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Abstract

Cell assemblies (CAs) were posited by Hebb almost 60 yearsaaghe unit of representation in the brain. Recent resultise
field of neuroscience indicate that CAs are likely to existeast in the mammalian brain. The CABot project uses sitinra of
CAs formed from individual neurons as a basis for learning la@haviour. This paper proves that a network of CAs, as iestr
by Hebb and as implemented in CABot, is complete with resfmestructured program theory. It follows that such a netwerk
capable of executing any procedure that can be written algaritam.

1. Introduction Whilst this paper will give specific examples from the CABot

agent, the definitions and proofs here are sufficiently gener

~ The cell assembly (CA) has long been proposed as the bgg apply to CAs in any suitably connected network, natural or
sis of memory, or what Hebb called “The simplest instance of giificial.

representative process” [1, p 60]. CAs are sets of neurats th

may be spatially distributed but that have high mutual inter

connectivity. As a result, when a small subset of the neuirons 2- fLIF Neurons

a CA fire, activity tends to propagate to other members of the 1o cABot architecture is built on the fatiguing Leaky In-

assembly. Firing in the assembly is sustained over a pefiod Qagrate and Fire (fLIF) neuron model, which is an idealised

time by these same inter-connections. Recent biologicat fin \qqe| of a biological neuron. The fLIF neuron is a simple; rel

ings indicate that CAs can be found in & number of organisms;j ey biologically faithful extension of the IntegratadFire

(e.g[2]). _ . (IF) neuron model [8, 9]. The fLIF model is efficient enough to
CABot (theCell Assembly r@of is a neurocognitive agent  gnapje 100,000 neurons to be simulated on a PC in real-time.

that operate in a virtual _envirpnment; the current agemd@1 The IF neuron is a model of a spiking neuron: at a given

and CABot2) operates in a simple computer game. These agenjgestep, if the activation that reaches the neuron passes a

take commands from a user via natural language, and futur@jn threshold, then the neuron fires. Maass and Bishop ex

agents will interact via dialogue. The neural basis of CABOtgnqeq this model to include a leak component [10], based ol
is a network of model CAs, built from model fatiguing Leaky ¢ tact that some of the activation in a biological neureaks

Integrate and Fire (fLIF) neurons. away’ over time if the neuron does not fire. This model is more

CABotis entirely implemented in fLIF neurons (see Sectionyjq|agically accurate than the simple IF neuron, and it prées
2 for details), and cell assemblies (CAs) emerge from th&=e (  ijng caused by the accumulation of trivial amounts of ativ

Section 3). Previous work has shown that the CA architecturg,, over very long periods of time. The fatigue componetj[1

can use variable bindings [3], store sequences of stimilli [4 ,qes the mechanism by which repeated firings lead to an in

and learn rules [5]. It has also been demonstrated that CASs c& 45 in the threshold level of activation that a neurontmus
implement any finite state automata [6]. surpass in order to fire.

Structured program theory [7] demonstrates that any Systém  There are a number of biological features that the fLIF mode
that can carry out the operations of sequence, selectioft-and yyes not address, such as the opening of ion transfer clsanne

eration can execute any algorithm This paper will demotestra - oy nantic delays. These features are below the level of gra
that networks of model CAs are complete with respect to Strucularity required for this model of spiking behaviour. ThefiL

tured program theory. As a result, any algorithm can be imple o o therefore represents processes that take placevindar

mented in a network of CAs that is connected as described ifgms of biological time.

this paper. o _ A fLIF neuron is described by three sets of equations that
This paper will: introduce the CA model; define three typesyqfine:

of transition between CAs (sequence, selection and itergti

and will prove that CAs can be used to implement any program. 1. Firing, in response to the integration of activation leve
2. The leaking of potentiation

3. The fatiguing of neurons due to their firing

*Corresponding author . . .
Email a?ddressgese. byr ne@rdx. ac. uk (Emma Byrne), The following sections review the IF, LIF and fLIF neuron mod

c. huyck@rx. ac. uk (Christian Huyck) els.
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2.1. Activation and firing With the activation energy that a LIF neuron receives fixed

Model IF neurons integrate activation that is propagatedit some constant valug, the total activation energy of that
from upstream (pre-synaptic) neurons. L@t be the level of ~Neuronis bounded:
activation energy for neuradn If that activation reaches a thresh- 1
old the neuron fires: it emits activation energy to neurongrdo lim ET(t) =V x (1 + —) (1)
stream. For notational convenience we define a firing flag that freo d—1

indicates whether a neuron fires at a given timestep. 2.3. Fatigue

Definition 2.1. Let # be the flrlng threshold for a neuron. For |mmediate|y after ﬁring, a bi0|ogica| neuron undergoes a

simplicity we assume a universal firing threshold that is theprief refractory period of 2-3ms. This element of fatiguewrs
same for all neurons, but this need not be the case. Neuraqt < 10ms intervals and so is not represented in the model. Af-

b firesat timet, and thefiring flag ¢, is set as follows: ter repeated firings, the neuron experiences longer teigutat
- in which the response of that neuron diminishes. The hidtert
> -
T E,(t) 26 then  gy(t) =1 fatigue level, the lower the probability that the neuron iik.
else (1) =0 In the fLIF model, this feature of the biological cell is mdek

In an IF neuron the level of activation in the neuron is a with a fatigue level that uses datigue constanand afatigue

weighted sum of the number of presynaptic neurons that fire: '€COVery constantThus, it is possible to model the reduction
in the spiking rates of a fatigued neuron.
Definition 2.2. Letw,; be the strength of the connection from . . _
neurona to neuronb (Wthh may have a negative Va|ue)_ Definition 2.4. Fb(t) IS thefatlgue levelof neuronbd at time
t. Let F" be a recovery constant that decreases the fatigue i

a neuron does not fire. The overall fatigue level has a lowel

=D wap X Pt = 1) bound of 0.
Implicit in Definition 2.2 is the discrete nature of the madel Ifpp(t) = 0
All of the neurons have a chance to fire, and the activity is Fy(t) = max{0,F(t—1)—F"}

passed to other neurons for reintegration in the next cyxte.

. . o .
activity persists in the neuron from cycle to cycle. Let F¢ be a fatigue constant, which increases the fatigue

level if a neuron fires.

2.2. Leak If p(t) = 1

_ The Leaky Integrate Fire (LIF) model is more biologically Fy(t) = Fy(t—1)+F°
faithful than the IF model neuron. LIF neurons model the accu
mulation of activation in a neuron over time. The leak compo- Note thatF® and F™ are positive and may take identical
nent models the observation that accumulated activateakd  values. The ratio between the fatigue constant and theufatig
away”. The leak component can be modeled such that the LIFecovery rate determines the maximum proportion of the neu
neuron does not fire as a result of integrating trivial amsuntrons in a CA that may be firing on average at any time. For the
of activation over a long time. If a neuron does not fire thenpurposes of the CABot model, all neurons in a network have
the activation energy of that neuron at timé a LIF neuron  the same values far¢ and F'", with the value ofF®(¢) entirely
is the sum of activation from pre-synaptic neurons in theipre dependent on the firing behaviour of neutoin previous time
ous timestep and the leaky accumulation of activation olter asteps.
previous timesteps. Taking fatigue into account in the model, a neubdires at

timet if and only if:
Definition 2.3. Letd > 1 be a decay constant, which represents

the leaking of activation from a neuron over time. lbdbe a Ey(t) — Fy(t) > 0 2)
neuron and let be a timestep.

If ¢p(t) = O 3. Cell assemblies

E(t+1) = —Eb Zwab X g (1) A CA is a set of neurons within a network that have high
mutual synaptic strength. As a result when (relatively) few
the neurons in the assembly fire, mutually reinforcing aetiv

However, if neurorb fires att, all of its activation leaks |
tion tends to propagate to the rest of the CA. The CA will then

away. A o .
y ‘reverberate’, maintaining the activation pattern fomadij even
in the absence of external stimuli. This reverberationegnot
If op(t) = 1 only to allow patterns of activity to persist, but also féaies
n the strengthening of links between neurons, aiding legenin
E(t+1) = Zwab X q(t) Hebb first suggested the CA both as a support to learning
a=1 and as the basic unit of neural processing thus: “[A] rekate



stimulation of specific receptors will lead slowly to therfta-  4.1. Inter- and intra-assembly activation

tion of an ‘assembly’ of association-area cells which cah ac  \yhere there are weights between neurons in one cell as
briefly as a closed system after stimulation has ceasedttis sembly and another, activation spreads between CAs.

longs the time during which the structural changes of lewyni

can occur and constitutes the simplest instance of a regieese Definition 4.1. Let A andB be CAs and letd # B. There is
tive process (image or idea).” [1, pp 60]. inter-assembly activatiofrom A to B at timet if and only if

_ ) ~ dJda € A, 3b € Bsuch that:
Definition 3.1. A CA is a set of neurons that, through high

mutual interconnection, maintain neural firing for a sigrafit
period of time when neurons outside the CA are not contribut- wey # 0and
ing to its activation. balt) = 1

N =

The relationship between CA activation and neuron firing
is not straightforward. Firstly, neurons in a CA may fire with
out the CA being active: if the set of currently firing neurams
a CA is insufficient to create sustained firing in other nesron
in the assembly, then the CA is not active (see Definition.4.5)Definition 4.2. Let B be a CA. There ifntra-assembly activa-
Secondly, it need not be the case that any particular nearani tion at timet if and only if 3b,, b; € B such that:

CA fires continuously, or indeed at all. During assembly-acti
vation, each cycle may see a different subset of the neurons i wy,p;, 7 Oand
the assembly firing. b, (1) = 1

Each neuron may belong to multiple CAs, and cell assem- o S
blies may recruit new neurons via learning. In these proogs, Note thatw,,; may be negative: intra-assembly activation in-
make the simplifying assumption that each neuron belongs to cludes the effect of inhibitory links.
least one cell assembly and that membership is fixed. This doe
not affect the generality of the definitions or proofs.

Note thatw,;, may be negative, that is, inter assembly acti-
vation includes inhibition as well as excitation.
Activation also spreads within a CA.

Biological neurons integrate activation energy over a time
window (modeled here as a number of discrete timesteps), fro
the firing of pre-synaptic neurons. In order to analyse the dy
4. Neuron firings and CA ignitions namics of a CA it is necessary to distinguish the activation e
ergy a neuron receives from internal activation alone, fthen

This section will define the types of activation that are fdun activation energy a neuron receives from internal and eater
at the neuron level and at the CA level. The terms used in thgctivation.

following definitions are given in Table 1.
Definition 4.3. Let E/(¢) be theinternal activation energypf

A, B CAs (with or without sub- neurond at timet. This activation energy comes from intra-
scripts). For the purposes of the assembly activation only.
following proofs, CAs can be
treated as sets of neurons. 1
a€ A be B | Individual neurons (with or Elt+1) = EElf(t)
without subscripts).
Wab Connection weight from neuroh + Z Wob X G, (1)
a € Atoneurorb € B. bieB
¢a(t) Firing flag: 1 if neuror fires at wherewy,,, = 0 for anys.
timestep (t), O otherwise. -
na(t) Activation flag: 1 if CA A is Definition 4.4. Let Ef (t) be thetotal activation energyfor
active at timestep t and 0 othef- neuronb at time stept. This activation comes from both intra-
wise. and inter-assembly activation.
Xa Ignition threshold: the proport
tion of neurons in CAA that 1
need to fire in a given cycle to Eft+1) = EEg(t)
start ignition.
p Persistence window: the number + Z Whib X P, (£)
of timesteps that intra-assembly biNeB
activation must persist for the as-
sembly to be active. + z:lv XA; Wab X ba(t)
n=1 acA,

Table 1: The terms used in this paper. .
wherew, ,, = 0 for anyi andA4,, # B.



4.2. Ignition, activation and extinguishing of CAs assembly may execute. For example, the ignition in turn of CA
Typically a CA ignites, is active for some time and then A1, As, Ay, Ay, Ay is not a sequence, selection or iteration, but
is extinguished: X 4 is an upper bound on the proportion of it can be implemented in a CA network. However, demonstrat-
neurons firing inA which is sufficient to sustain the firing of NG that the sequence, selection and iteration operatorbea
neurons inA by internal activation. Depending on interconnec- implemented is sufficient to demonstrate that CA networks ar

tions, each cell assembly may have different valuex gf complete with respect to structured programme theory, and s
these other processes are not addressed in this paper.
Definition 4.5. Let A be a CA and le{A| be the number of For all definitions and proofs below, assume that only the
neurons inA. X 4 is the activation threshold fot. listed CAs are active. Also assume that, aside from the con
nections mentioned in the proof, there are no other sources ¢
X4 < M activation for the postcondition CA. As a result, no otheivac
|A] CAs can lead to spurious activation or inhibition. Reca#itth

such thatrt; € [t, ¢ + pl: (at least)X 4 neurons fire for the duration that CAis active.

5.1. Sequence

A network of CAs performs aequencé the ignition of one
CA at timet deterministically leads to the ignition of another,
distinct, CA at timef + 7 (Figure 1).

Ja€ Ast.EL(t;) >0

A CA s activewhilst the number of neurons active is greater
than the threshol&’ 4. The activation flagi () = 1 attimet,  pefinition 5.1. Let A and B be CAs. Letr > 1 be a time

if and only if, the proportion of. € A that fire is greater than increment value(A ~ B) is asequence steipand only if v¢:
X 4 attime(t). Otherwisens(t) =0 _ _
A CA ignitesat the first timestep in which the level of acti- if na(t) = 1itfollows that:
vation exceeds the threshonA_, _after a_per_iod of quiesce_nce. np(t+71) = 1
These neurons may be receiving activation from outside the _
CA, but the CA is ignited only when the neurons in the CA  Steps in a sequence can be concatenated to make longer
are able to sustain activation in the absence of externatinp  quences.
_A C_:A pecomesextlngu!shed)n t_he timestep that mtlernal Definition 5.2. Let (A1 ~» Ay),«-- , (A, ~» A,.1) be a set
activation is no longer sufficient to fire at least some of ésin
. . . . of sequence steps.
rons for a time periog@, due to lack of internal support, fatigue,
inhibition, or a combination of these factors. Note that a CA [(Ay~> A, ) (Ap ~> Any1)]
can ignite and become immediately extinguished without eve ! 27 M el
becoming active, due to the presence of external inhihition  is a sequence if and only if, for each subsequence of 2 consec
tive steps, the postcondition of stes the precondition of step
n + 1:

5. CA processes
P [(Ai ~ A7), (A) ~ A

Structured program theory [7] proved that it is possible to If the second CA in a step inhibits the first, leading to slyict

decompose any program into three basic operators: S€qUeNg&adforward activity, this is a strict sequence (FigureStyict

Sﬁlectlon and |tgrat||<)n. ThefoII(()jwmg seckuopévAwll dehrﬂtlhateb_ sequences are built of paired selection steps and suppmessi
It a.t a||1 appro;r)]na_tte y co_nnelcte netr\]/vor cr)] S, W e%h(_er 'Osteps. A suppression step occurs when a CA deterministicall
ogical or synthetic, can implement these three operatibhs . ses another to extinguish.

result shows that CAs can, in theory, implement any known
program. Examples of these operations in the CABot agentBefinition 5.3. Let A and B be CAs. Letr > 1 be an incre-
are given, but these definitions are general and apply to anyent value. (A + B) (A is suppressedy B) if and only if

suitably connected network of CAs. vt

For the sake of simplicity, in the definitions and proofs be- . ]
low, the postcondition of an operator is always a single Ce T if np(t) = 1itfollows that
purpose of this paper is to show that programs can be imple- na(t+7) = 0

mented with CAs. It is therefore sufficient to prove that eher
exist sequence, selection and iteration operations withlesi

CA postconditions. These definitions and proofs also appl
where pre- and postconditions are sets of CAs. Whilst sets qhafinition 5.4. Let Su = [(Ay ~ As),-  {(Ap ~ Apii)]

CAs would allow more efficient (fewer neurons) implementa-jy 5 sequence. If, for every sequence stép~ A;) in this
tion of programs, proof is more complex. We leave these roofgequences 4, (A; - A;) thens., is a strict sequence.
to the interested reader.

The operators described here are restricted to sequence, se

lection and iteration. There are many other processes ttelt a
4

In a strict sequence, each CA causes the previous CAto b
)gxtinguished (see Figure 1).



In the CABot1 system [12], thErasenetwork is a strict se-  Proof. Let [{A; ~ As), -+ ,(A,—1 ~ A, )] be a sequence of
guence. The Erase network is a timing sequence that sellctiv lengthn — 1. To make a sequence of lengthit is sufficient to
erases connections by allowing some weights to weakentwhil€oncatenate this sequence with sequence Stgp~ A,,11).
reinforcing others. There are 18 CAs in the Erase netwodt) ea O
of which fires in sequence, in which activation spreads from
the first to the last CA over a number of timesteps. As €A
becomes active, it sends excitation downstream, and tidvibi
upstream, such that, after several timestepspGAl becomes
active and CAn is extinguished.

The proofs for Theorems 5.1, 5.2 and 5.3 assume that n
inter-CA connections exist, other than those defined irsthp
andsequenceperators. Adding new connections between CAs
deterministically implements changed state behavioulnmea@A
level.

5.2. Selection

Deterministic selection between CAs is also possible: the
CA that will ignite next (the postcondition) is conditionah
which set of CAs is currently active (the precondition) (Bé&g
ure 2). When assembliey and A are active at the same time,
assemblyB; will ignite as a result. NeitheA; nor A, is suf-
ficient to ignite B, alone. Likewise, when assemblids and
As are active at the same time, assemBlywill ignite as a re-
sult. NeitherAs nor A, is sufficient to igniteB, alone. In this
selection,B; and B; may be active at the same time.

Figure 1: A4, --- , A, are CAs. Lines with arrowheads denote excitatory con-
nections. Lines with diamond heads denote inhibitory cotioes. On the left,
a standard sequened; ~ Az), -, (An—1 ~ An)]. Ontheright, a strict

sequencg(Aq ~ Az), (A1 F A2), -+ ,{An—1~ Ap), (An—1 F Apn)].

Figure 2: A selection in which CAgl; A Ay cause CAB; to ignite and CAs
Theorem 5.1. Any step in a sequence can be implemented by*2 /* 4s cause CAB; to ignite.
a network of CAs.
Definition5.5. Let{A;, -+ , A, }N{A;,--- , A,} # 0 and let
{Ai, - A I\{4,, -+, A} # 0. Letr > 1 be anincrement
value.

Proof. Assume[(A ~ B)| is a one-step sequence. Let the
number of neuronsirl = |A| and inB = | B|. Let A be active
at time step. It follows that A has at leastA| x X 4 neurons
that are firing.

For each neuron ih € B let the fatigue levelF;(t) =~
0. Let there be a connection from each neuron in eddo 5 5selectionif and only if:
|B| x X5 neurons inB with a weightd/(|A| x X 4). At time

(Ai N NAp ~ BplAj A~ NA, ~ By)

t+ 1, Xp x |B| neurons inB will received activation and will Vi, Ay € {4, -+, An}, ifna, (t) = 1then
fire. As a resultB will ignite. O ng, (t+71) = 1
Theorem 5.2. With the addition of inhibition, any sequence

can be astrict sequencefor each stepgfA ~ B) there is a nd

suppression stefd + B) in which CA A is extinguished when

CA B ignites. Vi, Ay € {Ai,--+ ,Ap}, fna,(t) = 1then
Proof. Let there be a connection from every neuronBnto ne,(t+7) = 1

every neuronird, such thatv,, , x —1 > 6. Whilstng(t) = 1,
there are at lea$B| x X neurons inB that are firing. Thus
every neuron inA will receive > 6 in inhibition. As a result,
no neuron inA will fire. O Proof. Let(A;A---AA,, ~ By|AjA---ANA, ~ By,) be ase-
lection. Letm = [{A4,,--- , A, }|andletn = [{4;, -, An}|.

Theorem 5.4. Any selection can be made by a net with appro-
priate connection weights.

Theorem 5.3. A sequence of arbitrary length can be imple-
mented using a sufficiently large net.



Let there be a connection,, ;,, from each neuron in each Therefore no neuron i, receives sufficient activation to fire
Ay €{A4;,--- ,An}t0|B,,| X Xp, neuronsinB,, suchthat: attimet. Givend = oo, thenvb € B,

0 1
_ 1 1
|Az| x Xa, “m lim Bl (t;) < 6x <1+—>

wai;bnl
t;—00 d

If na,(t) = 1and ... andys,, (t) = 1 thenXp X |By| Or, aslimitsy_.o
neurons inB,,, will receive § activation at time: + 1 and will . T
fire. As aresultys, (t+1) = 1. Jm By (t) < 0
Aj, Ay, B, may be substituted for;, A,,, B,, with the

O
same result. O

If only one of the postcondition CAs can be active for more
eit}_:uan one timestep then the selection is a strict selectiea (s
igure 3).

With an appropriate ignition thresholdl 4 and decay con-
stantd, the selection operation is sound, that is: no strict subs
of the precondition CAs can cause the post condition CA to ig-
nite due to integration of activation energy over a number oDefinition 5.6. Let A;, A;, A3 be precondition CAs. LeB;

timesteps. Assuming no other sources of activation, samek  andB, be postcondition CAs. Let > 1 be an increment value.
ous activation of all precondition cell assemblies is reeghfor

the postcondition cell assembly to ignite. (A1 A Ag ~ B1|A2 A Az ~ By|Ba - By)

Theorem 5.5. Let (A; A - -A Ay, ~ By |AjA---ANA, ~ By) s astrict selectiorif and only if V¢:

be a selectionvA, € {A;,---, A} (likewise{A;,--- ,A,})

let X, > ==L (likewise 1), Letd ~ oo. np, (t) = 1

(likewisenp, (t) = 1) if and only if if na,(t) =1 and na,(¢t) = 1itfollows that:

’I]Bl(t-‘rT)Zl and 7732(t+T)=0

34, € {Ai,- - AR} stnA,(t—1)=0
and

if na,(t) =1 and na,(t) = 1itfollows that:

Proof. Let m = |{A4;,---, A, }| Let there be a connection
and np,(t+7)=1

from each neuronisi; A--- A Ay, t0 | B | X Xp,, neuronsin e, (t+7) =0
B, with weights:

0 » 1 0 » 1
|Al| X XAi m |Am| X XAm m

Let {Ax,---, A} C {A;,---,An}. The greatest level of ac-
tivation that can be propagated to the neuron®jp occurs

when:
|{Ak,---,Al}| = m-—1and ° e

VAI E{Ak,--- ,Al}, XA, ~ m-1 and

Figure 3: A selection in which CAgl; A A2 cause CAB; to ignite and CAs
Va € {Aka t 7Al}a ¢a(t - 1) =1 Ag N Az cause CABs to ignite. In addition, CAB> inhibits the activation of

. L . CA By, preventing bothB; and B2 being simultaneusly active for more than
Assuming no activation for anlye B,,, attimet—1,Y6 € B one time step. !

T _ 0 1
Ey () = Xa,eqan Al (|Am\><XAm X [Ag] X E)
Theorem 5.6. Inhibition ensures that strict selection can be im-

By () < Yaciap...an (W% X |Ag] x %) Proof. Let B; be a CA. Let(A; A Ay ~» Bi|Ay A Ag ~
" _ Bs|Bs + B4]|) be a strict selection. Let there be a suppression
Also recall that{Ay, -- -, Ai}| = m — 1. It follows that: step,(B, - Bi). Whilst B, (t) = 1, it will remain the case

B®) < (m1)x < mo i) thatnBy(t + 1) = 0. O
In the CABotl1 agent there are several selection networks
Or equivalently: For example, the stack top network either increments oredecr
ET) < 6 ments a counter depending on whether it is receiving aativat
from a “push” or a “pop” CA.

m—1 m



The “value” of the CA that is currently ignited determines  As any sequence, selection, and iteration can be implement
the two values that may be reached next. That is, if the vdlue an a large enough network of neurons with CAs, any program
the stack top ig it may change ta + 1 ori — 1, but no other  can be implemented [7].
value, in the next time step.

Consider Figure 2 as an illustration of the stack top praces
If the current stack top value is 2, representeddy and the 6. Related models
pop and push CAs ard, and A3 respectively, it follows that g 1. The Hopfield Network
Bj is the stack top value of 1 anf; is the stack top value of
3. If A; and A, (“pop” and “stack top = 2”) are active simul-
taneously ther3; becomes active (“stack top = 1"). Activation
in the push CA also sends activation to the 1 CA, whilst
activation in the pop CA sends activation to the 1 CA. This
is enough to cause one of the two stack top CAs to ignite.

CABot is not the first project to model CAs. One existing
model of CAs is the Hopfield network [9] which uses integrate
and fire neurons (see Section 2) and a well connected net. Hoj
field networks can store patterns using a calculation that is
variant of the Hebbian learning rule, implementing a type of
autoassociative memory: if a pattern is presented thatas ne
to a stored pattern, the network will settle into the storat p
o . ] tern. In order to move to stable states, a Hopfield network is

_ lteration is the repeated execution of a sequence until & cofyslemented with bidirectional connections. A Hopfieldéa
dition holds. As such, any it is possible to implement iterat  giate is consistent with the definition of a CA. However, once
by a combination of sequence and selection. it has settled into one stable state, the Hopfield model dannc

Figure 4 shows an iteration in which (a set of) CAsisre-  moye into another. As a result, Hopfield networks are unable t
peatedly activated whilst the conditi@h A By holds. Bi A Bz implement strict sequence, strict selection or iteration.
are repeatedly activated whildtholds.C becomes active when Furthermore, the Hopfield model lacks some elements o

By A Bs hold. A ceases to be activated when conditidholds.  pigagical plausibility. Neurons can be more or less cérita

The top and bottom sections of Figure 4 show the isolated se; ca.: this is not the case in the Hopfield model. Moreover the
lection and sequence elements of the iteration respegtivel  rain is not well-connected. In contrast, the CABot modea ha
6.2. Models of neuronal dynamics

higher biological fidelity. The biologically plausible coec-
i tions in the CABot model allow it to carry out processing sin
the sequence, selection and iteration operators definddsn t
° ° e paper.
This paper has presented three operations that can anise fro
the neuro-dynamics of a network of CAs. However, There are
° ° other existing models of neuronal dynamics, such as thersynfi
chain[13, 14, 15, 16] and the “neuronal avalanche” moddl[17
Whilst these models describe the tightly synchronisecepast

that emerge from the firing of synaptically connected nesjyon
they do not explain the higher level processes (sequenee; se

i
° ° tion and iteration) that are defined here.

5.3. lteration

The neuronal avalanche model is based on observations ¢
activation that spreads between neurons in tightly symikeal
repeating pattern. Plenz and Thiagrajan [17] propose the ne
Figure 4: The selection (i) and sequence (ii) elements ofteration. The  ronal avalanche as a method of propagating actwitiiin CAs
EequenCd(A_v Blh'/t;'B2>’ (B1 A By “g A g?“?}uesd UN"ACA}?B and, as such, it provides an explanation for how CAs sustair

ecomes active. Inhibitory connections betwéeandA shut downA when 4 ity over time. However, the model is not concerned with
C becomes active, thus ending the iteration. L
the processes that emerge as activation spreads from dgsem|

to assembly.
Definition 5.7. Let A, By, Bo, B3 be CAs. Aniteration exists Synfire chains were proposed by Abeles [13] and have bee
if [(A~ By A Bp)]is asequence andB; A Bx ~ A)[(Ba A modeled in a number of ways, both mathematically [14, 15] anc
Bs ~ C (|[{AF C)]is a selection. biologically [16]. Synfire chains are precisely timed sames

of firing activity in pools of neurons, such that each neuron i
one pool has excitatory connections to many neurons in tkie ne
Proof. By Definition 5.7, an iteration can be implemented asPool. There are few, if any, lateral connections betweer neu
a combination of sequence and selection operations. By Th&ons in the same pool. As a result, activity at the beginning o
orem 5.3, a network of CAs can implement any sequence. B§he chain either fades away or, if propagated, is propagated
Theorem 5.6, a network of CAs can implement any selection. 1 Synchronous wave. As a result stereotypical dynamice aris
follows that a network of CAs can implement any iteratiof] ~ from stochastic synapses [16].

Theorem 5.7. A network of CAs can implement any iteration.



Synfire chains are essentially feed forward in nature: activReferences

ity in one pool propagates to the next pool with little sugpor
from intra-pool connectivity. CA processes on the otherchan
arise from both inter- and intra-assembly connectivitytetn
assembly connectivity propagates activation from assgabl
assembly, but in the absence of spontaneous activatios, it i
intra-assembly connectivity that causes CAs to ignite. 4

Synfire chains describe the detailed temporal dynamics of a
network of neurons, whereas CA processing is concerned only
with the order in which activity is propagated. CA processes (5]
are also able to implement the three basic operations oépsoc
flow: sequence, selection and iteration, whereas synfirmgha [6]
model only the sequence of activity as it moves from pool to
pool.

(1]
(2]

(31

(7]
(8]
) . El

Structured program theory, first presented in [7], demon-
strated that any program can be written using only threeasper [10]
tors: sequence, selection and iteration. We have demaerstra [11]
that a biologically plausible model of neural architectute
CA, is able to carry out those three operations. As a resul{i2]
any algorithm can be implemented using a suitably connected
network of CAs. (13]

This is no surprise. Elsewhere, it has been shown that CAg 4
can implement any finite state automata [6], and that they can
implement stacks [18]. Consequently, they are Turing com-
plete. The continuous version of this model is Super-Turin
complete [19]. This paper has shown in addition that CAs ar
complete with respect to structured program theory, and has
therefore shown how any structured program can be directl{Z6]
implemented as a network of CAs.

This paper has given proofs on deterministic models. Whilg;7)
deterministic models are a subset of stochastic modelsrévhe
all randomness is removed), it is clear that many models, in-
cluding the likely actual biological mechanism, are ststita 18]
Depending on the degree of redundancy and randomness, thgsg
systems will vary in their programmatic faithfulness, with-
erations no longer being certain, but more or less likelyv-Ne
ertheless, the central finding still holds: that suitablgrected
networks of CAs can carry out processes.

Moreover, the strength of neural systems is not in their abil
ity to implement any program, though there is something to be
said about parallel implementation. Instead, the strefligth
with the ability to learn these processes and basic symibbks.
implementation of programs in neurons can be a useful bridge
between the way actual biological neural systems are imple-
mented and our current knowledge of program implementation

Whilst we do not claim that behaviour arises from these
three operators, this result demonstrates that the CA ismigt
what Hebb called a “conscious content” but is also a plaasibl
componentin processes that involve moving from state te.sta

Acknowledgements: The authors would like to thank Ro-
man Belavkin and David Corney for their constructive feakba
during the preparation of this paper. This work was supplorte
by EPSRC grant GR/R13975/01.

7. Conclusion

15]

D. O. Hebb, The Organization of Behaviour, J Wiley and §dr949.

Y. Sakurai, How do cell assemblies encode informatiorthie brain?,
Neuroscience & Biobehavioral Reviews 23 (6) (1999) 785796

C. Huyck, R. Belavkin, Counting with neurons: Rule applion with
nets of fatiguing leaky integrate and fire neurons, in: Tihdternational
Conference on Cognitive Modeling, 2006.

] H. Ghalib, C. Huyck, A cell assembly model of sequentiamory, in:

Neural Networks, 2007. IJCNN 2007. International Joint féocence on,
2007, pp. 625-630.

R. Belavkin, C. Huyck, The emergence of rules in cell asisies of fLIF
neurons, in: Proceedings of the Eighteenth European Garderon Ar-
tificial Intelligence, 2008.

Y. Fan, C. Huyck, Implementation of finite state automatang fLIF
neurons, in: IEEE Systems, Man and Cybernetics Society8,20 74—
78.

C. Bohm, G. Jacopini, Flow diagrams, turing machined &nguages
with only two formation rules, Commun. ACM 9 (5) (1966) 36643

W. McCulloch, W. Pitts, A logical calculus of the ideasnimanent in ner-
vous activity, Bulletin of Mathematical Biology 5 (4) (19%4815-133.

J. J. Hopfield, Neural networks and physical systems wittergent col-
lective computational abilities, PNAS 79 (8) (1982) 255858.

W. Maass, C. M. Bishop, Pulsed Neural Networks, MIT Br&901.

S. Kaplan, M. Sonntag, E. Chown, Tracing recurrentvégtin cognitive
elements (TRACE): a model of temporal dynamics in a cell m&be -
connection science, Connection Science 3 (2) (1991) 18®-20

C. Huyck, CABotl: a videogame agent implemented in fh&tirons, in:
IEEE Systems, Man and Cybernetics Society, 2008, pp. 115-12

M. Abeles, Corticonics: Neural Circuits of the Cerdb@ortex, Cam-
bridge University Press, 1991.

] T. Wennekers, Dynamics of spatio-temporal patternassociative net-

works of spiking neurons, In ICANN99: Ninth Internationab@erence
on Artificial Neural Networks. Institute of Electrical Emgiers 32 (2000)
597—602.

G. Hayon, M. Abeles, D. Lehmann, A model for represemtime dynam-
ics of a system of synfire chains, Journal of Computationalrbicience
18 (1) (2005) 41-53.

Y. Ikegaya, G. Aaron, R. Cossart, D. Aronov, I. Lampl, Berster,

R. Yuste, Synfire chains and cortical songs: Temporal madofecor-

tical activity, Science 304 (5670) (2004) 559-564.

D. Plenz, T. C.Thiagarajan, The organizing principles neuronal

avalanches: cell assemblies in the cortex?, Trends in Neigrces 30 (3)
(2007) 101-110.

C. Huyck, Y. Fan, Parsing with fLIF neurons, in: Procegs of Ad-

vances in Cybernetic Systems, 2007, Dublin.

H. T. Siegelmann, E. D. Sontag, On the computational gyoef neural

nets, Tech. rep., SYCON (1991).



* Biography of the author(s)
Click here to download Biography of the author(s): Bios.txt

Dr Emma Byrne received her PhD from University College London in 2005. She joined Middlesex
University in 2008 where she is currently a Research Assistant on the CABot project. From 2006 -
2008 she was employed as a Research Associate at Aberystwyth University on the Robot Scientist
project. Her work has focused on logical models for artificial intelligence, and on optimisation of

closed loop learning for the Robot Scientist.

Dr Christian Huyck received his PhD from the University of Michigan in 1994. He has been at
Middlesex University since 1997, and is currently the Reader in Atrtificial Intelligence. His work has
focused on Natural Language Processing, more broadly Artificial Intelligence, and recently in neural
models. Basing his work around Cell Assemblies, he has developed systems for real world
categorisation tasks, and for theoretical implementations of a range of behaviours including
sequence, variable binding, and rule learning. He is primary investigator on the CABot project,
funded by EPSRC, that brings these strands together.


http://ees.elsevier.com/neucom/download.aspx?id=116903&guid=82e0e6fd-874e-4182-bc85-60f353790015&scheme=1

* Photo of Emma Byrne
Click here to download high resolution image



http://ees.elsevier.com/neucom/download.aspx?id=116895&guid=2028f659-030b-41cd-a8db-6ab44bd91bef&scheme=1

* Photo of Chris Huyck
Click here to download high resolution image



http://ees.elsevier.com/neucom/download.aspx?id=116894&guid=0c96052d-bbb0-4387-ac54-b69dbd9ad1de&scheme=1

