〉] is a one-step sequence. Let the
number of neurons inA = |A| and inB = |B|. LetA be active
at time stept. It follows thatA has at least|A| × XA neurons
that are firing.

For each neuron inb ∈ B let the fatigue levelFb(t) ≈
0. Let there be a connection from each neuron in eachA to
|B| × XB neurons inB with a weightθ/(|A| × XA). At time
t + 1, XB × |B| neurons inB will receiveθ activation and will
fire. As a result,B will ignite.

Theorem 5.2. With the addition of inhibition, any sequence
can be astrict sequence, for each step〈A ; B〉 there is a
suppression step〈A ⊢ B〉 in which CAA is extinguished when
CA B ignites.

Proof. Let there be a connection from every neuron inB to
every neuron inA, such thatwb,a×−1 ≫ θ. Whilst ηB(t) = 1,
there are at least|B| × XB neurons inB that are firing. Thus
every neuron inA will receive≫ θ in inhibition. As a result,
no neuron inA will fire.

Theorem 5.3. A sequence of arbitrary length can be imple-
mented using a sufficiently large net.

Proof. Let [〈A1 ; A2〉, · · · , 〈An−1 ; An〉] be a sequence of
lengthn − 1. To make a sequence of lengthn it is sufficient to
concatenate this sequence with sequence step〈An ; An+1〉.

The proofs for Theorems 5.1, 5.2 and 5.3 assume that no
inter-CA connections exist, other than those defined in thestep
andsequenceoperators. Adding new connections between CAs
deterministically implements changed state behaviour at the CA
level.

5.2. Selection

Deterministic selection between CAs is also possible: the
CA that will ignite next (the postcondition) is conditionalon
which set of CAs is currently active (the precondition) (seeFig-
ure 2). When assembliesA1 andA2 are active at the same time,
assemblyB1 will ignite as a result. NeitherA1 nor A2 is suf-
ficient to igniteB1 alone. Likewise, when assembliesA3 and
A2 are active at the same time, assemblyB2 will ignite as a re-
sult. NeitherA3 norA2 is sufficient to igniteB2 alone. In this
selection,B1 andB2 may be active at the same time.

Figure 2: A selection in which CAsA1 ∧ A2 cause CAB1 to ignite and CAs
A2 ∧ A3 cause CAB2 to ignite.

Definition 5.5. Let{Ai, · · · , Am}∩{Aj, · · · , An} 6= ∅ and let
{Ai, · · · , Am}\{Aj, · · · , An} 6= ∅. Letτ ≥ 1 be an increment
value.

〈Ai ∧ · · · ∧ Am ; Bm|Aj ∧ · · · ∧ An ; Bn〉

is aselectionif and only if:

∀t, Ax ∈ {Ai, · · · , Am}, if ηAx
(t) = 1 then

ηBm
(t + τ) = 1

and

∀t, Ax ∈ {Ai, · · · , Am}, if ηAx
(t) = 1 then

ηBn
(t + τ) = 1

Theorem 5.4. Any selection can be made by a net with appro-
priate connection weights.

Proof. Let 〈Ai∧· · ·∧Am ; Bm|Aj∧· · ·∧An ; Bn〉 be a se-
lection. Letm = |{Ai, · · · , Am}| and letn = |{Aj , · · · , An}|.
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Let there be a connectionwax,bm
from each neuron in each

Ax ∈ {Ai, · · · , Am} to |Bm|×XBm
neurons inBm such that:

wai,bm
=

θ

|Ax| × XAx

×
1

m

If ηAi
(t) = 1 and ... andηAm

(t) = 1 thenXBm
× |Bm|

neurons inBm will receiveθ activation at timet + 1 and will
fire. As a result,ηBm

(t + 1) = 1.
Aj , An, Bn may be substituted forAi, Am, Bm with the

same result.

With an appropriate ignition thresholdXA and decay con-
stantd, the selection operation is sound, that is: no strict subset
of the precondition CAs can cause the post condition CA to ig-
nite due to integration of activation energy over a number of
timesteps. Assuming no other sources of activation, simultane-
ous activation of all precondition cell assemblies is required for
the postcondition cell assembly to ignite.

Theorem 5.5.Let 〈Ai∧· · ·∧Am ; Bm|Aj∧· · ·∧An ; Bn〉
be a selection.∀Ax ∈ {Ai, · · · , Am} (likewise{Aj , · · · , An})
let XAx

> m−1

m
(likewise n−1

n
). Let d ≈ ∞. ηBm

(t) = 1
(likewiseηBn

(t) = 1) if and only if

¬∃Ax ∈ {Ai, · · · , Am}) s.t.ηAx(t − 1) = 0

Proof. Let m = |{Ai, · · · , Am}| Let there be a connection
from each neuron inAi ∧ · · · ∧Am to |Bm| ×XBm

neurons in
Bm with weights:

(

θ

|Ai| × XAi

×
1

m

)

· · ·

(

θ

|Am| × XAm

×
1

m

)

Let {Ak, · · · , Al} ⊂ {Ai, · · · , Am}. The greatest level of ac-
tivation that can be propagated to the neurons inBm occurs
when:

|{Ak, · · · , Al}| = m − 1 and

∀Ax ∈ {Ak, · · · , Al}, XAx
≈

m − 1

m
and

∀a ∈ {Ak, · · · , Al}, φa(t − 1) = 1

Assuming no activation for anyb ∈ Bm at timet−1, ∀b ∈ Bm:

ET
b (t) =

∑

Ax∈{Ak,··· ,Al}

(

θ
|Ax|×XAx

× |Ax| ×
1

m

)

Recall thatXAx
> m−1

m
. It follows that:

ET
b (t) <

∑

Ax∈{Ak,··· ,Al}

(

θ

|Ax|×
m−1

m

× |Ax| ×
1

m

)

Also recall that|{Ak, · · · , Al}| = m − 1. It follows that:

ET
b (t) < (m − 1) ×

(

mθ

m − 1
×

1

m

)

Or equivalently:

ET
b (t) < θ

Therefore no neuron inBm receives sufficient activation to fire
at timet. Givend ≈ ∞, then∀b ∈ Bm

lim
ti→∞

ET
b (ti) < θ ×

(

1 +
1

d

)

Or, aslimitsd→∞

lim
ti→∞

ET
b (ti) < θ

If only one of the postcondition CAs can be active for more
than one timestep then the selection is a strict selection (see
Figure 3).

Definition 5.6. Let A1, A2, A3 be precondition CAs. LetB1

andB2 be postcondition CAs. Letτ ≥ 1 be an increment value.

〈A1 ∧ A2 ; B1|A2 ∧ A3 ; B2|B2 ⊢ B1〉

is astrict selectionif and only if ∀t:

if ηA1
(t) = 1 and ηA2

(t) = 1 it follows that:

ηB1
(t + τ) = 1 and ηB2

(t + τ) = 0

and

if ηA2
(t) = 1 and ηA3

(t) = 1 it follows that:

ηB1
(t + τ) = 0 and ηB2

(t + τ) = 1

Figure 3: A selection in which CAsA1 ∧ A2 cause CAB1 to ignite and CAs
A2 ∧ A3 cause CAB2 to ignite. In addition, CAB2 inhibits the activation of
CA B1, preventing bothB1 andB2 being simultaneusly active for more than
one time step.

Theorem 5.6. Inhibition ensures that strict selection can be im-
plemented in a net.

Proof. Let B1 be a CA. Let〈A1 ∧ A2 ; B1|A2 ∧ A3 ;

B2|B2 ⊢ B1|〉 be a strict selection. Let there be a suppression
step,〈B2 ⊢ B1〉. Whilst ηB1(t) = 1, it will remain the case
thatηB2(t + 1) = 0.

In the CABot1 agent there are several selection networks.
For example, the stack top network either increments or decre-
ments a counter depending on whether it is receiving activation
from a “push” or a “pop” CA.
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The “value” of the CA that is currently ignited determines
the two values that may be reached next. That is, if the value of
the stack top isi it may change toi + 1 or i − 1, but no other
value, in the next time step.

Consider Figure 2 as an illustration of the stack top process.
If the current stack top value is 2, represented byA2, and the
pop and push CAs areA1 andA3 respectively, it follows that
B1 is the stack top value of 1 andB2 is the stack top value of
3. If A1 andA2 (“pop” and “stack top = 2”) are active simul-
taneously thenB1 becomes active (“stack top = 1”). Activation
in the push CA also sends activation to thei + 1 CA, whilst
activation in the pop CA sends activation to thei − 1 CA. This
is enough to cause one of the two stack top CAs to ignite.

5.3. Iteration

Iteration is the repeated execution of a sequence until a con-
dition holds. As such, any it is possible to implement iteration
by a combination of sequence and selection.

Figure 4 shows an iteration in which (a set of) CAs,A, is re-
peatedly activated whilst the conditionB1∧B2 holds.B1∧B2

are repeatedly activated whilstA holds.C becomes active when
B2∧B3 hold.A ceases to be activated when conditionC holds.
The top and bottom sections of Figure 4 show the isolated se-
lection and sequence elements of the iteration respectively.

Figure 4: The selection (i) and sequence (ii) elements of an iteration. The
sequence[〈A ; B1 ∧ B2〉, 〈B1 ∧ B2 ; A〉 · · · ] continues until CAB3

becomes active. Inhibitory connections betweenC andA shut downA when
C becomes active, thus ending the iteration.

Definition 5.7. Let A, B1, B2, B3 be CAs. Aniteration exists
if [〈A ; B1 ∧ B2〉] is a sequence and [〈B1 ∧ B2 ; A〉|〈B2 ∧
B3 ; C 〈|〈A ⊢ C〉] is a selection.

Theorem 5.7. A network of CAs can implement any iteration.

Proof. By Definition 5.7, an iteration can be implemented as
a combination of sequence and selection operations. By The-
orem 5.3, a network of CAs can implement any sequence. By
Theorem 5.6, a network of CAs can implement any selection. It
follows that a network of CAs can implement any iteration.

As any sequence, selection, and iteration can be implemented
in a large enough network of neurons with CAs, any program
can be implemented [7].

6. Related models

6.1. The Hopfield Network

CABot is not the first project to model CAs. One existing
model of CAs is the Hopfield network [9] which uses integrate
and fire neurons (see Section 2) and a well connected net. Hop-
field networks can store patterns using a calculation that isa
variant of the Hebbian learning rule, implementing a type of
autoassociative memory: if a pattern is presented that is near
to a stored pattern, the network will settle into the stored pat-
tern. In order to move to stable states, a Hopfield network is
implemented with bidirectional connections. A Hopfield stable
state is consistent with the definition of a CA. However, once
it has settled into one stable state, the Hopfield model cannot
move into another. As a result, Hopfield networks are unable to
implement strict sequence, strict selection or iteration.

Furthermore, the Hopfield model lacks some elements of
biological plausibility. Neurons can be more or less central to
a CA; this is not the case in the Hopfield model. Moreover the
brain is not well-connected. In contrast, the CABot model has
higher biological fidelity. The biologically plausible connec-
tions in the CABot model allow it to carry out processing using
the sequence, selection and iteration operators defined in this
paper.

6.2. Models of neuronal dynamics

This paper has presented three operations that can arise from
the neuro-dynamics of a network of CAs. However, There are
other existing models of neuronal dynamics, such as the synfire
chain [13, 14, 15, 16] and the “neuronal avalanche” model [17].
Whilst these models describe the tightly synchronised patterns
that emerge from the firing of synaptically connected neurons,
they do not explain the higher level processes (sequence, selec-
tion and iteration) that are defined here.

The neuronal avalanche model is based on observations of
activation that spreads between neurons in tightly synchronised
repeating pattern. Plenz and Thiagrajan [17] propose the neu-
ronal avalanche as a method of propagating activitywithin CAs
and, as such, it provides an explanation for how CAs sustain
activity over time. However, the model is not concerned with
the processes that emerge as activation spreads from assembly
to assembly.

Synfire chains were proposed by Abeles [13] and have been
modeled in a number of ways, both mathematically [14, 15] and
biologically [16]. Synfire chains are precisely timed sequences
of firing activity in pools of neurons, such that each neuron in
one pool has excitatory connections to many neurons in the next
pool. There are few, if any, lateral connections between neu-
rons in the same pool. As a result, activity at the beginning of
the chain either fades away or, if propagated, is propagatedas
a synchronous wave. As a result stereotypical dynamics arise
from stochastic synapses [16].
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Synfire chains are essentially feed forward in nature: activ-
ity in one pool propagates to the next pool with little support
from intra-pool connectivity. CA processes on the other hand
arise from both inter- and intra-assembly connectivity. Inter-
assembly connectivity propagates activation from assembly to
assembly, but in the absence of spontaneous activation, it is
intra-assembly connectivity that causes CAs to ignite.

Synfire chains describe the detailed temporal dynamics of a
network of neurons, whereas CA processing is concerned only
with the order in which activity is propagated. CA processes
are also able to implement the three basic operations of process
flow: sequence, selection and iteration, whereas synfire chains
model only the sequence of activity as it moves from pool to
pool.

7. Conclusion

Structured program theory, first presented in [7], demon-
strated that any program can be written using only three opera-
tors: sequence, selection and iteration. We have demonstrated
that a biologically plausible model of neural architecture, the
CA, is able to carry out those three operations. As a result,
any algorithm can be implemented using a suitably connected
network of CAs.

This is no surprise. Elsewhere, it has been shown that CAs
can implement any finite state automata [6], and that they can
implement stacks [18]. Consequently, they are Turing com-
plete. The continuous version of this model is Super-Turing
complete [19]. This paper has shown in addition that CAs are
complete with respect to structured program theory, and has
therefore shown how any structured program can be directly
implemented as a network of CAs.

This paper has given proofs on deterministic models. While
deterministic models are a subset of stochastic models (where
all randomness is removed), it is clear that many models, in-
cluding the likely actual biological mechanism, are stochastic.
Depending on the degree of redundancy and randomness, these
systems will vary in their programmatic faithfulness, withop-
erations no longer being certain, but more or less likely. Nev-
ertheless, the central finding still holds: that suitably connected
networks of CAs can carry out processes.

Moreover, the strength of neural systems is not in their abil-
ity to implement any program, though there is something to be
said about parallel implementation. Instead, the strengthlies
with the ability to learn these processes and basic symbols.The
implementation of programs in neurons can be a useful bridge
between the way actual biological neural systems are imple-
mented and our current knowledge of program implementation.

Whilst we do not claim that behaviour arises from these
three operators, this result demonstrates that the CA is notonly
what Hebb called a “conscious content” but is also a plausible
component in processes that involve moving from state to state.
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