
Art Unlimited:
An investigation into contemporary digital arts

and the free software movement

A thesis submitted to Middlesex University in partial fulfillment of the

requirements for the degree of Doctor of Philosophy/Master of Philosophy

Chun Lee

School of Art

Middlesex University

May, 2008

Abstract

Computing technology has not only significantly shaped many of the contem-

porary artistic disciplines, it has also given birth to many new and exciting

practices. Modest, low cost hardware enabled artists to manipulate real-time

multimedia data and coordinate vast amounts of hardware devices, whilst high

bandwidth Internet connections has allowed them to communicate and dis-

tribute their work rapidly. For this reason, art practices in the digital domain

have become highly decentralized.

It is therefore not surprising that the rise of free and open source software

(FLOSS) has been warmly welcomed and adopted by an increasing number of

practitioners. The technical advantages in free software allows them to create

works of art with greater freedom and flexibility. Its open and collaborative

ideology, on the other hand, further embraces the increasingly autonomous and

distributed characteristics in the artistic community.

This thesis aims to examine the impact of free and open source software in

the context of contemporary digital arts. It will look at the current climate

of both digital arts and the FLOSS movement, attempting to rationalize the

implications of such a phenomena. It will also provide concrete examples of

ongoing activities in FLOSS digital arts, as an evidence and documentation of

its development to date. Lastly, the practical work in this research will offer a

first hand insight into developing a FLOSS project within the given context.

Acknowledgments

I would like to thank Dr. John Dack for the continuous support throughout

this research. Without his invaluable input and encouragement, its completion

would not have have been possible. I would also like to thank professor Huw

Jones for his initial supervision.

I would like to express my gratitude to Inna for her enduring support, as well

as my close friends and colleagues. I wish to thank my collaborator, Mathieu

Bouchard, for sharing his expertise and knowledge. They have given me the

inspiration and motivation to carry out my work.

Lastly, a very special thanks to my parents, Y.C and Grace Lee, to whom I

dedicate this thesis.

Contents

1 Introduction 1

1.1 Research Context . 1

1.2 Research Motives . 5

1.3 Research Subjects . 7

1.3.1 Digital arts . 7

1.3.2 Generative art . 9

1.3.3 Free software . 10

1.4 Subject relationship . 12

1.5 Documentation . 14

1.6 Practical component . 16

1.7 Objectives . 17

1.8 Compositional example . 18

2 Digital arts and FLOSS 28

2.1 Digital Art . 28

2.1.1 Types of digital art . 29

2.2 Current digital art practices . 34

i

2.2.1 Generative art . 34

2.2.2 Code as creative medium, Algorithm as instrument 46

2.3 Free and Open Source Software 53

2.3.1 Terminology . 54

2.3.2 Ideology . 55

2.3.3 Historical accounts . 57

2.3.4 Free software and Open Source 64

2.3.5 Current FLOSS climate 66

2.4 FLOSS Digital Art . 69

2.4.1 Model of analysis . 70

2.4.2 Current software development method 72

2.4.3 FLOSS as alternative . 74

2.4.4 Practical example . 76

2.4.5 Conclusion . 77

3 Activities 80

3.1 Introduction . 80

3.2 Collaborative groups . 81

3.2.1 Goto10 . 82

3.2.2 OpenLab . 85

3.2.3 Dyne . 88

3.2.4 Bek . 91

3.2.5 Mediashed . 92

3.2.6 Folly . 95

ii

3.2.7 Access Space . 95

3.2.8 Summary . 96

3.3 Projects . 99

3.3.1 Pure Data . 99

3.3.2 SuperCollider . 102

3.3.3 pure:dyne . 105

3.3.4 PacketForth . 108

3.3.5 Fluxus . 110

3.3.6 Conclusion . 111

3.4 Events . 114

3.4.1 Make Art . 114

3.4.2 Piksel . 116

3.4.3 Linux Audio Conference 117

3.4.4 International Pure Data convention 117

3.5 Conclusion . 118

4 Practical Project 120

4.1 Introduction . 120

4.2 Personal practice . 121

4.3 Limitations of Pure Data . 123

4.3.1 Lack of customization . 124

4.3.2 Lack of optimized command invocation 125

4.3.3 Lack of utility features . 127

4.3.4 Client and server architecture 129

iii

4.4 Branches of Pure Data . 130

4.5 DesireData . 133

4.5.1 Methodology . 134

4.5.2 Design principles . 135

4.6 Social context . 140

4.7 Current Status and Conclusion 145

Selected Bibliography 150

Appendix A 154

DesireData . 154

Appendix B 161

List of software . 161

Appendix C 163

Selected performances and workshops 163

Appendix D 165

CD ROM table of contents . 165

iv

List of Figures

1.1 Top level patch of Hypothetical Waves 20

1.2 Top-level subpatch of [pd WAVE] 22

1.3 Interpolated random wave generator 23

1.4 Top-level subpatch of [pd NOISE] 24

1.5 The use of white noise and audio gates 25

1.6 Mixing mechanism type one . 25

1.7 Mixing mechanism type two . 26

v

Chapter 1

Introduction

1.1 Research Context

Mass production has made technology remarkably accessible to artists. Soci-

ety’s vast demand for electronic devices, consumer or industrial, means that

cutting edge designs are being constantly and rapidly developed1. As a result,

costs of computing power dramatically decrease as hardware becomes evermore

capable and abundant. Using technology, or more precisely computers, as a

creative medium is now an attractive and common practice amongst contempo-

rary artists. Computer generated works of art or designs are now seen in almost

every social scenario, ranging from mass media production to the experimental

art scene.

Several factors have contributed to the widespread use of technology based artis-

tic practices. The affordable price of new and modest computers can obviously

1Trade shows such as CES (http://www.cesweb.org/default.asp) and CeBIT

(http://www.cebit.de) are prime examples where cutting edge designs are introduced

to the consumer electronic market. Technologies such as display systems, mass storage

devices, high definition video formats and inexpensive, ultra portable laptop computers are

some of the areas where advances have been made in recent years. For example, practical

applications of OLED (Organic light-emitting diode), Electronic paper, SSD memory are

some of the technologies that have been seen in these events.

1

account for such phenomena. What used to be expensive and impractical, is

now an attainable reality for most artists with slender financial means. Further,

as ever more hardware is simply disposed of by consumers keeping up with lat-

est trends, they remain functional and can thus be recycled. These “outdated”

hardware devices are often offered cost-free, making them a viable supply for

artists working with technology. In fact, artistic creations based on recycled or

found hardware, have become a dominant practice in contemporary media art,

expressing various ethical and sociological concerns. Ready-made computers

aside, components such as micro-controllers are also widely available and can

be easily customized for specific needs. Whilst a different level of expertise is

required to be proficient with technology (depending on the source and type

of hardware), this nevertheless illustrates that artists of all abilities are able to

work comfortably with computers and produce works of art.

Artistic concerns have also evolved in correlation with the increasing capability

and availability of computing hardware. Real-time media processing, artificial

life2 and distributed systems3 are just a few examples which have become widely

popular in the current practices of digital art. The technological possibilities

are now immense in comparison with a few decades ago. The shift of creative

interests can be clearly observed in the practice of generative arts in the dig-

ital domain. No longer satisfied with works that have a static appearance or

predetermined structure, artists are now able to construct algorithms which ac-

tively take part in the creative process with or without human intervention.

In other words, instead of producing recognizable artifacts, artists define “cre-

ative” procedures in the forms of computer codes, which in turn generate the

final result. Moreover, these system can be constructed rapidly to provide fast

and immediate feedback, which enable artists to efficiently achieve the desired

design. They can even be employed in the performance context. Several inter-

esting issues may arise in this mode of practice: authorship of the end result,

machine creativity4 and related aesthetics, are common debates amongst its

2One well known example is Karl Sims[35] research in applying evolutionary algorithms to

generate computer graphics and animations
3Electric Sheep, by Scott Draves[12], is an award winning project utilising distributed com-

puting techniques as well as genetic algorithms to render fractal based computer animations
4Researching into the nature of creativity has attracted extensive interest in both art and

2

practitioners. Other forms of digital arts that are equally exciting and challeng-

ing also exist, exploring various aspects of digital art as a result of technological

advances.

Computers need software to be useful and functional. For this reason, the

widespread use of computing hardware equally highlights the significance of

software and its implications. Software is now also in abundance, fulfilling

creative tasks of all types and scales. Software can be bought, downloaded,

exchanged and even modified at the artists’ will to suite their individual cir-

cumstances. Furthermore, programming is becoming evermore accessible to

artists, with many computer languages specifically designed for creative pur-

poses and easy to learn. Because of this, the ways in which software tools are

obtained or created can have a very direct impact on a given artistic practice.

For instance, given the same hardware, artists who employ commercially pack-

aged programs and those who develops their own software would often have

contrasting ideology and aesthetics.

Despite the correlation between computer hardware and software, several fun-

damental differences do exist and set them apart. Computing hardware is the

apparatus which, when applied appropriately, becomes useful. These devices,

therefore, are analogical to any other physical objects invented to assist all

kinds of tasks. Manufacturing them, therefore, involves traditional industrial

processes, from gathering material to producing required components and the

final assembly. Software programs, on the other hand, are essentially logical

instructions which command the corresponding hardware. The nature of soft-

ware therefore, is similar to abstract knowledge rather than to that of a concrete

man-made artifact. For instance, software is often compared to recipes, which

can be learned and passed on without a physical medium, and when executed

correctly, produce pleasurable dishes5. The production of software essentially

science. The ultimate goal of these investigations, to a large extent, is to methodologically un-

derstand the underlying mechanisms in various types of creative processes, thus to effectively

model them using computer systems. For instance, Martin Dostàl’s 2005 paper attempted to

model musical creativity through generating human-like rhythmic accompaniment[11]. No-

table writings on the subject of creativity and its artificial modeling includes Bohm’s ‘On

creativity’[5], Boden’s ‘The creative mind’[4] and Partridge’s ‘Computers and creativity’[27].
5Such a comparison between software and recipes were often used by Richard Stallman,

3

involves programmers writing computer codes which are then to be duplicated

and released. Physical packaging aside, the nature of software is virtual.

Some effects resulting from this fundamental difference rapidly emerge. Because

of the manufacturing process, the more a particular device has been produced,

the cheaper it usually becomes. However, this does not apply to software pro-

grams, as the scale of production has no real impact on the final cost. On the

contrary, the price for software often increases according to the demand. Fur-

thermore, users cannot easily change or replace the physical design of a given

piece of hardware; they are however able to try and use different types of soft-

ware on the same computer. In other words, it can be argued that users have

more influence over the software they use, than on the hardware they own.

From an artistic perspective, the role software plays can be more critical and

complex. For some artists, software programs are essentially means of produc-

tion, just like the hardware available to them. For others, software encompasses

a higher level of creative, and even ethical, beliefs. Their concerns transcend

individual modes of practice and focus on issues such as freedoms of expression

and the dissemination of technology. Moreover, the evolution of software is even

having an impact on the way hardware is currently being produced.

Being practice-based, the context of this research is also based on personal ex-

perience as an ongoing creative practitioner. Starting in early 2000, the practice

began with the focus on various generative compositional techniques in live per-

formance. In particular, the investigation into genetic algorithms as means of

producing rhythmic structures6 constituted the previous academic study, and

resulted in a series of purpose built, customized software tools7. Since then,

it developed to take on a much broader interest in software and algorithmic

composition in general. Whilst the emphasis on live performance still remains,

it also started to actively relate to and work alongside other artists in the field.

The efforts led to fruitful collaborations, ranging from event organization to soft-

founder of the Free Software Foundation.
6The basis and main influences of this investigation includes ’The Blind Watchmaker’[10]

by Richard Dawkins and ’Emergence’[16] by the creator of genetic algorithms John H. Holland.
7A series Max/Msp objects was developed to explore the use of Genetic Algorithms as

compositional technique.

4

ware development. Earlier interests in generative systems also extended into the

domain of software development and distribution. To be more precise, it finds

parallels between the open compositional approach and the ideologies of the free

software movement. In both scenarios, the end result, works of art or software

programs, is ever evolving according to the rules and conventions set by the

environment. The fascination for the free software culture has since become a

prominent part of the current practice. For instance, every aspect of both the

thesis and the practical project are entirely produced using free software tools8.

It is worth pointing out that this research does not draw particular distinctions

between different types and forms of digital arts. In other words, although the

personal artistic background is derived from algorithmic composition in sonic

arts, the context of this research will also apply to other creative disciplines,

such as visual arts. The intention is to consider digital arts in its own right,

as it has the ability to transcend the categorical division between conventional

genres of practices.

1.2 Research Motives

The rich context found in contemporary digital arts thus cultivates a diverse

range of different practices. As mentioned previously, generative art has brought

interesting issues and challenges to the current understanding of arts. It high-

lights and ultimately attempts to externalize the notion of creativity in the form

of formal systems. Software art, another dominant artistic movement, focuses

on the aesthetics of computer codes and the abstract processes they govern. The

process of programming and the social impact of software are some other ex-

amples tackled by other types of practices. This research, as a result, is largely

motivated by the wealth of ongoing activities found in the field of digital arts.

Artistic concerns aside, the sociological aspects of digital arts are also expe-

riencing critical transformation. With high bandwidth and wireless Internet

connection, artists are constantly seeking ways to exchange information and

even collaborate in cyberspace. As a result, virtual alliances are frequently

8See appendix A for a list of software used throughout this research

5

formed by artists sharing similar ideologies to better promote and express their

views. The relationship between individuals and the collectives are thus highly

intricate. Furthermore, the implication of technology-enabled social networks

and activities are also an emerging interest amongst the mass media and society

in general. An increasing number of virtual platforms have become extremely

popular 9 not only for artists but also within the general public, to share a va-

riety of digital content and exchange opinions. The motivation of this research

is thus also derived from witnessing the open and collaborative characteristics

found amongst these artists.

Conducting this research offers an unique opportunity to contextualize the un-

derlying personal artistic practice. The methodological approach to contempo-

rary digital arts would allow the practice to objectively position itself in the

field. This is critical in evaluating the given practice for future development.

Moreover, it would also enable the practice to further establish itself through the

outcome of the research. Such abilities to broaden the horizons of the personal

creative practice is another primary motivation behind the investigation.

In short, the research is motivated by the following points:

• The popularization of digital arts, encouraging the emergence of a wide

spectrum of creative activities.

• The conceptual and practical challenges of contemporary digital arts, es-

pecially in relation to generative art.

• The underlying social principle and structure of contemporary digital arts.

• Further development of personal compositional/performance practice.

9Social network software has become the latest phenomenon since the emergence of web2.0.

These web sites enable users to customize their on-line identify by allowing them to personalize

its content. They also provide highly targeted communication, so communities of very specific

focus can be established. Myspace and FaceBook are two of the most popular sites of this

type to date. Although many artists have utilized these tools to promote and establish their

practices, the corporate driven and the commercial aspects behind these sites have nevertheless

raised serious concerns for others. For them, social networks are better achieved through

independently hosted servers that provides the necessary services.

6

1.3 Research Subjects

Contemporary digital arts, generative art and free software are consequently

the three main subject areas of this research. It will examine each of the them

individually, as well as analyze the explicit and the implicit relationships they

may have. To establish a clear overall outline of the investigation, these subjects

will now be briefly introduced. Furthermore, this section also intends to identify

how they will be examined, as well as the roles they play in the research.

1.3.1 Digital arts

As making music was one of the first suggested applications for computers when

they were first invented10, it is not surprising that artists responded quickly to

the rise of this powerful instrument. Early pioneers and researchers in computer

generated/assisted artworks can be traced back to the 1950s and the 1960s11.

However, the computational power available at that time was limited, and the

price for this technology was high, which meant that the digital arts community

was mainly restricted to academic institutions and advanced scientific labora-

tories. Today, however, most modest computers at present have the ability to

process real-time media such as sound and visuals. Computers as compositional

tools have become truly affordable and practical. Digital arts have indeed come

a long way since their very beginning. They have been transformed from being

an inaccessible form of art, to creative activities that can be enjoyed by mass

public. In other words, anyone who is familiar with computers can use them to

produce graphics, music and films with only little effort involved.

Computers as compositional/performance tools are truly unique in many ways,

mostly because of their programmable nature and high speed execution capa-

10In various written response to the analytical engine (invention of Charles Babbage, it is

regarded as the first mechanical computer) between 1842-1843, Augusta Ada King, Countess

of Lovelace, suggested “the Engine might compose elaborate and scientific pieces of music of

any degree of complexity or extent.”[38]
11For example, the Illiac Suite by Lejaren Hiller[15] composed in 1957 is often considered

to be the first computer generated music. Hiller used the computer to produce music in the

form of music score, which was performed by a string quartet

7

bility. Artists are now able to simulate extremely complex compositional sys-

tems which were previously unattainable12. Unlike conventional musical instru-

ments which directly respond to human input in a passive but subtly complex

way, computers can be programmed to take on an active/interactive role in the

process of composition or performance. Computers also provide an invaluable

common platform for digital artists and enthusiasts of different disciplines to

collaborate. They further enable artists to break free from the boundary set

by conventional modes of practice. As a result, new possibilities and ways of

thinking can emerge and be developed.

With computer technology becoming increasingly miniaturized and high-speed

wireless Internet connection becoming widely available, digital artists are now

experiencing further liberation of the virtual from the physical. Artists are now

more independent than ever before, but at the same time better connected as

a collective. Ideas are formed, transmitted and developed globally in no time.

Digital artists are redefining many aspects of human creative practices.

Given its popularity, digital arts as a creative discipline nowadays encompasses

a wide variety of forms and activities. Software art, algorithmic art, Internet art

and new media art are just a few examples. Moreover, the term is also sometimes

used in the mainstream media to describe creative designs and artifacts generally

produced with the aid of computer software. Despite the widespread acknowl-

edgment, what the discipline entails may become ill-defined, and can thus lead

to misinterpretation or misuse. This is problematic from this research’s stand

point. For this reason, the investigation will firstly aim to categorically dissect

what digital art might mean in today’s circumstances. By doing so, the artis-

tic principle of this research can be clearly defined against the common modes

of practice. The investigation will then continue to focus on certain types of

practice which identifies with the ideology of the research.

12Composer and author Trevor Wishart expressed similar notion in the opening chapter of

his 1996 book ‘On Sonic Art’[40], in which he said he “... discovered an instrument - the

computer - through which I could realize some of the concepts of musical transformation I

had been dreaming of for some years”. Moreover, It can be argued that the basis of ‘On Sonic

Art’ rests upon the artistic concerns and new compositional possibilities brought about by

computers.

8

1.3.2 Generative art

The term ’generative music’ was thought to be first coined by artist Brian

Eno[13], although the practice of generative art itself can be traced as far back

as the self-sounding string instrument13 found in ancient Greece and China14.

The popularization of adopting computer programming to create works of art

in recent times, has brought the practice of generative arts into a new era in the

virtual domain. The following two definitions15 provide a brief insight into the

meaning of generative art.

“Generative art is a term given to work which stems from con-

centrating on the processes involved in producing an artwork, usually

(although not strictly) automated by the use of a machine or com-

puter, or by using mathematic or pragmatic instructions to define

the rules by which such artworks are executed” - Adrian Ward16

“Generative art refers to any art practice where the artist cre-

ates a process, such as a set of natural language rules, a computer

program, a machine, or other procedural invention, which is then

set into motion with some degree of autonomy contributing to or

resulting in a completed work of art” - Philip Galanter17

Throughout history, artists of all disciplines typically focused on their creative

skills to produce finite works. In other words, once a work is produced, it is

13Named Aeolian harp, it was first described in ’Musurgia Universalis’[18] by Athanasius

Kircher in Rome, 1650.
14Similar to the Aeolian harp, Feng-Zeng is a self sounding string instrument, is essentially a

kite fixed with bamboo or silk strips that produce sounds once the kite is in the air. Moreover,

pipes are also used to fix onto the kite instead of strips of bamboo. This variety of Feng-Zheng

produces tones that resemble the sound of flutes.
15These definitions should not be considered as definitive, as the practice is still rapidly

evolving. In other words, they will be subject to further refinement when the body of works

in the field reaches critical mass.
16http://www.generative.net/read/definitions. Note, as of the submission of this thesis

(October 2007), all URL referenced throughout are valid.
17“What is Generative Art? Complexity Theory as Context for Art Theory”, proceedings

of International Conference of Generative Art 2003, p.216. [14]

9

static and fixed in time and space - a traditional music score, a painting, a

sculpture or a book are just some examples. However, this notion does not

apply in the practice of generative art. Whilst it is true that many modern

art movements have placed increasing emphasis on art works which have open

forms18, such types of practices are still relatively new in comparison with the

long standing western art tradition.

In generative art, instead of focusing on the final outcome, artists are more

concerned and interested by the processes in which aesthetically pleasing forms

and structures can be produced. As a result, works in generative arts usually

have no fixed representation, they very often change and evolve through time

or (virtual) space.

This shift in the focus of creating works of arts is significant. Because of this

change of interests, artists are now entering the realm of ‘meta-art’, where the

aim is to explore procedures and rules that in turn create the final outcome. As

a result, the practice of generative arts may allow us to gain new insights into

arts and creativity 19, as well as developing new kinds of aesthetics.

As one of the most dominant practices in contemporary digital arts, this re-

search will examine its fundamental notions and characteristics. Furthermore,

concrete examples of techniques will be presented and discussed, demonstrat-

ing the details in the implementation of artistic generative systems. Lastly, the

investigation will attempt to highlight the problematic areas generative art is

currently facing, and point out possible future developments.

1.3.3 Free software

In recent years, free/libre/open source software (FLOSS) has gained increasing

recognition in the public eye as well as in the digital arts community. The

18Fluxus art in the 1960s and 1970s is perhaps the most well known example, where the

observable outcome of a given art work can change significantly according to external factors

such as the surrounding environment, the intention/interpretation of the performer/audience.
19The notion of creativity could also be extended into the realm of the machine, as the

process of creation is abstracted into quantifiable instructions. This will no doubt have an

impact on the traditional humanistic approach to the understanding of art.

10

fundamental ideology of open source is that software should be free, just like

freedom of expression. In other words, software should be freely available for

distribution and modification. Such an approach is in many ways the opposite

of the conventional model of software development under copyright restriction.

Two main reasons have contributed to the popularization of using free software

in the digital arts community, which is firstly freedom of expression and secondly

the cost for value. By using free software, artistic conceptions are not bound to

the predefined features of a given software, but to the artists’ creative ability

to utilize and create software tools. In other words, any conceivable designs are

made possible by either using existing software packages, or modifying them to

suit a particular purpose. The freedom to customize programs based on others’

work significantly enables immense technical possibilities for artists. Such a de-

gree of flexibility in software re-use and modification is non-existent and strictly

prohibited with proprietary software. Furthermore, as all free software can be

legally obtained and redistributed with zero costs, this brings tremendous ad-

vantages for artists who have limited financial means. As one of the strengths

in free software lies in the support for legacy hardware, this also means that

artists are able to achieve complex installations and setups without specialized,

and often high-cost equipment.

Moreover, free software is typically developed and maintained voluntarily by

user groups, spread across the world and connected by the Internet. Such a

model of development typically results in much more stable and innovative pro-

grams 20 than the proprietary ones. This is due to the fact that every member

in the community of a given software can look for faults in the program and

potentially fix or report them, and since many users and developers keep in

contact via the Internet, repairs to faults or new features are released rapidly.

Furthermore, having such a globally connected user community also means that

getting help with particular problems presents few difficulties.

Governed by very few and simple rules of collaboration, the free software com-

20The Apache web server (http://apache.org/) and the Linux kernel (http://kernel.org/)

are prime examples of the stability and innovations resulted from the open source software

development model.

11

munity is able to produce a high quality, innovative and complex world of open

source computer programs. For example, the Apache web server accounts for

69 percents of all web servers on the Internet. Furthermore, Google, the search

engine, relies on an exclusively open source (GNU/Linux) operating system to

manage around 6000 servers that keeps the search engine running smoothly.

The key to the success of free software is that it provides a decentralized, open-

ended system with increasing returns, in which computer programs can evolve.

In other words, the more popular a given software becomes, the more users

and developers it will attract. This community effect can thus fuel the future

development of a given project.

In this research, the historical account of the free and open source movements

will be provided, alongside some of the latest current developments. It will

then investigate the underlying philosophy and ideology behind the movements,

pointing out any potential similarities between FLOSS as a technological phe-

nomenon and digital arts as a creative discipline. The impact of FLOSS on

contemporary digital art is also one of the main concerns in the investigation,

as it will aim to provide concrete evidence of both the sociological and the

technological influences FLOSS has on the artists.

1.4 Subject relationship

The theoretical aspect of this research consists of two fundamental elements,

which are divided into the conceptual and social components. The purpose of

the conceptual framework is to deal with the relevant artistic issues. The social

framework, on the other hand, aims to give practical and technical perspectives.

They roughly correlate to each of the research subjects previously identified.

The investigation into contemporary digital arts thus constitutes the conceptual

and the artistic framework, whilst the study of FLOSS forms the technical

and social framework. Digital arts, as a result, essentially define the starting

point and the abstract foundation in which rest of the research can be built

on. FLOSS, therefore, will demonstrate how the conceptual framework may be

materialized and the social impact of such implementation.

12

The analysis into generative art does not directly fall into either of the two the-

oretical components, it serves a different purpose. Its aim is to provide tangible

examples and thus gain greater understanding into the current development of

digital arts. As a result, the findings in the practice of generative art would

hopefully contribute to the substance and realistic perspective over the con-

ceptual framework. Generative art aside, other influential practices will also

be mentioned to achieve a broader and truthful representation of the artistic

understanding.

The relationship between the two frameworks are in many ways complementary.

Although the new possibilities and challenges brought by computing technology

are clear, without a reliable software platform, they simply cannot be effectively

expressed. In other words, without suitable tools, artists are not able to convey

their creativity, no matter how innovative they are. FLOSS, as result, delivers

a real solution to address this issue, precisely because free software ensures the

free flow of GPL21 licensed programs and their source codes. This instantly

gives artists complete access to the ability to create, without any restriction.

Through digital art, FLOSS can find yet another welcoming habitat in which it

can evolve and flourish.

There are also more subtle relationships between each of the research subjects.

Initially, there seems to be very little correlation between generative art and the

free software movement, simply because the former is a creative discipline and

the latter is a philosophy and a model of software development. However, with a

closer look, one can observe the implicit connection from a different perspective.

Although many formal procedures can be used to produce aesthetically pleasing

results, one particular type seems to have captured the attention and the imag-

ination of many artists. This type of process is defined and governed by very

few rules, however, the result produced by it far exceeds the initial simplicity

and are often extremely complex. For example, natural evolution is dictated by

‘the survival of the fittest’, and yet is capable of producing the world as we live

in today. The free software community can also be seen as a prime example.

Based on simple rules of mutual collaboration, the open source community is a

21GPL stands for “GNU General Public License” is the most popular free software license

written by Richard Stallman for the GNU project. http://www.gnu.org/

13

generative system where the outcome is a universe of computer software that

evolves rapidly. Because of this, the abstract model of the collective social be-

havior can hold great interest from generative art’s point of view, and is not to

be overlooked.

Although there is a long history to the practice of generative art, it still remains

one of the less known creative disciplines in general. This is mostly due to the

fact that there has never been an efficient medium to express and explore its

full potential. Computers, as a result, become a natural habitat for artists to

create and manipulate all kinds of creative systems. Through the adoption of

digital technology, generative art has become far more practical and accessible.

In short, the three main subject areas remain deeply intertwined throughout

the investigation. Whilst FLOSS serves as a practical platform and a social

framework, digital arts will provide this research with a medium and conceptual

outline. Lastly, generative art and other active practices, will give substance to

the investigation.

1.5 Documentation

Besides examining the proposed subjects, this research also aims to capture the

ongoing development of FLOSS digital arts in Western Europe. Although the

recognition of FLOSS digital art has increased rapidly in recent years, being a

young and emerging movement, many aspects of it are yet to be documented.

Such documentation can thus be invaluable to the whole artistic community,

not only in the view of future social anthropological reference, but also as an

acknowledgment to the achievements of the collective to date. The documenta-

tion will be divided into three main sections: software tools, artistic collectives

and public events. The focus of each section will now be briefly summarized.

By understanding the tools artists use, one can gain greater insight into both

their practice and artistic ideology. Following this notion, some of the most

prominent and innovative software tools will be included in this section. It will

also attempt to present them in a categorical manner, so their functions in the

14

creative process can be clearly understood. For instance, some software can be

seen as having the role of “creative environments” whereas others are inclined

towards being useful utilities. The former allows artists to construct their works

of art whilst the latter provides effective practical solutions to solve specific task.

The documentation will then reflect on a variety of FLOSS artistic collectives.

An overview will be given to reveal the wide ranging approaches and characteris-

tics between them. Furthermore, their model of collaboration and relationships

with each other will also be taken into consideration. This would be crucial

to establish a comprehensive perspective on the sociological development of the

field. As community ethics plays an fundamental part in FLOSS digital art,

it is therefore important to observe how it has been put into reality amongst

them. It will also draw comparisons between groups with contrasting ideologies,

highlighting the rich dynamics which propel the movement.

Lastly, the section will document various events relating to FLOSS digital arts.

By doing so, it will illustrate the types of social outlets which exist for artists.

Artistic festivals, workshops and academic conferences are some examples which

can be seen regularly. They are set up to celebrate and raise the awareness of

its practice. Through these events, artists are able to exhibit their works and

more importantly, to convey their beliefs to the public spectators. As a result,

the success of these events could also indicates the general acceptance of FLOSS

digital arts.

As an active practitioner, the overall documentation will aim to offer insights

into the current state of affairs in FLOSS digital art from a first person’s perspec-

tive. In other words, factual information is gained through direct experiences

accumulated from collaborating with others and being involved in the field.

There are obvious advantages and disadvantages associated with this method

of collecting research data. However, since this is a mixed mode research, the

approach based on the personal practice would seem more appropriate than

otherwise.

15

1.6 Practical component

Several criteria have been critical in finding a suitable project to be the practical

component of this research. To begin with, the potential project should allow

the theoretical element and the personal artistic practice to converge. In other

words, it should display clear continuity and coherence between all elements

within the research. Furthermore, it should reflect the research findings in a

realistic context, and open doors to future investigations. Crucially, its result

should be an original and useful contribution to the field. Lastly, it would

provide an opportunity to further develop and establish the personal artistic

practice.

To fulfill such requirements, the project must firstly involve FLOSS and identify

a specific focus context. Moreover, it should aim to take on an active role in

the field, so as to deepen the understanding of its internal development. The

project, therefore, will be in a better position to make a visible and beneficial

change to the artistic community. This will consequently expose it to other

more experienced practitioners and as a result, their invaluable expertise and

feedback will enable the personal practice to reach a higher level.

Since the beginning of this research, the artistic practice has developed an in-

creasing emphasis on the use of a particular software program named Pure Data.

Extensive experiences have been accumulated by using Pure Data to create cus-

tomized performance environments and teaching it in workshops. As one of

the most popular and versatile FLOSS creative software, Pure Data (Pd) has

a large user community and has been deployed to create all types of art works.

Pd is thus the natural candidate to form the basis and context of the practical

project. The knowledge already gained in Pd would enable the project to be

in-depth and highly focused, whilst the size of its user community would allow

the project outcome to have real impact on others.

The project, therefore, will involve taking part in the current development of

Pd by implementing new and useful improvements. By doing so, it will have

a chance to be at the heart of an active community. Such an opportunity can

lead to a closer examination of various sociological aspects of Pd. There are two

16

aspects to the originality of the project: the new features added to the existing

program and the extended possibilities in using Pd. In other words, through the

implementation of proposed improvements, artists will be able to incorporate

Pd in ways that were previously impossible.

In short, the practical project will firstly review the design shortfalls in the cur-

rent version of Pd, then identify the most suitable course in which changes can

be made. It will clearly outline features to be implemented, as well as describe

the rationales and potential impact behind the new improvements. Further-

more, the project will exceed its technical nature by looking into the internal

social structure and historical developments in Pd’s community, particularly in

comparison to the general ideology of FLOSS. This would hopefully give an ob-

jective interpretation to any existing problematic areas and point out how they

can be avoided in the future.

1.7 Objectives

Having introduced the relevant aspects and elements of this research, its objec-

tives can now be succinctly defined in the following points.

• To analyze the current development of both digital arts and FLOSS, and

examine the relationship between them.

• To document the ongoing activities in FLOSS digital arts in Western Eu-

rope.

• To provide an original contribution to the field of study by taking part in

the development of Pure Data

• To further develop personal creative practice

The first three objectives consequently become the focal points in each of the fol-

lowing chapters. The investigations into contemporary digital arts and FLOSS

will be the main concern in the subsequent chapter, whilst the third chapter

provides a concrete documentation to illustrate the latest development in the

17

field. The final chapter will present the practical project in detail, and discuss

various issues encountered.

1.8 Compositional example

A composition in the form of Pd patch will now be given as an example of the

personal artistic practice in generative music. Furthermore, it will also briefly

demonstrate the functioning of Pure Data in the context of sound synthesis

and audio signal processing. This example will hopefully offer a good starting

point for the rest of the research that follows. In this section, the following font

conventions have been adopted to denote computer codes (in C), Pd objects

and messages.

• typewriter text - Text in typewriter font means C code. Thus this is

not C code, but this is C code.

• [pdobject] - typewriter text wrapped in square brackets represents a Pd

object, where the name of the object and its possible arguments are inside

of the brackets.

• < pd’s message > - Objects in Pd works together by passing messages

between each other, a message in Pd is denoted by typewriter text wrapped

in angular brackets.

• [pd name of a subpatch] - whenever a pd object is presented with its

name beginning with “pd” followed by a space, this means the object

contains a sub pd patch inside. As a result, a patch can contain many

sub-patches and each sub-patch can have its own sub-patch.

Before discussing the technical content of this composition, it is crucial to state

and examine the motivations behind this piece, in order to provide it with the

appropriate overall context and justification. The purposes behind this compo-

sition can be broken down into the following points. First, experimentation in

the use of simple generative techniques to produce an aesthetically interesting

18

automated sound composition. Second, to compose an abstract sound piece in

which samples of recorded sounds are not allowed.

There is a wide range of commonly adopted generative compositional tech-

niques in which the degree of complexity also varies dramatically. However, on

closer examination, one soon realizes that many of the complex methods are

often built upon a collection of smaller identifiable processes which function in

co-operation to complete its complex design. More specifically, the use of ran-

domization and probability has been implemented with high regularity as parts

of large systems22. In fact, all computer operating systems have random number

generators built in, and it plays an important part in the system’s operation.

The prime motivation and goal of this composition therefore is to use simple

techniques - randomization and probability - exclusively and attempt to create

a complex sonic composition. As a result, a better understanding of the nature

of generative compositions can hopefully be obtained.

At the time of this writing, the personal compositional practice has been fo-

cused on the use of recorded sounds for some period. Therefore, the second

motivation of this composition is to forbid the use of samples from the pro-

cess of composition. The challenge of not using any pre-recorded sound will

temporarily decouple the practice from its existing mode of composition and

hopefully allow greater diversity to emerge. In other words, sounds used in this

composition are strictly synthesized.

As previously mentioned, the core of this composition relies heavily on the

ability to obtain random values in order to control or synthesize the necessary

sounds. As the result, the following two mechanisms in Pd form the most basic

building blocks of this composition.

• [random] object. The random object has two inlets and one outlets. The

left most inlet triggers the object to output a random number via its

left outlet while the right inlet sets the range which the returned random

numbers are limited to. In addition, the range parameter can also be

22For example, Genetic Algorithms typically use randomization and probabilities for oper-

ations such as mutation and initialization

19

specified in the object’s creation as the addition argument. For example,

[random 100] will return any random values between 0 and 99.

• [noise∼] object. The noise object generates white noise, which is sound

that has equal energy across the entire audio frequency spectrum. The

object outputs the white noise through its outlet. The inlet is not in

use. In digital sound synthesis, white noise is achieved by outputting a

randomized floating-point value between -1 and 1 at each sample. White

noise can be implemented through the following C code:

static t_int *noise_perform(t_int *w) {
t_float *out = (t_float *)(w[1]);
int *vp = (int *)(w[2]);
int n = (int)(w[3]);
int val = *vp; // setting the seed value for random numbers

while (n--) // dsp block loop
{

//scales the random number between -1 and 1
*out++ = ((float)((val & 0x7fffffff) - 0x40000000)) * \

(float)(1.0 / 0x40000000);
// generates a new random number
val = val * 435898247 + 382842987;

}
*vp = val; // store the random number seed
return (w+4);

}

Having introduced the two fundamental building blocks of this composition, the

Pd patch of ‘Hypothetical Waves’ can be shown below:

Figure 1.1: Top level patch of Hypothetical Waves

Fig.1.1 illustrates the general anatomy of the composition and brief descriptions

of each part: [pd WAVE] and [pd NOISE] contains sound synthesis and process-

ing sub-patches and [pd mix] contains mechanisms which are responsible for

structuring the processed sound. In addition, [pd mix] has five vertical slid-

ers connected from it, which indicate the current volume status of each of the

20

processed sound. [pd out] controls the overall volume of the patch and can be

adjusted through the vertical slider connected to it. [pd record] enables the

user to record the composition as sound files. <;pd dsp 1> and <;pd dsp 0>

switches the global dsp engine on and off while the [switch∼] object, controlled

by a toggle button, enables or disables the local dsp functions within the patch.

The following sections will further examine the vital components of this com-

position.

[pd WAVE]

[pd WAVE] is one of the two sub-patches responsible for the generation and the

processing of the sound. Its overall anatomy can be illustrated in the snapshot

taken at the top-level subpatch of the [pd WAVE].

In [pd WAVE], the chain of sound processing starts at the top where [pd play]

generates the raw signal and each of the color blocks below accepts it as the

input to be further processed. The input and output relationship between each

color block can be understood by following the dark connecting cables which

run between them. While each of the color blocks represents the individual

sound-processing method and has its own sub-patch, it is worth taking a closer

look at how the unprocessed signal is generated in [pd play].

[pd play] generates interpolated random audio signals with weighted proba-

bility over the amplitude value. To achieve this, three [random] objects (as

highlighted area above) are used together in such a way that the first [random

10] connected to [moses 1] at the top produces a one in ten probability for the

[random 200] objects at the left hand side to be triggered while the [random

200] at the right will be triggered for the rest of the time. Furthermore, unlike

[random 200] portion at the left, [random 200] portion of objects at the right

has a [* 0.2] at the end before connecting to the [pack f f]. As a result, this

produces a series of random amplitude values that are most likely to be in the

range of -0.2 and +0.2, but may be of any value between -1 and +1 with a one

in ten probability. In order to interpolate between consecutive amplitude (y)

values, the time (x) value also needs to be specified to indicate the number of

21

Figure 1.2: Top-level subpatch of [pd WAVE]

steps to reach the target amplitude. This is generated by [random 20] below the

gray block. As a result, between any two amplitude values, it can take any time

between 1 to 20 milliseconds to complete the interpolation. Both the x and y

value are then given to the [vline∼] object as input to produce the interpolated

audio signal. Notice that this particular sub-patch is iterated indefinitely until

the user switches the composition off at the top-level patch.

[pd NOISE]

[pd NOISE] is the second component responsible for the sound processing and

its design can be illustrated below.

Following the same programming principle as in [pd WAVE], [pd NOISE] also has

22

Figure 1.3: Interpolated random wave generator

a hierarchical sound processing chain with each color block signifying a distinct

stage of signal manipulation. However, unlike [pd WAVE], [pd NOISE] makes use

of the [noise∼] mentioned previously as the sound source, instead of generating

an interpolated audio signal. The white noise generator is implemented in the

[pd nois] as figured in following.

Note the two identical strands of objects starting with [rand∼] are connected to

the outlet of [noise∼]. The [rand∼] object generates random values between

-1 and +1 at the specified frequency and outputs the values as audio signals.

The effect of these two strands of objects on the incoming signal (white noise)

is identical to the noise gates commonly used in recording studios. In addition,

the gated white noise is also mixed with a delayed copy of itself to give more

character to the sound.

23

Figure 1.4: Top-level subpatch of [pd NOISE]

[pd mix]

Most of the time, each of the color blocks inside the [pd WAVE] and [pd NOISE]

are programmed to output a distinctive sound (voice) and as a result, methods

must be devised to mix and structure different strands of sounds to form the

final composition. Two types of mixing mechanisms are therefore conceived;

these are based on the use of random number generators (RNG), probabilities

and saw tooth oscillators.

The design principles of the two mixing mechanisms are fundamentally the

same but vary in the minor controlling method. Both mechanisms rely on

the operations to turn a saw tooth wave (range 0 to 1) into a triangle wave

(range also 0 to 1). The triangle wave is then used in turn to control the

amplitude envelope of the sound. In this design, the higher the frequency of

the saw tooth oscillator, the more rapid the change in amplitude will occur at

the output. On the other hand, the lower the frequency is set to the oscillator,

the longer it will take to notice the change in amplitude. The RNG is therefore

implemented to generate the frequency values for the oscillator. Once a new

24

Figure 1.5: The use of white noise and audio gates

Figure 1.6: Mixing mechanism type one

25

Figure 1.7: Mixing mechanism type two

frequency value is generated, the algorithm will also calculate the time it will

take for the oscillator to complete one phase cycle (from 0 to 1) according to

the new frequency. This timing information is used to regulate how fast or

how slow it should [random 100] be triggered. Note that the range of random

numbers in the mixing mechanisms is between 0.025 and 0.125, which represents

the longest (4 minute) and shortest (8 second) possible total envelope time for

each oscillation cycle.

The figure above shows the second type of mixing mechanism employed in the

composition. Its design is mostly the same as the first type apart from the two

modifications. First, in the operation of converting saw tooth waves into triangle

waves, the resulted triangle waves are inverted. In other words, the triangle

waves have a 25 present increase in their phase. As a result, the triangle wave

will start at value 1 at the beginning of the oscillation cycle and reach 0 in the

half way, and finish at 1 at the end of the cycle. The second change in design is

the use of weighted probability to control the magnitude of the triangle wave.

The probability implementation is the same as described in the [pd play]. As

a result, the amplitude (0 - 1) of the triangle waves will most likely to be under

0.3 but will sometimes be over 0.5 at the ratio of eight to two.

This brings an end to the discussion on the programming aspect of this com-

position. It has demonstrated that simple generative techniques, with careful

implementation, can be very expressive as compositional tools. In other words,

26

the effectiveness of a generative system is not measured by its complexity in

design, but by how well it is implemented for the given task. As computers

become increasingly capable and programing languages become easier to use,

there is often a great temptation to design generative systems with great com-

plexity. However, complex systems do not always produce good results and the

effectiveness of very simple techniques should not be overlooked. In short, this

composition made a conscious effort to avoid complexity in its implementation,

and was aimed explicitly to explore the effect of simplicity and how it can be

adopted.

Although this composition has achieved its aim of generating a variety of in-

teresting sounds, it however falls short in producing a sense of progression and

development in its structure over time. This quickly becomes apparent when

listening to the patch over a longer period of time. Many programming strate-

gies can be employed to overcome such a problem and should be investigated in

the future.

27

Chapter 2

Digital arts and FLOSS

2.1 Digital Art

In modern societies, computer technology has infiltrated almost every aspect

of human activities1, and artistic practices are of no exception. The historical

account and impact of new technologies - such as computers - on modern art

practices has been a popular subject in various critical writings2. For many

contemporary artists, regardless of their discipline, computers have become a

vital apparatus in their creative process. For this reason, the ways computers are

incorporated in the creative process are as varied and wide ranging as the artistic

disciplines using them. To describe such kind of art practices and works, the

term “digital art”3 has become increasingly widespread and popular in recent
1In Nicholas Negroponte’s 1995 publication entitled ‘Being Digital’[25], he clearly out-

lined the extent and influence of computer technology over the functioning of modern so-

ciety. Despite the book was first published over a decade ago, his views are still remark-

ably vivid and valid. For example, he suggested the widespread of accessible digitized infor-

mation contents(music, video, photos, literature), the popularization of asynchronous com-

munications(email, on-line messaging/chat), and the development of on-demand media ser-

vices(YouTube, Last.fm). All of which can be observed in the current trend involving personal

computers
2For example, Margot Lovejoy provided a lengthy discourse on technology and art in her

book “digital currents”[22]
3Wikipedia on digital art: http://en.wikipedia.org/wiki/Digital art

This thesis fully acknowledges the recent debates on the validity of referencing wikipedia

28

years.

The notion of incorporating computers in the creative practice is by no means

innovative in today’s artistic climate. For instance, looking up “digital art” on

an Internet search engine such as Google quickly reveals the popularity of this

terminology. Disregarding the precise context of how the term is used for the

time being, the search results nevertheless indicate the general acceptance of

such a method of artistic expression. Thus, it appears that there is a rich and

active realm centered around “digital art” for artists and mainstream media.

However, the widespread usage of the term has also led to a generalization of

what it might imply. In other words, without further examination, the term can

too often be vague or even misleading. This part of the thesis therefore aims to

investigate the wide spectrum of creative practices in digital art.

2.1.1 Types of digital art

The use of computers in any creative discipline can, at present, be categorized

in two ways. Firstly, computers are employed to simulate traditional creative

apparatuses or environments. Secondly, computers are seen as instruments in

their own right, exploring new possibilities through programming. Although

the boundary between these two methods of practice are not always clear, they

do, however, point to two common scenarios where computers are employed

in artistic practices. In this thesis, the former mode of usage is referred to as

“simulation based practice” while the latter as “programming based practice”

Simulation based practice

New technologies often first find their applications in improving the efficiency

of traditional means of production. This notion, therefore can be seen as the

foundation of simulation based practice. In other words, new technologies are

articles in the academic context. Therefore, the purposes of wikipedia references should be

clarified at once. In this thesis, wikipedia articles are referenced only to either reflect the

general perceptions on certain subject, or to provide factual information on subjects that

typically evolve rapidly.

29

implemented to enhance the way artists work with the skills and knowledge they

are already accustomed to. As computers possess the ability to emulate any

procedures that can be logically expressed, this makes them particularly suited

in this context. As a result, it has become very common to use computers in

such a manner to assist creating works of art.

Because domain specific apparatuses are recreated in computers, through the

use of various software and hardware which resemble a conventional working

environment or tools, artists can therefore transfer their skills into the digital

domain. The fundamentals of these artistic disciplines remain relatively un-

changed, only the ways in which they are executed and expressed now have a

different form. A clear continuity in both the mode of practice and aesthetics

can usually be observed in this transition from the conventional to the realm of

the virtual. For instance, through the simulation of a traditional sound record-

ing studio, one can produce music in just the same way as in a real one. Digital

photography and imaging is another good example.

Efficiency aside, flexibility and practicality are two other qualities highly rated in

this type of practice. For example, many conventional tools can be programmed

into a single software package which allows artists to explore the new use of

these tools which would otherwise not be possible. Furthermore, following the

previous analogy of a sound recording studio, almost every facility of a studio

can be reproduced within a laptop computer. This gives far more practical

means to musicians who have no access to the conventional music production

environment.

Due to the nature of such an approach, the kind of creative disciplines adopting

it generally already have their own established mode of practice and artistic

concerns. Therefore, the center of this type of practice still remains at its tra-

ditional means and values. In other words, what is adapted or replaced by

computers has a very direct reflection to its predecessors. This by no means de-

nies innovations occurring in such contexts, however, computers are still largely

used as means of production. Although the adaptation of new technology might

have a fundamental impact on how a given practice is executed, the aesthetic

30

concerns and objectives still remain4.

Artists adopting this approach can generally be identified as ‘end users’ of soft-

ware tools or programs5. Furthermore, the relationship between artists and

software tools is often simple and straightforward. This is because artists are

typically not involved nor responsible for the creation of the tools they use.

Such a categorization by no means undermines the extent of influence software

can have on artists of this type, it simply points out the fact that artists did not

have to develop the technology in order to use it in their practices. A simple

analogy would be that a novelist is not required to be a mechanic to assemble

or repair his or her typewriter.

Programming based practice

Their programmable nature is arguably the most significant aspect of comput-

ers, which distinguishes them from any other past man-made artifact. Because

of this, any logical processes can be realized in the form of computer algorithms

or programs. While some artists have been adopting computers to simulate

traditional tools, others have aimed to create artistic works through the prac-

tice of computer programming. In other words, programming-based practice

specifically explores new possibilities which may be achieved by using computer

codes.

In any creative practice, artistic expressions are often restricted by the limita-

tions of the tools used. In other words, artists are not able to produce works

beyond the capacity of the medium they use. Since any conceivable idea can be

materialized in the form of computer codes, programming thus offers a tremen-

dous amount of freedom and a array of possibilities for artists. The liberation

from various physical constrains of the conventional creative medium can be

seen as the most attractive quality in creating works of art through computer

4For instance, a sound (or video/image) editing program might give new ways to manipu-

late and edit materials, the underlying goals of this tasks, such as best possible sound quality

and compositional arrangement, clearly resemble traditional skills.
5Software such as the Adobe Creative Suite for digital image manipulation and Logic for

sound recording

31

programming.

Programming, in this context, can be seen as a process in which artists translate

their creative ideas into computer languages, resulting in a complete program,

or collections of computer codes, which may be executed by computers. As

computer codes are a formalized set of logical instructions, the process of pro-

gramming often gives artists the ability to express their subjective concepts in

an objective and rigorous manner. This ability to formalize - often abstract -

artistic conceptions, can also be seen as an unique aspect of this mode of prac-

tice. Because of this, it can contribute to a methodological understanding, not

only in the creative domain, but also gaining new insights into human creativity

in general.

When computers and codes are adopted as creative media in their own right,

they encourage new aesthetics and movements to emerge. The “Software Art”6

and “Live Coding”7 practices which emerged in recent years are good examples.

The former, popularized in the late 1990s, shifts the artistic concern to focus

on various aspects of software and codes. The concept of a given software, the

structure of underlying codes and the social implications of a software are some

common discourses in software art. Live Coding, on the other hand, considers

the process of programming to be part of the performance practice. It demands

that algorithms which are being programmed be shown to the audience, thus

allowing them to gain insight into the performer’s mental dexterity. Live Coding

practice often demands great technical confidence and values the process of

programming as equally important as the end results generated by algorithms.

The relationship between artists of this category and the software used is typi-

cally more complex. This is because artists also play the role of programmers or

vice versa. An understanding of both traditional artistic disciplines and com-

puter related knowledge is required to be innovative and productive. Therefore,

it still remains less popular and mainstream than the simulation based practice.

Furthermore, the demand for cross disciplinary knowledge has resulted in a rich

mixture of artists that come from a wide spectrum of backgrounds ranging from

6Examples of software art can be found on http://www.runme.org/
7More information on Live Coding can be found on http://toplap.org

32

arts to science and engineering, to participate in the domain of digital art.

Comparison

Having identified two types of common practices in digital art, issues surround-

ing such categorization must also be discussed.

The categorization method presented above allows the term “digital art” to be

further defined in a practical and straight forward manner. Moreover, this ap-

proach enables the meaning of “digital art” to be examined independently from

traditional artistic disciplines. In other words, it can identify and compare the

mode of practices in a generic way regardless of whether the outcome of the

practice has the same “form”8. This generic approach in describing types of

digital art by no means disregards their historical traces and roots that con-

tributed to their development. It does however signify that digital art itself is

a fully acknowledged artistic discipline in its own right, consisting of a wealth

of activities whilst rapidly evolving.

Although the two strands of practices seems to have an opposite notion in adopt-

ing computers in the creative process, their relationship is deeply intertwined.

For example, many of the popular software used in the former type of practice

were often first developed by “hybrid” artists involved in the latter category9.

Moreover, the software environment has been developed to enable artists to

program in a very intuitive manner and requires a small learning curve. As a

result, artistic practices can, and often do reside in both categories. In such a

scenario, the main focus and intention of the artists can help to further reveal

the dominant influence from the two modes of practice.

Finally, this approach draws a clear distinction between mainstream digital

art practice and its experimental counterpart. The term “digital art” as used

by the mass media, software/design companies and commercial artists often

8Common forms are such as digital imaging, digital audio, digital video/animation, instal-

lation. More comprehensive overview on the forms of digital art can be found in the second

chapter of the book “Digital Art”[28]
9Early examples of such software are such as the “Digital Image Articulator” by Woody

Vasulka, “Z-Grass” by Dan Sandin and “Easel” by John Dunn

33

points towards the first description. On the other hand, “digital art” in the

independent or academic context often belongs to the latter usage of the term.

This distinction is vital to the subsequent parts of this research, as it is largely

derived from the programming based practice.

2.2 Current digital art practices

While the previous section outlined common modes of practice, this part of the

chapter aims to reflect on the current climate in digital art by presenting and

discussing some of the current trends and developments.

2.2.1 Generative art

In digital art, artists create generative procedures to produce aesthetically pleas-

ing works. This can be achieved according to artists’ novel conception, or

through the means of recreating existing systems found in other domains. Gen-

erative systems have been applied to almost every types of art forms. This in-

cludes computer generated images10, animations11, structural forms12, sounds13

and even literature14. Lastly, live audio/visual performance is another domain

in which generative art has been applied to15.

As a result, generative art has gained increasing popularity in the domain of

digital arts. Many artists, researchers, exhibitions and conferences16 have all

gathered under the name of generative art and as a result, it can be considered as

one of the most mainstream and publicized genres of digital art. Despite the fact

that it is widely recognized and has rapidly evolved, many aspects of generative

10William Latham, http://www.doc.gold.ac.uk/∼mas01whl/
11Karl Sims, http://web.genarts.com/karl/
12Celestino Soddu, http://www.celestinosoddu.com/
13John Biles, http://www.it.rit.edu/ jab/
14Scott Turner[39], http://www.pbm.com/oly/tag/srt.html
15Nick Collins addressed various issues surrounding this context in his paper ’Generative

Music and Laptop Performance’[7]
16The International Generative Art conference in Milan is a prime example of such event.

http://www.generativeart.com/

34

art still remain controversial and are yet to be defined. The following sections

therefore aim to provide a closer investigation into the nature of generative

art by examining its fundamental notions and characteristics. Then it will

attempt to establish an overall taxonomy that defines the area of computer-

based generative art. Such an analysis, will aim to not only reveal what the

practice entails but also establish a methodological overview of the generative

systems and the algorithmic processes involved.

Fundamental notions and characteristics

“Generative” means the ability to originate, produce or to evolve17. The word

is often associated with the notion of growth and development. For something

to be “generative” therefore must involves procedures that are executed for

production and perhaps to progress. Natural evolution is a good example of a

generative system, as it produces unique biological designs for the survival of

species, thus achieving evolutionary divergence. However, as being “generative”

does not usually imply the ability to anticipate and to foresee, there is often an

inherited unpredictability in generative systems. The uncertainty in generative

processes is also evidenced by natural evolution, as novel biological designs are

not produced through planning but by natural selection and the ‘survival of the

fittest’. In short, there are three fundamental notions associated with the word

“generative”:

• The ability to produce

• Potentially a sense of growth over time

• The inherent unpredictability

The appearance of a plant as a result of its growth is also a good analogy of

generative systems. A plant’s seed contains nutrients and genetic materials for

it to germinate. It then further develops into roots, branches and leaves, which

make up the plant as a whole. Although this process of development is universal

17According to The American Heritage Dictionary of the English Language, Fourth Edition

and Chambers Modern Dictionary, 1999

35

to all plants, no two plants have the same visual appearance even if they belong

to the same species and grew under the same conditions. In other words, the

growth process is generative in terms of the observable form of plants.

Following these notions on generative systems and algorithms, their general

characteristics can be identified through the following three points, which will

be further clarified and discussed subsequently.

• They must have the capacity to produce a diverse range of outputs which

are not explicitly derived from the input.

• Their output (or their operation) may give the impression of continuous

development.

• A degree of unpredictability and uncertainty lies in the functioning of

algorithms, or the results they generate.

The first characteristic may be seen as the most fundamental quality a genera-

tive algorithm must possess. The key to this characteristic is the consideration

of the diversity of a given algorithm’s output. Because all computer algorithms

“generate” output by manipulating the input, they can all be seen as “gener-

ative” without emphasizing diversity. Moreover, an algorithm must not solely

rely on its input to achieve diversity of the output. In other words, the capabil-

ity of producing a diverse output should be implicitly derived from the internal

design of the algorithm.

The second characteristic often refers to the type of generative system whose

operations are directed or goal-orientated. In other words, the behavior of the

algorithms is not random but carefully guided by functions which cause them to

work in certain ways. By using such guiding functions, generative systems are

capable of producing observable improvements or developments over time. It

is worth mentioning that the sense of continuous growth is usually the byprod-

uct of the generative processes rather than the direct result. In the previous

analogies of plants’ development and natural evolution, the notion of growth

is not explicitly specified in their abstract operation, but results from the in-

cremental accumulative changes the systems are capable of producing. Many

36

popular programming techniques in generative art are good demonstrations of

this characteristic. For instance, genetic algorithms produce accumulative re-

sults in order to deliver the optimized solution to a given problem. Furthermore,

the learning period in neural networks also depends to a certain degree on the

ideology of development.

The final characteristic stated may be further clarified by briefly discussing the

motivations of applying generative systems in creating works of art. There are

at least two common purposes: to resolve artists’ creative blocks18 and to create

novel results, which will amuse or surprise both audience and creator. Both of

these objectives require algorithms to produce outputs that are unanticipated.

In other words, generative systems need to have the capacity to create unpre-

dictable or even “creative” results. The unpredictability in virtual generative

systems can be achieved in a number of ways such as incorporating random vari-

ables, adopting probability analysis or through simple deterministic rule-based

systems. Evidence of the first two methods can be found in the typical design of

genetic algorithms, where the occurrence of mutation is typically governed by

random variables. Furthermore, the selection scheme in which chromosomes are

chosen to reproduce, is often carried out by probability analysis on the fitness

of individual chromosomes19. The third method relies on the vast number and

high speed of repetitive executions on simple rules to give the illusion of being

unpredictable. In other words, systems of this kind are essentially determinis-

tic but operate on a scale or frequency that is beyond human comprehension

or ability to forecast, and therefore appears to be unpredictable. Cellular Au-

tomata and The Game of Life are prime examples of this type of operation. A

more detailed investigation of various generative techniques will be the focus of

the subsequent section.

18In describing the project entitled Experiments in Musical Intelligence, David Cope pointed

out “I began Experiments in Musical Intelligence in 1981 as the result of a composer’s block.

My initial idea involved creating a computer program which would have a sense of my overall

musical style and the ability to track the ideas of a current work such that at any given point I

could request a next note, next measure, next ten measures, and so on. My hope was that this

new music would not just be interesting but relevant to my style and to my current work.”[8]
19The implementation of these two methods in genetic algorithms result in the exploration

of possible permutations and recombination on given elements and thus is able to create novel

arrangements.

37

It is worth stating that none of the three characteristics listed above should

be accounted for as the conclusive description of generative systems and pro-

cesses. They are simply judging criteria that should be considered together, or

in combination. Other ways can certainly be employed to define virtual gen-

erative systems. For example, Phillip Galanter proposed the use of complexity

theory20 to define and contextualize generative art[14]. Other approaches also

include considering the degrees of control that users might have over the sys-

tem. However, the characteristics identified in this section offer a universal and

unbiased framework in which all possible generative systems are included.

Algorithmic examples

Having examined the fundamental notions and characteristics of generative art,

common algorithmic techniques should now be presented, allowing a compre-

hensive and concrete understanding of its practice.

Randomization

The use of a pseudo random number generator (RNG) is no doubt the simplest

technique in generative algorithm design. While fulfilling the first and the third

characteristics stated above, randomization typically produces poor results in

achieving the impression of “development”. This downfall is rooted in the gen-

eral design and objectives of RNGs, which is producing unpredictable, and thus

disconnected outputs.

Randomization alone, is therefore not capable of generating aesthetically in-

teresting results. This is mostly because the output is so disorderly that no

perceivable pattern can be extracted. Therefore, the output can essentially

be considered as ‘noise’. Due to this, randomization is typically used in con-

junction with other algorithmic techniques. For instance, in combination with

20Complexity theory studies the intricate relationships between individual components

within a emergent system. Peter Coveney and Roger Highfield gave a illustrative account

of this new science discipline in their book “Frontiers of Complexity”[9]

38

conditional or relational statements, one can achieve a greater balance between

static patterns and noise.

Probabilistic

Probability is another common technique employed in generative system design.

Through statistical analysis, this type of algorithm achieves unpredictability in

the results it generates. Moreover, because the analysis is context dependent,

the output thus typically displays a more coherent sense of continuity than that

of randomization.

One of the most well-known techniques of this genre is perhaps the Markov

chain algorithms21. In this technique, the probable occurrence of a given event

against the event that precedes it, is calculated. A matrix, often referred to

as the transitional matrix, is then used to store such probability of occurrence

over all possible events in a given context. The transitional matrix can be gen-

erated according to the input of the algorithm in real-time, or from an existing

database of events. In the realm of artistic application, the Markov chain is

very useful in creating “variations” of data that all share a certain degree of

resemblance. Furthermore, this technique can also be performed with varying

degrees of complexity which govern such “resemblance” of data. This is achieved

by including more than one preceding state in building the transitional matrix.

In short, the probability methods allow variations to be produced against a

certain “theme”, expressed through probabilistic values. The “theme” could

be specified explicitly, or obtained from analysis such as the Markov chain.

Although these types of algorithms are capable of generating both diverse and

coherent results, they often lack perceivable development or progression over

time.
21Markov chain is a well studied and documented technique in the context of computer

music. see The Music Machine[34] by Curtis Roads for more detail

39

Nonlinear systems

Artists have long been fascinated by such types of systems because of their

chaotic behavior. A common property of this type of system is the sensitivity

to the initial condition or the input. This is commonly known as the ‘butterfly

effect’. The result generated can range from entirely predictable to seemingly

non-deterministically random. Furthermore, the transition between the two

states of output are hard to anticipate and control. For this reason, artists often

adopt this type of system for its “expressive” nature and the wide spectrum of

output it is capable of producing.

Although not directly related to formal chaotic functions, another common type

of nonlinear technique found in digital art is the use of positive feedback. Feed-

back occurs when the output of a closed system is directed back to its input.

A positive feedback means that the looped back output encourages the system

to further escalate and take itself away from its equilibrium. Similar to the

adaptation of chaotic functions, positive feedback is also liked by artists for its

rapid and dynamic nature.

Although this type of system is often desirable for its nonlinear nature in pro-

ducing diverse and unpredictable outputs, it is also notoriously hard to gain fine

control over. Thus, results derived from such a method are often dramatic, but

lack a well articulated structure and sense of progression.

Fractal

Fractal, in its broadest definition, describes a type of geometric shape which is

extremely fragmented, with each subdivision approximately or exactly identical

to its larger structure. This key notion in fractal is generally referred to as self-

similarity. Thus any level of magnification consists of approximately the same

degree of detail , and when compared, fractal is therefore often considered to

be infinitely complex. The shape of the coastline is a classic example of fractal.

Regardless of segment and scale from which the coastline is being observed, it

will always display a similar structure and shape.

40

The ‘self-similar’ quality is also what often attracts artists to adopt such tech-

nique. The use of fractal allows different scales of structures sharing the same

characteristics to be generated. This is highly desirable, as works of art often

consist of layers of structure requiring a degree of coherence for them to be

perceived as “meaningful”. For example, the MusiNum22 is a simple algorithm

that produces identical sequences of numbers when its output is read sequen-

tially or every second, forth, eighth number and so on. Such sequences can then

be mapped into musical notes and thus produce not just coherent melodies but

also harmonies.

It is worth noting that certain types of chaotic functions also relate to fractals

for the self-similar properties they both possess. The strange attractor found

in chaotic functions, for example, produces outputs that are fractal. Moreover,

it has been discovered that some chaotic functions contain higher order self-

similarity than that of fractal.

Modeling

Unlike previous examples, modeling based techniques are not entirely derived

from abstract mathematical theories and constructs. Instead, their origins can

be traced back to existing functional systems often found in the physical world.

In other words, this type of approach aims to mimic the behavior of existing

systems thus reproducing its capability in order to achieve certain design goals.

Evolutionary algorithms are a prime demonstration of this type of technique.

Although they further contain several branches of developments23 which are all

different in detail, they all aim to emulate various mechanisms or effects found in

natural evolution. The main interest of this approach thus often lies in achieving

an adaptive system that can “solve” specified problems in a given context with

minimal human intervention. For instance, the mechanisms of mutation are

22http://reglos.de/musinum/
23Subsets of evolutionary algorithms are such as genetic algorithms, evolutionary program-

ming, evolution strategy, genetic programming. Peter Bentley and Corne provided a com-

prehensive review of the artistic applications of evolutionary programming in his 2002 book

‘Creative Evolutionary Systems’[1]

41

frequently simulated to achieve greater dynamics in the output. The notion of

competitive survival is also often modeled to create “intelligent” agents where

their interactions display global emergent behavior.

Artificial neural networks are another good example. As the name suggests,

they are based on replicating the functioning of neuron cells in the brain of

living beings. Brains have the ability to accumulate past experiences and use

them to make new adaptations in problem solving. This therefore becomes the

main attraction of artificial neural networks. In other words, the aim is to create

adaptive learning systems that can produce solutions responding to the change

of conditions in the given context.

The adaptiveness and the goal-orientated heuristic behavior are often what at-

tract artists to employ modeling as means of creation24. In other words, they

are not only capable of producing a diverse range of outputs, but also display

a clear notion of continuous development. Furthermore, the characteristics of

this type of system can also give an impression of “purposefulness” when their

operation is under observation. This is a significant departure from the aimless

wander in the search space often associated with other types of systems.

This category of techniques are not only popular in their artistic applications,

they have also been the subject of extensive scientific studies and interests.

Research studies on this area often refer to it as ’Artificial Life.

Rule-based

The last approach of generative process relies on devising simple rules which are

to be executed at a vast scale or rapid intervals. The scale of operation often

plays a crucial part in the diversity and effectiveness of the end result. For this

reason, the simplistic nature in its design would usually require the execution to

exceed a certain measure in order to obtain a satisfactory result. In the artistic

context, the scale of operation can be measured through following two criteria:

first, the magnitude required for the system to reach a ‘dynamic’ state, and

24Early pioneers in this field are artists William Latham and Stephen Todd. They have

publish their collaborative effort in the book “Evolutionary Art and computers”[37]

42

second, spectators’ cognitive ability in predicting the behavior of the system or

even the underlying rules which govern it.

Cellular automata, or the ‘Game of Life’25 in particular, is a good demonstration

of the notion above. In the game of life, the state of a given cell is determined by

its surrounding neighbors26. For the system to produce aesthetically interesting

results, it would therefore require (A.) enough cells for their interactions to be

effective and (B.) executed in the scale for the dynamics of the system to be

observed efficiently.

Another well known algorithm of this type is called the Boids, or also known

as the swarm behavior algorithm. In Boids, simple rules27 that governing the

motion of an object are first established. These rules are then uniformly applied

to a collection of objects. As a result, a global effect that mimics the vivid

movement of bird flocks can be achieved.

The Lindenmayer system, also known as L-system, is also commonly mentioned

in the rule-based system. L-system specifies a set of rules28 in which structures

25Originally devised by British mathematician John Horton Conway in 1970
26The rules for Game of Life are:

1. Any live cell with fewer than two live neighbors dies, as if by loneliness.

2. Any live cell with more than three live neighbors dies, as if by overcrowding.

3. Any live cell with two or three live neighbors lives, unchanged, to the next generation.

4. Any dead cell with exactly three live neighbors comes to life.

27Proposed by Craig W. Reynolds in his paper entitled “Flocks, Herds, and Schools: A

Distributed Behavioral Model”[32]

1. Collision Avoidance: avoid collisions with nearby flockmates

2. Velocity Matching: attempt to match velocity with nearby flockmates

3. Centering: attempt to stay close to nearby flockmates

28A simple L-system rule can be described as below:

Variable used: A, B

Initial seed: A

Rules: A transforms into AB, B transforms into A

Results: A, AB, ABA, ABAAB, ABAABABA, ABAABABAABAAB ...

This simple rule produces the well known Fibonachi sequence.

43

can be developed. When applied with several iterations over an initial seed,

complex shapes and forms can be generated. To this end, L-system is frequently

used to produce structures that resemble the forms of trees and plants.

The underlying principle of a rule-based system can be summarized here: by

applying simple local rules over a network of objects or iteratively over an initial

condition, a diverse global behavior can emerge. In other words, the output of

this system is greater than the sum of its parts.

Conclusion

Following the examination of generative art’s fundamental concepts and the

investigation of various common techniques, a more concrete and methodological

perspective on its practice in the digital domain should now become apparent.

However, some issues surrounding its practice need to be mentioned.

The practice of creating works of art through formal procedures and systems ex-

isted long before the term ‘generative art’ was coined and used by contemporary

artists. As noted in the previous chapter, the idea of producing generative, ever

changing music was already present in ancient civilization. Traces of such an

approach in producing creative works can also be found throughout the history

of artistic development across the world. In the context of western art music

in particular, examples can be found as early as the 11th century by Guido

d’Arezzo29. Mozart was also known to have devised a “musical game” named

‘Müsikalisches Wurfelspiel’, where piano minuets can be composed from a chart

of small melodies and a series of dice throws. Modern composer Xenakis, is

often considered to be one of the early pioneers in exploring the territory of

music derived through the means of mathematical procedures. His book “For-

malized Music”[41], profoundly influenced the application of the probability

theory to the composition of stochastic music. More recently, various artists

and composers from the minimalism movement have also had a very procedural

approach to their works. Series of sculptures by Sol LeWitt and the musical

29By designating the five vowels to the notes of an ascending scale, d’Arezzo was able to

create musical melodies from a given text.

44

compositions of Steve Reich30 are particularly noticeable representations.

Referencing the two modes of practice previously identified, generative art can

therefore can be seen as a “combined” practice, consisting of established aes-

thetics and new contextualization in the realm of computer programming. In

other words, although generative art in the digital domain often has a strong

emphasis on developing customized creative systems, its origins by far precede

the popularization of digital art.

The significance of a given creative practice can often be measured by the unique

expressions and values it brings forward. For example, the atonal and serialism

movements in modern western classical music had a profound influence on the

practice of musical composition. It can be argued that, in the context of gener-

ative art, its original artistic vocabulary and perspective are elusive and often

vague. This is mostly because it shares much in common, both technically and

artistically, with different practices in digital arts. As a result, its definition and

relationship with others remains ill-defined.

This could be the most serious shortcoming in the current development of gen-

erative art. Its ambiguity could lead it to encompass other forms of practice,

which might, therefore, result in a lack of differentiation in the broader context.

On the other hand, its “inclusiveness” can lead to the misunderstanding of its

original focus and concern, and ultimately being misused or misinterpreted.

It is no easy task predicting the next stage of evolution for generative art. How-

ever, if its popularity continues and it is eventually adopted by the mainstream

practices, it would be extremely hard for it to take on a more consolidated po-

sition in order for a more concrete, clearly defined perspective and practice to

emerge.

30One compositional procedure Reich utilizes is called ‘Phase’, whereby identical musical

entities (rhythmic or melodic) and played against each other with a degree of offset in time. As

a result, these entities will oscillate between different stages of phase, thus creating complex

musical structure.[26]

45

2.2.2 Code as creative medium, Algorithm as instrument

The proliferation of computers in arts have also affected the necessary skills

required to operate and program them. In the early years, programming a

computer required a great degree of knowledge and effort. The languages31

used to program computers were hard to understand and master. Progressively,

modern computer languages began to be invented and adopted by more people.

Modern languages such as C32, were far less abstract, thus making computer

programming a much less demanding task. As a result, programming was be-

coming increasingly accessible and widespread. Today, not only are modern

computer languages still commonly used, many other new languages also ex-

ist and are specifically designed for real-time audio/visual manipulation in the

creative context. As a result, programming a computer to manipulate sounds

and images no longer requires years of training and a high degree of technical

knowledge.

For digital art practitioners, computer programming has moved away from be-

ing a highly knowledge-specific and abstract task, to being a widely accepted

and accessible activity. Artists write, exchange and share codes to further ar-

ticulate their creative expression in the digital domain. Computer codes have

thus become integral parts of their compositional practice.

The phenomenon of ‘code as composition’ has shaped contemporary digital art

practices in many ways. This section will attempt to investigate those changes

and examine their implication and effects. Based on the current relationships

between practitioners, computers and codes, it will hopefully highlight future

developments if such phenomena continue.

The investigation will begin with a global view to focus on changes in contem-

porary digital arts as a whole. It will then shift towards a more specific view

based on the perspectives of individual practitioners, examining how coding has

influenced their creative practice.

31For example, assembly language was used in early computer programming.
32C was invented by Dennis Ritchie in 1972 at the Bell Telephone Laboratories. It was

originally designed to be a general purpose, procedural based programming language.

46

Before proceeding any further, it is worth mentioning some examples of pro-

gramming languages that are now currently widely used by artists. This will

hopefully further clarify the term ‘computer codes’ in the context of this thesis

by presenting the following software.

• Pure Data Pure Data (Pd) is a real-time graphical programming en-

vironment for audio, video, and graphical processing. Originally devel-

oped by Miller Puckette and Co. at IRCAM. The core of Pd is writ-

ten and maintained by Miller Puckette and includes the work of many

developers, making the whole package very much a community effort.

http://PureData.info

Pd’s graphical programming nature makes it far more visually intuitive

to learn and program than the text based programming language. This

visual advantage and its user-friendliness make Pd very popular amongst

digital arts practitioners.

Furthermore, after years of collective development, Pd has now evolved

into a programming environment not only designed for sound manipu-

lation, but also for generating animations, processing videos, hardware

interactions and many other extended possibilities. Besides Pd’s user-

friendly interface, this versatile multimedia capability is also what makes

it very popular in the digital arts community.

• SuperCollider ”SuperCollider is an environment and programming lan-

guage for real time audio synthesis. You can write programs to generate

or process sound in real time or non real time. SuperCollider can be con-

trolled by MIDI, the mouse, graphics tablet and over a network via Open

Sound Control.” http://www.audiosynth.com

Unlike Pure Data, SuperCollider (SC) is a text-based programming lan-

guage. In other words, instead of programming through the visualizations

of interconnected objects on the computer screen, SuperCollider relies on

a more traditional approach where lines of text are written by the user to

define and manipulate sound. Because of this, SC is often described as

being harder to learn and master. However, being a text-based language,

47

SC is more powerful in many ways and offers more flexibility in certain

types of processing tasks.

SuperCollider is currently an audio only programming environment, al-

though hardware interaction and network communication capabilities are

available.

• Other graphical based languages

– Max/Msp (http://www.cycling74.com/products/maxmsp.html)

– VVVV (http://vvvv.meso.net/tiki-index.php)

– gAlan (http://galan.sourceforge.net/)

– audiomulch (http://www.audiomulch.com/info.htm)

• Other text based languages

– Common Music

– Jsyn/JMSL (http://softsynth.com/jsyn/)

– Csound (http://www.csounds.com/)

– Processing

– any languages that have Audio/Synthesis API or libraries such as C,

Perl, Python, Ruby, etc.

Changes in digital art

The technological nature of digital art often contributes to a wide spectrum of

disciplines ranging from art to science converging in its practice. Although this

multidisciplinary approach to computer-based art may be traced back to its

early years of development, it is further helped by hardware and programming

languages being readily accessible in recent years. This phenomenon can be

clearly observed in the academic environment where many of the traditionally

science-oriented institutions have begun to introduce creative elements in their

training and art schools, opening up to technology based courses and research.

This increasing emphasis on the multidisciplinary approach in digital art has re-

sulted in a diverse variety of collaborations and projects taking place in the field.

48

This not only helps to further perpetuate the practice itself, but also enables

practitioners to gain new perspectives on all the encompassing disciplines.

Because of the unique combination of art and science, the multidisciplinary

quality of digital art can have a more fundamental impact on the perception

of knowledge by society. Art and science are often seen at opposite ends in

the continuum of human knowledge. Art is inspired by creativity whereas sci-

ence demands rigor, facts and experiments. However, with a closer look, such

preconceptions are far away from the truth. Indeed, great artists are often

rigorous in their techniques and attention to details, while ingenious scientists

are highly creative in hypothesizing and proofing their discovery. With the

increasing diversity of artists, scientists and engineers engaging in digital art,

this could potentially dissolve this misconception. Such a unifying force is im-

mensely valuable not only in the advance of knowledge but also by bringing a

better perception of art and science to society.

Another major transformation in digital art is the change in the social context

to which it belongs. In other words, digital art is now also flourishing outside of

its conventionally associated institutional environment. Digital art is no longer

an artistic practice limited to a narrow sociological scenario.

The direct impact of such an increase of social backgrounds is that digital art

can now be seen, practised, exhibited and performed in a variety of locations

ranging from academic conferences33, artistic festivals34, local enthusiasts meet-

ings35to club nights36. Such an phenomenon prevents digital art from becoming

inaccessible and ultimately sterile, by providing many different scenarios for its

practitioners to showcase and evaluate their works.

Moreover, the increasing diversity of social outlets in digital art, may help the

overall practice achieve a better theoretical and practical balance. In other

words, theoretical developments may be evaluated and supported by practical

experiences gained from other social contexts. Similarly, practical productions

can be derived from cutting edge theoretical innovations.

33For example, International Computer Music Conference, http://www.computermusic.org
34For example, Ars Electronica, http://www.aec.at/en/prix/index.asp
35For example, Dorkbot meetings, http://dorkbot.org/
36http://www.perl.com/pub/a/2004/08/31/livecode.html

49

Lastly, the popularization of code as a creative medium also allows artists to

engage with programming at different levels. For some artists, code itself has

become as important as what it generated, and the process of programming is no

longer hidden away from the spectator. Therefore, the aesthetic has largely, if

not entirely, evolved around the structure, design, functioning and the intention

of the code and the process of programming.

In short, computer codes have provided an invaluable common platform for

practitioners of not only different professional disciplines, but also social back-

grounds to co-operate. This change meant that digital art as a creative practice

has grown out of its somewhat restricted early stage, into a more open and sta-

ble development. Furthermore, it also encourages the emergence of new kinds

of aesthetics and practice to further explore the relationships between artists,

codes and programming. Concrete examples of such a transition in the devel-

opment of digital art will be given in the following chapter of this thesis.

Changes in individual practices

Code as an artistic medium has changed the way individual practitioners con-

ceptualize and examine their creative works. For example, it has become in-

creasingly common for digital art practitioners, who write and develop codes,

to integrate different art forms into their creative works. In other words, the

conventional boundary which defines and separates different types of art forms

such as sonic and visual arts, are disintegrating through the use of codes. To

further understand this, it is worth taking a more detailed look into the possible

roles played by algorithms in the creative process.

Typically speaking, two types of algorithms are involved in the process of com-

position. First, algorithms that generate useful data which will be employed

to govern the structure of the composition. Algorithms of this type are disci-

pline independent- they merely produce abstract data that contain structures

and patterns. Second, algorithms which are capable of mapping and translating

data to produce the final outcome. Such types of algorithms are discipline-

dependent because they need to be programmed to deal with domain specific

50

parameters such as frequency, pitch and amplitudes of sounds. In short, algo-

rithms of the first type can be seen as “behavioral algorithms”, which influence

the global structure of the work, regardless of the art form and of the final

outcome. On the other hand, the second type of algorithms can be described

as “mapping algorithms”, which accept the structures given by the “behavioral

algorithm” and map them into a domain specific parameter.

Such concepts of “behavioral” and “mapping” algorithms could be further un-

derstood through the following analogy. In western classical music, to compose

music in the sonata form involves at least two criteria. First, a sonata is re-

quired to follow a relatively strict structural form - introduction, exposition,

development, recapitulation and coda. Within such a structure, a composer has

to obey all the relevant music theories such as timing and harmony in order to

materialize the sonata form into the final piece. It can be argued that the sonata

form, by itself, is abstract and does not carry any specific musical information,

it simply serves as a template, and can lead the audience to perceived a sense

of drama, progression and tension. The traditional ABA structure is a similar

example. In other words, it can be argued that structural strategies transcend

their musical context and can be applied to any other time-based art forms. On

the other hand, musical theories which govern the rhythm, melody and harmony

are strictly domain-specific and are not easily transferable to other types of art

forms. In short, “behavioral” algorithms are similar to the structural strategies

discussed above, whilst “mapping” algorithms reflect domain-specific knowledge

such as musical theories.

Traditionally, the notion of structural strategies and domain specific knowledge

and skills are inseparable in the practice of art creation. This is because prac-

titioners must start their artistic training by learning contextual skills, then

combining them with structural rules so as to produce works of art. Moreover,

contextual skills typically require extensive periods of time to practice and de-

mand tremendous dedication to acquire. For example, the process of mastering

a musical instrument or a type of painting technique is often a life-long affair.

Because artists are tightly bound to domain-specific skills, different types of art

forms remain fairly mutually exclusive to one and another. Indeed, artists of

51

a given artistic discipline may not easily transfer their skills to other art forms

due to their individual mode of practice.

However, codes as creative medium significantly increase artists’ ability to con-

ceptualize and express their work beyond such conventionally exclusive bound-

aries between various art disciplines. This is largely due to the fact that in the

digital domain, regardless of the art form practiced, the ability to program is

the one skill common to all practitioners and code itself became an universal

medium to all. This has allowed artists to create works that incorporate other

types of art forms previously not available to them due to the lack of appro-

priate “vocabulary”. For example, one could create works containing digital

sounds and images governed by the same behavioral algorithms. In short, pro-

gramming as a mode of practice encourages a lateral thinking that sees all art

forms as one in the digital domain, instead of isolated artistic disciplines. This

can potentially lead artists to the discovery of “meta-art” which encapsulates

all forms of art, thus revealing new understanding and the perception of art in

general.

Furthermore, through codes, artists have become more aware of other types of

artistic disciplines and acquired knowledge about subjects that they are typi-

cally not familiar with. Such phenomena has also taken place when electronics

became readily available and musicians were eager to adopt and devise their own

electronic instruments. In order to do so, musicians not only had to understand

how traditional instruments were built, they also had to acquire the knowledge

of electronics, to implement their design.

As a result, for artists wishing to work with codes, it is foreseeable that apart

from their artistic development, especially in scientific and technology related

skills may become increasingly important and dominant. In fact, Xenakis once

pointed out “the artist-conceiver will have to possess knowledge and resource-

fulness in domains as varied as mathematics, logic, physics, chemistry, biology,

genetics, human science, and history- in short a kind of universality, but a

knowledge founded, guided oriented by and toward forms and architectures”[33]

In short, having the ability to learn efficiently as well as balancing between

technical possibilities and their artistic intent would become the key criteria for

52

digital artists.

End note

This part of the thesis has provided a comprehensive overview on the current

practice of digital art. Moreover, it has also outlined some ongoing trends and

their surrounding issues. The development of digital art has certainly come a

long way since its early days. As the world of computing technology continues

to evolve, digital artists will no doubt embrace such advances in both hardware

and software,whilst exploring new territories.

One example of such a territory can be found in the increasingly high band-

width wireless network connectivity. Through wireless connection, artists have

already begun experimenting with the ways this could be utilized in the creative

context. Independent media streaming, network data visualization/sonification,

collaborative real-time performances and distributed computing are just some

of the themes which have received extensive interest from artists.

Moreover, the increasing memory capacity of storage devices also allow artists

to create works consisting of greater details and complexity. The introduction

of high-definition video hardware and format is a prime example. Other tech-

nological advances such as multi-core architecture and powerful hand-held or

miniaturized devices, are also attracting many artists’ keen interest.

2.3 Free and Open Source Software

The Free and Open-Source software(FOSS) movement has gained increasing

awareness in the public eye and in the mass media in recent years. This is largely

due to the fact that many FOSS projects have focused on achieving convenient

packaging, distribution and installation systems, leading to the rapid expansion

of its user community, to include the non technical users. Moreover, FOSS has

evolved to support not only an extensive range of legacy hardware but also a

range of cutting edge and highly specialized systems. This has allowed FOSS

to be seen and used in a wide range of situations and applications. Finally,

53

because of both the quality and innovations in many of the FOSS projects,

they have been deployed and used to provide critical services in institutions and

enterprises on a large scale.

All of the above reasons combined, have contributed to FOSS becoming an

increasingly dominant force in the current computing industry. The perception

of FOSS has dramatically changed from originally an isolated movement in the

early years to being embraced and highly recognized by several key figures of

the industry today. Furthermore, FOSS is now also being also being supported

at a governmental level by many nations across the globe.

The impact of such a revolutionary movement can also be observed in the field of

digital art. Like its effects in other domains, the influence of FOSS transcends its

technical nature. FOSS’s ideology also profoundly affected various sociological

aspects in the field. For instance, it has influenced artists to establish alternative

methods to co-ordinate activities, exchange ideas and distribute works of art.

Before the relationship between digital art and FOSS can be further examined,

it is necessary to investigate various aspects of the FOSS movement. The aim

of this section is therefore to achieve a comprehensive understanding of FOSS.

This part of the thesis will provide both a historical account of the movement

and its ideology. It will also identify and discuss several of the current issues

linked to the widespread use of FOSS.

2.3.1 Terminology

As Free software and Open-Source software are two distinct movements but have

much in common, these two terms are often used interchangeably. However,

this is misleading and can potentially lead to incorrect interpretations. For this

reason, two terminologies have therefore emerged to allow them to be mutually

addressed and referred to. They are: FOSS(Free and Open-Source Software)

and FLOSS(Free/Libre and Open-Source Software). In this Thesis, the term

FLOSS will be employed in the discussions on the subject. FLOSS was chosen

because it is the least ambiguous term of the two, as “libre” denotes the meaning

54

of free as in freedom, not cost. The differences between free software and open-

source software, however, will be presented and clarified in the sections to come.

2.3.2 Ideology

Like any influential movements, FLOSS is derived from and built on a set of

principles which are set up and followed by its community. These ideologies can

be identified as below:

• Freedom in software

• Mutual collaborations

• Resource sharing

• Voluntary and distributed efforts

Freedom in software may be seen as the central ideology FLOSS rests upon. It

essentially sets the starting point for the subsequent elements of the movement

to be derived from. The ‘freedom’ in FLOSS include the use, modification,

distribution and redistribution of software and its source codes37.

The demand for freedom symbolize the fundamental objection to any external

factors limiting users’ right in software. As a result, this ideology is often seen

as the most radical and hard to understand part of FLOSS.

37The free software definition (http://www.gnu.org/philosophy/free-sw.html) provided by

the Free Software Foundation are:

• The freedom to run the program, for any purpose.

• The freedom to study how the program works, and adapt it to your needs. Access to

the source code is a precondition for this.

• The freedom to redistribute copies so you can help your neighbor.

• The freedom to improve the program, and release your improvements to the public,

so that the whole community benefits. Access to the source code is a precondition for

this.

55

FLOSS believes that its progress should be propelled by mutual collaborations,

rather than direct competition. In other words, cooperation is the key notion

in its development model. Such a view can arguably extend beyond the domain

of software, and can be applied to other contexts of human activities, even to

society in general.

FLOSS also considers that the resources of the community should be shared to

allow a free flow of information and knowledge. In other words, duplication of

works is generally discouraged, just as any factors which may contribute to it.

This is because FLOSS recognizes that human resources and efforts are valuable

commodities, which should be devoted to novel contributions, not replicating

efforts or maintaining complex systems which limit others’ freedom. As a result,

individuals can focus freely on their original accomplishments, built on the works

others have achieved previously. This has allowed FLOSS as a whole to evolve

in a very efficient and vibrant manner.

FLOSS generally considers the software development process a voluntary affair.

Software developers and users contribute to the improvement of a given program

on a voluntary basis. The FLOSS model of software development is therefore not

influenced by external factors such as commercial pressure. Precisely because

of this, the production and maintenance of software can be driven solely by

innovation and its usefulness to the community. Such an ideology has led to

many outstanding FLOSS projects to emerge and flourish in the computing

industry.

Furthermore, this ideology allows the effort of development and maintenance to

be evenly distributed. This has brought several advantages to software devel-

opment in FLOSS. First, survival of FLOSS projects does not solely rely on a

few individuals. Secondly, the evolution of a software is flexible and agile. In

other words, branches of a given software can easily be created to suit a partic-

ular purpose, and the divergence can be consolidated later on to unify all the

changes.

56

2.3.3 Historical accounts

The Hacker culture

The exchange and sharing of software and their source codes can be traced

back to the hacker culture among university computer laboratories during the

1960s. At this time, personal computers were not yet invented, and the use of

computers was based on users sharing the time and resources of a centralized

computer, also known as the ‘main frame’ computer. Because of this, a sub

culture began to emerge, which derived from lab member’s fascination with

computer programming and spending long periods of time writing software and

exchanging codes, to demonstrate and further improve their skills. The word

‘hackers’, by its original definition, therefore refers to people who gain enjoyment

and take pride in creating better programs or improving software written by

others. One of the most well known location of the hacker culture at this time

was the artificial intelligence lab at MIT, led by the renowned computer scientist

and artist Marvin Minsky.

The main fascination of early hackers was not entirely derived from the notion

of programming but more from the construction and understanding of formal

systems. Programming simply provided the means by which hackers could build

and manipulate such logical constructs. It was a common practice for hackers

to immerse themselves in technical manuals to gain insight into the functioning

of a particular hardware/software system in order to improve its efficiency.

Because hackers were strongly motivated to acquire technical information, the

culture as a whole developed to have a very liberal approach towards the distri-

bution of knowledge. As a result, it was generally discouraged to restrict access

to resources and information. In many cases, hackers felt “obliged” to unlock

information -with necessary means- so that others could access it.

It was extremely unfortunate that the mainstream media later misinterpreted

the term “Hacker” by associating with it the increasingly common criminal

offenses in cyberspace38, which were unrelated to the original hacker culture.

38These criminal acts typically involves the illegal intrusions of computer systems over the

57

For this reason, the term “hacker” now often has negative connotations in the

public eye, whereas the liberal attitude towards knowledge and the motivation

in achieving technical brilliance failed to be recognized by the media.

One of the reasons which contributed to the original hacker culture having a

strong sense of community and such a liberal philosophy, is the “gift culture”

embedded in its practice. To gain the acceptance of peers or to increase one’s

reputation, one would have to make contributions to the community, either by

creating useful programs or by solving an existing problem. In other words,

through the exchange of ‘gifts’, one’s skill is verified by the peers whilst respect

within the community may be accomplished. This ‘gift economy’39 system was

dominant throughout the hacker culture and can still be observed in today’s

FLOSS movement.

Author Steven Levy in his 1984 book[21] provided a detailed historical account

on the original hacker culture and its surrounding technological and sociolog-

ical issues. Levy had formalized -and possibly first used- the term, “Hacker

Ethic”40 as a set of principles which hackers value and follow. These principles

described by Levy still find their context in the current FLOSS movement and

are recognized by its practitioners.

The original hacker culture gradually ended during the 1980s. It was largely

Internet. Media such as Newsweek and CBS new started using the term “Hackers” in reference

to these cyber criminals in the early 1980s.
39Although the gift economy model has commonly been used in explaining the economic

foundations of FLOSS, its shortfalls and alternative approaches have been suggested by au-

thors such as Steven Weber[19].
40Levy[21] identified the hacker ethic as the following:

• Access to computers - and anything which might teach you something about the way the

world works - should be unlimited and total. Always yield to the Hands-on Imperative!

• All information should be free.

• Mistrust authority - promote decentralization.

• Hackers should be judged by their hacking, not bogus criteria such as degrees, age, race

or position.

• You can create art and beauty on a computer.

• Computers can change your life for the better.

58

due to the fact that commercial companies, based on releasing proprietary soft-

ware, began to emerge and become successful. Hackers hired by such companies

were prohibited from exchanging information under non-disclosure agreements.

Market pressure created by the increasing popularization of personal comput-

ers further restricted the sharing of source codes, and by this point, software

had become a commercial commodity. Furthermore, since computer programs

were now products companies relied on for financial gain, it was also forbid-

den to copy and redistribute them without authorization. In other words, both

the programs and their source codes changed from being tools and knowledge

belonging to the public domain, to commodities corporations traded for profit.

GNU and Free Software Foundation

In the effort to preserve the original hacker culture after it began to diminish,

Richard Stallman initiated the GNU41 project and consequently the Free Soft-

ware Foundation(FSF). The goal of GNU is to produce a complete operating

system in which both the software and its source codes are free from commer-

cial restrictions. In other words, GNU gives back to users the freedom to study,

modify and share software. The free software foundation, on the other hand, was

originally aimed at facilitating the development, promotion and legal support

for the GNU project.

The main motivation behind both GNU and FSF is to protect the freedom in

software which were destroyed by the commercialization and the growth of the

computing industry. In other words, the establishment of FSF officially marked

the beginning of the free software movement, and the consequent development of

FLOSS. As GNU and FSF were aimed to safeguard and advocate the practice of

sharing software and codes, it can be agreed that FLOSS is deeply rooted to the

original hacker culture that once flourished inside of the computer laboratories

in university campuses. Because of this, Richard Stallman is often considered

as the last true hacker of the era.

In order to obtain a complete operating system, the GNU project consists of

41GNU stands for GNU’s Not Unix

59

a wide range of components such as software libraries, system utilities, compil-

ers, kernel and other programs. Amongst these GNU projects, a few of them

are particularly notable and played a crucial role in the development of GNU

and the FLOSS movement. Firstly, the GNU Compiler Collection(gcc) enables

programmers to compile their source codes into the final software. Second, the

GNU C Library(glibc) provides common functionalities which software can ac-

cess. Another prominent component of the GNU project is the GNU Emacs

text editor. Emacs is also one of the first software written for GNU. It is an

extremely versatile text editor which may be used for many tasks ranging from

programming, composing documents, reading/writing mails to browsing the In-

ternet.

The decision to produce emacs, gcc and glibc at the early stage of the GNU

project proved to be highly profound and strategic on Richard Stallman’s part.

It meant that programmers were able to produce software based on the tools

offered by GNU. This ability is critical because the resulting software are not

influenced by any commercial licensing methods. In other words, it enabled the

development of GNU to be completely independent from commercial software

tools and packages. As a result, the freedom in software were preserved.

The Free Software Foundation, on the other hand, provided an invaluable sup-

port -not only to the GNU project but also to the free software movement.

Founded in October 1985 as a non-profit organization, FSF had formalized the

freedom in software in which it aimed to protect, and legitimize these protections

in the form of the GNU General Public License (GPL). A countless number of

free software programs were subsequently released using GPL, thus setting the

standard in FLOSS.

Apart from the continuous work on the GPL in adapting it to the changes in the

software industry, other FSF activities also includes publications, on-line project

hosting, campaigning, and education to raise awareness of the free software

movement in the public domain. Moreover, FSF has also become established

outside of the USA, in Europe, India and Latin America. After over twenty

years of operation, FSF continues to be a dominant force in FLOSS and still

makes significant contributions to the free software movement. Many of the

60

GNU software projects still remain vital components to the FLOSS community,

being highly used and regarded.

Linux

After several years in the development of the GNU project, one critical compo-

nent that was still missing in Stallman’s quest for a free operating system was

a functional kernel42. Although much efforts had been made on GNU’s part to

produce such a kernel43, its development was slowed down by various licensing

and technical issues. In 1991, A Finnish graduate student in computer science

at the university of Helsinki named Linus Torvalds released a unix-like kernel

as free software under the GPL.

Linux was derived from a hobby project which Linus created to enable him

to connect with the university terminal remotely from his Intel 386 personal

computer. Linus quickly realized that several of the components44 in this hobby

project resembled many key features required by a kernel. He therefore switched

the focus of the project to a different direction.

Perhaps the single most important decision Linus had made in the early stage

of Linux is allowing anyone to have access to its source code via the Internet

and consequently contribute to its development. Because of this, it was not only

worked on by Linus but also by several other people who had found the project

interesting. The developer and user community grew fast as Linux became

increasingly stable and useful. Another significant decision taken by Linus was

the compatibility between Linux and GNU software45. This meant that Linux

would immediately gain its functionality when combined with software tools

from GNU. Because of this, Linux has adopted the GNU General Public License

since the release of its version 0.11 in December 1991.
42Kernel refers to a critical component within a operating system, its main purpose is to

assign system resource, such as cpu, memory and I/O, between all programs
43GNU Hurd, http://www.gnu.org/software/hurd/hurd.html
44For example, a task switcher, file-system, etc.
45More precisely, the common compatibility between Linux and GNU is due to the fact that

both are Unix compatible.

61

The combination of GNU software collection and Linux kernel finally yielded a

completely free operating system. Linux filled in the last missing piece of the

GNU project. This combination had become so popular that the term “Linux”

is often used to refer to the entire GNU/Linux operating system instead of just

the kernel itself.

Besides its technical contribution to the free operating system, Linux also demon-

strated a different model of software development and social collaboration that

is both highly productive and controversial at the same time. Unlike its GNU

counterpart, Linux’s development process is typically more frantic and appar-

ently chaotic at times. Although both GNU and Linux rely on open community

in software development, GNU’s methodology is often described as being more

goal-oriented and rigorously designed. Such contrast in the model of develop-

ment was clearly highlighted by author and software developer Eric S. Ray-

mond in his well known essay entitled “The Cathedral and the Bazaar”, which

he later published as a book under the same title[31]. Although the validity

of Raymond’s arguments in the essay are debated, notably by writer such as

Nikolai Bezroukov46, they nevertheless pointed out how the method of collabo-

ration had evolved from that of GNU by Richard Stallman to Linux with Linus

Torvalds.

Despite the debate around the methodology between FSF and Linux, there is

no doubt that the contribution of both FSF and Linux transcends the realm

of software design and distribution. In other words, they offered a different

approach in which collaborations could take place, which embraces both freedom

and the community. In fact, it can be argued that the sociological outcome and

effects demonstrated by GNU and Linux far exceeded their original context, and

such methods of collaboration and distribution started being applied to other

fields of social activities.
46Bezroukov had addressed his response to Raymond’s view in papers such as “A Second

Look at the Cathedral and the Bazaar”[3] and “Open Source Software Development as a

Special Type of Academic Research (Critique of Vulgar Raymondism).”[2]

62

Open Source Initiative

In 1998, several influential members47 in the free software community began an

initiative in which the term “free software” was replaced by “open source”48.

Consequently, the Open Source Initiative(OSI) was formed in the same year to

facilitate and encourage the transition. In the same way as the role of FSF in

the free software movement, OSI maintains the official open source definition

and provides certification systems for licenses49 meeting its requirement.

The main reason behind such change is that the free software community had

started to receive increasing attention from corporations with potential com-

mercial interests. Open source advocates felt that in order for the free software

community to progress into a new era and benefit from it, a less ambiguous and

neutral term was needed, as neither interpretations of the word free was suitable

in the corporate context. Free as in no costs, would give the false impression

of being not profitable, whereas free as in ‘freedom’ carries strong social and

political undertones.

The changes from free software to open source proved to be a success in the com-

mercial world. Key figures50 in the existing computing industry began to adopt

to the open source movement, and several companies51 were formed within the

open source community that later became influential and hugely profitable52.

This also resulted to some significant changes in the original free software com-

munity. The original free software movement therefore being no longer marginal-

47The key figures includes Todd Anderson, Larry Augustin, John Hall, Sam Ockman, Chris-

tine Peterson and Eric S. Raymond
48The original call to the community urging the change of terms can be seen in the following

URL: http://www.catb.org/ esr/open-source.html
49St. Laurent offered an comprehensive introduction to various licenses within FLOSS in

his book entitled ‘Understanding open source and free software licensing’[20]
50for example, Netscape had released the source code of its web browser “Navigator” using

open source. Companies such as IBM, Dell and Hewlett-Packard had becomes increasing

supportive of open source in the recent years
51Companies such as RedHat and Novell are derived from within the free software commu-

nity
52Technology journalist and author Glyn provided an compelling documentation on the

relationship between GNU, Linux and Open Source movement during this critical period in

his book ’Rebel Code’[24]

63

ized and isolated, new relationships were formed between the community and

industry. Moreover, the commercial success dramatically raised the awareness

of the initiative in the mainstream media and general public in a very short

period. The movement therefore benefited and was further developed from this

recent popularization.

In many respects, the initiation of the open source movement is based more on

a strategic rationale than on the continuation of certain ethical beliefs derived

from the FSF. In other words, the aim of open source is to take advantage of

the current external interests and develop it in its favor. Although the strategy

had clearly paid off, some side effects can also be observed due to the nature of

the movement.

One of the side effects of this transition is that the adoption of open source

has often been based on mostly economical and practical reasons for individuals

and enterprises. In other words, the freedom in software that both the hacker

culture and the free software movement once cherished had become less valued

and recognized. Moreover, the free software movement has at times even been

misunderstood and sidelined. This is especially noticeable in the context of the

mass media where open source is presented without mentioning or acknowledg-

ing of the free software movement that preceded.

2.3.4 Free software and Open Source

The ideologies and activities of the original free software movement and the

open source initiative have much in common. However, some subtle differences

do set them apart. Despite disagreements between the two movements being

minor, the implications have nevertheless been significant. This is because their

changes occurred at a very fundamental level.

The main emphasis in the free software movement were the ethical issues sur-

rounding users’ freedom in software. FSF addresses the injustice in the use of

software in society and attempts to remedy such inequalities by means of devel-

oping the GNU project and promoting the use of GPL. In other words, the free

software movement had a strong social and political concern behind its technical

64

achievements. The goal of the free software movement was clearly identified to

reclaim and promote freedom in software for users.

The open source initiative, on the other hand, had a much more practical start-

ing point. OSI believed that the proliferation of open source software should

be based on its technical merits and its development model. OSI’s practical

approach also remained self evident in its strategic departure from the free soft-

ware movement. Because of this, ‘freedom in software’ in the context of open

source is used as a means to obtain the best possible software, rather than the

goal itself.

The interpretation of freedom caused the two movements to develop their own

values, which separated them distinctively. This difference in values was ad-

dressed succinctly by Stallman in his essay53. He pointed out, “For the Open

Source movement, non-free software is a suboptimal solution. For the Free Soft-

ware movement, non-free software is a social problem and free software is the

solution”. Through software, the free software movement address higher ethical

issues in relation to intellectual property. However, it is often criticized for its

progressive and at times naive approach. On the other hand, although the open

source movement has been successful in recent years, its pragmatic methods has

sometimes resulted to corporations taking advantages of the open, collaborative

community.

While both FSF and OSI continue to be actively involved and cooperate against

proprietary software, they are now generally referred to by using the term

FOSS(Free and Open Source software) or FLOSS(Free/Libre and Open Source

software). This not only acknowledges both their achievements but also allows

a generic term where they can be mutually included. With the increasing pop-

ularization of FLOSS, it is important to not misunderstand the free software

and open source as one - they are two separate movements, and the distinctions

between them are clear.
53Free Software Free Society[36], page 55

65

2.3.5 Current FLOSS climate

The success of FLOSS has brought changes to the movement. Moreover, its

influence is extending further outside the domain of software development and

distribution. One such change is the shift of concerns from developers’ perspec-

tives to that of the users’ experience. Two factors contributing to this transition

can be identified. First, because of the increasing awareness of FLOSS among

the general public and mainstream media, more non-technical users have been

drawn into adopting FLOSS. In other words, FLOSS’s user community has

expanded significantly to include users of all abilities, and has now reached a

critical balance between software developers and normal users. Second, since

FLOSS had already proved its technical advantages over the past years, a change

of development to focus on users experience would be required to reach a wider

audience. Because of this, FLOSS developers on the one hand need to start

adjusting to the changes in the nature of its user base and on the other hand,

providing solutions enabling FLOSS to become more accessible to the general

public.

The most noticeable example of this shift is perhaps the release of a GNU/Linux

distribution named “Ubuntu” in October 2004. Ubuntu’s main goal is to make

the use of GNU/Linux operating system as straightforward as possible. In other

words, one can install, maintain and perform various tasks without substantial

technical skills. Although such attempts have been made by other modern

GNU/Linux distributions, Ubuntu is by far considered as the most successful

effort to date. Another example of a FLOSS project that is hugely endorsed

by the general public is the Mozilla Firefox web browser. Since the release of

version 1.0, FireFox has now become the second most widely-used web browser.

It is estimated that it has more than seventy million users world wide.

Other recent changes in FLOSS also include the development and support for

hand-held devices such as mobile phones, media players and gaming consoles.

Fueled by the advances in miniaturized computing technology and wireless con-

nectivity, personal electronics have become highly demanded in the market

place. Many manufacturers54 therefore started to adopt FLOSS as the op-

54One of the most well known mobile phone manufacturer, Nokia, has produce a entirely

66

erating system for such products. In some cases, devices were developed with

strong emphasis on the FLOSS integration. For instance, companies openly

embrace individuals wishing to write software and perform customizations for

the product55. In other words, manufacturers are now attempting to adopt not

just the software but also the open methodology of FLOSS into various aspects

of their products.

This change has highlighted the proliferation of FLOSS from its conventional

usage in servers and desktop computers to the next generation of smart personal

devices. This would enable FLOSS to be deployed in a wider range of contexts

whilst allowing all supported platforms to communicate. As a result, users can

not only benefit from a unified software environment but can also encourage

innovative uses of FLOSS.

Another noteworthy example involving FLOSS is the ongoing OLPC56 (One

Laptop Per Child) project. Led by MIT media lab and several key figures57 in

the technology industry, the aim is to produce fully functional laptops at very

low cost. They will then be distributed for free to children worldwide, especially

focusing on those in developing countries. OLPC therefore hopes to minimize

the technology divide in the future in the world by giving children the opportu-

nity to access knowledge and communicating with one and another. Features of

these laptops includes high-resolution color screen, audio input/output, wireless

connectivity and extremely low power consumption. GNU/Linux was naturally

selected as the operating system for the device, so to achieve long term sustain-

ability, as well as low production cost.

The effect of FLOSS can also be observed outside of the software and computing

context. As mentioned previously, the underlying collaborative methodology

of FLOSS has brought forward a successful alternative to social activities in

general. Its gift economy based culture which values distributed community, re-

Linux driven hand-held Internet Tablet in 2005. This device (Nokia 770 Internet Tablet), has

gained much popularity since then and a second version was release in early 2007
55A South Korea company, Hampers Holdings, produced a Linux based hand-held gaming

console named GP2X. The company actively encourages users contribute to the devleopment

of game and software for the console.
56http://laptop.org/
57Google, News Corp, AMD, Red Hat, Brightstar and Nortel

67

source sharing and voluntary efforts, provides an efficient backdrop where great

accomplishments may be made. This is a stark contrast to the conventional

model of cooperation based on profit and rivalry.

One of the most notable influences of this kind may be found in the phenomena

of the on-line knowledge database called “Wikipedia”58. As the name implies, it

is a combination of the word “wiki”59 and “encyclopedia”. Its aim is to create a

wealth of knowledge through voluntary editing and peer review. The database

of information created can then be freely accessed and referenced. To date,

wikipedia contains millions of information entries and exists in many different

languages. Following the success of Wikipedia, many similar projects followed,

each serving a different and specialized content.

Social activities such as wikipedia also highlight another important aspect of

distributed collaboration. Because of its open structure, participants generally

contribute to the work in progress according to their ability and expertise. As a

result, a high quality and standard of the overall work can be achieved without

centralized management and task assignment.

Apart from the model of collaboration, the FLOSS’s approach to licensing has

also been exported outside the realm of software. The establishment of the Cre-

ative Commons(CC)60 in 2001 is the most recognizable attempt of this move-

ment. Through a series of customizable licenses, author/artists could release

any creative content enabling others to modify and redistribute it freely. In-

stead of the “All rights reserved” limitations imposed by the conventional use

of copyright laws, creative commons allows “Some rights reserved” and encour-

ages the fair use of any materials published under CC. Since the introduction of

CC, more and more artists and institutions are adopting this type of licensing

methods. This can be seen through the amount of creative material already

accumulated and freely available on the Internet61.

58http://wikipedia.org/
59Wiki is a type website that allows the visitors to easily edit and change available content

on the page
60http://creativecommons.org
61For example, archive.org hosts a wealth of creative content licensed under CC thus make

them freely available

68

With the success of projects such as wikipedia and Creative Commons, this

approach of releasing and managing information is now generally referred to

as “open content”, following the analogy of “open source”. Apart from the

examples given above, the promotion of open content can also be observed

in the context of academic publishing62 and scientific data base63. Moreover,

independent journalism is another sector which has been heavily affected by this

phenomena, also known as Indymedia.

In short, FLOSS’s influence on decentralized, distributed collaboration method-

ology may be observed in increasing aspects of social activities, some of them

having yielded highly positive results.This approach has also had a huge impli-

cation in the context of contemporary digital art.

2.4 FLOSS Digital Art

A growing number of artists have been adopting FLOSS and an intimate rela-

tionship between their work and FLOSS can often be noticed. In other words,

the merging of FLOSS transcends its practical implications and affects certain

fundamental aspects of artists’ practice. The general raising of awareness of

FLOSS can obviously account for such a phenomenon. However, other reasons

have also partly acted as catalysts in this alliance between artists and FLOSS.

The adaptation of FLOSS can be seen as a natural progression due to its suc-

cessful development model and ideologies. FLOSS meets the demands of digital

artists in providing innovative software tools, which are thus compatible in the

practical context. Moreover, many of the principles in FLOSS closely reflect

ideologies in art practices. This is most noticeable in the shared emphasis on

the notion of collaborative works in a decentralized and open environment. As

a result, the bond between artists and FLOSS also extends to the philosophical

context.
62Formally known as Open Access (OA), http://en.wikipedia.org/wiki/Open access
63One example of Open Access scientific database is called GenBank, in which

a large database of genetic sequences is maintained and made publicly available.

http://en.wikipedia.org/wiki/GenBank

69

The similarity between digital art and FLOSS can also be found in each of their

current status. Digital art has grown out of its academic environment and has

moved towards becoming a mainstream artistic discipline. At the same time,

FLOSS has evolved from being a sub-culture - also originating from academia

- to being publicly recognized and endorsed. In other words, they are both

gaining popularity and undergoing critical changes brought by such transition.

More and more artists are taking up the practice of digital art, exploring and

defining the boundaries of art in the virtual domain, whilst the general public

has become evermore familiar and informed with works of art expressed in the

digital form. Having reached critical mass, FLOSS’s popularity and implication

is expanding exponentially, and the FLOSS community needs to address the

surrounding issues to navigate this turning point.

This section therefore aims to examine the connections between digital artists

and FLOSS. It will hopefully point out the contributing factors unifying them.

The investigation will take into consideration the practical and ideological con-

text, to observe the complementing elements and the similarities between them.

It will also attempt to provide evidence to prove that their alliance has more

advantages than with proprietary software.

2.4.1 Model of analysis

As software tools become an indispensable part in the practice of contemporary

digital artists, an intimate dependency can therefore be found between artists

and software. Software could significantly influence one’s creative practice in

almost every aspect. For instance, the capabilities of software have a direct

impact on the limitations of what can be achieved by artists. Obvious technical

constrains aside, software also affects other more subtle and implicit aspects of

the practice.

In order to examine various aspects of FLOSS in the digital art context, the

relationship between artists and the software they use needs to be understood

methodologically. This thesis proposes a method of analysis following the de-

velopment of software and how they are employed by artists. This model of

70

investigation therefore consists of the components below:

• The development

• The production

• The outcome

The development simply means the process of software being created. The

word ‘software’ in the context of this analysis can have two meanings. First, it

can refer to a program that is ready to be used by artists. Secondly, develop-

ment tools such as programming languages and libraries are also considered as

software. Regardless of which of the two reflect a particular practice, the key

notion is to clearly highlight the part of software production and maintenance

that artists are not responsible for - be it a complete program or the design of

some computer language.

The production symbolizes the activities and interactions between artists and

software. Different levels of interaction lead artists to have different roles.

Artists could either be users of a given software, where works of art are based

on the artistic use of such programs, or they could also be authors of a creative

software. In a such scenario, the artful execution and design of codes become

modes of creation.

The outcome is the end result produced by the combination of the two elements

above. It recognizes the differences in forms that the end result may have and

hence takes form. For instance, the outcome could be a static visual rendering

or a recording of artists’ conception. It could also appear as a software package

expressing the artists’ creative design. In the current context, the main interest

is to identify what is produced by artists from their creative processes.

One important factor highlighted by this method of analysis is the relationships

between artists and software in different stages. From the initial creation to

the final result, it follows a top to bottom direction. Artistic practices, in this

model, are therefore represented by the link between production and outcome.

This also highlights the hierarchical nature in this model. As a result, any

71

changes occurring at the top would have significant effects on the consequent

layers below. However, this does not necessarily mean that artists would be

aware of the impact and influences caused by the software development. In

other words, although not strictly part of the creative practice, the relationship

between the development and the production layer is able to fundamentally

influence the way artists work.

2.4.2 Current software development method

Having introduced the model of analysis, it is necessary to evaluate the con-

ventional method of software production and usage according to the above cri-

teria. Currently, most software is distributed using a copyright license and

marketed as a commercial product. In other words, to use any copyrighted

software programs, artists are required to purchase a license. Once the software

is authenticated, the program cannot be re-distributed freely. In addition, the

software is only sold in the binary executable form, without its source codes.

This is because software companies safeguard the source files and use them to

gain commercial leverage. Despite it being the most common licensing method,

many issues and shortfalls can be clearly observed.

First, the interaction between the development and the production layer is rigid

and inflexible due to the copyright agreement and the commerce driven nature

of the software market place. This means that the ways in which software can

be legitimately used and obtained is strictly limited by the licenses purchased.

In other words, it does not encourage any other software outlets - which could

further extend its user base - to take place. Moreover, companies can potentially

exploit the popularity of their software and develop this into a market monopoly.

In this case the cost of license fees is likely to increase, whilst the customer will

have less influence and fewer options regarding the technology.

Secondly, as software programs are traded as packaged products, and users are

essentially customers of the software company, this allows the development layer

to dominate its relationship with the production layer. From the users’ perspec-

tive, such a relationship creates a problematic dependency. In other words, users

72

have almost no control over the implementation and the policies of the software.

For instance, users have no other choice but to accept the functionality of the

software and have limited influence on its future developments64. Furthermore,

there is no room for software customization and for adapting it to specific needs.

Thirdly, users only have access to the functionality of the software provided by

the software company. This is especially troublesome in the context of artistic

practice precisely because of its creative nature. Having a software tool with

capabilities fixed and predefined by a third party, significantly constrains the

possibilities in the practice itself. In other words, artists are limiting their

practice with the features of the software. Finally, artists very often have to

adapt their creative process according to the changes in the software used. For

artists, this introduces unnecessary external factors in the development and

shaping of their creative practices.

Finally, by using commercial software, the derived artistic works indirectly rely

on software companies for their survival over time. If a software company is

no longer operational or stops supporting a particular software package, any

derived works are most likely to be lost in time. With commercial software,

users are bound to the existence and the support of the software company for

their works to continue being usable.

These issues have demonstrated how the development layer can have a critical

and implicit influence on artists’ practices. They have also outlined serious

problematic areas in the current method of software production adopted by

the majority. The usage of software is therefore biased and strongly in favor of

companies producing them for commercial purposes, leaving artists with limited

or little creative freedom. It is therefore necessary to research into alternative

solutions.
64Although many software company pre-release BETA versions of a given software to se-

lected user groups for feedback and testing, such a method is often limited in terms of the

number of users able to take part. In addition, the exercise is frequently time-consuming.

73

2.4.3 FLOSS as alternative

Before the investigation proceeds any further, one can outline some criteria that

a better software development model should fulfill:

• The new model should encourage flexible use of software with regards to

its distribution and re-distribution.

• The new model should allow artists to influence the future design and

development of the software.

• The new model should enable artists to customize the software tools ac-

cording to their practice.

• The new model should ensure the longevity of the works produced with

the software.

Fortunately, what the new model suggests is already present as the FLOSS

movement. As stated previously, apart from permitting free distribution of

both the program and its source files, the development model is governed on a

voluntary basis. Because of this, FLOSS allows a new kind of relationship to

emerge between software developers and artists. The differences quickly become

apparent using the same analysis model above.

Because FLOSS has removed the conventional copyright restriction, the rela-

tionship between the development and the production layer has become much

more flexible and fluid. For instance, the usage of software tools is only de-

termined by their availability, rather than by licenses. This means artists can

simply obtain programs from the Internet and use them as they wish. As a re-

sult, software tools proliferate quickly in the artists’ community and programs

are no longer traded as commercial products. Moreover, as the development

layer in FLOSS consists of independent programmers collaborating via global

networks, this approach is generally more liberal and democratic. This differs

from the bureaucratic and hierarchical atmosphere typically found in commer-

cial software production environments.

74

The elimination of the ‘for-profit’ commercial element in software development

has had a more profound effect. The absence of software company means that

developers and artists are able to communicate directly without interference.

This allows for programs to be produced more rapidly and truthfully reflect

the users’ demands. The success of a given software is therefore measured by

the size and activities of its user community, rather than by the commercial

outcome. In order to increase the user base, developers have to make software

reflecting the real needs of users, instead of implementations that are potentially

more profitable.

In other words, FLOSS restores the inequality of the conventional user-developer

relationship. Moreover, users may later become members of the developers’

community. Such a notion is highly attractive from both users’ and developers’

perspectives. As users become developers, they are able to further influence the

future changes in the given software. And as the developers community expands,

tasks are more efficiently shared, thus achieving higher productivity and quality

of codes, which in turn attracts more users. The user-developer attraction in

FLOSS is an extremely powerful concept. This can generally be recognized as

a positive feedback process with increasing returns, in which the accumulation

of one factor helps the growth of another, thus further benefiting itself. In this

context, the feedback process takes place between users, developers and the

software produced. This makes the development process an open ended system

guided by both users and developers. Although commercial software companies

also have the means of complying with user feedback, the process, however is

typically less transparent and flexible.

One of the effects of such a mutual collaboration between developers and users

lies in producing a stable and robust software with collective debugging. Tra-

ditionally, the debugging process is governed by employed programmers with

limited attention and concern for the specific software. In FLOSS, every user

can potentially take part in debugging and testing the software. Consequently,

the larger the user base, the more human resources can potentially be devoted

in making the software stable. Thus, by removing the commercial elements

and introducing mutual communication between users and developers, FLOSS

75

allows innovative, stable and flexible software to emerge.

By releasing the software specification and source codes in the public domain,

the survival of FLOSS-derived work is not dependent on the original maintainer

of the software. In other words, if the original author of the software stops

supporting the development, others can still maintain the software. Moreover,

other programs can also adapt to the open specification of FLOSS software,

which would provide additional compatibility to further guaranty the longevity

the works produced.

The advantages of FLOSS fulfill both the practical and conceptual demands

in the context of digital art. As a result, FLOSS has become an increasingly

attractive solution for many practitioners.

2.4.4 Practical example

The following section will provide an example to demonstrate the contrasting

effects on the artists community between the closed, proprietary software and

FLOSS. This example will use two widely employed software programs called

Max/Msp and Pure data. They are very closely related to each other in their

functionalities and therefore generally have the same target users, thus making

them particularly suited for such comparison. Despite being proprietary soft-

ware, Max/Msp has adopted the strategy of encouraging sharing resources and

exchanging information within its user base. As a result, many artists highly

value this community effect of Max/Msp and an increasing number of creative

proprietary software now also follow this methodology. This comparison would

hopefully point out that although Max/Msp mimics various characteristics of

FLOSS, it would nevertheless still inherit the underlying issues of proprietary

software.

Because Pure data is a FLOSS project, its development is not centralized and

dictated by a few. This enables any capable artists/programmers to work on the

current release of Pd and contribute to its improvements. As a result, various

aspects of Pd such as hardware support and external libraries far exceed its

counterpart. More importantly, artists are able to modify Pd from its source

76

codes to suit their needs, or even create different branches specializing in certain

functionalities. The development possibilities of Max/Msp, on the other hand,

are strictly limited by the company producing it. Although Max/Msp allows

its application programming interface65 to be publicly available, artists and

programmers can at most only build external libraries, but not modify any core

components.

From the users’ perspective, both Pd and Max/Msp may at a first glance give

similar impressions: both programs have an active user community and regularly

exchange information in the form of mailing lists or on-line forums. However,

this is also where the similarity ends between these two software. Although the

emphasis on community generally has a positive effect on Max/Msp’s users, it

can also be argued that artists are led into a false sense of creative freedom. In

other words, users are only allowed and encouraged to collaborate within certain

limits66. This implication of user community is hugely different from that of

Pure data. This demonstrates that despite the effort in introducing the values

of FLOSS into proprietary software, the intrinsic problematics of closed source

projects still persist, and merely become more ambiguous for users.

Despite the limitation of Max/Msp, its proprietary nature has had some ad-

vantages - most noticeably in the forms of software packaging, documentation

and the sophistication of the graphical user interface. However, as Pd reaches

a wider range of potential users, more developers are available to bridge such

gap.

2.4.5 Conclusion

In reality, digital artists often feel the need to use several different types of

software to fulfil various creative tasks. The practical advantages of FLOSS

thus quickly becomes apparent. The innovative nature of FLOSS means that

65API is a source code interface that a computer system or program library provides in

order to support requests for services to be made of it by a computer program.
66For instance, users are encouraged to develop Max/Msp external objects by using its

public closed source API. Because of this, users are not able to customise their code beyond

the capabilities defined by the API, as well as the inner workings of the program

77

artists are more likely to find available programs meeting their specific demand,

or alternatively they could easily create customized tools. Also, because of the

common practice of open standard and compatibility in FLOSS, artists may

utilize such quality to have a collection of software tools which all work and

communicate with one and another to enhance the overall functionality. As an

example, all programs running on the GNU/Linux operating system follow cer-

tain conventions in design. For this reason, they can all be used in combination

through a common scripting language67. In other words, common standard and

compatibility contributes to FLOSS tools being extensively customizable. The

more configurable software tools are, the more possibilities can be explored by

practitioners to perfect their work.

Another crucial advantage of FLOSS arguably lies in its hardware support.

For instance, a multimedia installation work typically involves elements such

as computers, electronics, sensors and sound/light emitting instruments. As a

result, coordinating these devices demands highly extensive and capable tools

to control all the elements. It is not uncommon for FLOSS tools to run on

almost any computer platforms. They cannot only be used on the latest PC

hardware but also on more ‘exotic’ platforms such as recycled computers, hand

held devices, game consoles and embedded systems. As a result, practitioners

are able to carry out their designs on almost any devices within their reach.

In short, it is the flexibility and accessibility that sets FLOSS apart from com-

mercial software. Although proprietary software tools offering such an extent of

flexibility may also be found, they tend to involve high costs and require very

specific types of hardware and software setups that may be harder to obtain.

For this reason, FLOSS evidently exceeds its counterparts as a practical solution

for artists.

Conceptually, freedom of expression is central to any of the creative practices,

and digital arts is no exception. It is most crucial that the medium and the

tools that artists employ allow them to fully express their artistic concerns. Al-

though any creative apparatuses always have physical and practical limitations,

no restraints should be imposed on their usage. In other words, artistic appara-

67Generally known as the bash script.

78

tuses should be used freely within their design limits. In the digital art context,

computers are the physical instruments which have design limitations such as

processing speed, physical dimensions and memory size. Although artists can-

not create works exceeding such physical constraints, they should however be

able to use the instrument in any way they wish within the limitation of the

hardware.

With commercial software, such freedom of expression is illusive and intangible.

Commercial software may have extensive features which are seen as having

great capabilities. However, the limit can clearly be observed after one has

exhaustively learned or used the software. In other words, artists are bound to

the given features of commercial software to produce their work. FLOSS, on

the other hand, has no such restrictions on the usage of software. Artists are

free to explore the possibilities of FLOSS software and are able to redistribute

any derived works. Moreover, freedom of expression embedded in the FLOSS

model also encourages artists to experiment and innovate in order to further

extend their practice.

In conclusion, FLOSS is highly compatible with digital art practices. FLOSS

provides a stable and sustainable platform on which artists can build their works.

In addition, FLOSS also enables artists to fully explore the possibilities in their

practice by giving freedom to their creative needs. As a result, many FLOSS

tools have been highly successful and widely used in the artists’ community.

Pure Data, is one of such example. If the success of FLOSS continues in the

digital arts realm, it is foreseeable that it will become a mainstream solution in

the future.

79

Chapter 3

Activities

3.1 Introduction

While the previous chapter provided a detailed investigation into digital art and

FLOSS, the aim of this section is to document some of the current activities in

the research context. It therefore has two purposes: to provide factual, ongoing

examples supporting the discourse of the preceding chapter, and to produce

an accurate record of the current affairs related to this research. The former

will hopefully bring greater coherence and clarity to the overall thesis, whilst

the latter will contribute to the subject areas with detailed documentation that

future researchers may use as a source of reference.

This part of the thesis will begin by presenting various artistic collaborative

groups, followed by several individual projects and finally present events such

as conferences, festivals and exhibitions. This should encompass a wide range

of practices and social scenarios in FLOSS digital art, for it to be representa-

tive. All documented activities were selected according to the criteria set in the

previous chapter. In other words, they must coincide in the context of digital

art with a strong focus on the ideology and adaptation of free and open source

software. Most importantly, they must be currently active and evolving.

Being a mixed mode research with an emphasis on the practical aspect of the

80

personal creative practice, this chapter therefore primarily relies on first hand

experiences as the main source of knowledge. It acknowledges some possible

limiting factors in the information gathered. For instance, it has a restricted

geographical context within UK and continental Europe. This is the result of

both the physical location and the scope of the artistic practice this research

is derived from. However, the practice’s active involvement in the context of

FLOSS digital art in Europe would nevertheless allow the documentation to

reflect to the ongoing development in the field.

3.2 Collaborative groups

As both the FLOSS movement and artists value the effects of mutual and de-

centralized community, collaborative groups seem to be a natural habitat for

digital artists who choose to adopt the FLOSS ideology. They work together,

either physically or virtually, and share information and resources with each

other. In other words, not only is technical knowledge being exchanged, so are

artistic concerns and ideas. Moreover, they are also able to receive constructive

criticisms within the collective. A typical trait of this type of artistic community

is a rich dynamic on social and professional levels. For this precise reason, such

a collaborative environment is usually captivating and thought-provoking, and

is arguably an ideal backdrop for creative practice.

In recent years, these kinds of collective groups have been spawned all over Eu-

rope. They are typically independently formed, mostly without formal support

from institutions or related authorities. As a result, they generally have a more

“grass roots” and spontaneous characteristic than other forms of social outlets

in digital arts. Some of these groups have distinct geographical bases, whilst

others exist in cyberspace. This section will present a selection examples of

some FLOSS digital art collectives in Europe.

81

3.2.1 Goto10

Goto101 is a non-profit organization founded in 2003 by Aymeric Mansoux and

Thomas Vriet in Poitiers, France. The original goal was to produce regular

and local alternative electronic music events. These performances invited both

regional and international artists to showcase their works and engage with the

local community. As young university students make up a large part of the

local population in Poitiers, these events gradually generated much interest and

thus proved to be popular. Goto10 quickly realized the potential of extending

these performance programs, with workshops for artists to demonstrate their

practices, and more importantly, to create hands-on learning opportunities for

members of the public interested in digital art. These workshops also became

successful, and were organized alongside the regular performance events. In

this respect, Goto10 has successfully met the cultural demand for such kinds of

activities, and thus created its own local community centered around contem-

porary digital arts. However, at this time, FLOSS was not an exclusive part

of Goto10’s operation and philosophy. This was evident by the content of their

workshops, which occasionally included proprietary software such as Max/Msp.

Goto10 has evolved significantly from the very beginning, these series of events

are still being held regularly, and now also include an annual festival devoted to

FLOSS and digital art.

Goto10 began to broaden its horizon in 2004 to feature a network of interna-

tional artists as its core members. This effort symbolized Goto10’s keen interest

in taking on an active role in the artistic context. It therefore began to produce

projects devoted to the development of various aspects of digital arts. Within

this group of artists, strong affection for, and interest in the free software move-

ment was the common characteristic shared between them. For this reason,

FLOSS became the central principle in Goto10’s ideology. In other words, not

only are artists devoted to the FLOSS movement, the organization in general

also has adopted an eager voice to advocate the use of free software in the con-

text of technology related art practices. Since 2004, Goto10 began to establish

itself in the field of FLOSS digital art in Europe. Goto10 and its members have

1http://goto10.org

82

actively collaborated, as a collective, with other similar groups and has now

become recognized amongst its peers.

Having the two distinct parts - curatorial and artistic - co-exist and complement

each other, was one of the main intentions in extending Goto10’s activities

On one hand, Goto10 engages with the local community by organizing regular

events, which makes FLOSS and digital art ever more accessible. On the other

hand, Goto10 experiments with technology via the projects it supports, which

provide an essential platform for artists to innovate and create. The combination

of these two elements creates a dynamic balance between reaching new audiences

and developing creative technology. Moreover, it also makes the works of Goto10

respond realistically to the needs of the community it serves. For instance,

software projects may be taught and tested in its workshops, with any feedback

then possibly being used as an evaluation to guide their future developments,

thus also preventing them from being inaccessible to the artists.

For the artistic part of Goto10, being able to present their work through the

collective is an important element. In other words, artists are able to join forces

and distribute their works in a unified manner. This is crucial in many aspects:

It enables artists to have a more focused outlet for their activities, thus achiev-

ing a greater impact. This can significantly increase the sustainability of each

individual artists’ creative practice. For this reason, Goto10 artists generally

work under the identity of the collective, rather than as separated individuals.

This ideology also contributes to building strong ties between artists, thereby

creating an intimate and trustworthy atmosphere amongst them. This commu-

nity effect can be clearly observed between them, as they consider the works

achieved as a collective to be greater than the sum of its parts. Furthermore,

through Goto10, artists are able to express their ideas and conceptions more

effectively and succinctly.

The artistic section of Goto10 currently consists of thirteen members. In con-

trast to its curatorial part, the artistic practices of Goto10 do not have a physical

location: these artists reside in different parts of Europe, Canada and Asia. Col-

laborations and communications are achieved both via Internet channels such

as a mailing-list and IRC. Artists also maintain an on-line repository system to

83

host various elements of their projects and source files, thus vital information

can be effectively exchanged and become available for others. Goto10 also aims

to assist other FLOSS artists - who are not members - by allowing them to have

access to its resources. Internet based services such as web hosting, repository

and streaming are a just few examples of what Goto10 offers.

Goto10 recruits its artists through the process of informal recommendation by

existing members. Following the majority’s opinion, a new position can be cre-

ated democratically. In addition, there is an internal mailing-list through which

these artists can communicate. Although Goto10 artists have active collabo-

rations with other practitioners in the field, certain aspects of its operation,

such as organization and development, remains confidential to its members. In

other words, it draws clear policies in defining relationships with others. This

approach allows the internal planning and discussions to be more focused and

effective, without any unnecessary interference.

Having a geographically distant group of artists has also helped Goto10 to ex-

tend its reach outside of south western France. As its members often also work

within their local artistic community, wherever they may be, this frequently re-

sults to Goto10 related events being at a local level. Thus the original objective

to engage with local communities is further realized through virtual collabora-

tions between Goto10 artists. As a result, small local communities which closely

relate to Goto10, have started to emerge in cities such as London, Glasgow and

Cologne. The blend of physical and virtual communities has proved to be hugely

beneficial to the development of Goto10. The adoption of such an approach is

perhaps one of the most significant decisions that Goto10 made from the very

start.

Another aspect that distinguishes Goto10 from its counterparts lies in its ap-

proach to organization and in achieving goals. In many respects, Goto10 has

clearly defined objectives, which have effects on both its internal structure and

external perception. Although relationships between artists are often casual,

the principles which they value are generally strict and precise. As a result, the

collective has developed a somewhat uncompromising quality in its works and

in its association with others.

84

In short, Goto10 is a growing collective built on many contrasting characteris-

tics. This can not only be seen in its activities, but also in terms of its policies

and practices. These qualities prevent it from being sterile and produce the

dynamics required to propel the organization even further.

3.2.2 OpenLab

OpenLab2 was founded by artists Dave Griffiths and Chun Lee in London,

in late 2004. The frustration of having no physical social opportunities for

London based FLOSS artists was the initial motivation behind the creation of

the OpenLab collective. Despite the effectiveness of communications over the

Internet, they both felt that the experience of being able to meet and interact in

real life should not be missed. For this reason, the main goal of OpenLab is to

provide an informal social meeting place for FLOSS inclined artists to converge

and collaborate.

After the initial announcement of OpenLab, local artists responded with a high

level of interest, and informal meetings thus started taking place. A series of

meetings and discussions eventually led to the production of the collective’s

first public event consisting of an evening of live performances the following

April. Since then, more events, including workshops, open demonstrations and

exhibitions, have been organized by these artists. The size of the collective also

increased as more artists in the capital learned about OpenLab through these

events.

One of the fundamental philosophies of OpenLab, as its name suggests, is that

all aspects of the collective are open and accessible by anyone. In other words,

OpenLab attempts to apply the same ideologies of FLOSS into its function-

ing and organization. Instead of software development, these ideologies are

now being applied to coordinate participating artistic practices, so that they

may collaborate effectively. For instance, OpenLab’s web page is a wiki, which

means that anyone is able to edit its content. Furthermore, it also has a pub-

lic mailing list where artists are free to register and post messages. All this

2http://openlab.pawfal.org

85

aims to facilitate and encourage dialogues between artists and thus mutually

influences the progression of the collective. This open policy, has to a large

degree, contributed to the informal and relaxed atmosphere between its artists

and the character of the group as a whole. This characteristic of OpenLab has

significantly influenced many aspects of its operation and development.

Following this ideology, any artists wishing to be involved with OpenLab can

simply subscribe to its mailing-list , or contribute to its wiki page, to participate

in the discussions and activities. In other words, OpenLab imposes almost no

restrictions to its membership. The only criteria is the awareness and interest

in FLOSS and its surrounding issues. For this reason, OpenLab has attracted a

wide range of artists from different cultural and social backgrounds. University

lecturers, graphic designers, programmers and students are just some of the

professions found amongst the members of OpenLab. This policy constitutes a

vibrant dynamic in its community and often brings contrasting perspectives to

the group.

Another important ideology of OpenLab is its geographical emphasis. It believes

that certain aspects of social experience are hard, if not impossible, to convey or

achieve through virtual communications. For example, being able to practically

demonstrate works and present ideas in front of peers allows the interactions

between artists to be more immediate and personal. Social gatherings such as

local Linux user groups and the well known dorkbot meetings all serve a similar

purpose to OpenLab.

Like other FLOSS artistic collaborations, the advocacy of FLOSS movement is

also one of its main objectives. However, it often has a less progressive approach

in achieving this goal. OpenLab allows FLOSS ideologies to be propagated

through its practice. Instead of strategically promoting FLOSS so that its effort

can be maximized, it focuses on setting up examples and providing helpful

environment to attract other practitioners. As a result, the effects achieved are

comparatively subtle and informal.

Currently, there are approximately fifteen London based artists actively involved

in the organization of OpenLab. The main methods of communication, besides

86

physical meetings, happen on the IRC channel and the mailing list. At the

time of this writing, there are ninety subscribers on its mailing list. The topics

on the mailing list range from practical arrangements to discussions concern-

ing various technical and conceptual issues. OpenLab has also made alliances

with other local groups and organization which share similar interests and ob-

jectives. For example, OpenLab has, from the very beginning, been associated

with the dorkbot meeting in London. Besides these local groups, OpenLab also

enjoys collaborating with other collectives that are based remotely. Goto10 for

instance, has always been particularly close to OpenLab and has co-produced

events in the past.

In 2006, OpenLab branched out to other cities and countries such as Glasgow

and Portugal. Attracted by the success in London, these new OpenLabs at-

tempted to apply the same ideologies to other remote locations. Whether or

not these undertakings will achieve the same result yet remains to be seen;

however it proves to a certain extent, that its original concepts and philosophy

also met the needs of other practitioners. In late 2006, one more addition to

the existing OpenLabs was proposed and began to take shape near the city of

Milan, Italy.

One particular aspect of OpenLab that has further progressed recently is its

autonomy. In the beginning, most of the arrangements and event proposals

were predominantly carried out by a few members. As more artists became

involved, further events and meetings have been organized by other members

taking initiatives. In other words, OpenLab started to further fulfill its original

goal, which was allowing dialogs and collaborations between its members to

be freely and mutually formed without centralized leadership. As a result, the

collective has become more democratic through a self-organizing manner. This

transition is significant as it further increases the sustainability of the collective’s

practice and ideologies.

The last substantial OpenLab event, openlab#3, took place in a south London

gallery in November 2006. This was a week long exhibition with two perfor-

mance evenings on the opening and closing nights. It was the first time Open-

Lab curated an exhibition of such length. As a collective, OpenLab presented

87

a considerable number of works for the event - all created with FLOSS - and

generated considerable interest from local residents and artists. Alongside this,

the event also saw a number of new artists taking part in the exhibition and

throughout the organization. These new artists have later become active mem-

bers in the collective. It is particularly encouraging for a growing community

like OpenLab to see fellow practitioners taking keen interests in its work and

choosing to join forces with it.

3.2.3 Dyne

Dyne3 is a long running artistic FLOSS collective founded by Denis Rojo in

2000. It became a registered non-profit organization in 2005, which formalized

its activities. Rather than a group of individual practitioners, Dyne consists of

several smaller groups predominantly based in southern Europe. Members of

Dyne are deeply rooted in the hacker culture and can be traced back to various

local hacklabs across Italy and Spain. The FreekNet Medialab in Catania, LOA

hacklab in Milan, Metro Olografix in Pescara etc. are some entities involved

in Dyne. Dyne itself is not based on a specific physical location - it consists

of a network of artists and programmers who share the same ideologies and

collaborate in cyberspace.

One aspect which sets Dyne apart from its peer groups is its strong political

awareness. Its campaign for FLOSS in the context of art and media is largely

derived from the social and philosophical implications of freedoms in software,

rather than based on a practical and economical reasoning. For this reason, it

can be said that its approach has been heavily influenced by pioneering orga-

nizations such as the Free Software Foundation. In other words, free software

and the right to freedom are valued as a means to achieve a higher ethical order

in a technologically driven society. This similarity in beliefs has consequently

led to a close alliance between the two, and they have collaborated on many

occasions.

Dyne’s mission statement is described by its founder as the following: “Dyne in-

3http://dyne.org

88

tends to promote the idea and practice of open source knowledge sharing within

civil society by fostering research, development, production and distribution of

FLOSS based solutions: by opening the participation to online and physical com-

munities, leveraging democratic and horizontal access to technology and lower-

ing economic requirements for accessibility.”. To achieve this goal, Dyne clearly

defined three objectives:

• To produce software that runs faster and better on old computers, as the

possibility to recycle hardware is an important ecological issue we claim

legitimacy for all possible tweaking of electronic devices existing.

• To foster use of FLOSS in artistic creation: exploring new forms of ex-

pression and interaction, disseminating new languages that can be freely

adopted and modified, and ensuring everyone the long term conservation

of digital artworks.

• To ensure sustainability of FLOSS development especially for non-profits.

Since software is a socially relevant media, it should not survive solely on

the basis of merchantability.

Some interesting issues can be identified from the objectives above. The recog-

nition of outdated hardware as an ecological concern reflects strongly to the

“grass roots” approach of hacker culture. This hugely contrasts with many con-

ventional media organizations whose goal is to implement cutting-edge and often

inaccessible equipment. Dyne, therefore, consciously decouples the general mis-

conception between innovation and the use of latest technology. It believes that

the natural habitat for innovation lies in the wide dissemination and availability

of software tools. In other words, if a given program can be used more often, it

becomes more likely that it will be applied creatively to produce novel works.

Furthermore, the emphasis on various sociological subjects such as the sustain-

ability of FLOSS and the claim for legitimate hardware modifications, highlights

the activist undertone of the organization. This constitutes the group’s vigor-

ous and proactive character in following its principles. Like FSF, Dyne believes

that FLOSS is not merely an effective software development model, but could

fundamentally benefit modern society in general.

89

The most recognized contribution of Dyne lies in its software projects. Over

the years, it has produced a number of programs that have been deployed in

an extensive range of contexts. “HasciiCam” marks the first software project

of Dyne. It allows users to stream real-time video in the form of ASCII char-

acters. Artistic novelty aside, it has proved to be practical for streaming visual

images when bandwidth is limited. Under the same theme as media broad-

casting, “MuSE” is a program that mixes, encodes and streams sounds. Its

specifically aimed to help independent Internet broadcast to provide a practical

and user friendly solution. The most notable project of Dyne is perhaps the

“dyne:bolic” Linux distribution. Now in its second generation, dyne:bolic is a

portable and versatile GNU/Linux operating system that meets the demands

of media activists and artists. It provides some of the essential tools for multi-

media manipulation broadcasting, whilst keeping the system easy to use and

supporting a wide range of hardware.

Through its software projects, Dyne has accomplished a high degree of achieve-

ments. Users of its software include artists, broadcasters, journalists, researchers

and activists. As a result, works of Dyne can be seen in places such as art exhibi-

tions/performances, educational workshops and Indymedia events4. Dyne:bolic,

in particular, has been hugely successful, and is estimated to have distributed

over five hundred thousands physical copies world wide and has around five thou-

sands visits a day on its web site. From FLOSS technical reviews to mainstream

music production, dyne:bolic is frequently mentioned and featured. Moreover,

Denis Rojo has been working extensively with the Netherlands Media Art Insti-

tute (NMAI), producing software solutions for video streaming and manipula-

tion. as a result, NMAI is now becoming a formal patron of Dyne, which further

ensures the sustainability of the collective’s practice and accomplishment.

Software development aside, Dyne also serves as a platform on which collabo-

4The Independent Media Center (a/k/a, Indymedia and IMC) is a global network of in-

dividuals that consider themselves to be independent journalists and an alternative media

outlet which takes a generally left-wing perspective on political and social issues. It is closely

associated with the global justice movement, which criticizes neoliberalism, NAFTA, and the

World Trade Organization. Indymedia is centered on an open publishing process that allows

anybody to contribute.

90

rations can take place. This is clearly shown through the activity found on its

web portal. These events also represent the rich cultural dynamics within its

community. Hence, Dyne is not only a successful provider for innovative and

accessible technology, it is also an educational and artistic collaboration.

3.2.4 Bek

Bek5 is a regional center for electronic arts located in Bergen, Norway. It is

also a non-profit organization providing essential services to the local artistic

community. Unlike other artistic collectives mentioned previously, Bek has a

physical location which consists of workshop spaces, studios and other facilities

for artists to make use of. Additionally, Bek also offers various Internet-related

services to its members such as web hosting and mailing-list.

Although Bek predominantly accommodates local practitioners with a sustain-

able working environment, it also frequently undertakes international collabo-

rations with artists abroad. In other words, there are two strands in Bek’s main

activities. The first one provides a social space with necessary means, free of

charge, for local artists to produce their work. This aspect of Bek is particu-

larly popular amongst young artists and art students in Bergen. The kinds of

creative practices which can be seen in this part of Bek, are mostly multi-media,

technology related art disciplines ranging from digital sound/image manipula-

tion to customized electronic installations. The second aspect of Bek’s activity

is an annual FLOSS digital art festival held in Bergen, which attracts a network

of active artists, programmers and hackers to showcase their works and ideas.

This has resulted in the flourishing of an artistic community derived from this

festival, with many initiatives taking place virtually. In this context, Bek serves

as a central hub for remote artists and their efforts to converge. Projects and

discussions are co-ordinated through the festival and the community behind it.

Whilst the first type of Bek’s activities does not necessarily focus on advocat-

ing the FLOSS movement, the latter part, has eagerly and pro-actively taken

a stance in the promotion of FLOSS ideologies in the digital arts context. In

5http://www.bek.no/

91

this virtual community, led by Bek, many software projects have been sug-

gested and produced. In the last few years, the main focus of this collective

has been to develop a series of software solutions specifically aimed to address

issues surrounding real-time video manipulation. Compatibility between exist-

ing software, unification of video specification and video streaming methods are

some of the key topics that are being tackled. LiViDO6 (Linux Video Dynamic

Objects), for instance, is a video application programming interface that aims

to provide simple method to create video processing plug-ins which can be used

by multiple software packages. VideoPiping7, on the other hand, was created to

enable the supported software to share video data thus allowing them to network

and achieve complex results. As this collective consists of several contemporary

leading figures in video processing software development in Europe, the collab-

orations undertaken by these artists and programmers are likely to significantly

determine and set the standard for future developments in the field.

One unique aspect for Bek is that it is supported by the Norwegian Council

for Cultural Affairs and the Municipality of Bergen. This has given Bek vital

stability in its operation. Such sponsorship is crucial in keeping Bek’s practice

sustainable, not only for its internal organization but also for projects and ini-

tiatives depending on it. For this reason, Bek has been a dominant and stable

force in the field of FLOSS digital arts in northern Europe.

3.2.5 Mediashed

Mediashed8, an organization led by a group of media artists aiming to encour-

age the practice of “free-media”, was the first collective of this type to emerge

in eastern England. It was initiated by Mongrel, an internationally recognized

digital arts group, in 2005. From Mediashed’s perspective, free-media encom-

passes a variety of contexts ranging from recycled hardware, publicly available

information and FLOSS. In other words, any accessible mediums which could

empower individuals’ creative freedom are advocated. Furthermore, Mediashed

6http://www.piksel.org/Livido
7http://www.piksel.no/pwiki/VideoPiping
8http://www.mediashed.org/

92

has clearly defined the basic principles and ideologies behind free-media:

• Its a freebie - doesn’t cost much, especially to the people who need it most

and can afford it the least.

• Its a low cost tool because it makes use of public domain Free and Open

Source Software (FOSS) and recycles freely available old equipment, waste

materials and junk.

• Setting one free by giving the ability and confidence to do things for oneself,

promoting independence, self-reliance and the exercising of free choice.

• It is media that is open, transparent, unrestricted and outside proprietary

controls, so one can freely change it, rewrite it or rebuild it to suit oneself.

• Supporting the free exchange of ideas and opinions to help build a more

democratic society.

• Free and available to help when one needs support, advice, is looking for

someone to collaborate with or just an informal discussion.

Unlike other FLOSS groups which associate “free” with being the freedom in

software, it is clear that Mediashed relates to such a term in several different

ways. The low cost interpretation is particularly noteworthy. As the majority

of Mediashed’s work focuses on the underprivileged areas within the local com-

munity, economical influences are therefore a significant factor. In other words,

a freely obtained illegal copy of a popular proprietary software may be more

valuable and useful to individuals than FLOSS that is technically alienating.

Mediashed actively acknowledges this circumstance and aims to present FLOSS

and related knowledge in a accessible manner.

Conventionally, the low cost economical aspect of FLOSS is seen as the byprod-

uct of its liberal characteristics in software development, and is therefore not

a primary concern. Richard Stallman has addressed the distinctions between

freedom in software and its economical costs on numerous occasions. However,

despite FLOSS’s general emphasis on the principles of freedom in software, the

93

first and often most obvious effect encountered by new users of FLOSS often is

derived from the economical advantages. Thus, Mediashed shows its pragmatic

approach by consciously embracing both aspects - philosophical and practical -

of FLOSS.

Economic interpretations aside, Mediashed also identifies “free” at a more per-

sonal level. As technologies become evermore complex, they are often incom-

prehensible to the majority of the public whose daily lives are already reliant on

them. This scenario is problematic, as individuals retain less and less freedom

against imposing technology. By becoming more knowledgeable, one may gain

further independence and freedom of expression.

One of the prime examples demonstrating the free-media practice of Mediashed

is entitled “Video Sniffin”. In this project, local youth were taught with the

skills to make inexpensive electronic devices which allowing them to gain ac-

cess to video signals transmitted by the local wireless CCTV cameras. As a

result, they were able to locate cameras which could be later used for producing

scripted films. With these devices, the local youth were able to experiment with

accessible technology, whilst allowing them to better articulate their opinions

through the footage produced.

Mediashed’s activities include producing workshops, project hosting and facil-

itating its members with necessary means to realize their ideas. It pays par-

ticular attention to its relationship with the public and its contribution to the

local community. This is made evident by the keen interest in engaging younger

members of the public to allow them to discover their surroundings through

free-media, thus improving the quality of life in the area. Furthermore, many

of Mediashed’s projects examine various political issues in public technologies

such as wireless Internet connection and surveillance infrastructure by applying

them in a creative context.

The practical approach of Mediashed can also be noticed in its strong bond

with other regional collectives such as the Linux user group and other local

societies which focus on a wide range of activities from poetry to music. By

joining forces, these network of collectives form a strong voice in the cultural

94

development of the area.

3.2.6 Folly

Folly9 is a not-for-profit digital arts organization located in north England. It

provides a wide range of services both locally and on-line. Through produc-

ing workshops, exhibitions and performances, Folly engages with both regional

artists and local residencies. It also has a web portal which hosts a variety of

content from interactive Internet art, media broadcasting to knowledge based

blogs.

Like other organizations, the creative use of technology in a sustainable manner

is central to its ideology. Folly therefore materializes this principle through its

digital arts related consultancy services to individuals and independent busi-

nesses. Naturally, FLOSS plays an vital part in the solutions it offer to its

clients. In other words, Folly delivers FLOSS as an effective and empowering

means to support not only creative activities, but also daily administrative op-

erations within emerging artistic practices. As a result, areas such as project

management, infrastructure design and web hosting are included in its consul-

tancy service.

3.2.7 Access Space

Established in 2000, Access Space10 is the first free media lab in UK. Its success

is largely due to the unique combination of employing FLOSS and local recycled

computers to achieve the necessary technical infrastructure for it to be opera-

tional. Using this model, Access Space has set a prime example of building a

sustainable and resourceful community without raising any capital for hardware

and software.

Access Space consists of a physical location in which anyone is free to visit

and take part in its activities. Furthermore, participants are encouraged to

9http://folly.co.uk
10http://access-space.org/

95

take initiatives and make use of the equipment available to them. From simply

making use of the computers to proposing projects and workshops, Access Space

is very much led by its participants in a self organizing manner. Physical location

aside, Access space also provide hosting services to artists and enthusiasts. To

date, it hosts over two hundreds web domains, which consists of more than

seventeen thousand on-line documents.

Currently in its seventh year, Access Space remains an active and valuable

contributor to FLOSS and digital arts. For instance, it will host a live coding

conference and festival in July 2007. It will be the first event of its kind in UK

and possibly worldwide. The conference 11 will invite many of the renowned

artists in the field to present and demonstrate their work.

3.2.8 Summary

The artistic collectives mentioned above represent an active development in

FLOSS digital arts. These independent groups consequently form an intercon-

nected social network between them, in which expertise and resources are fre-

quently combined and shared. Such a model of collaboration has enabled them

to work closely with one and another, thus further perpetuating the movement

as a whole. Furthermore, they have also provided successful examples for artists

who are keen to adopt FLOSS in their creative practice. For this reason, an

increasing number of new media labs and groups following this ideology have

been established.

The manifestation and benefit of FLOSS ideologies may be seen on many levels

amongst these digital art groups. As individual artists, the collective environ-

ment provides the opportunity to exchange ideas and skills, allowing them to

strengthen their creative practices. For instance, critical feedback through peer

review is invaluable for artists not only in examining their works objectively,

but also in relating their practice and views to others. The FLOSS principles

are also materialized in the open relationships between organizations, enabling

them to work together, rather than against each other, to contribute to the

11http://livecode.access-space.org/

96

advances in FLOSS digital art. For this reason, groups of different nature and

characteristics are able to work together effectively, and fully utilize their indi-

vidual abilities. Moreover, self-organizing characteristics can often be observed

in the coordination amongst these groups, thus further reflecting the original

FLOSS culture.

The emergence of these groups also highlights several noteworthy factors. The

geographical origin of these collectives meant that the combination of FLOSS

and digital art is not only established but is also indeed becoming an emerging

practice throughout Europe. The examples presented above include the UK

and a large part of Europe ranging from the north to south. This geographical

wide spread of ideologies and aesthetics is remarkable, given that the FLOSS

art movement is still young compared to other contemporary artistic disciplines.

Moreover, there is a wide range of contrasting characteristics and approaches

between these groups. For example, some of them exist entirely in the form of

virtual communications, whilst others have strong physical bonds to the local

community they belong to. The methods used in promoting their ideologies

also hold some significant differences. On one hand, some collectives adopted a

casual and relaxed approach, whereas many others have a more formal and, at

times, more political voice.

This contrast of characteristics is particularly apparent between Goto10 and

OpenLab, which makes them an interesting comparison. Many aspects of

Goto10’s organization for instance, are more rigorous then OpenLab’s. Issues

such as group objectives, internal communications and project planning are gen-

erally precisely defined and thus its members have clear roles and focus within

the community. OpenLab however, is somewhat spontaneous, which largely de-

pends on its members making initiatives to manage various aspects of the group.

As a result, Goto10 is typically more strategic and eager to achieve its goals,

whereas OpenLab is inclined towards a rather moderate approach. One con-

tributing factor to this difference may lie in the very nature of these two groups.

Goto10 aims to promote FLOSS ideologies through the works it produces and

supports. For this reason, many aspects of its organization have to be carefully

thought through and executed, so that works produced can be exposed to a

97

wide audience. OpenLab, on the other hand, intends to advocate free software

by creating social occasions which follow and practise the principles of FLOSS,

thus providing a mutual environment for participants to communicate with each

other.

However, the contrasting qualities of these two groups in many ways comple-

ment each other’s activities. Whilst Goto10 focuses on the development of its

projects, OpenLab provides a casual and informal context in which initial in-

terests and feedback may be obtained. Furthermore, the emphasis on a local

artists’ community in OpenLab allows Goto10 to utilize its regional resources

for activities such as workshops. As a result, these two collectives have enjoyed

a close working relationship since 2004. This demonstrates how FLOSS artist

groups, despite their differences, can collaborate and develop further.

Political awareness is another diverse attribute in these collectives. Groups

such as Dyne and Mediashed consciously address several sociological issues and

aim to improve existing cultural circumstances with necessary changes. This

approach has much in common with other contemporary activist movements

with different ethical concerns. As a result, these FLOSS artistic groups are

often closely associated with developments in media activism, and at times,

identify themselves in a broader civil context. Other groups, on the other hand,

tend to adopt a more neutral political stance, where their practice emphasizes

artistic merits and issues regarding the related aesthetics. These collectives

delve into the area of creative innovations which would extend the boundaries

of digital arts even further. In other words, the starting point of their practice

lies in their artistic concern, rather than on a sociological perspective.

There are certainly many more other emerging collaborative groups investigat-

ing new territories in the domain of FLOSS digital art. Existing collectives are

also eagerly exploring other forms of practices such as hardware design and liter-

ature publishing. Whilst they contributed to the development of digital arts and

FLOSS movements with fresh perspectives, many of the early pioneering groups

who influenced the current climate of the field continued to provide a valuable

input and were recognized for their accomplishment. It is therefore foreseeable

that a culture of collaborative groups will carry on playing a significant part in

98

the evolution of FLOSS digital arts, whilst yielding fruitful results.

3.3 Projects

As in any other creative practice, several projects have become successful and

widespread. This section will aim to present a selection of examples to pro-

vide an insight into the ongoing progress in FLOSS digital art. Some featured

projects were selected because they provide essential environments and tools

for artists to create their work. This is analogical to the relationship between

GNU/Linux, as an operating system and platform, and many other FLOSS

software which were built upon it. Other projects chosen for this section are

based on their innovation and artistic brilliance.

3.3.1 Pure Data

As mentioned in the previous section, Pure Data(Pd)12 is a graphical program-

ming language that allows artists to create complex customized programs, by

visually arranging and connecting a collection of objects on the screen. These

objects represent certain low level functions or operations, and thus by combin-

ing different objects, one can design algorithms which fulfill desired tasks. In

Pure Data terminology, a program written in Pd is called a “patch”, and the

process of programming is therefore referred to as “patching”.

Pd was originally designed as a sound manipulation software and was used to

demonstrate the fundamental principles of real-time digital audio processing in

the academic context13. As Pd is released as an open source software14 and

has an appealing graphical nature, it began to attract the attention of some

artists and programmers. These early artists quickly joined the development of

Pd and significantly extended its functionality. Over the years, Pd progressed

12http://www.puredata.info
13The book ‘Theory and Techniques of Electronic Music’[29] written by Miller Puckette,

the original author of Pure Data, uses Pd exhaustively to demonstrate sound processing and

synthesis in the digital domain.
14Pd is released under the BSD License, http://en.wikipedia.org/wiki/BSD license

99

from being an educational tool15 to a fully-fledged multimedia programming

environment.

Pd now specializes in many media related tasks from video processing to hard-

ware interaction. Pd is currently one of the most used software tools in the field

of digital arts and has a large user base.

One can easily understand the reasons behind the success of Pd. Since the

popularization of digital arts, an increasing number of artists, who often had a

background in traditional creative disciplines, were eager to experiment with the

new medium and technology. For these practitioners, the transition required to

obtain the necessary skills and to fully appreciate the new possibilities brought

by computer programming, remained difficult and challenging. This was largely

due to the fact that traditional art disciplines often have very tangible forms

of practice. However, creating works of art through programming is entirely

abstract, as it is based on the organization of logical expressions, rather than on

the physical act of mixing paints or playing musical instruments, for instance.

While most of the programming environments force artists to make such de-

manding adjustments, the graphical nature of Pd gives the underlying abstract

operations in programming a far more tangible form and representation. As

a result, artists have often felt that the immense learning curve inherent in

programming is greatly reduced through using Pd. In other words, artists can

typically learn and be proficient with programing in Pd in a short period of

time.

For artists who already have an extensive knowledge of programming, Pd is also

an attractive choice of software. The ability to customize Pd and to easily create

additional functionalities enables technically inclined practitioners to adopt Pd

to their specific demand. Furthermore, these changes and extensions can then be

utilized and tested by other artists who use Pd in a more conventional manner.

Thus, the flexibility and the re-usability of customizations in Pd offers an great

incentive for advanced artist programmers.

15The primary target audience of Pure Data after Miller Puckett left IRCAM and subse-

quently released Pd as open source was for university students to learn and explore digital

audio signal processing.

100

Because of its popularity, many artists and programmers have contributed to

expanding Pd’s capabilities. The most well known extensions include: GEM

(Graphics Environment for Multimedia) for creating visual animations with

the OpenGL graphics engine, PDP (PureDataPacket) for real-time video pro-

cessing, PiDiP (PiDiP Is Definitely In Pieces) for adding extra capabilities to

PDP, GridFlow for multidimensional dataflow processing in interactive video

and pmpd/msd (Physical Modeling for Pure Data/Mass Spring Damping) for

emulating various physical properties of the real world. Other external libraries

also cover tasks such as network connectivity and hardware input/output meth-

ods. In short, Pd is one of the most comprehensive software tools which meets

the needs of today’s artists, whilst remaining user-friendly for newcomers. The

versatile quality of Pd has also greatly contributed to its success.

Pure Data, therefore, has been employed in a wide spectrum of contexts in

digital art. One of the most common usages of Pd is for real-time live au-

dio/visual performance. In this genre, artists develop “virtual instruments” in

the form of Pd patches. Through controlling and interacting with their patches

in real-time, artists are able to demonstrate their works and give performances.

Furthermore, as Pd allows different computers to easily communicate over the

network, one of the emerging trend in this mode of practice lies in the domain

of group improvised performance. In other words, through sending each other a

series of messages, artists are able to synchronize and co-ordinate aspects of the

performance as it progresses. Rhythmic timing and overall structure are some

common attributes which can be altered and determined collectively during the

performance.

Another popular use of Pure Data lies in the realm of multi-media installations.

Typically speaking, the production of such works demands careful and precise

integration of many media related elements. Hardware input/output and data

interpretation/manipulation are a few examples needing to be designed and

implemented. As this type of integrated capabilities is one of the strengths

of Pd, many artists have employed it as the tool of choice to produce their

work. In addition, as Pd supports an extensive range of hardware and operating

systems, this also makes it a practical solution. In other words, artists are able

101

to employ Pd in almost any hardware and computers they may have, without

specific requirements.

Lastly, Pd has also been used in media streaming over the Internet. As high

bandwidth Internet connections are now becoming readily available, many artists

are exploring its potential in the creative context. For instance, through stream-

ing, artists are able to provide a more flexible and instantaneous access to their

work. The distributed, decentralized nature of streaming also brought forward

the possibilities enabling artists to create works of art which evolve within a

network of intelligent programs.

Due to the widespread use of Pd, a great number of workshops providing es-

sential trainings for artists, can now be found worldwide. Goto10, for example,

produced a two week long intensive workshop in London focusing on various

aspects of Pd in July 2006. This workshop, entitled ‘Pd summer school’, was

supported by the Arts Council England. Many other cities in the worldwide

are also home to vivid actives in Pd. The Institute for Electronic Music and

Acoustics(IEM) in Graz has integrated Pd into many of its research projects,

and hosted the first International Pure Data Convention in 2004. They con-

sequently published the proceeding containing several critical writings on the

subject entitled “Bang”. Pd also has an active community in Canada, par-

ticularly in the region of Montreal. Together with several local artistic and

educational organizations, they are currently planning for the second Interna-

tional Pure Data Convention, which will take place in August, 2007. New York

and Barcelona are also cities that have witnessed the growing user community

and practices of Pure Data. As it becomes ever more popular, its functionalities

and capacity as tools will also further expand. This is truly exciting for artists

who uses Pure Data as a creative tool.

3.3.2 SuperCollider

SuperCollider(SC)16 is a programming language for audio synthesis and manip-

ulation, originally developed solely for the Macintosh operating system. It was

16http://www.audiosynth.com/

102

also created to explore the domain in algorithmic composition. Like Pure Data,

SuperCollider offers flexible and extensive functionalities which enable artists

to create complex works of art. However, SC is a text-based programming en-

vironment where artists develop their program through writing lines of codes.

Without a graphical user interface, SC is often considered harder to learn and be

proficient with. Nevertheless, SC has several significant advantages by favoring

text over the graphical alternative.

Despite the initial learning curve, expressing logical designs in the form of text,

to a large extent, is far more effective than the graphical approach. At first

sight, editing lines of text is a rapid process in comparison with the conven-

tional mouse driven input method in any GUI17. As a result, although it may

seem less intuitive at the beginning, programming with text is efficient and

productive. Without the additional visualization in programming, it may be

argued that artists are forced to focus on the fundamental abstract structure

of the algorithms, which could allow a higher degree of rigor and sophistication

to emerge in the end result. In other words, the process of programming is

free from external factors and influences brought by the intermediate graphical

representation of code. Therefore, these characteristics in text-based program-

ming have attracted many artists to prefer SC over other tools which have an

“intuitive” user interface.

SuperCollider was not a FLOSS project until the release of its third version(SC3),

where GPL was chosen as the license. SC3 also represents an important depar-

ture from its previous versions in its rudimentary design and technical imple-

mentation. One of these changes lies in the separation of SC into a server

and a client. The client is dedicated to the interpretation of the SC language

and sends instructions to the server. According to the transmitted messages,

the server will perform the necessary computation to synthesize or manipulate

sounds. This change enabled SC to be used in a very flexible manner, since the

client and server do not necessarily have to be run on the same computer. SC3

includes some fundamental changes to its language specifications and internal

structures. For this reason, many artists who became familiar with the previous

17Sean McDirmid also pointed out similar comparisons between textual and visual program-

ming languages in his paper ‘Living it up with a Live Programming Language’[23]

103

versions found the transition to SC3 challenging.

SC3 has now become available for other operating systems. There is currently

a good support for GNU/Linux and a beta version for Microsoft Windows. An

interesting development in SC3 on GNU/Linux is the integration with the well

known Emacs text editor. This means one can write and execute SC codes from

Emacs, and control various aspects of server which are currently executing. As

a result, using SC3 in this manner directly inherits Emacs’s hugely compre-

hensive text processing features, which further increases the overall efficiency.

Moreover, as Emacs have an immense user base and SC3 is the only Emacs

mode18 specializing in algorithmic music composition, SC3 could potentially

increase its community by drawing users from Emacs.

Although SC has been used in a variety of compositional and performance con-

texts, one the most notable use is perhaps in the practice of live-coding. The

“Just In Time”19 library(JITLib) of SC is specifically designed to facilitate the

rapid and direct modification of internal compositional/synthesis structures de-

fined by artists. As mentioned previously, live-coding brings the process of

programming in front of the audience, to better reflect on artists’ creative con-

ception and skills. This approach reexamines the nature of digital audio visual

performance and hypothesizes an alternative relationship between artists, codes

and the spectators. SC3 has thus become one of the most prominent tools for

artists to explore the territory of live-coding.

At present, SuperCollider still remains an audio processing only environment,

and has limited hardware support. Its current development nevertheless points

to innovations at different levels. The PLT-Scheme20 client, for instance, enables

the SC server to be used and controlled with the language called Scheme. As

this language is highly regarded for its minimalist philosophy, and is used in

many experimental software projects, by adopting a standardized and effective

18Emacs uses different modes to alter the overall behavior of the program. Certain func-

tionalities and commands are only activated when editing particular types of text files. For

example, there are different modes for editing normal text, source codes of different program-

ming language and more
19http://swiki.hfbk-hamburg.de:8888/MusicTechnology/566
20http://www.plt-scheme.org/

104

language in SC client, its server may be used in conjunction with other PLT-

Scheme compatible software. This would further encourage the creative use of

SC overall.

3.3.3 pure:dyne

pure:dyne21 is a live GNU/Linux distribution optimized for the purpose of

real-time audio and visual applications. Live distribution refers to a type of

GNU/Linux operating system that can be run from either the CD alone, or

by installing it inside of an existing system by simply copying the necessary

files. For this reason, artists are able to take advantage of and use FLOSS with-

out compromising their previous working environment. As its name suggests,

pure:dyne is built upon the dyne:II22 platform and originally optimized for Pure

Data. However, pure:dyne now also contains several other interesting and useful

creative software, and is becoming evermore practical to be used as a complete

GNU/Linux distribution for both media art and daily tasks.

The development of pure:dyne can be traced back to the inclusion of Pure Data

in the first dyne:bolic liveCD distribution 23. As this addition later became

increasingly popular, there was suddenly a demand to increase its support for

Pure Data in a more serious production context. Meanwhile, the dyne:II core

that Denis Rojo 24 had been developing for the forthcoming version of dyne:bolic

provided the necessary development tools needed to make such a customized

distribution for Pure Data. As a result, a collaborative effort began between

dyne.org and Goto10 in early 2005 to work towards a distribution based on the

new dyne:II core.

After a year of development, pure:dyne started taking shape and began its

beta testing. In late 2006, pure:dyne officially left beta to have its first public

release. Today, pure:dyne gathers a growing user community and has been used

in numerous workshops, exhibitions and performances. Although nowadays

21http://puredyne.goto10.org
22dyne:II is platform in which a fully functional and portable system can be built using it.
23The first inclusion of Pure Data can be found in dyne:bolic1.4
24Founder of Rasta Software and the key maintainer of dyne:bolic

105

other multimedia oriented live GNU/Linux distributions may be found, many

aspects of pure:dyne still remain unique amongst them.

One of the most important aspects of pure:dyne is that it attempts to offer

both practical and portable solutions for practitioners in the fields of FLOSS

digital art. This is because although many portable distributions are available,

they are mostly used for demonstration purposes, and are thus not suitable for

professional production. pure:dyne, on the other hand, allows artists to create

extensive works whilst keeping the entire system, including artists’ works, very

portable. This makes it an attractive alternative for artists who wish to develop

projects but do not have access to a dedicated environment.

Moreover, accessibility is also an important part of pure:dyne. pure:dyne rec-

ognizes artists who intend to take advantage of the innovations in FLOSS in

the creative context but do not have the resources and abilities to complete the

lengthy installation, configuration and even compilation of the required software.

Because of this, pure:dyne aims to provide a functional and highly optimized

environment which requires a little learning curve.

Lastly, pure:dyne follows a minimalist approach in system setup. This enables

it to be more streamlined and “clutter free”. For example, the default desktop

environment is FluxBox25 as window manager and applications such as Rox-

Filer26 and Xfe27 can be used for supporting the conventional representation

of files and directories. pure:dyne also includes window managers such as rat-

poison, evilwm and dwm. Such an approach enables users to achieve greater

productivity when using the system.

There are two important elements in pure:dyne that enable it to achieve its

objectives. These two components the dock and the nest.

• Dock - A dock refers to an “installation” of pure:dyne onto the host

system. A dock contains all necessary components that are required to

25FluxBox is a minimalistic window manager for X11. http://fluxbox.sourceforge.net/
26Rox-Filer provides the conventional desktop representation of icons and files.

http://rox.sourceforge.net/desktop/static.html
27Xfe is a file browser, similar to the file explorer found in Microsoft Windows.

http://roland65.free.fr/xfe/

106

boot pure:dyne entirely from the storage device. The process of docking

is extremely straightforward, it only requires copying the /dyne directory

from the CD or ISO image onto a partition readable 28 by pure:dyne.

• Nest - A nest (.nst) is a file that a user can create once pure:dyne has

successfully booted. This file contains a user’s home directory and con-

figuration files 29. The nest file can be stored on either the hard disk or

on a portable storage device such as a usb key. During the boot process,

pure:dyne will look for the nest in any of the partitions it finds and mounts

the nest at the appropriate location. Through the integration of UnionFS

30, users can easily save and store any modifications made on the system.

With the further development of the dock and the nest in dyne:II 31, pure:dyne

can be used with a greater flexibility. For example, a system running from a

CD or hard disk, in combination with a portable storage device will result in

a complete functional system. Once the system is successfully booted, a user

can simply write to his or her own home directory and continue working the

same way regardless of which storage device is being used. One other obvious

advantage of the docking system is that pure:dyne can co-exist with other op-

erating systems in a very straight forward manner, as all pure:dyne related files

are contained in one single directory. Updating to a newer version of pure:dyne

only requires to overwrite the content of the dyne directory. Lastly, by simply

creating new users following the conventional GNU/Linux method, a nest can

also support a multiple user system.

dyne:II also has a modular system in which applications may be packaged and

distributed. Each package is a compressed 32 .dyne file which is stored in the

designated directory. For instance, the applications included in pure:dyne exist

28current supported file-systems are: fat vfat msdos ntfs ufs befs xfs reiserfs hfsplus ext2

ext3
29A nest contains the /home, /root, /var, /tmp and /usr/local.
30UnionFS allows transparent overlay of files and directory from different file-systems.

http://www.unionfs.org
31Both dock and nest existed in dyne:I. However, these two elements were significantly

further developed in dyne:II.
32.dyne modules use the squashfs read-only file-system. http://squashfs.sourceforge.net

107

as a module, named pure.dyne, of dyne:II. This means that users and develop-

ers can simply package their favorite applications 33 and swap between them.

To include a new module, one simply needs to copy the .dyne file into the

/dyne/modules directory and either reboot or mount the module directly.

In short, pure:dyne may be used/installed in the following ways:

• Used with the CD alone, without saving user data.

• Used with the CD in conjunction with a portable storage device containing

the nest.

• Used with a dock on the hard disk plus a nest either on the hard disk or

a portable storage device.

• Used with both the dock and the nest on the portable storage device. for

example, running pure:dyne entirely from solid state memory.

3.3.4 PacketForth

Influenced by Forth, a procedural and stack-oriented programing language in-

vented in early 1970s, PacketForth(PF)34 is a programing environment for mul-

timedia processing. PF is suitable for a wide range of tasks from prototyping

to academic research and professional production. This is mostly due to the

characteristics of the language. The simplistic syntax of PF not only makes it

quick to learn and program, it also enables artists to rapidly sketch their ideas

and see the effects immediately. Furthermore, as PF allows users to effectively

define their own set of functions and vocabulary, this encourages artists to build

extensive systems and investigate their properties methodically.

One principle central to the design of PF is the communication and relationship

between artists and the program. The complexity of software often reflects the

increasing capability in computing hardware. As a result, the transformation

33Currently there are modules for Ardour, network tools, Gimp, OpenOffice, BitTorrent,

dvd authoring and more.
34http://packets.goto10.org

108

from the initial conception, through code and program, to the final works of

art is lengthened due to the additional software components and layers. This

arguably can misdirect artists’ attention and abstract their creative process,

instead of helping them to utilize the full potential of the system. PF, therefore,

aims to provide a fluid and minimalistic environment in which the process of

programming is analogical to converse with the system. For this reason, every

aspect of the environment can be rapidly defined and dynamically modified,

truly respecting the open and transparent exchange of information between

artists and the system.

The open ideology also reflects to how PF can be used. First, it may be used in-

teractively with users entering PF commands sequentially. Secondly, one could

write a collection of commands as a PF script, which is to be executed at once.

These two methods may be combined freely, with artists loading a collection

of PF scripts and interactively altering their parameters and behaviors. Addi-

tionally, PF also allows it to be easily connected to other programs. PF could

interact with Pd through creating PF scripts emulating the functionalities of

a Pd object. One could also execute standard Unix commands within PF, to

interact with the operating system through various system tools. With the im-

plementation of OSC35, PF is able to effectively exchange data with other OSC

supported software. Lastly, in a similar way to SuperCollider, PF can also be

controlled within Emacs, which also inherits many of its capabilities. This ver-

satility is therefore also one of the main goals of PF, which aims to develop it

into a ‘media glue language’, where many different media programing paradigms

can work as one.

Although PF is a relatively young software, it has gained wider interest and

has a growing user community. Even though its design and usage may seem

abstract at first, PF has been particularly successful in workshops, which are

aimed to introduce computer graphics in the creative context. In other words,

workshop participants with a typically limited programming experience, have

responded with great enthusiasm and have found PF interesting to program.

At present, the most extensive works produced with PF are perhaps a series of

35Open Sound Control is a communication protocol, it has been particularly successful

amongst creative software tools. http://opensoundcontrol.org/

109

installations, entitled “Metabiosis”, exploring various phenomena of artificial life

in the artistic context. Metabiosis is a joint project between two artists, Marloes

de Valk and Aymeric Mansoux. The first series of the work was exhibited in

late 2006 in the Netherlands Media Art Institute.

Since the release of PacketForth, its author has now developed a suite of software

tools continuing the influences of Forth and the ideologies of PF. These tools

are designed for programming micro-controllers, following the interactive and

transparent approach seen in PF. Artists are thus able to write software for

micro-controllers with immediate feedback bypassing the conventional lengthy

process of source code compilation and debugging.

3.3.5 Fluxus

Fluxus36 is one of the first software applications developed specifically to explore

the practice of live-coding in the context of 3D animation. It consists of a 3D

OpenGL37 rendering engine and a scripting environment. It also provides many

useful functionalities such as physical modeling, audio input analysis and OSC

implementation, which can all be utilized to create complex and interactive

visualizations. Fluxus pioneered a unique method in interactive programming

by overlaying the codes with the visuals it generates. In other words, both the

animation and its programming text editor are located in the same window.

The implication of this feature is practical, as well as philosophical. On one

hand, it enables the use of the software to be productive and economical, as

artists are able to program and see its immediate effects without the constant

switching of focus. On the other hand, by exposing the underlying code of the

animation, it reflects the principles of live-coding: the process of programming

and the resulting code should be transparent and accessible. These implications

are particularly evident in the performance context.

The language used in Fluxus scripting is called scheme, and is a minimalistic

language which supports many programming paradigms. It is also one of the two

36http://www.pawfal.org/Software/fluxus/
37OpenGL is a standard API for producing cross-platform 3D graphics.

http://www.opengl.org/

110

main dialects of the well known Lisp38 language. The simplistic nature of the

scheme makes it effectively easy to learn and program in real-time. Moreover,

it also allows complex programs to be rapidly developed through a collection

of smaller functions, as they can be easily defined and used. In many ways,

the reasons behind the use of scheme have much in common with the choice of

Forth in PacketForth. These two languages are both economical in their syntax

and elegantly designed.

As Fluxus is a programing environment for computer generated graphics, one

interesting usage lies in building intermediate systems. For instance, a video

game can be developed entirely within Fluxus. In fact, there are many exam-

ples which illustrate this category, such as a game-pad controlled live-coding

system, entitled ‘BetaBlocker’39. This shows that live-coding aside, Fluxus is

an extensive tool which can also be used in a wider range of contexts such as

data visualization or for educational purposes.

Fluxus’s reputation amongst the digital art community has grown in recent

years. It has appeared in a number of international festivals, and many work-

shops have been organized to help keen artists learn and use the program. Its

success and innovation has inspired the production of “Flaxus” by a group of

independent artists40. It is a flash based web application mimicking various as-

pects of Fluxus. Although the implementation of “Flaxus” remains debatable,

especially with regards to its implications and contextualization, it nevertheless

proves that the ideologies of Fluxus extend beyond its original intention.

3.3.6 Conclusion

There are certainly many more FLOSS software projects which are widely used

and are being actively developed. Whilst the above selection tends to cover

programming environments for producing works of art, there are other types of

software projects which fulfill different purposes. Software projects aiming to

38Lisp is one of the oldest and most powerful high-level programming language.

http://en.wikipedia.org/wiki/Lisp programming language
39http://www.pawfal.org/index.php?page=BetaBlocker
40Flaxus is by Ivan Ivanoff and Jose Jimenez. http://www.i2off.org/flaxus/

111

provide practical solutions to common creative tasks with a unified protocol and

standard are one of them. Although these projects may seem less artistically

oriented at times, they do contribute significantly to the overall innovation in

FLOSS digital art, by strengthening and improving the infrastructure other

programs rely on.

The ‘Jack Connection Kit’41 is a prime example project of this type. Jack is

a low-latency audio server that allows all supported programs to route audio

signals freely between them. As a result, each jack enabled program is no

longer an isolated software, but belongs to a suite of tools which can be used

collectively. Since signal routing is one of the most common tasks in audio

processing, the solution offered by Jack is truly invaluable. It is now becoming

the standardized implementation for handling applications’ audio input and

output. For example, all the above mentioned software have Jack support.

Another notable project in this category is the Open Sound Control(OSC)42.

OSC is a protocol which specifies how data can be transmitted and understood

between software over TCP/UDP connection. Through the use of OSC, dif-

ferent programs can communicate with one and another, thus making it easy

to co-ordinate tasks and share data. In SuperCollider, OSC is adopted as the

communication protocol between the client and the server, and because of this,

any other programs able to follow these OSC conventions may be used to con-

trol the SC server. This plays a major part in the flexibility of SuperCollider.

In fact, all programs in the selection allows OSC communication, which further

extends the possibilities of how they may be used.

One other category of FLOSS projects worth mentioning, belongs to a more

conventional creative environment. These software programs correspond to the

simulation-based digital art practice identified in the previous chapter. They

enable artists to create works with a more familiar interface, often modeled after

corresponding physical instruments or environments. Ardour43, for instance,

is a multi channel hard disk audio recording software, which musicians can

use to produce recorded music. Because it also supports Jack, Ardour may

41http://jackaudio.org/
42http://opensoundcontrol.org/
43http://ardour.org/

112

be used with other experimental software, such as Pure Data, to provide an

extensive recording and editing environment. Similar to Ardour, Cinelerra44

and LiVES45, are non-linear video editing software in which video footage can

be edited, processed and arranged to produce a final composition. In addition,

LiVES can also be employed in a real-time context, allowing it to be used in

visual performances. Lastly, Blender46 is a 3D animation program that performs

a wide range of tasks from modeling, rendering and compositing to creating

interactive 3D applications. It is highly praised for its vast capabilities and has

a considerable user community.

One of the latest emerging trends in the development of artistic FLOSS projects

lies in the domain of open hardware. In these projects, the conventional source

code to a program is substituted by the design and schematic of a given hard-

ware. Artists, can therefore produce such devices according to the available

information and modify its design if desired. Arduino47 is currently perhaps

one of the most successful open hardware projects. It is a circuit with a micro-

controller which can be programmed to accept inputs from sensors, or control

components such as lights and motors. It also consists of software environ-

ments which allow it to be a stand-alone device once completed, or to work in

conjunction with other programms like Pure Data.

While the number of possible examples remains limited, this section neverthe-

less aimed to present a comprehensive collection of FLOSS projects which are

both innovative and widely recognized in the digital art community. It also

aimed to reflect to the current development of the ever evolving field of FLOSS

digital art. Furthermore, these projects illustrate the contrasting approaches to

software design found in FLOSS, with some maintaining a strong historical in-

fluences whilst others are cutting edge and innovative. For instance, Pure Data

can be traced back to the the programming paradigm, generally referred to as

Music-N48, invented by computer music pioneer Max Mathews in the late 1950s.

Fluxus, on the other hand, represents the new and emerging ideologies in digital

44http://cvs.cinelerra.org/
45http://lives.sourceforge.net/
46http://www.blender.org/
47http://arduino.cc/
48http://en.wikipedia.org/wiki/MUSIC-N

113

art. It is apparent that there is a rich variety of projects, all contributing to the

FLOSS digital art movement. Although each project has its own focus, they

are often designed to be compatible with one and another, so that they may

be freely combined. This unique characteristic of FLOSS projects is extraordi-

nary, as it allows the movement as a whole to further develop, whilst keeping a

unified internal design and standards. From the practitioners’ perspective, one

can create works for art with ever increasing possibilities without compromising

one’s creative expression.

3.4 Events

Having witnessed the development of FLOSS digital arts in Europe, a number of

events have been specifically curated to demonstrate and promote its practice.

These events - mostly artistsic festival and academic conferences - are becoming

vital outlets for individuals and groups to showcase their works. This section will

therefore provide a selection of examples highlighting some key events focusing

on FLOSS and digital arts.

3.4.1 Make Art

Curated by Goto10, Make Art49 is an annual festival devoted to FLOSS digital

art. Make Art first took place in Poitiers, France in 2006. Currently in its second

year, Make Art was again held in April 2007 at the same location. The festival

lasts a week, and consists of workshops, exhibitions, presentations, discussion

panels and performances. Make art focuses on the disintegrating boundaries

between art and software programming. The event is dedicated to artists who

create their own tools, and apply the same rules to art as to FLOSS. It attempts

to engage both invited practitioners and the local community with the effects

of FLOSS in digital art.

The first Make Art festival was one of the largest events produced by Goto10.

At this time, much of the focus was on forming partnerships with regional and

49http://makeart.goto10.org

114

national cultural institutions to support the event. As the FLOSS and com-

munity focus appealed to many local authorities, Goto10 gained much needed

sponsorship from key organizations such as le Ministere de la Culture et de la

Communication, la Region Poitou-Charentes and le Conseil General de la Vi-

enne. The first Make Art also attracted media attention, and it was featured in

a variety of press and radio: Liberation, a national newspaper, published a two

page report on the event.

Following the initial success, Make Art 2007 witnessed several significant pro-

gresses. In terms of continued support from the local institutions, one of the

Goto10 members was funded (since 2006) to produce the new edition of the

festival. This crucial change was necessary, as organizing events of this scale

requires much attention and co-ordination. Having a dedicated personnel thus

ensures the production of the event is well thought out and executed. Make

Art 2007 also adopted a “call for works” approach to give new artists oppor-

tunities to demonstrate their practices and be involved with the event. Goto10

received over seventy applications varying from performances to installations.

The number of artists applying proved that, even only in its second year, Make

Art met the demands of artists and started to gain a wider recognition. The

new edition of Make Art featured a wider spectrum of art works, originating

from internationally established artists to emerging independent ones.

As a result, the number of artists who were invited to Make Art 2007 was far

higher than that of the first year. For instance, three concerts50 (instead of one

in 2006) were created, with each of which focusing a different genre of live per-

formances. Furthermore, the scale of the exhibition also increased significantly,

consisting five multi-media installations and the screening of a documentary

on FLOSS entitled “The Code”51. As the main target audience of the festival

is aimed at members of the general public, Make Art 2007 also employed a

professional interpretation service to assist with real-time translation, via radio

broadcast, throughout the presentations and panel discussion.

50The three focuses of these concerts were: live noise concert, audio/visual performances

using physical modeling in Pd and general live performances using FLOSS
51http://www.code.linux.fi

115

In addition, Goto10 had also formed partnerships with other FLOSS groups -

such as Bek - in the planning of Make Art. The aim is to provide opportunities

not for both individuals and different organizations to collaborate. Thus, artistic

FLOSS collectives can join their efforts, reinforcing the development of their

practices.

3.4.2 Piksel

Piksel52 is an annual convergence of FLOSS artists and programmers, who con-

gregate to examine various current technical and philosophical issues in FLOSS

digital art. First launched in 2003 by Bek, and held in Bergen, Norway, Piksel

is one of the longest running events of this type. Many key figures in the field

regularly attend the event, therefore contributing to the in-depth and engaging

characteristic of the event.

The target audience of piksel is predominantly aimed towards existing prac-

titioners in FLOSS. In other words, by limiting its participants, it is able to

obtain a more focused and engaged atmosphere throughout the event. In ad-

dition, Bek also uses Piksel as an opportunity to discuss and report on many

software projects it supports. For this reason, Piksel is generally regarded as a

meeting place for developers and artists to co-ordinate their efforts and receive

critical feedback from peers.

Over the years, Piksel has presented some of the most innovative projects and

has addressed several current technical and philosophical issues in the field.

Similarly to Make Art, it also actively seeks collaborations with other groups or

events. Goto10, dyne.org and ap/xxxxx53 are some of the collectives regularly

taking part in Piksel. For instance, ap/xxxxx curated “XXXXX AT PIKSEL”

seminar, as part of Piksel 2006. The central theme of this seminar was based

52http://www.piksel.org/
53ap/xxxxx (http://1010.co.uk/) is a collaboration between British artists Martin Howse

and Jonathan Kemp. Their practice encompasses both theoretical and practical aspect of

digital arts. Speculative hardware, code and free software are some of their main artistic

concerns. Their latest publication, entitled ’xxxxx’[17], consists of a great number of critical

writings contributed by both academic theoreticians and active practitioners. It offers and

extensive discourse into the practice of digital arts.

116

on the development of Open Hardware, which is one of the emerging and crit-

ical subject in the digital art scene. This seminar also invited internationally

renowned scientists Bruno Marchal and Otto Roessler, to lead the discussion on

art, science and technology.

3.4.3 Linux Audio Conference

Linux Audio Conference(LAC) is a yearly academic conference presenting cur-

rent audio related developments using open source software. It includes a wide

range of subjects from music composition, audio production, device drivers to

content distributions. LAC also features practical demonstrations and work-

shops, creating opportunities for participants to learn and experience different

techniques and approaches concerning audio on FLOSS platform.

Currently in its fifth year, LAC has become the authoritative figure in the field.

Its proceedings documents the up to date progress on many of the significant

and cutting edge projects related to audio and computer music. As an example,

LAC 2006 demonstrated wave field synthesis54 at a remarkable scale consisting

of two thousand wall mounted loud speakers, using a highly customized FLOSS

system named sWONDER. Furthermore, various issues relating to firewire based

external audio devices in Linux was also presented during the conference. As

many of such devices have been produced and the current support is some-

what limited, the “FFADO”55 project aims to bring generic and high quality

implementations to allow these devices to function with Linux systems. Lastly,

pure:dyne, a live GNU/Linux distribution optimized for real-time audio/visual

applications, was also presented and demonstrated as part of LAC 2006.

3.4.4 International Pure Data convention

As mentioned previously, the Pure Data convention is an opportunity for its

community to meet and collaborate. In 2004, the first ever convention took place

54WFS is used to reproduce the spacial location of a given sound within a set of loudspeakers.

http://en.wikipedia.org/wiki/Wave field synthesis
55http://www.ffado.org/

117

in Graz and was organized by IEM. The event saw many of Pd’s core developers,

including the original author, presenting and discussing various aspects of Pd.

The convention also represents an important social occasion for the community.

As communication between the majority of developers and users usually takes

place over the Internet, the event created a rare chance for many of them to

finally meet face to face. More remarkably, the convention was one of the first

to celebrate a creative FLOSS project of its kind in such scenario, and the event

had a great attendance. This shows that Pure Data, as an artistic software

environment, now has an user community extensive and resourceful enough to

produce such an event.

The result of the first convention has also been published as a book[42], doc-

umenting the activities and debates occurring during the event. It includes

interviews and theoretical papers, offering the first comprehensive literature on

the insights into Pure Data.

Although not an annual event, the second convention was scheduled to take

place in August 2007 in Montreal, Canada. Following the success of the first

event, the second convention has been greatly anticipated by the community.

Furthermore, the change of location also reflects to the global widespread of the

software.

3.5 Conclusion

This chapter will have hopefully provided sufficient evidence on the evolving

practice of FLOSS digital art. Although it is by no means a mainstream phe-

nomenon, it is now gathering momentum whilst gaining a wider recognition in

the public eye. The rapid development of FLOSS digital art is not an incidental

event, but rather a convergence of two distinct movements which share many

similarities. The marriage of FLOSS and contemporary digital arts has proved

to be fruitful and produced a wealth of engaging and challenging results. Some

of these effects are technological, others are sociological. If its success continues,

one can foresee creative practices based on FLOSS ideologies becoming a com-

mon practice. This is a culture that embraces the freedom, not just to express,

118

but also to create and distribute works of art.

119

Chapter 4

Practical Project

4.1 Introduction

The artistic practice from which this thesis is derived from has experienced sig-

nificant changes throughout the course of this research. On a technical level,

it has moved away from conventional proprietary software to adopting FLOSS

exclusively. Artistically, it has collaborated with many other innovative prac-

titioners, who also share similar interests and concerns in digital art. Most

importantly, it has taken some influences from the ideologies in FLOSS, to

identify itself as a part of the open community sharing resources and works. As

a result, the combination of these factors have in many ways broadened its hori-

zon, allowing it to further evolve. Several key issues have emerged while these

changes took place, thus providing the starting point of the practical work in

this research.

As software and FLOSS became the central component of the practice, their

influences on the creative processes were clearly experienced and observed. Be-

cause of this, the practice gained greater awareness of both the implicit and

explicit effects of software in digital art. As a result, it particularly values soft-

ware programs which are flexible and extensive in their functionalities, so that

artists can externalize their conceptions freely. In other words, a software offer-

120

ing less limitations generally encourages a diverse artistic community to emerge

who are open to innovations. Therefore, artists should strive to develop and

design programs that reflect the open ideology found in FLOSS, where creative

expressions are not restricted by predetermined functionalities and features.

Having adopted FLOSS and followed its principles, the practical work should

aim to bring an original contribution to the artistic community. This not only

acknowledges other’s works on which the practice is based, but also allows it

to take on an active role in the field. To achieve this, it must first be able to

identify a specific area in which further progress can be made. By examining

the current development and resulting shortfalls of the software that it relies

on, it may reveal possible options for the practical work to be focused on.

At present, the research has largely been based on the understanding of FLOSS

digital art from the user’s perspective. In other words, the personal practice

consists of employing FLOSS to produce creative works. However, in order to

gain greater insights, it must also be involved in the development process. Thus

taking part in developing software would contribute to a more representative

and in-depth knowledge of its context. Moreover, this would also allow one’s

skill in programming to advance further.

4.2 Personal practice

The personal practice should now be presented to further establish and contex-

tualize the practical work of this research. It has been predominantly focused

on the realm of live audio performances1, and pays particular attention to the

generative aspects of the composition. Its primary interests lie in developing

performance systems which are guided by the author in real-time to produce

the final result. Therefore, a typical creative process involves constructing inter-

mediate compositional components, and rehearsing with the overall system to

determine the final structure and detail of a piece. Furthermore, the visual ele-

ment in the performance is often accomplished by collaborating artists sharing

similar ideologies.

1See Appendix C and D for further documentation

121

Pure Data was employed to create such compositional and performance sys-

tems. As the process of programming is often where composition takes place,

Pure Data’s intuitive visual representation of code makes it a particularly suit-

able tool. It allows compositional ideas to be prototyped and tested rapidly,

whilst it also has sufficient mechanisms to allow extensive systems to be cre-

ated. Furthermore, having a customizable graphical user interface allows the

interaction between the user and Pd patches to be accessible and easily defined.

The use of Pure Data was also based on practical reasons. Prior to adopting

FLOSS, Max/Msp was the prime choice of software and was extensively used

in performances. Pd therefore became the natural candidate in the migration

to FLOSS based tools. Given the great similarity between these two programs,

it meant that the skills learned previously could be easily applied to the new

environment. This significantly minimized the time and effort in the transition

to a different software.

Having accumulated experience in performing with Pd, one of the recent focuses

in the practice has been developing a modular performance environment. In

other words, components of the system are programmed so that they can be

easily reused and deployed. This results in a greater degree of flexibility in

the compositional context, as modules can be freely combined and removed.

Furthermore, it also aims to create generic modules according to the roles they

may play within the system. This can potentially minimize the complexity in

the programming, thus making the environment easier to maintain and further

evolve.

Many performances have been created using this customized compositional sys-

tem described above2. Furthermore, these performances took place in a wide

variety of social contexts, including academic seminars, gallery exhibitions, festi-

vals and club nights. Such a mix of environments provided a crucial and realistic

assessment for the future development to be based on.

Another area which later became increasingly dominant in the personal prac-

tice is promoting the use and ideologies of FLOSS by teaching workshops. Pure

2See “selected performances”, Appendix C

122

Data, in particular, has been the most common subject in these workshops.

They typically involve the introduction of elementary Pure Data programming,

helping participants to understand the scope of FLOSS as an emerging tech-

nology. The aim is therefore to demonstrate and provide alternative means for

artists to materialize their works.

These workshops often provide an ideal backdrop for further collaboration to

take place. This is mostly because participants are often active artistic prac-

titioners who are keen to explore new possibilities. As participants each have

unique practices and experiences, mutual communications can often be created

and observed amongst them, with ideas and resources being exchanged. Being

involved in workshops has thus resulted in hugely positive effects on my personal

practice, not just by allowing personal knowledge to be formally articulated, but

also by establishing communications with others in the same field.

While searching for suitable practical work in this research, it quickly became

apparent that the focus should be based on Pure Data. The experiences gained

through programming in Pd and teaching it in workshops would allow crit-

ical analysis on its current design and usage to be made. Furthermore, the

analysis can also point out areas for improvements, which the practical aspect

of the research could aim to address and resolve. As Pd is one of the most

widely used programming environments in digital art, any resulting improve-

ment would consequently be beneficial to the large community which relies on

it, thus contributing to its future development.

As a result, the main objective of the practical work, is firstly to examine the

present limitations of Pure Data, then subsequently to implement the proposed

improvements.

4.3 Limitations of Pure Data

The graphical nature of Pure Data is undoubtedly the advantage over other

software environments. The dataflow visualization of codes makes the pro-

cess of programming generally an intuitive and rapid process. However, several

123

problematic areas may be found in its graphical user interface. Although these

drawbacks have long been acknowledged by its community, significant improve-

ments are yet to be made. The following section will attempt to summarize

these issues.

4.3.1 Lack of customization

The graphical user interface of Pure Data has always had a minimalistic ap-

pearance. While this characteristic has certain practical advantages and, at

times, aesthetic appeals, it however could offer greater flexibility from users’

perspective. The ability to customize its appearance may seem to be derived

from a decorative need, which is often valued as nonessential amongst some of

its developers. However, with a closer look, having customizable user interface

may have deeper effects than a simple cosmetic change. Although the visual

appearance is generally not considered as a core functionality, it can neverthe-

less influence how Pure Data is adapted and used at many levels. Because of its

simplistic nature, many new users are often put off by its graphical implemen-

tation. In other words, the first impression of Pure Data, by being inflexible,

does not convey its capabilities as a creative tool. Moreover, as Pure Data is

often used extensively in both developing and displaying creative works, the

lack of a customizable user interface can significantly influence the practical ex-

periences. In other words, being able to adjust the visual appearance according

to user preferences could contribute to increased productivity through making

the patch more pleasant and clear to view.

More specifically, the customization refers to the ability to adjust the color

settings of all the elements within the patch. This includes canvas background,

object background and foreground, connection wires and elements such as object

box and inlet/outlet. The customization should also allow different fonts and

their related properties to be used in the patch. The settings of personalized

parameters can be accessed either through an intuitive graphical editor, or by

editing a plain text configuration file.

Furthermore, additional elements may be introduced into the graphical user in-

124

terface to increase usability. For instance, a button bar can be integrated into

the canvas window for the object to be quickly created by clicking on the ap-

propriate icon3. This type of design can also be used for implementing features

such as object search and displaying various status information. Furthermore,

users should also be able to remove unnecessary visual elements if required.

Menu bar, scroll bars and any additional components can therefore be switched

off so they will not be displayed.

In short, through adjusting the appearance of the graphical user interface, users

can work more comfortably according their needs and preferences. This is con-

trary to the current design of Pure Data, where users are constrained by very

limited options in its visual customization. Through such implementation, The

flexibility of Pd as a programming environment also reflects how its interface

may be customized. Furthermore, this also allows a more polished user interface

to emerge, which adds additional advantages to the program. For instance, one

of the main arguments in the comparison between Pure Data and Max/Msp is

often focused on differences in the level of sophistication of the user interface.

Having such improvements would certainly regain Pd’s competitive edge in this

regard.

4.3.2 Lack of optimized command invocation

After using Pure Data extensively, one can quickly recognize that certain op-

erations and commands are generally invoked more often than others. This is

especially true in the case of patch editing. In current Pd, many of these fre-

quently used commands have suboptimal method of invocation. In other words,

performing these operations are generally not intuitive, or involve a fastidious

process. They thus become problematic in the efficiency of Pd programming, as

additional time and attention is needed to complete these tasks. Furthermore,

it also steepens the learning curve for new users to become accustomed to Pd’s

operations.

To demonstrate the inconvenience, a few examples will now be provided and

3Such button bar already exists in Max/Msp

125

discussed. A new object is typically created via the menu selection or the

“Ctrl+1” key shortcut. While object creation is a simple process, instantiating

the new object after typing in its name and arguments is somehow less obvious.

Intuitively, one would expect pressing keys such as the “Enter” to complete the

creation process. However, it instead requires moving the mouse pointer outside

the the object’s bounding box and then followed by left click once on any blank

area of the canvas. Although the “Enter” key arguably may not be the most

suitable choice, if multi-line objects are allowed, it nevertheless highlights that

the process of object completion could be shortened with the use of key bindings.

Therefore, one of the drawbacks in current Pd is the additional mouse movement

and awkward object completion. This is particularly cumbersome when object

editing takes place very frequently.

As Pd relies on graphically interconnecting objects to form the final patch, users

thus regularly have to attach and detach wires between objects. At present, the

mechanisms to aid the operations on wires are very inefficient. For instance,

wires can only be created by moving the mouse pointer to the target outlet,

then clicking and holding the mouse button, to be released once the pointer has

moved to the desired inlet. This means that only one wire can be established

at a given operation. More over, once a wire is made, the only method to

modify the connected object path is to first delete the wire, then reconnect the

necessary objects. It is foreseeable that better methods may be conceived so

that wires may be created and edited more rapidly, without repetitive mouse

movements and clicks.4

Not having the support for multiple levels of “undo” and “redo” has clear disad-

vantages in patch editing. As Pd traditionally only provides immediate “undo”,

tracking and recovering from unwanted edits several steps back is therefore a

troublesome task. The implication of such a feature can be extended beyond

error recovery. This is because it essentially saves and retrieves each editing step

made by the user, and therefore, it is possible to both export and import his-

4Methods of evaluating the efficiency of different user interface designs can be found[30],

which could be employed to further investigate on improving Pd usability. In particular, the

GOMS keystroke-level model originally proposed by Card, Moran and Newell[6] could provide

a comparative test between the use of the mouse and the keyboard in controlling Pd.

126

torical data recorded. This would allow patches to be scripted and constructed

automatically.

Lastly, since Pd consists of many external libraries, the number of available

objects can be very large. To utilize all the objects, users often have to read

their corresponding help files so they can be used correctly. Pd conventionally

offers a rather limited method in which help files can be accessed. A simple key

shortcut to load the appropriate help file would shorten the process of selecting

from a pop-up menu activated by the right click over selected object. In addition,

users should also be able to browse all available objects and load its help file

without having to instantiate the object first.

Implementations of this kind, as a result, aim to improve the existing function-

alities for Pure Data to be more practical and convenient to use. They will

hopefully not only enhance the experiences of programming for existing users,

but also make it more accessible to artists who wish to learn Pd for the first

time.

4.3.3 Lack of utility features

In this category, utility features refer to additional tools which can help users

in programming or using Pd. These features may not directly increase the

performance of the program, but will nevertheless allow users to explore the full

advantage of Pd as a creative programming environment.

As mentioned previously, it is not uncommon to have a considerable number

of available objects in a particularly Pd installation. Memorizing the names of

objects thus becomes a difficult task, especially for objects not frequently used.

For this reason, an auto completion feature would be useful for helping users

to create the necessary object. Moreover, it can increase the speed in object

instantiation, without having to type completely its exact name. Eliminating

misspelling would also be an additional benefit. This feature can be further

extended to auto complete the creation arguments of a given object, which

clarifies the required parameters.

127

A feature that enables zooming would allow the display of a patch to be quickly

adjusted. This would be particularly useful in the context where an overview of

a large patch is required, or the attention is needed to focus on a specific area

for the detail. Despite the cosmetic nature of this feature, it can have some

practical effects on the way Pd patches are presented. Being able to change

display size meant that a patch can be conveniently shown to obtain the best

result.

Traditionally, the placement of objects on canvas is arbitrarily chosen by the

users. While this gives users the ability to program intuitively, the visual struc-

ture of a patch, however, is often compromised. In other words, as the complex-

ity of a patch evolves, it becomes increasingly difficult to read and understand

it. This is especially problematic when continuing a previously interrupted pro-

gramming project, or when the development involves collaborating with others.

It is therefore conceivable to have a feature that rearranges the patch according

to a certain hierarchical order, so that its functioning and purpose can be eas-

ily understood. This could allow users to visualize their patch from a different

perspective, thus encouraging creativity.

Patch encapsulation could offer effective mechanisms to increase the speed in

developing extensive patches. It means that users can efficiently group parts of

the patch and automatically pack them into sub-units, so that the patch overall

becomes more modular and easier to maintain. Encapsulation could possibly

be further developed to support abstractions. This would then enable packed

content to be reused from a different patch. This feature, to a certain degree,

would remove the task of patch organization away from users’ responsibility, so

they may focus better on the development of their works.

Since the criticisms so far have been based on improving the existing function-

alities of the graphical user interface, or proposing additional features to it, the

key issue thus lies in the usability of the program. In other words, these modi-

fications do not have direct impact on Pd’s internal structure or optimization.

They would however allow Pd to be used more efficiently and effectively from

the users perspective. Although many of its internal designs can also be fur-

ther developed, its usability is arguably by far the weakest aspect of Pure Data.

128

Furthermore, as many extremely complex patches have been produced in the

past, it meant that it is already capable of supporting extensive programming,

despite some of its internal shortfalls. The implementations of its graphical

user interface, on the other hand, has long been a subject of major critique that

demands significant changes.

4.3.4 Client and server architecture

One potential improvement on the internal design of Pd can be found in the sep-

aration of the client and the server. The client refers to the part of the program

that the user interacts with to create their work, whilst the server performs

the necessary computation to fulfill the tasks that the user has programmed.

Through the client, patches made by the user are sent to the server, so that it

can be executed. The graphical user interface, for instance, can be seen as the

client. Components such as the DSP and the dataflow engine therefore belongs

to the server. This client and server architecture has been a common practice

in software programming to allow the resulted application to be more flexible.

In the context of sound synthesis programming environment, SuperCollider is

perhaps one of the most notable examples in adopting this method.

Although Pd already consists of a client and a server, the separation between

them is not fully implemented. This is evident by the fact that the user input

is entirely interpreted by the server. In other words, apart from the core func-

tionalities in executing a patch, the server is also in charge of computing how it

is rendered and edited in the user interface. The Pd client, essentially does not

perform any computation, and essentially consisting a collection of functions

which are called by the server. As a result, the tasks clearly are not assigned

effectively between the client and the server, and can have significant effect on

the program’s performance overall.

For Pd to achieve the client and server separation, tasks that are not part of

core functionalities must firstly be removed from the existing server. They may

then be reimplemented in the client. The server, therefore, only has to provide

the necessary critical operations. The client will be assigned to determine how

129

a patch is visualized and notify the server when changes are made by the user.

A protocol would be required to allow the server and the client to communicate.

The communication should ultimately be optimized so the bandwidth needed is

kept minimum. The protocol could be based on existing standards, to encourage

furtherer innovation in future developments.

Such a implementation would allow the internal operations of Pd to be restruc-

tured, which can bring several advantages. First, it would significantly clarify

the existing code base of Pd into distinctive components. This would enable

developers to easily focus on the necessary part of Pd. This can have signifi-

cant effect on the long term maintenance and improvements of the program, as

each independent part becomes ever more optimized. The modular approach

would also give greater flexibility in the use of Pd. Different types of client can

be created to suit particular purposes. The server, on other hand, can be ac-

cessed over the network. Furthermore, it is foreseeable to have multiple clients

connecting to the same server or vice versa.

4.4 Branches of Pure Data

Having identified several possible areas on which the practical work may be

based, the investigation then moves towards focusing on how these implementa-

tions should be carried out within the existing Pd community. A closer exam-

ination of Pd’s model of development would also be necessary, to successfully

apply the proposed works.

Currently, Pure Data has a on-line repository5 containing all of its source code.

Through the use of version control software6, developers can collectively modify

these source files, and coordinate the efforts between them. A mailing list exists

to aid the discussions on development related subjects. This method of collab-

oration is a common practice in FLOSS projects. Over the past years7, two

5Pd’s source is is hosted on SourceForge, one of the largest on-line repository for FLOSS

projects. http://sourceforge.net/
6Pd community uses a software called CVS (http://www.nongnu.org/cvs/) to coordinate

development efforts
7Since Pd version 0.35

130

dominant branches of source code have emerged within the developer’s commu-

nity. First, the “main” branch, which consists of codes originally released by

the project leader, Miller Puckette. Consequently, he is also the sole maintainer

of this branch. Secondly, there is a branch called the “devel”, which developers

collectively work on. One of the leading developer, Tim Blechmann, has been

the maintainer of this branch.

The main branch, as its name implies, is considered to be the stable version of

Pure Data, and for this reason, it is often regarded as the official release. The

source code of this branch has mostly been developed by Miller Puckette alone.

For others to contribute, patches must first be submitted to the maintainer and

then await approval for inclusion. In other words, the main branch has a very

centralized development model, moderated by the project leader.

The “devel” branch, on the other hand, is built on equal collaborations between

developers, who mutually dictate any work in progress. For this reason, this

branch is considered to be the experimental version of Pure Data. Developers

are free to propose and experiment with features which do not yet exist in the

main branch. Although the development process of the devel branch is far more

distributed, major changes still need to gain group consensus prior to a final

commitment. Due to its experimental nature, some implementations in the

“devel” branch have allowed it to be more optimized than the main branch.

Having these two branches means that significant modifications can be initially

tested and evaluated in the “devel” branch, and once prove successful, may then

be eventually included in the stable release. The original aim was to synchronize

these branches periodically8 so their differences could be merged. This would

allow the two branches to mutually benefit from their individual progress. As

the devel branch follows the changes made by Miller, it keeps the branch up to

date with the current release. Similarly, by incorporating new features from the

devel branch, the main release can therefore extend its functionalities. Having

a stable and a experimental branch of the same software is often observed in

FLOSS project, however, what is uncommon in the case of Pd is that the project

leader is not involved in developing the experimental branch.

8The initial aim was to merge between the branches every 4 months

131

In 2004, a temporary branch was created and named “Impd”. It was as a proof

of concept project proposing many radical and fundamental changes. One of

the underlying foci of Impd was to ultimately achieve the client and server

separation for Pd. It was maintained and initiated by Mathieu Bouchard,

an active developer in the community. He is also the author of “GridFlow”,

a multi-dimensional array processing library for Pd. Although Impd clearly

demonstrated how such modifications could be implemented, it ceased being

developed shortly after its presentation at the first Pure Data convention that

year9.

Several conclusions became apparent after gaining some knowledge relating to

Pd’s development model. Since the practical project attempts to implement

some rudimentary changes to existing Pd, it is not appropriate as part of the

main branch. The devel branch thus becomes a natural candidate for this

project to be based on. Furthermore, many of the concepts found in Impd are

similar to what the practical project proposes, and could potentially offer a

good starting point for the project. In addition, to complete all the proposed

improvements will be a extensive undertaking as an individual, due to personal

ability and limited time. Seeking collaboration and advice from existing Pd

developers would therefore be crucial in achieving its goals.

Having contacted the author of Impd, discussions on various issues surrounding

both Impd and the proposed project, quickly took place. Impd was no longer

in development due to the lack of initial interest from the developer community.

Although the reasons behind such a response were not fully understood at this

stage, they later became clear and consequently influenced the project. In spite

of this, Mathieu still remains deeply interested in several concepts in Impd.

After some correspondence, the possibility of collaboration materialized, thereby

forming the basis of the practical work in this research.

9According to Mathieu Bouchard, during the first Pure Data convention, Impd did not

gather enough interest and response for him to carry on developing the project alone.

132

4.5 DesireData

In late 2005, the collaboration was formalized in a new project called “Desire-

Data”, aiming to carry on the initiative set by “Impd”. The main objective

of the project is firstly to achieve client and server separation, and secondly to

implement various usability features mentioned previously. In addition, it will

remain as compatible as possible to the current Pd, including its file format and

external libraries. This would allow existing users to easily test DesireData, and

also enable the project to inherit the extended functionalities in Pd.

A few options were available as to how DesireData should be developed. It could

follow the previous example of Impd, where it would be a separated branch of

its own. Alternatively, the project could be part of the devel branch. For prac-

tical reasons, it was decided that DesireData should adopt the latter approach

instead of the former: for two developers, DesireData would still be a significant

undertaking. It was hoped that by being part of a recognized and active branch,

it would be possible to attract other developers to take part in the project.

However, because DesireData requires fundamental changes to be made on Pd’s

source code, its integration into a working branch would have to be carefully

planned. This ensured that it would not introduce additional maintenance for

developers in the devel branch, whilst allowing the project to evolve freely.

In other words, a practical solution was necessary for the devel version and

DesireData to efficiently coexist in the same branch. As a result, the initial

phase of the project took shape as a compile time option, where all source files

related to DesireData are only included if such an option is activated during

compilation. By doing so, the modifications and source codes of DesireData can

be kept separated, thus solving the issues of integration.

The practical element of this research is now apparent and can be clearly out-

lined. By participating in DesireData, it will aim to address various problematic

areas identified in the previous section. Working closely with other developers

would contribute to a greater insight into the subject. It will also work towards

achieving the original goals of Impd. Mathieu being a highly skilled software

programmer and with extensive experience working with Pure Data, the col-

133

laboration would greatly benefit the practical work from a supervision point of

view.

The main goal of Desiredata, therefore, is to enhance the everyday experience

of Pure Data from the perspectives of both user and developer. A more effec-

tive and user-friendly interface should be expected for normal users. It will be

more extensive for customization and contain features which would help users to

program more efficiently. The change of internal architecture would mean that

developers can quickly extend its functionality. It will also reduce the overall

size of source codes, making it more accessible and easily maintained for the

future. The practical work will thus be mostly focused on the implementation

of the improvements in the graphical user interface, whilst Mathieu will take

charge of the internal design and modifications.

4.5.1 Methodology

The methodology employed in DesireData consists of several major steps, listed

below:

• Server modification

• Client infrastructure

• Client reimplementation

• Additional features

In modifying the server, the focus will begin with removing any unnecessary

elements. These include parts involved with the handling of user input and

rendering of graphical elements. The server will no longer compute any infor-

mation regarding the visual aspects of a patch. Objects, will be drawn entirely

by the client, without the server knowing their representation. Additionally,

other mechanisms need to be implemented to allow the client connecting to

the server. The main task of these mechanisms is to provide synchronization

between the server and the client.

134

Client infrastructure refers to the fundamental designs that later implementa-

tions will be based on. One of the design principles is to avoid repetitive coding

and encourage code reuse, by means of adopting object oriented programming.

For this reason, components in the client can be better organized, without du-

plicating previous works. This will also enable future developers to rapidly add

new elements. As a result, a customized object oriented system, named poe.tcl,

was created by Mathieu to suit the purpose of DesireData.

Once the infrastructure is in place, the next step is to re-implement the func-

tionalities of the existing graphical user interface, using the methods provided

by poe.tcl. The aim of this stage is to produce a functional user interface which

replicates most of the aspects of the conventional Pd. This is key for providing

the essential familiarity and compatibility for end users. Furthermore, vari-

ous fundamental infrastructures, such as poe.tk, can be extensively tested and

further refined during the reimplementation.

Lastly, additional features may be introduced into DesireData, fulfilling its orig-

inal objective - these include new features for both the server and the client.

However, in the context of this research, the main concern lies mostly in the

improvements which can be achieved for the client. Many of the features will

be derived from the limitations of existing Pd, identified previously.

It is worth noting that these different steps do not necessarily take place se-

quentially. In reality, they are concurrent tasks which are constantly being

revisited. However, they do offer a methodological approach in reviewing the

overall development of the project.

4.5.2 Design principles

Having established the project methodology, the design patterns involved in De-

sireData will now be presented. The main objective is to adopt techniques that

would optimize the development process. This includes being able to efficiently

achieve the goals set by the project, and to minimize efforts in long term main-

tenance. Most of these principles aim to bring together a better organization of

code, by reducing its size and to modularize the existing program into distinct

135

components. In short, these principles will hopefully provide an effective and

long lasting foundation for the project.

Avoid code duplication

This notion is critical to improve productivity and efficiency in developing De-

sireData. The aim is to examining the overall characteristics of the program and

merge similar tasks into generic parts. As a result, the program will eventually

be highly modularized. This not only unifies the source code into distinctive

components, but also reduces its size by a significant amount. Furthermore,

this will benefit the readability of the source files, thus making them more

accessible and easily maintained. This concept is often described by using the

term OnceAndOnlyOnce (OAOO), originated from the Small talk and Extreme-

Programming communities. DRY(DontRepeatYourself) is another terminology

used in the Ruby and Pragmatic Programmers communities to categorize this

approach. The advantages of code reduction can be summarized in the following

two points

• Merges bugs together so that there are less of them to fix. The best

debugging technique is to write less code.

• Merges features together so that there are less of them to update. By

centralizing behaviors relative to families of features, new features may be

implemented easily. Think of coding a new feature that has to interact

with ten existing features. Now imagine coding a new feature interacting

with only one feature which is the common part between the ten features

just mentioned.

The merge of two radio-button classes, horizontal and vertical, demonstrates the

effectiveness of this principle. The code specific to radio-buttons is measured

about 53kB in conventional Pd. In Impd, it was reduced to 9kB. DesireData,

on the other hand, only consists of 181 lines of code that are unique to radio-

buttons. Tasks such as handling and rendering radio-buttons in the correct

orientation are abstracted into generic methods, which are shared with other

136

graphical elements such as the slider class. Furthermore, any future imple-

mentation on orientation sensitive GUI elements can quickly make use of these

methods.

Object-Oriented Programming

One effective approach to achieve better organization of code lies in the domain

of Object-Oriented Programming(OOP). Because common elements within the

programs are abstracted into generic classes with inheritance relationships, this

makes the resulting program very modular and reusable. In conventional Pd,

OOP is already implemented in the server using C. In order to efficiently de-

couple the client from the server, it is obvious that the client would require its

own OOP system.

Poe.tcl was consequently created to facilitate Object-Oriented programming

in the client. It provides the OOP mechanism written entirely in Tcl, the

language of choice in Pd’s graphical user interface. As Tcl is not an Object-

Oriented language, an external system was therefore necessary to enable OOP.

Although a few other systems aiming to enable OOP in Tcl also exists, none

felt suitable for the purpose of DesireData. One of the main reasons was that

by designing a customized OOP system, the syntax which will be employed

when building the client can be very flexible. This would ultimately enable

a smooth migration in the future if the client is to be ported to a different

language. Moreover, having poe.tcl also meant that the distribution of the client

can be made very easy, without increasing its dependencies on external software

packages. This is because not all existing OOP extensions of Tcl are widely

accessible. Furthermore, since Tcl can be extended with additional semantics

with a remarkably little amount of Tcl code10, maintaining and distributing

such a minimal customized OOP system is highly practical.

Following the conventions in OOP, classes in DesireData client define a set

of generic abstract entities. Most of the classes are created according to a

hierarchical order, in which the inheritances on methods and variables are based.

10poe.tcl currently consist of 276 lines of Tcl code.

137

To initialize a class, the syntax class new foo {bar1 bar2} is used, where foo is

the class name. Foo also declares its super classes to be bar1 and bar2. Note

that multiple superclasses are permitted. The class new method further defines

CLASSNAME new as and CLASSNAME new procedures to allow instances of

a class to be constructed using a specific ID or a generated one. Once a class

is created, the syntax of def CLASSNAME {arglist} {body of method} can then

be used to define class method.

Once objects are instantiated, the syntax used to call their methods and send

messages to objects is similar to most other OOP systems. The convention

is often described as the subject-verb-complements syntax, or also known as

receiver-selector-arguments syntax. The first part refers to the unique name or

ID of the object, and the second is the name of the method to be called. Any

additional elements after the first two are treated as arguments to the method.

For example, canvas editmode= 1 will call the method named editmode= with

the argument of 1 on the object called exactly canvas.

The underlying mechanisms in poe.tcl to enable method definition and calling

is achieved by the combination of proc def {class selector arglist body} and proc

lookup method. For instance, by first calling def objectbox draw will actually

define a proc named objectbox draw. Then, proc lookup method will reconstruct

the appropriate proc name from any receiver-selector-arguments calls and invoke

the corresponding proc. To give a realistic example, the message “825ea50 init

450 500 +0+0 1” will initializes object 825ea50 with the arguments 450 500

+0+0 1 and the method called is canvas init with 825ea50 inserted at the

beginning of the argument list. In this case, 825ea50 is the ID of an object of

class canvas or any subclass of it which does not redefine init.

In poe.tcl, the “@” sign is the prefix which denotes instance variables. This

notation is a significant improvement from Impd, in which uses variable con-

ventions of Tcl. Instead of typing ($self:x), all its needed now is @x instead.

Furthermore, this enables trivial modifications on the existing code to take ad-

vantage of the new dict feature in Tcl 8.5.

138

Model-View Separation

In existing Pd, because graphical rendering is mostly handled in the server, there

is essentially no difference between an object and its visual representation. The

Model-View design, therefore, aims to further abstract all GUI objects into

two parts. It consists of a generic element (Model) that stores the current

state of a object, and a rendering part (View) that is in charge of computing

the graphics of an object. This separation is necessary to achieve the client and

server architecture. By having the View implemented in the client, the server no

longer requires to take care of the patch visualization. Furthermore, as long as

the means of synchronization is available between the Model and the the View,

the client can be used to control the server remotely. Another advantage of this

design is that the graphical representation of objects may be easily changed, it

is also conceivable to allow multiple Views to be connected to the same Model.

The Model-View implementation is similar to the well known Model-View-

Controller design in software engineering. In DesireData, the Controller and

the View are the same entity. This is due to the fact that there isn’t a need to

implement them individually in the present context. Additionally, the Model

exists in both the server and the client. This minimizes the potential traffic in

communication by caching the Model’s data in the client.

Observer-Observable

An Observer-Observable pattern is used to handle the communication between

the Model and the View in DesireData. Each object is observable, and can

be subscribed to an owner. The owner is thus capable of noticing any changes

requiring updates within all the objects it observes. For example, a text object

is subscribed to the canvas it belongs to, and its changes will then be noticed

by the canvas. Through this relationship, all notices are propagated towards

the root of the hierarchy and managed centrally. This enables updates to be

prioritized by removing any duplications and delaying frequent changes. In fact,

there are two Observer-Observable trees per patcher window in Desiredata. One

organizes the models and sends updates to the views on the client, the other

139

manages the views’ update to the Tk canvas. Naturally, the first tree resides

in the server, and the second exists in the client. The scheduling of these two

update trees are governed by using t clock in the server and the after command

in the client. Both mechanisms are functionally equivalent - the former being a

feature of Pd and the latter is a Tcl command.

4.6 Social context

Alongside technical details, the sociological aspect of DesireData is also the focus

of this research project. As the software development model in FLOSS promotes

distributed collaboration, taking part in the development process would provide

an opportunity to closely examining such a phenomenon, thus gaining a greater

insight and experience. This section, therefore, aims to provide the social con-

text of DesireData, and outline the key issues of the project. It will start by

presenting the community responses to the project, then highlight the problems

encountered, and finally document the findings and conclusions.

Shortly after the initial announcement of DesireData, it began receiving feed-

back within the developers’ community. While many welcomed the new initia-

tive, others opposed it. Although these responses were anticipated to a degree,

they nevertheless pointed out a few interesting characteristics of the community.

The opposition of opinions were distinctively clear, giving an inharmonious im-

pression. In other words, despite differences of opinions and individual objec-

tives, constructive discussions on the subject were very limited. The project

leader, however, did not express his views on the project nor did he comment

on the resulting responses11.

The objection argued that features planned for DesireData were too radical,

and focused too much on the change to user interface, instead of further im-

proving the core functionalities. Although DesireData indeed proposes several

11This is clearly evident by the various communications that took place on the pure

data developers’ mailing list, where Miller had not responded to the mixed opinions

on the subject. The archives of the above mentioned mailing list can be found at

http://lists.puredata.info/pipermail/pd-dev/

140

fundamental improvements that are arguably radical, this is precisely the rea-

son it has chosen to exist in the devel branch. Hence, concepts in DesireData

can be implemented and evaluated without affecting the main line code base.

Furthermore, changes in DesireData are far from being superficial, since much

of its design aims to improve the internal structure of Pd.

Reactions from the users community was clearly in favor of DesireData’s ini-

tiative. Many of them agreed with the problematic areas the project aims to

resolve, in particular the proposed improvements to the graphical user interface.

These responses were highly encouraging, as the project successfully identified

the demands from the users’ perspective.

As the project progresses, it becomes clear that there are two opposing groups

involved within the developers’ community. On the one hand, some develop-

ers follow the programming approach and the pace set by the original author.

On the other hand, dissatisfied with the design and the rate of change, the

other group of developers are eager to take initiatives and experiment with new

improvements.

Within the first type of developers, they often have a more conservative approach

in the community. In other words, although they are actively involved in the

development, the decision making process is often centralized. Important issues

may be objectively discussed prior to the change, but the acceptance by the

project leader is still critical in gaining the consensus and support amongst the

group. For this reason, they typically value qualities such as the coherence, the

stability and incremental changes in software. This is because modifications

are made by a few people only, and the rate of progression is less then rapid.

For example, in the main release of Pd, Miller has the final authority over the

features included for the coming release, and he is the only person who decides

the frequency of the release, which typically is once a year.

In general, the second kind of developers are more critical towards the design

and implementation of Pd. This by no means disregards the past achievements

of the program, however, they are constantly looking for new potential improve-

ments to take Pd one step further. For this reason, they often take initiatives

141

attempting to engage the community to innovate. For instance, they organized

monthly on-line developers’ meeting in the past, the aim of which being the

establishment of more direct communication between developers thus to better

organize various internal tasks. From their perspective, software development

should be an open and decentralized collaboration. In other words, not only

does everyone have equal opportunities to raise their concerns, but can also de-

cide on important matters. The decision making process, therefore should be

objectively made by the majority. Lastly, they highly appreciate the value of

innovations and are clearly motivated to carry out experiments and implemen-

tations.

Developers having contrasting views and characteristics often exist within FLOSS

projects. Such a phenomenon arguably contributes to the rich social dynamic

within the community thus further motivating collaboration. However, the dis-

sonance observed amongst Pd developers is less than ideal and was not an-

ticipated. Since it is not uncommon that FLOSS consists of developers with

different opinions, further investigation is needed to identify the critical factor

that leads Pd into the current state of affair.

One aspect that appears to be unique in Pd is the role played by the project

leader. Although Miller has been known for maintaining the main line code

base and not the devel branch, he has rarely voiced his concerns over numerous

disagreements within the community, including issues with DesireData. This

could be clarified by briefly examining the history of Pd as a collective FLOSS

project.

Prior to version 0.3512, Pd was already released as a FLOSS project under

the BSD license. At this time, because Miller was the sole developer of the

project, Pd had no official collaboration platform such as on-line source code

repository and version control system. As Pd became evermore popular, it

began to gather an increasing number of users and developers. There was now

a need to coordinate between the individuals involved. As a result, initiatives

were taken by the early adapters to establish various development facilities in an

attempt to formalize the emerging collective. Members of the community guided

12Including version 0.32, 0.33 and 0.34

142

Miller through the transition so that, as the project’s original author, he could

efficiently utilize the available tools. However, although Miller had adapted to

the newly formed collaboration, the previous development method nevertheless

remained similar to a certain degree. This is most evident with Miller’s annual

release, where most of the changes made in the devel branch over the years are

not included. In other words, despite the growing community, Miller maintains

a level of isolation in his approach to the development of Pd. This condition

holds true until present day.

The role of project leader in FLOSS is far from trivial, despite its distributed

and decentralized appearance. Project leaders need to have the ability to not

only moderate but also consolidate the community resource. This can be par-

ticularly troublesome when the development process is transparent and each of

the individuals involved hold their own perspective on the subject. While there

is no convention in the approach to project management, some common trends

may nevertheless be outlined.

In many successfully FLOSS collaborations, a typical trait of a project leader

is the ability to clearly articulate and formulate his or her own views to the

community. For this reason, the main approach and original objectives of the

project are precisely defined without confusion. Furthermore, he or she has to be

able to mediate between developers of different opinions, so a group consensus

may be maintained. These characteristics can be found in the cases of Richard

Stallman, Linus Torvald and countless other prolific FLOSS projects. Richard

Stallman leads the GNU project with his uncompromisable vision, while Linus

Torvald’s confidence and diplomacy allows Linux to achieve its goals.

Miller’s isolation, therefore, has resulted in the lack of a visible central figure

within the community. This is particularly problematic when disagreements oc-

cur. Without mediation, they may quickly escalate into intense debates which

generally lead to a negative outcome. As the foundation of a project is generally

set by its original author, his or her opinions in such a scenario often provides

an effective means of clarifying issues in the dispute. Furthermore, without an

authoritative intervention, a community may easily lose its focus and the col-

laborative effort may thus be dissolved. Evidence of divergence in development

143

can already be observed. Lastly, the isolated approach can also influence the

overall outlook of the community. By not actively engaging with the community,

developers are thus less likely to collaborate under common interests. Individu-

als tend to act according to their own personal agenda, rather than addressing

fundamental issues collectively.

Since it was not Miller’s original intention to formally establish Pd with an

open collaborative environment and subsequently be recognized as the project

leader, there is no obligation for his engagement with the existing community.

For this reason, Miller is by no means entirely responsible for the development

of Pd, as a FLOSS project. In other words, Miller’s choice of FLOSS license for

Pd and the consequent activities generated as a result are separate incidents.

It nevertheless highlights the importance of leadership in FLOSS development

and the extent to which a project leader can influence a community.

Based on the observation above, one may conclude that Pure Data, as a software

project, does not reflect particularly well on the development model found in

FLOSS. To briefly summarize the reasons, firstly, it was the early adapters of

the software who formally established its FLOSS community, not the original

author. As a result, the position/status of the project leader became ambiguous.

According to the conventions of FLOSS, Miller would be regarded as the project

leader, and this is still the general consensus within its community. On the other

hand, as Miller did not initiate the community, he therefore is not formally

obligated to act as the project leader. For this reason, his absence from the

community’s activity can thus be understood.

The internal divide, with the lack of mediation, has recently produced some

significant changes. Developers who represent the second and more radical

group have begun to show signs of losing interest in the involvement of Pd

community. For instance, the devel branch, which is traditionally maintained

by these developers, is no longer in operation. In other words, there is no

corresponding experimental branch for the latest version of Pd’s main release.

Most importantly, these developers have diverted their interests to new and

similar projects which arguably derived from the frustration experienced within

the Pd development.

144

Tim Blechmann, who has been a long term maintainer of the devel branch,

officially announced his departure in late 2004. He is now focusing on developing

his own audio dataflow programming environment, which aims to completely

redesign many of the fundamental shortfalls which he had identified in Pd. As

a result, it aims to bring highly optimized performance to audio synthesis, and

ultimately multi-media programming. It currently has a preliminary testing

version available and is named Nova. While no longer actively maintaining and

developing Pd, Tim continues to stay in contact with the Pd community through

the mailing list.

Thomas Grill, another key figure in the devel branch, has also started an inde-

pendent project based on Pd. Named Vibrez, it aims to modify the existing Pd

to offer a unified and comprehensive software package that perform consistently

over a variety of operating systems. It will eventually have its own graphical

user interface. Not being a FLOSS project, many details on this project are not

disclosed to the public.

Discouraged by the lack of communication within the community, Mathieu

Bouchard resigned from Pd’s mailing lists in 2006. While not formally en-

gaging with other developers, he continues to moderate the official Pure Data

IRC channel. Furthermore, Mathieu is currently focusing on the development

of DesireData, which still resides in Pure Data’s on-line source code repository.

Since the devel branch is no longer being developed, DesireData is now a inde-

pendent branch of its own. This decision has brought some practical benefits to

the project. It has allowed DesireData to be developed freely, without interfering

with the works of other developers.

4.7 Current Status and Conclusion

Although the development of DesireData was subject to several interruptions,

as of September 2007, the majority of improvements it originally set out to im-

plement were completed. Each of the eight pre-releases since September 2006

have shown a steady progress towards completing the goals of the project. These

145

releases also gave other developers and users opportunities to test it and pro-

vide valuable feedback on different aspects of the project. Although Mathieu

Bouchard and Chun Lee still remain the two main contributors to the project,

others have shown interest in being involved. As a result, other projects have

been initiated with the help of these early adopters, to support the continuation

of DesireData.

At present, DesireData has a web portal which consists of a ticketing system

and a wiki13. The purpose of the former is to better assign and monitor the

development process, whereas the latter is intended to facilitate the documen-

tation of the project. Alongside this, a dedicated mailing-list also exists for

individuals to discuss current issues and bug fixes. Lastly, a large part of the

communication also takes place over the project’s IRC channel. Such a method

of correspondence is much more rapid and thus more effective than the list. As

a young and developing software project, DesireData currently has fifty-eight

subscribers on its mailing-list and around ten members (On average) on its IRC

channel.

Two supporting projects were derived from DesireData: “PureUnity” and “Patching-

in-tongues”. The goal of PureUnity is to develop an automated testing suite for

DesireData. As the complexity of a given software increases, testing becomes

evermore important in the process of development. By conducting automated

tests against new modifications in the code base, it would allow potential bugs

to be caught early and systematically. Furthermore, based on the principles of

unit testing, any previous bugs and new features have corresponding test cases

in PureUnity, thus ensuring the long term quality of the software. In other

words, having a extensive testing suite can lead to less unknown bugs in the

source code.

“Patching-in-tongues”, on the other hand, aims to internationalize DesireData

by providing locale support. This means elements such as menu items, pop-up

dialogs, tool-tips and object descriptions can have a multi-lingual display so that

users who are less familiar with the English language can operate the program.

At present there are twelve languages being translated by a team of seventeen

13http://trac.edgewall.org/

146

contributors. Moreover, because of the Unicode support, locales included are

not limited to languages based on Latin characters. For instance, Japanese and

Chinese are also supported in DesireData. The ability to internationalize Pure

Data has been a long term discussion within the community, and being able to

achieve this at this stage in DesireData is yet another significant improvement

over both its traditional and proprietary counterparts.

To date, DesireData has been presented in several festivals and conferences.

These are crucial opportunities for the project to gain more interest, as well as

receiving critical feedback. Furthermore, as DesireData developers are located

in different parts of the world, these events also provided rare chances for them

to meet in real life. Some of the key events will now be given as examples.

DesireData took part in the Piksel festival in both 2005 and 2006. At the

first event, it was accepted as a paper submission, where its design and the-

ory were described. This paper also marked the official public announcement

of the project. As a result, DesireData was once again invited the following

year to demonstrate the software and present the subsequent progress. The

positive feedback and interest received at the Piksel festival proved to be a real

encouragement to the project in its early development.

The live performance by the Canadian artist Robert Atwood14 at the live coding

conference at Sheffield, England in 2007, is perhaps the first real production

made using DesireData. In preparation for the performance, Robert worked

closely with both Mathieu Bouchard and Chun Lee to test the software and give

design suggestions. As his performance focused on the practice of live coding

in the domain of visual dataflow programming language, several user interface

features in DesireData proved to be particularly useful in such a context.

Most recently, DesireData was presented at the second Pure Data convention in

Montreal in August 2007. For many Pd developers, this was the first time they

saw the project and were able to directly discuss many of its ideas. In partic-

ular, the improved keyboard based program control and the automated testing

methodology formed two distinctive subjects in the paper sessions. Throughout

14http://robert.lurk.org/

147

the convention, many members of the community showed increasing interest

and acknowledgment of the extensive works carried out so far in the project.

Although most of the features in DesireData are already implemented and can

be demonstrated, it still falls short when employed in large scale productions.

The main reason for this limitation is due to the sub-optimal performance of the

widget toolkit inherited from the original program. In Pure Data, Tk was used

as the toolkit to render the patcher window. As both the responsibility and the

functionalities of Pd’s GUI are strictly limited, the effect of Tk’s performance

was less obvious. DesireData, on the other hand, has its client written entirely

using Tcl/Tk, and is managing all user related tasks together with additional

features, the effects of Tk X have thus become apparent and extensive. Despite

the performance of Tk having always been known as less than adequate, the full

extent of its effect on DesireData was unfortunately discovered rather recently.

As a result, this is currently the only remaining factor preventing the project

from its first general release.

Several potential solutions have been found and are currently being investigated.

First, it is possible to directly modify the source code of Tk widgets and early

experiments have shown promising results. However, this can bring additional

complications when distributing the software. This means DesireData will ei-

ther maintain its own branch of Tcl/Tk, or depend on the testing version of Tk,

assuming its modifications will be accepted by Tcl/Tk developers. Each of the

options remains to be further evaluated. Secondly, it is possible to switch the

widget bindings of Tcl to other toolkits. For instance, Tkzinc15 and Gnocl16 of-

fers alternative bindings using OpenGL17 and GTK+18. Because of the modular

design in DesireData, changing widget toolkits can be made rather efficiently.

However, due to the lack of benchmark documentation amongst available alter-

natives, making the right choice is less than trivial. Having found the possible

solutions in the above two categories, it was decided that they should be ex-

plored in parallel, so as to minimize the risk of repeating the experience with

15http://www.tkzinc.org/tkzinc/index.php
16http://www.dr-baum.net/gnocl/
17http://www.opengl.org/
18http://www.gtk.org/

148

Tk.

The experience of working on DesireData also highlighted several areas of in-

terest which could lead to further research. Since DesireData allows users to

interact with the program in several different ways, it would be interesting to

conduct comparative tests on the efficiency between different input strategies, as

well as statistically recording common user behaviors for quantitative analysis.

It is conceivable to devise multiple representations of the same dataflow patch.

In other words, patches can be visualized according to different properties, thus

enabling users to better explore the inner structures in them. Lastly, automated

graphing and grouping could significantly reduce the amount of human effort

spent on visually managing objects and patches. In short, not only has the

original objective of the project produced positive results, it has also revealed

possible directions for future developments, for both DesireData and personal

practice.

149

Selected Bibliography

[1] Bentley, P., and Corne, D. W. Creative Evolutionary Systems. Mor-

gan Kaufmann, London, 2002.

[2] Bezroukov, N. Open source software development as a special type of

academic research (critique of vulgar raymondism). First Monday 4, 10

(1999).

[3] Bezroukov, N. A second look at the cathedral and the bazaar. First

Monday 4, 12 (1999).

[4] Boden, M. The Creative Mind. Routledge, London, 1990.

[5] Bohm, D. On Creativity. Routledge, London, 1998.

[6] Card, S., Moran, T., and Newell, A. The Psychology of Human-

computer Interaction. Erlbaum, Hillsdale, N.J., 1983.

[7] Collins, N. Generative music and laptop performance. Contemporary

Music Review 22 (2003), 67–79(13).

[8] Cope, D. Experiments in musical intelligence. A-R Editions, Inc., Mid-

dleton, 1996.

[9] Coveney, P., and Highfield, R. Frontiers of Complexity. faber &

faber, New York, 1995.

[10] Dawkins, R. The Blind Watchmaker. Penguin Books, London, 1986.

[11] Dostàl, M. Genetic algorithms as a model of musical creativity - on gen-

erating of a human-like rhythmic accompaniment. Computers and Artificial

Intelligence 24, 3 (2005).

150

[12] Draves, S. The electric sheep screen-saver: A case study in aesthetic

evolution. In EvoWorkshops (2005), F. Rothlauf, J. Branke, S. Cagnoni,

D. W. Corne, R. Drechsler, Y. Jin, P. Machado, E. Marchiori, J. Romero,

G. D. Smith, and G. Squillero, Eds., vol. 3449 of Lecture Notes in Computer

Science, Springer, pp. 458–467.

[13] Eno, B. A Year With Swollen Appendices. Faber & Faber, London, 1996.

[14] Galanter, P. What is generative art? complexity theory as a context

for art theory. proceeding of the Internaional Generative Art conference,

Milan (2003), 216.

[15] Hiller, L., and Issacson, L. Experimental music : Composition with

an Electronic Computer. McGraw-Hill, New York, 1959.

[16] Holland, J. H. Emergence, from chaos to order. Oxford University Press,

Oxford, 1998.

[17] Kemp, J., and Howse, M., Eds. xxxxx. print on demand, 2007.

[18] Kircher, A. Musurgia Universalis. Romæ, 1650.

[19] Latham, R., and Sassen, S., Eds. Digital Formations. Princeton Uni-

versity Press, Princeton, N.J., 2005, pp. 178–211.

[20] Laurent, A. M. S. Understanding Open Source & Free Software Licens-

ing. O’Reilly Media, Sebastopol, California, August 2004.

[21] Levy, S. Hackers: heroes of the computer revolution. Penguin books,

London, 1984.

[22] Lovejoy, M. Digital currents: art in the electronic age. Routledge, Lon-

don, 2004.

[23] McDirmid, S. Living it up with a live programming language. In

Proc. Object-Oriented Programming, Systems, Languages Applications

2007 (2007), OOPSLA.

[24] Moody, G. Rebel Code: Linux and the open source revolution. Penguin

books, London, 2001.

151

[25] Negroponte, N. Being Digital. Hodder & Stoughton, London, 1995.

[26] Nyman, M. Experimental Music: Cage and Beyond. Cambridge University

Press, Cambridge, 1999.

[27] Partridge, D., and Rowe., J. Computers and creativity. Intellect,

Oxford, 1994.

[28] Paul, C. Digital Art. Thames & Hudson, London, 2003.

[29] Puckette, M. the Theory and Technique of Electronic Music. World

Scientific Press, Hackensack, N.J., 2007.

[30] Raskin, J. The Humane Interface. Addison Wesley, Reading, Mass., 2000.

[31] Raymond, E. S. The Cathedral & the Bazaar. O’Reilly, Sebastopol,

California, January 2001.

[32] Reynolds, C. W. Flocks, herds, and schools: A distributed behavioral

model. In Proc. ACM SIGRAPH ’87 (Anaheim, California, July 1987).

[33] Roads, C., Ed. Composers and the Computer. A-R Editions, Middleton,

1985.

[34] Roads, C. The Music Machine. MIT Press, Cambridge, Mass, 1989.

[35] Sims, K. Artificial evolution for computer graphics. In SIGGRAPH (1991),

J. J. Thomas, Ed., ACM, pp. 319–328.

[36] Stallman, R. M. Free Software Free Society: selected essays of Richard

M. Stallman. GNU press, Boston, MA, 2002.

[37] Todd, S. Evolutionary Art and Computers. Academic Press, London,

1992.

[38] Toole, B. A. Ada, The Enchantress of Numbers. Strawberry Press, Mill

Valley, California, 1992.

[39] Turner, S. R. The Creative Process, A computer model of storytelling

and creativity. Lawrence Erlbaum Accociates, Hillsdale, N.J., 1994.

[40] Wishart, T. On Sonic Art. Harwood Academic, Amsterdam, 1996[1985].

152

[41] Xenakis, I. Formalized Music: Thought and Mathematics in Composition.

Indiana University Press, Bloomington, 1971.

[42] Zimmer, F., Ed. Bang, Pure Data (1. International PD-Convention Graz).

Wolke Verlag, Frankfurt, 2006.

153

Appendix A

DesireData

URL

http://desiredata.goto10.org

Mailing list

http://lists.goto10.org/cgi-bin/mailman/listinfo/desiredata

IRC

irc.freenode.net, #desiredata

Browse source

http://pure-data.cvs.sourceforge.net/pure-data/pd/src/?pathrev=desiredata

Download Source using CVS

cvs -d:pserver:anonymous@pure-data.cvs.sourceforge.net:/cvsroot/pure-data login

cvs -z6 -d:pserver:anonymous@pure-data.cvs.sourceforge.net:/cvsroot/pure-data co -r desiredata pd

cvs -z6 -d:pserver:anonymous@pure-data.cvs.sourceforge.net:/cvsroot/pure-data co pd/doc

154

Supported operating system

Gnu/Linux

Latest release

http://artengine.ca/desiredata/download/desiredata-2007.08.04.tar.gz

ChangeLog

DesireData 2007.08.22 :

* added more Bokml (Norwegian) translations from Gisle Frysland

* added Nihongo (Japanese) translations from Kentaro Fukuchi

* added Dansk (Danish) translations from Steffen Leve Poulsen

* added History class to unify command history for Listener/Runcommand/TextBox

* KeyboardDialog clean up, added font selector for console and virtual keyboard

* Appearance settings can be applied at run time

* new object/wire indexing system (diff-friendly)

* Added keyboard/mouse macro recording, playback, and copy (to clipboard)

* [select] has as many inlets as it has arguments

* Added [macro] so that a macro can be played back in a patch using messagebox

* Added [clipboard] to pull the content of system clipboard

* Fixed variable width font support and TextBox code clean up

* Added object id display toggle

* Added [display] object

* Added patch editing commands

* Added expand_port

* Added profiler (object speed measurements) (not compiled in by default)

* Can now use spaces and \{} in IEM labels and some other places.

* Added Locale diff tool: localeutils.tcl

DesireData 2007.08.04 :

* Unicode locales

* fixed type mismatch bug recently introduced in [unpack]...

155

* fixed lost console posts at startup

* turned most fprintf() into post() or error()

* added Chinese locale from Chun Lee

* added Polish locale from Michal Seta

* added object creation history

* added arrow keys and mouse clicks to KeyboardDialog

* added click drag and copy

* added background grid

* added snap to grid

* added new font selector (in client prefs)

DesireData 2007.07.30 :

* added classes [unpost], [tracecall], [parse], [unparse]

* non-constructed objects finally have a dashed box like they used to

* most of the rest of the C code switched to C++,PD_PLUSPLUS_FACE

* beginning to use C++ standard library components

* added event history view (help menu)

* added keyboard view

* fixed several bugs in copy/paste, undo/redo, subpatches, gop.

* added atom_ostream (similar to atom_string)

* lifted many string length restrictions

* fixed the hexmunge generator (for classnames with special chars)

* pd_error() is deprecated

* added verror(), added open_via_path2(), canvas_open2(), outlet_atom(), ...

* [route] and [select] support mixed floats and symbols

* [unpack] supports type "e" meaning any atom ("e" stands for "element")

* added variable mouse cursor sensitivity

* various fixes on keyboard navigation

DesireData 2007.06.27 (which should have been 2007.01.12) :

* merged new loader from Miller’s pd 0.40-2

* merged (but not tested) the rest of the [declare] code from pd 0.40-2

* added gensym2 (support for NUL in symbols)

* most of the code now uses C++,PD_PLUSPLUS_FACE,class_new2,etc

156

* auto show/hide scrollbars

* menu bar can be disabled

* new Find widget (FireFox style)

* added "subpatcherize" (turn a selection into a subpatch)

* IEMGUI can now by controled with keyboard

* more general keyboard control

* merged t_alist and t_binbuf together and aliased them to t_list

* delay uploading until #X restore or #X pop

* don’t upload all abstractions instances to client (much faster)

* introduced zombie objects to deal with dead objects

* Command evaluator per canvas window

* Added locale for Euskara (Basque) by Ibon Rodriguez Garcia

* PureUnity is now part of the DesireData project (but is designed to

run also on Miller’s 0.40).

* added -port option in desire.tk so that server and client may

be started separately.

* PureUnity has type suffixes for some class families; for each $1 in

f,~,# (float,signal,grid) there is [inlet.$1] [outlet.$1] [taa.$1]

[op2.$1] [rand.$1] [norm.$1] [swap.$1] [packunpack3.$1]

* Other new PureUnity classes: [^] [commutator] [associator]

[invertor] [distributor] [tree] [protocols-tree]

DesireData 0.40.pre5 (2006.12.19) (-r desiredata; ./configure && make) :

* merged changes from Miller’s pd 0.40-2 (80% of it)

* new canvas method "reply_with" of canvases replaces the implicit

reply-matching of pre4. (even less bug-prone)

* server-side wires and scalars appear to client just like other objects.

* floatatom,symbolatom,[nbx] use normal Tk text edition just like

ObjectBox,MessageBox,Comment have done for a while

* obsolete t_object fields removed: te_type te_width

* global object table (crash protection for bindless .x targets)

* variable width font usable in ObjectBoxes and MessageBoxes and Comments.

* [hsl] [vsl] support jump-on-click again

* lots of bugfixes

* -console and -lang moved to Client Preferences dialog

157

* added some more translations by Patrice Colet

* removed Find menu in main window

* added Find, Find Next, Find Last Error (canvas windows only)

* choose between horizontal and vertical in Properties of slider or radio.

DesireData 0.39.A.pre4 (2006.12.07) (-r desiredata; ./configure && make) :

* major speedup of the GUI (sometimes 3-4 times faster)

* lots of bugfixes

* logging of the socket into the terminal is now disabled by default

* introducing PD_PLUSPLUS_FACE, a new way to use <m_pd.h> and <desire.h>

* new branch "desiredata" instead of "devel_0_39".

* got rid of #ifdef DESIRE

* reply-matching in client-server protocol (less bug-prone)

* reversing the connection to what it was supposed to be:

the client connects to the server, not the other way around.

* the server uses [netreceive] to receive the connection from the GUI

* removed support for .pdsettings, .plist, microsoft registry.

* cross-platform libpd

* new titlebar icon

* removed t_guiconnect

* removed [scope]

DesireData 0.39.A.pre3 (2006.11.27) (-r devel_0_39; ./configure && make) :

* franais updated by Patrice Colet

* italiano updated by Federico Ferri

* tons of bugfixes

* better pdrc editor (renamed to server prefs)

* removed media menu (split to: help menu, file menu, server prefs)

* removed Gdb box, added crash report dialog

* renamed objective.tcl to poe.tcl (because the name was already taken)

* replaced scons by autoconf and make (starting from Miller’s 0.39’s files)

* removed detection of Tcl (we don’t need to use libtcl)

* removed the setuid option because no-one needs it; also fixed the

setuid security vulnerability in case someone does chmod u+s anyway

* Portaudio 18 is no longer supported.

158

* simplified configure.in (detector and makefile generator)

* APIs not compiled in show up in "pd -help", with a special mention

"(support not compiled in)"; those options don’t give you a "unknown

option" when trying them, it says "option -foo not compiled in this pd".

* switched desire.c to C++, as another way to reduce redundancy in code.

* can be compiled without audio support.

* can be compiled without MIDI support.

* can --disable-portaudio on OSX

* added multiple wire connection support

* fixed copy/paste on canvas

* keyboard navigation pointer makeover

* added automatic object insertion support

DesireData 0.39.A.pre2 (2006.11.12) (-r devel_0_39; scons desire=1) :

* espaol updated by Mario Mora

* subpatches

* GOPs

* abstraction instances

* multi-line objectboxes, messageboxes and comments

* keyboard-based navigation

* made desire.c C++ compatible (for future use)

* lots of things not written here

DesireData 0.39.A.pre1 (-r devel_0_39; scons desire=1) :

* merged into the devel branch; enable with scons desire=1, which

disables lots of g_*.c files (and s_print.c) and enables desire.c;

use the std devel gui using desire=0.

* added an object-oriented programming system in desire.tk (do not

confuse with a dataflow system). added proc unknown, which allows

subject-verb-complement method-calling in tcl (aka objective.tcl)

* run the client to start the server and not the other way around: do wish desire.tk

* the client can make the server start via GDB

* added Pd box (like Ctrl+M but with history)

* added Gdb box

* menu translations in 8 languages

* classbrowser now show short descriptions in 3 languages

159

* objectbox tooltip now replaced by mini-classbrowser

* client conf editor

* other stuff I forget to write about

* looks for .ddrc

* pdrc and ddrc config becomes server and client configuration editor

* graphics rendering completely removed from the server

* toolbar and status bar can be enabled/disabled

* added Patcher->View->Reload: client reloads the patch from the server

* localization support (currently 8 languages: english, franais, deutsch,

catal, espaol, portugus, bokml, italiano.)

* lots of things not written here

160

Appendix B

List of software

Gnu/Linux

Gnu/Linux is used throughout the research as the operating system. In particular,

Gentoo (http://gentoo.org) and pure:dyne (http://puredyne.goto10.org) both have

been adopted as the Linux distributions of choice.

Emacs

All text related tasks ranging from programming to writing the thesis are achieved

through a extensive text editor called the Emacs

(http://www.gnu.org/software/emacs/).

LATEX

The thesis employs LATEX(http://www.latex-project.org/) for formatting and typeset-

ting. LATEXis widely used in the academic environment to efficiently produce profes-

sional documents for publishing.

Tcl/Tk

The client of DesireData is implemented in Tcl/Tk (http://tcl.tk/). Although the De-

sireData client represents a complete rewrite to Pure Data’s GUI, the use of Tcl/Tk is

161

nevertheless inherited from the existing Pd. Long term plan had been discussed to mi-

grate DesireData client to other languages such as Python (http://www.python.org/).

Pure Data

Pure Data (http://puredata.info) has been used extensively throughout both the per-

sonal artistic practice and the research. Refer to the main text (p.98) of the thesis for

more detail.

162

Appendix C

Selected performances and workshops

Selected Performances

– 22/06/2007 lurk @ shunt, London, UK

– 03/04/2007 Make art @ Confort Moderne, Poitiers, France

– 16/12/2006 Dorkbot:laptop drumming circle @ Limehouse Town hall,

London, UK

– 03/12/2006 Elefest/Guerrilla Zoo @ Corsica Studios, London, UK

– 11/11/2006 Openlab#3 @ Midnightblue Gallery, London, UK

– 26/10/2006 Pile on @ Battersea Barge, London, UK

– 21/10/2006 Placard @ state51, London, UK

– 11/10/2006 Piksel @ BEK, Bergen, Norway

– 01/09/2006 Dorkcamp06, Dorking, UK

– 11/08/2006 ill FM, London, UK

– 02/04/2006 Openlab#2, @ Vibe Bar, London, UK

– 01/04/2006 SUM(1,4,6) @ Area10, London, UK

– 25/03/2006 Voltage Controlled Cuisine @ London Social Center, Lon-

don, UK

– 18/03/2006 Dorkfest @ Limehouse Town hall, London, UK

– 27/01/2006 Make art @ Confort Moderne, Poitiers, France

– 19/05/2005 you make me @ the Bargehouse, London, UK

163

– 08/04/2005 Poetic Generative - NEMO festival @ forum des images,

Paris, France

– 01/04/2005 Openlab #1 @ Foundry, London UK

– 01/02/2005 Gage05 Festival @ Hull Time Based Arts, Hull, UK

– 26/03/2004 Bitsplitters @ 291 Gallery, London, UK

– 23/08/2003 Terrain De Jeux 180’ @ Batofar, Paris, France

– 28/06/2003 Nuit De La Coalition @ IN FACT, Paris, France

Selected Workshops

– Pure Data summer school, Center For Contemporary Art, Glasgow

– GYOML at the Canteen workshop, Borrow-in-furness, UK

– puredata workshop, spacestudios, Hackney, London

– Dorkcamp06, Dorking, UK

– Pure Data summer school, Spacestudios, Hackney, London

– Tagged, SPACE media, London, UK

– Goto10 vs Okno, Brussels, Belgium

Discography

– Masters of War, 2004, Incineratemedia

(http://www.incineratemedia.com/masters of war/)

– OutOfChun, 2007, Catch The Falling Leaves

(http://catchtheleaves.org/)

(http://www.archive.org/details/ctfl004)

164

Appendix D

CD ROM table of contents

Pure Data patches

– Hypothetical Waves.pd

– Hypothetical Waves.mp3

DesireData releases

– DesireData 2007.08.04.tar.gz

– DesireData 2007.07.30.tar.gz

– DesireData 2007.06.27.tar.gz

Music releases

– Masters of War

Assassination Postcard.mp3

Masters of War.mp3

Rockets.mp3

Interval.mp3

Thanks for Trusting Us.mp3

MOW 2.0 (Remix by Sonicvariable).mp3

Mr. President (Remix by Cartesian Lover).mp3

All of Us Want Peace (Remix by K2).mp3

AssMastersofWar (Remix by Errorsmith).mp3

NOTE: Masters of War is a album release between Konrad Kinard

(http://incineratemedia.com) and Chun Lee, who used Pure Data in their musical

collaboration.

165

– OutOfChun

Glass Cloud.mp3

Gold Spiral.mp3

NEZ.mp3

toy 100p.mp3

i.mp3

NOTE: OutOfChun is a net EP by Chun Lee released on http://catchtheleaves.org/,

all music is created using Pure Data.

– Video documentations

Cracktux@Shunt.avi

Cracktux@LondonSocialCenter.avi

ClassCloud.avi

NOTE: Cracktux is a performance collaboration between music made by Chun Lee

(using Pure Data) and visuals made by Olivier Laruelle (using Processing:

http://yesyesnono.co.uk/).

166

