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Abstract—The potential of communication networks and middleware to enable the composition of services across organizational

boundaries remains incompletely realized. In this paper, we argue that this is in part due to outsourcing risks and describe the possible

contribution of Service-Level Agreements (SLAs) to mitigating these risks. For SLAs to be effective, it should be difficult to disregard

their original provisions in the event of a dispute between the parties. Properties of understandability, precision, and monitorability

ensure that the original intent of an SLA can be recovered and compared to trustworthy accounts of service behavior to resolve

disputes fairly and without ambiguity. We describe the design and evaluation of a domain-specific language for SLAs that tend to

exhibit these properties and discuss the impact of monitorability requirements on service-provision practices.

Index Terms—Service-level agreements, electronic services, contracts, domain-specific languages, model-driven engineering.
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1 INTRODUCTION

APPLICATION-SERVICE Provision (ASP) [1], Software as a
Service (SaaS) [2], utility computing [3], cloud comput-

ing [4], virtual enterprises [5], Service-Oriented Architecture
(SoA) and Service-Oriented Computing (SoC) [6], Web
services [7], the World-Wide Web (WWW) [8], object-
oriented middleware, Remote-Procedure Calls (RPC) [9],
and client-server architectures [10] are all paradigms for the
implementation of distributed systems which, although
they do not all benefit from unambiguous or definitive
coinage, clearly share two distinctive features: They rely on
the exchange of service request messages between distrib-
uted client and service software agents, sometimes resulting
in an exchange of response messages delivering part or all
of the value of the service being implemented, and they may
be federated, i.e., the client and service agents may be the
responsibilities of distinct, financially independent parties.
In this paper, we refer to such systems as electronic services.

The benefits of these paradigms are various. However, it

is commonly stated that the division of logic between the

client software and one or more services enables a beneficial

separation of concerns between the provision of the

archetypical services and the employment of those services

to some business end. This results in IT infrastructure that is

organized according to the logical structure of the business

or task being automated, and is therefore more reusable,
maintainable, and amenable to the continuous integration
efforts required by ever-changing software trends and
corporate mergers [11].

This argument is reinforced by the potential for the
federation of such systems: Large organizations rely on a
variety of services; this presents a management challenge;
moreover, it is difficult to rely on competition to improve
the quality/cost ratio of internal services. Therefore, a
recent management trend has been to attempt to outsource
services unrelated to an organization’s core competencies,
to simplify management and promote a competitive market
for services. Notable examples are Amazon’s Elastic
Compute Cloud [12], Salesforce.com [13], and SAP’s
Enterprise SOA [14].

The potential for outsourcing is taken to its extreme in the
Web-services vision [7]. Here, it is proposed that out-
sourcing can be achieved at the component level, with Web-
service rental representing a viable alternative to the
purchase of off-the-shelf libraries or packages. Under the
Web-services model, a system may be composed across
multiple organizational boundaries, with outsourced ser-
vices in turn outsourcing elements of their own function-
ality.

Although the architectural benefits of client-server
computing have been extensively realized, as demonstrated
by the enormous market in middleware software, the
practice of outsourcing electronic services is far less
ubiquitous. Certainly, the infusion of the Internet with
functionality, in addition to media content, is still not a
widespread reality.

We argue that financial risks associated with the out-
sourcing of electronic services are a major inhibiting factor
in the proliferation of federated systems. Outsourcing risks
arise because the client of an electronic service must first
invest to integrate a service, and then surrenders control of
many of the factors governing the successful transaction of
their business to the service provider.
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These risks may be mitigated by Service-Level Agree-
ments (SLAs) that associate financial penalties with adverse
outcomes. However, this establishes incentives for the
participants to cheat, either by attempting to avoid paying
penalties for which they are liable, or by forcing their peer
to pay a penalty. Consequently, it is necessary for SLAs to
be precise and understandable so that the parties cannot
disagree over the provisions of the agreement, monitorable
so that a party may not breach the agreement without their
peer being aware of it, and nonexploitable so that parties
cannot be forced to pay unfair penalties. In this paper, we
examine how these requirements can be achieved by
describing the design and practical evaluation of our
language, SLAng.

We also highlight a significant result of our analysis of
the monitorability of SLAs in the common scenario in
which a service is provided across a network controlled
by a financially independent third party. In order to
achieve a system of mutually monitorable SLAs without
introducing new risks for the participants the network-
service provider must act as a reseller of the service.
Clearly this result may have an impact on existing models
of Internet service provision.

The remainder of this paper is structured as follows: In
Section 2, we examine outsourcing risk and consider
requirements for systems of SLAs with the principal
purpose of mitigating outsourcing risk; in Section 3, we
describe our theories of monitorability and approximate
monitorability and consider the levels of monitorability
possible for SLAs in a basic electronic-service-provisioning
scenario; in Section 4, we describe the SLAng language and
discuss how its formal specification lends it properties of
precision and understandability; in Section 5, we describe
the evaluation of SLAng using a case study; in Section 6, we
discuss related work; and in Section 7, we conclude and
discuss future work.

2 SYSTEMS OF SLAS FOR ELECTRONIC SERVICES

2.1 Outsourcing Risks

At least three parties are usually involved in the provision
of an electronic service. These are the client C, the service
provider S, and the network-service provider, in the context
of the Internet also known as an Internet-Service Provider
(ISP), denoted by I. The scenario is depicted in Fig. 1.

The client, utilizing an appropriate client software agent,
submits requests to the service at its discretion or

according to a loose schedule. The network, under the
supervision of the ISP, conveys these requests to the
service, which, under the supervision of the service
provider, performs some appropriate processing, possibly
performing or instigating some real-world activity as a
result, and possibly storing or modifying some data held
on behalf of the client. In due course, a response may be
returned to the client via the network.

More than one ISP may be involved in the delivery of
messages, with ISPs exchanging the messages at the
boundaries between their networks. Client programs under
the control of a single client organization may also be
distributed in the network.

To initiate a service-provisioning relationship, the client
first identifies the service that it desires, then arranges the
permissions required for the service to be delivered to the
point at which it wishes to access it, typically the client’s
own interface to the Internet. This may mean entering into
one or more service-provisioning relationships, possibly
governed by formalized agreements.

A client is exposed to two major risks when entering an
electronic-service outsourcing relationship: First, the service
may not meet some requirements necessary to deliver the
value that the client expected to receive as a consequence of
using the service. This will result in a cost to the client,
either directly or in terms of lost revenue. Second, the client
will usually have to make an initial investment to acquire or
implement client software capable of using the service, or
more generally to integrate the service into its IT infra-
structure. If the service ceases to work altogether within the
expected period of service provisioning, degrades to the
extent that it is no longer cost effective for the client to rely
on the service, or if for any reason the service provider
prematurely withdraws permission for the client to access
the service, then the client will have lost some opportunity
to recuperate those costs.

These risks are illustrated in Fig. 2. The graph depicts
four flows of cash or value over time, related to a
hypothetical service: the client’s expected spend, the client’s
actual spend, the client’s expected return, and its actual
return. The relationship between the client and the provider
can be seen to be divided into two phases, the integration
phase and the operation phase. In the former, the client
spends to integrate the service, and receives no value from
the service. In the latter, the client incurs operating costs as
a result of using the service, but has the opportunity to
receive value in return.
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Fig. 1. A three-party electronic-service scenario.
Fig. 2. Value flows in a hypothetical electronic-service relationship.



The graph depicts a relationship in which the operating

period is shorter than expected for some reason, and the

client also receives less value than expected during the

operating period due to poor service performance. Overall,

the service has been rendered unprofitable: The small

income achieved is more than offset by the integration costs

and operating costs paid. We call these causes of lost

income inefficiency and termination costs.
We argue that outsourcing risks are a significant

discouragement for parties wishing to make use of out-

sourced services, and one reason that service-oriented

technology has thus far found its principal applications in

structuring the activity within large organizations, such as

banks and retailers, where these risks can be mitigated

administratively, in trivial services offered at low cost

without warranties, and in very high-value relationships

where costly risk-mitigation techniques such as due-

diligence inspections are feasible.

2.2 SLAs for Electronic Services

In this section, we discuss the requirements for SLAs that

can mitigate outsourcing risks, highlighting the most

important general requirements, and the conditions needed

in the electronic-service scenario. A fuller description of

requirements for electronic-service SLAs is given in [15].
The term “Service-Level Agreement” is applied to a

range of document types of varying content and import.

SLAs in which commitments to deliver various kinds of

compensation are related to the behaviors of one or more

electronic services and parties may be used to mitigate risk

in electronic-service scenarios.
Fig. 3 reprises the example service-provisioning rela-

tionship described in the previous section. Now an
additional cash flow is depicted representing compensa-
tion payments paid by the provider to the client according
to the terms of an SLA. Note that compensation is paid in
response to poor performance of the service, and in the
event of early termination of the relationship, and goes
some way to balancing the inefficiency and termination
cost incurred by the client.1

An SLA is a mechanism whereby a party may become
obliged to make a payment to another party. The parties
to an SLA will therefore have incentives to cheat, either to
avoid having to pay a penalty, or to force their peer to pay
them a penalty. For SLAs to be effective at mitigating
risks, they should be written so as to minimize the
opportunities for cheating. If the client cannot rely on
compensation in the event of poor service or early
termination because the provider may cheat, then out-
sourcing remains a risky proposition. If the SLA allows the
client to extort penalty payments from the provider, then
the provider should not enter the agreement, rendering it
ineffective for mitigating risk.

To resolve a disagreement concerning an SLA, the parties
must first agree an account of all events pertinent to the
agreement (for example, concerning the behavior of the
service). Then, the implications of the SLA in respect of this
account must be recovered from a concrete record of the
agreement, and these implications acted upon.

Consequently, we consider the most important require-
ments for an SLA that applies financial penalties to be: that
the SLA should be monitorable so that the parties may obtain
trustworthy information concerning the pertinent events,
understandable so that the original intentions of the parties
concerning the agreement can be recovered, and precise so
that these intentions cannot be misinterpreted.

We assume that a client of a service should reasonably
only be concerned with the behavior of a service insofar as it
affects the client. The internal behavior of the service should
be the responsibility and concern of the service provider
alone.

Referring to Fig. 1, it is clear that two kinds of behavior of
the service may affect the client in the electronic-service
scenario. First, the client may receive information from
electronic services via the network; and second, the service
may affect the outside world in such a way that the
consequences are eventually visible to the client.

Communications originating from a service have two
main attributes with which the client may be concerned:
what is returned and when it arrives. Conditions related to
the interval between a service request and the time of
arrival of a correlated response are variously referred to as
performance, latency, or timeliness conditions.

Because the client has no access to the implementation of
the service, its expectations concerning the behavior of the
service will depend on a description of the service given to
them by, or negotiated with, the service provider. If the
service subsequently behaves in a manner other than that
described, the client is likely to suffer. Hence, the client will
wish to ensure that the service either behaves as described
to a high degree or the client will be entitled to receive
compensation. Such conditions are normally called relia-
bility conditions.

Communications via electronic services have no other
attributes, so we conclude that the client will be primarily
concerned with timeliness and reliability conditions relating
to these services, and with conditions relating to the real-
world behavior of the service as a whole.

For example, consider the purchase of goods by a
merchant from a wholesaler. Let us assume the merchant
interacts with the wholesaler’s purchase order system via a
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Fig. 3. Value flows in a hypothetical electronic-service relationship with
compensation payments governed by an SLA.

1. The force of an SLA may be delivered by legal protection, in which
case the SLA may form all or part of a contract for outsourcing. However,
no part of this paper should be regarded as legal advice. The authors are not
legally qualified, and readers should seek the advice of a lawyer before
entering any legally binding SLA.



Web service, browsing its stock lists and, in due course,
submitting an order. This interaction will consist of a
sequence of responses and requests transacted entirely
through the medium of the network. The submission of
orders is no doubt a matter of urgency for the merchant—
the ordering process contributes to the time taken to
replenish their stock, and the merchant has better things
to be doing than interacting with a slow computer system.
Therefore, an SLA could be established to constrain the
timeliness of responses from the service. Reliability will
clearly also be a concern, so that the merchant can be
confident that their orders are being processed. Interactions
will also result in activity on the wholesaler’s part to fulfill
orders. Stock will be retrieved from a warehouse, or
ordered from a third party, and will be packaged and
dispatched via a hauling service. This latter type of
behavior does not require interaction with the client over
a network, but still ultimately affects the client when the
stock is delivered, or fails to arrive when expected.

Reliability and timeliness conditions applied to a service
provider in an electronic-service SLA force the provider to
provide a service, or else pay a penalty. The provider will
therefore require the inclusion of a charging scheme in the
SLA, to compensate it for the cost of providing the service.
This is one example of a condition implied by the
requirement for nonexploitability.

The provider also assumes a risk due to the finite capacity
of such services. Characteristically, the timeliness of an
electronic-service will decrease drastically once some critical
resource, such as a processor or database, approaches
100 percent utilization [16]. Since, in an electronic service,
the ability of the provider to improve the capacity of the
critical resource at runtime will be limited, the only way to
control the degree of resource contention and hence the
overall time spent waiting for resources is to limit the rate of
requests. However, the rate of requests is controlled by the
client. Therefore, it is possible for a client to attempt to exploit
an electronic-service SLA by increasing the rate of requests.
This will result in a reduction in timeliness. Also, due to the
necessarily finite capacity of queues in the implementations
of electronic services, if the volume of incoming requests
remains high, it will eventually become necessary to begin
ignoring requests, impacting service reliability.

This risk to the provider can be mitigated in an SLA by
applying a condition to the client that requires a limit on the
rate of service requests; a throughput condition.

As discussed in Section 2.1, termination risks are a major
risk for clients of outsourced services. Equally, service
providers may want to safeguard their revenue streams, so
either party may wish to include penalties for early
termination in an electronic-service SLA.

In this section, we have described requirements for
monitorability, understandability, and precision, and ar-
gued that electronic-service SLAs need conditions relating
to timeliness, reliability, throughput, payment, and termi-
nation. Two considerations complicate the task of designing
language support for SLAs starting from these require-
ments. First, electronic services may be delivered to the
client over one or more networks controlled by ISPs. These
providers may be independent of the electronic-service

provider, but it is clear that the behavior of the networks
has the capability to introduce delays and faults into the
communications between the client and the electronic
services constituting the electronic service. This is precisely
the risk that the client is seeking to mitigate through the use
of SLAs. Therefore, we must also consider the relationship
of electronic-service SLAs to guarantees that may be offered
concerning the behavior of the network.

Here, we note that any given electronic-service scenario
may require not merely one SLA, but a system of SLAs, in
order to mitigate outsourcing risk without introducing
unacceptable new risks. We consider how this can be
achieved in the next section.

The second issue is that, although the types of conditions
that we expect to find in an electronic-service SLA are
limited in number, the ways in which these conditions will
be formulated are extremely various. The conditions may
need to vary in response to external conditions relating to
the business being conducted, and this must be captured in
the SLA. Conditions related to the real-world impact of
services may also need to be expressed. These requirements
for general expressivity conflict with a desire for a precise,
fully defined language with a finite number of constructs.
We discuss our approach to this problem in Section 4.

3 THE MONITORABILITY OF SLAs

3.1 Overview

Three parties participate in the basic electronic-service
scenario introduced in Section 2.1: the client, the service
provider, and the network-service provider. Discounting
the behavior of the service outside the network, and
assuming that the interface to the service is a simple,
synchronous electronic service, let us consider what could
go wrong for the client in this situation.

One possibility is that, having submitted a request, no
response is received by the client within some reasonable
interval of time. The client complains to the service provider
that a timely response was not received. The provider
claims that no request was received, produces a log of
requests as evidence supporting this claim, and directs the
client to complain to the ISP who was responsible for
conveying the request to the service. The ISP insists that the
request reached the service provider and produces a log
supporting this claim. Who can the client trust? Both the ISP
and electronic-service provider have delivered easily
fabricated evidence concerning an event, the delivery of
the request at the service-provider’s interface, that the client
was incapable of independently monitoring.

Let us assume that, for its own reasons, the client chooses
to mistrust the service provider, and requests that it enter
into an SLA. In this agreement, the client seeks to reduce the
costs that it expects to incur when the service fails to
perform as expected by receiving a penalty from the
provider, also giving the provider a disincentive to poor
performance. The client perceives that the problem with the
service is a lack of availability due to an erratic maintenance
regime on the part of the provider. The provider duly
commits to provide 95 percent availability over the lifetime
of the contract of which the SLA forms a part.
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Over the period of the contract, the client uses the service
frequently, and frequently responses are not generated
following requests. At the termination of the agreement,
the client seeks compensation from the provider, which
refuses to pay. The provider argues that, although the service
was unavailable when requests were made for which
responses were not received, at all other times the service
was available. Accumulating the fleeting intervals during
which the failed requests were being delivered and the
service was admittedly unavailable does not amount to
5 percent of the lifetime of the contract, and hence the
provider need not pay.

These examples highlight monitorability as an important
requirement for SLAs. In both cases, the client became
concerned with an event that it fundamentally could not
observe: In the first example, the delivery of the request to
the service; in the second, the transition of the service
between availability states. In both cases, the concern arose
because another event that they could observe, the delivery
of the response to the client’s interface, failed to occur when
expected. Had the client complained about this latter event,
they would have had a stronger argument because no party
could convince it of a falsehood concerning that event.

In the event of a dispute between the parties to an SLA, it
will be necessary for the parties to collect and present
convincing and pertinent evidence in order to determine
how the intent of the agreement should be applied.
Depending on how an SLA is written, such evidence may
be easier or harder to obtain. We refer to the property of an
SLA that determines how easily relevant and trustworthy
evidence may be obtained as its monitorability.

In this section, we summarize a technique for analyzing
systems of SLAs to determine the degree of monitorability
possible, first presented in [17]. We also discuss a significant
result of this analysis applied to the electronic-service
scenario, and the handling of measurement error in SLAs.

3.2 Modeling the Three-Party Scenario

Fig. 4 depicts the interaction model for the electronic-service
scenario. Interactions with the real world and any database
have been elided, and a simple synchronous model of
communications has been assumed. Four events are
indicated, E ¼ fx; y; z; wg, each corresponding to the com-
pletion of an action occurring during a service request,
respectively, dispatch, send, process, and respond. In [17],
we used this model as a starting point for a formalization of
SLAs in the service-provision scenario in order to consider
their monitorability.

We considered the client’s requirement for timely
delivery of results. The client is concerned with the amount
of time that elapses between a request being dispatched into

the network and a response being completely received. This
can be expressed as ðC;w� x < tÞ. Either of the other
parties in the scenario could offer C an SLA insuring this
requirement: the service provider could offer ðS; ðC;w�
x < tÞÞ or the network-service provider could offer
ðI; ðC;w� x < tÞÞ. However, this requirement could also
potentially be met by constraining the relative times of
events occurring between w and x, the intuition being that
the overall time taken to complete a request is acceptable if
the times taken to complete each action required to service
the request are also acceptable. For example, w� x < t will
hold if y� x < t1, z� y < t2, and w� z < t3, in all cases
where t1 þ t2 þ t3 < t.

Even supposing that the delay between events x and y
exceeds the arbitrary bound t1, this does not imply that the
client’s overall requirement will be violated. w� x < t will
be met if z� x < t1 þ t2 and w� z < t3, and other combina-
tions of constraints are also possible. The total set of
observations with which we are concerned is hence

O ¼ fy� x < t1; z� y < t2; w� z < t3; z� x < t1 þ t2;
w� y < t2 þ t3; w� x < tg;

where t1 þ t2 þ t3 < t and t, t1, t2, and t3 are all positive and
nonzero.

Given that SLAs may be made insuring any of these
observations, we considered what systems of SLAs are
possible in the scenario. In principle, any party may insure
any observation for another party. The set of parties is
P ¼ fC; S; Ig. The maximum number of possible SLAs in a
given scenario is jOj � jP j � ðjP j � 1Þ. The number of
combinations of SLAs is, therefore, 2jOj�jP j�ðjP j�1Þ. In this
case, 23�2�6 ¼ 236 � 6:9� 1010 distinct systems of SLAs are
possible.

Based on our model, we formalized criteria for good
systems of SLAs. The various events in the scenario are only
intrinsically visible to certain participants. The event x, for
example, is visible to C and I. However, S could find out
about x if it trusted C or I and that party reported to S. We
made the conservative rule that a party can only report an
event if they were not involved in an SLA related to the
event; otherwise, they would have an incentive to cheat. A
party can only monitor an event if it is visible to that party,
or a party they trust can report it. Clearly, an SLA is
monitorable to a party if it can monitor all events relevant to
the SLA. An SLA is mutually monitorable if it is monitorable
to both client and provider. An SLA is arbitratable if it is
monitorable by a third party trusted by both client and
server and which is trusted to report.

Some additional conditions are required to find useful
systems of SLAs. Some systems do not insure the client’s
requirement. We call systems that do adequate.

The system consisting of a single SLA fðS; ðC;w� x <
tÞÞg is adequate, but it is not safe. The service provider
insures the performance of the service at the client’s
interface to the network. If an error occurs in the network,
the service provider must pay the client, but the fault will be
the network-service provider’s. The service provider can
only intrinsically guarantee the observation z� y < t2. The
network-service provider can guarantee y� x < t1 and
w� z < t3. An SLA is safe if the provider of the SLA either
guarantees the requirement being insured, or is the client of
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Fig. 4. An interaction model for electronic-service provision showing
actions and their associated events.



SLAs insuring any dependent observations required to
make up the requirement. For example, S could safely offer
ðS; ðI; z� x < t1 þ t2ÞÞ if it received ðC; ðS; y� xÞÞ. Of
course, this second SLA is not necessarily safe for C, which
cannot intrinsically guarantee any observation.

Certain other systems of SLAs should be ruled out.
Systems in which SLAs for the same requirement are
offered by parties reciprocally can produce a false illusion
of safety. Systems in which the client unnecessarily receives
SLAs for their requirement and a subrequirement, e.g., w�
x < t and y� x < t1 are fine in principle, but are unlikely to
occur in the real world. We may also wish to rule out the
possibility of the client offering SLAs.

These rules are formalized in [17], which also describes a
depth-first algorithm for discovering systems of SLAs with
particular characteristics, such as safety and monitorability,
and analytical approaches to determining the number of
satisfactory, nonreciprocal, and nonclient systems. A
summary of the analytical results and the results of the
search algorithm for the scenario is shown in Table 1.

The most significant result of this analysis is that in only
one possible system are all SLAs mutually monitorable. This
is true whether or not we permit the client to offer SLAs.

In this scenario, for a system of SLAs to be safe and
satisfactory, both S and I must issue SLAs supported by
guarantees contributing to C’s requirements. Hence, all
parties will be financially involved in every contractual
situation, and no party can be trusted to report any events
that occur remotely from another party. Hence, only SLAs
between adjacent parties can be mutually monitored,
namely, contracts between C and I, and I and S. Only
one scenario meets this requirement. It consists of the
contracts ðI; ðC;w� x < tÞÞ and ðS; ðI; z� y < t2ÞÞ. The ISP
vouches that the service will perform correctly across its
interface with the client. It is capable of guaranteeing that

the request reaches the server in a timely fashion, and that
any response makes it back in time. To fully guarantee the
round-trip time of the service, the ISP must only obtain a
guarantee from the service provider that the service will
complete in good time.

That no arrangement can be arbitrated is obvious
without applying the search algorithm. Because all parties
in the scenario must be involved in contracts to satisfy
C’s requirement, no financially independent third party can
be present to observe any interaction.

That the scenario is only mutually monitorable by all
parties in one system of SLAs is a highly significant result
with two important consequences: First, service constraints
will be required at both the interface to the client and the
interface to the service, but these guarantees will be of the
same form, related to the exchange of meaningful messages,
rather than the movement of data in the network. Therefore,
to achieve mutually monitorable end-to-end QoS guaran-
tees for electronic services, only one type of SLA language
need be used. There is no need for a different vocabulary to
describe network QoS.

The second consequence is of perhaps greater practical
importance. This system of SLAs requires the ISP to offer
guarantees on the received quality of an electronic service at
the interface to the client, effectively forcing the ISP to act as
a reseller of electronic services, a business model seldom
adhered to in practice today.

This result may be generalized to scenarios including
multiple ISPs and clients distributed in the network. Clearly
a sequence of SLAs can be established between each client
and the service, such that each SLA is made between two
adjacent parties, one serving as the client and the other as
the service provider. This establishes that, when multiple
ISPs are involved in delivering the service, then systems of
SLAs exist that are at least mutually monitorable.

3.3 Approximate Monitorability

The calculation of penalties in relation to an SLA must be
performed using an account of service behavior which has
been collected by measuring the service, and will therefore
be subject to measurement error. Error processes are
intrinsically unmonitorable—otherwise, the errors could
be corrected. During the administration of an SLA, a
malicious party could present falsified evidence and claim
that it had been honestly gathered, inaccuracies being due
to error. What is required in a good SLA is a constraint on
the accuracy of information used during administration,
conformance to which may be checked by other parties
(with access to their own, trustworthy accounts of system
behavior) using statistical techniques, in order to gain a
bounded confidence that a party is acting honestly. We refer
to such a condition as approximately monitorable, and showed
in [17] how this can be achieved. Approximately monitor-
able accuracy constraints are included in our language,
SLAng, which is described in the next section.

4 PRECISE DOMAIN-SPECIFIC SLA LANGUAGES

4.1 Overview

In [18], we describe how a combination of metamodeling
languages, standardized under the Object-Management
Group’s (OMG) Model Driven Architecture (MDA) initia-
tive [19], can be used, in combination with a modeling
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idiom that is now commonly called “model-denotational

semantics” [20], to define an SLA language, SLAng, that is

both precise and understandable. Subsequent work has

refined the definition of SLAng [21], [15]. We now describe

the advantages of our approach in light of the most recent

version of the language.
SLAng has the following key features:

. The SLAng language specification is written in the
Essential Meta-Object Facility (EMOF) model lan-
guage [22], a class-based formalism similar to
Unified Modeling Language (UML) class diagrams
[23], and also the Object-Constraint Language (OCL)
[24], a declarative language offering constructs
similar to predicate logic that can be used to define
class invariants.

. The specification consists of class definitions, and
may be divided into an “abstract syntax” describing
the structure of SLAs, and a domain model,
describing the domain entities and events occurring
in an electronic-service scenario.

. The abstract syntax and domain model are related
using associations. Class invariants written in OCL
establish the semantics of syntactical elements in
terms of the restrictions they imply over the domain
elements with which they are associated. Associating
an SLA with a service scenario obliges the participants
in the scenario to respect the agreement by avoiding
behaviors that would violate implied constraints.

. Many classes in the abstract syntax of SLAng are
themselves abstract. In order to specify an SLA, it is
usually necessary to first extend the language. This
reflects the fact that most SLAs must capture
business-related rules which cannot be anticipated
in the domain of the language. However, the abstract
syntax provides guidance and support for extenders
in the form of both abstract side-effect-free OCL
operations which must be overridden to make certain
conditions concrete, and concrete side-effect-free
operations which can be reused in constraints. In this
respect the language definition is similar to an object-
oriented programming framework.

Fig. 5 shows the main classes in the abstract syntax of
SLAng. An SLA consists of a number of definitions and
clauses. Definitions identify the parties, services, and
penalties that are relevant to the service-provision scenario.
Clauses establish constraints over these domain entities,
concerning, primarily, how the SLA is to be administered (the
process whereby the parties calculate violations and then
subsequently pay penalties), and subordinately, what
conditions regarding service behavior will be considered
during administration. SLAng currently includes speciali-
zations of these syntactic types for electronic services. These
include syntactic types for electronic-service interfaces and
service behaviors relating to patterns of service usages
(exchanges of requests and responses), which may include
types of failures, overdue responses, or the delivery of
requests. The occurrence of undesirable behaviors may be
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associated with an obligation to pay a penalty using service-
behavior restriction condition clauses, resulting in relia-
bility, latency, and throughput conditions. We also include
availability constraints, which are defined in relation to
exchanges of bug and bug-fix reports. These events are
mutually monitorable, in contrast to changes in the under-
lying state of the actual service, which are certainly
unmonitorable by the client.

Fig. 6 shows the domain model for SLAng. This is divided
into two main parts: a generic model of SLA administration,
and a model of electronic-service provisioning. The latter
includes classes representing infrastructure elements, such
as electronic-service interfaces, the operations that make up
these interfaces, and the client software capable of accessing
the service. It also includes events relating to service
provisioning, such as service requests and responses,
corresponding to the exchange of messages across some
mutually monitorable interface. The model of SLA admin-
istration models the way that penalties are calculated based
on accounts of service behavior submitted during adminis-
tration. The semantic model hence contains a number of
classes representing evidence concerning service behavior,
such as report records, which document communications
between the parties outside the normal operation of the
service (e.g., bug reports, or notices to quit the agreement),
and also records of service usage. Accuracy clauses in SLAs
associated with these administration events constrain the
precision with which the corresponding events must be
recorded in this evidence, using the approximately monitor-
able accuracy constraint described in [17].

Fig. 7 shows the associations between syntactic and
semantic elements in the language specification. Multi-
plicity constraints over these associations establish denota-
tion relationships. For example, the association between the
classes PartyDefinition and Party establishes that in a valid
scenario there is at least one party corresponding to each
definition. More sophisticated constraints are conveyed

using invariants expressed using OCL, and these bear much
of the burden of establishing the semantics of the language.
In the next section, we give examples.

The principal benefits of following a model-denotational
approach to defining a DSL are precision, understandabil-
ity, and the ability to validate the specification using testing.
When the domain of the language has a different logical
structure to the syntax of the language (as is the case with
SLAs, where the domain concerns service infrastructure
and events, whereas the syntax expresses conditions
relating to these events), the domain can be documented
concisely in terms of its natural structure. The relationship
of the language to the domain is then defined formally. This
is superior to defining the meaning of the language directly
using natural-language statements about the domain
attached to syntactic elements, when the relationship
between the syntactic elements and the domain is complex
and difficult to describe. We showed in [25] how a model-
denotational language specification may be compiled into a
metadata repository in order to test, using examples and
counterexamples, whether the relationship between the
syntax and domain has been correctly captured.

Understandability, at least for the technical community
familiar with object-oriented formalisms, is delivered
through the use of the standard languages EMOF and
OCL. The understandability of a particular SLA still relies on
maintaining traceability from the concrete document of the
agreement, through the specification of the concrete syntax
in which the document is written, to the formal specification
of the abstract syntax, to the related semantic elements, and
finally, the natural language descriptions of these elements.
In [21], we describe enhancements to the underlying
standards used to describe SLAng to preserve this trace-
ability. These recommendations are implemented in our
own open-source project, the UCL UML tools, as extensions
to implementations of the EMOF, XMI, and Human Usable
Textual Notation (HUTN) standards. One consequence of
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these recommendations is that all definitive natural lan-
guage statements concerning the meaning of the domain
model are compiled into any formal representation of the
language specification. It is, therefore, possible to generate a
document of the language in several formats. A complete
description of the version of SLAng discussed in this paper is
available online in HTML format [26], and appears as a
LaTeX formatted document in an appendix of [15].

4.2 SLAng Examples

In this section, we give some examples from the SLAng

specification. These are taken from the formal definition of

SLAng, which uses a text-based representation of an EMOF

model into which OCL expressions are embedded. We also

give some examples of concrete SLAng statements, ex-

pressed using the HUTN, a generic concrete syntax

standard. Both types of statement have been parsed and

type checked by the UCL MDA tools [21].
The following invariant is arguably the most important

in SLAng, as it establishes the responsibility of the parties to

calculate violations according to the conditions included in

the SLA. It is defined on the AdministrationClause class.

invariant {

administrations->forall(a : ::services::Administration |

conditions->forall(violationsCalculated(a)))

}

The operation violationsCalculated() is abstract, and
defined on the type ConditionClause. It is overridden by
specific types of condition clause. For example, in an
extension required by the case study described in Section 5,
we defined a number of types extending from Permanent-
FixedWindowFixedOccurrencesMaximalServiceBehaviour-
RestrictionConditionClause. These kinds of clauses associate
a penalty with a behavior that occurs too frequently in a
sliding window. The definitions of two properties and three
operations of this class, including an overridden violations
Calculated(), are given below:

maxOccurrences : ::types::Integer

window : ::types::Duration

violationsCalculated(administration :

::services::Administration) :

::types::Boolean {

let first = firstMaximalViolation(administration.agreed,

administration)

in

first->size() = 0

or

(violationExistsFor(first, administration)

and

allLaterViolationsCalculated(first, administration))

}

violationExistsFor(maximal : ::services::Evidence[0, *]

unique,

administration : ::services::Administration) :

::types::Boolean {

administration.violations->exists(v : ::services::Violation |

v.evidence = maximal and

v.violator = service().client and

v.penalty = getPenaltyForMaximalViolation(maximal)

)

}

This definition of violationsCalculated() depends on an
operation firstMaximalViolation(), the definition of which is
too extensive to be reproduced here, but which calculates a
subsequence of the events administration.agreed—the ac-
count of service behavior that the parties to SLA have
agreed will be the basis for penalty calculations. The
operation firstMaximalViolation() depends on the values
specified for the properties maxOccurrences and window
defined in this class. The operation violationExistsFor()
checks that a violation has been calculated for a particular
sequence of evidence corresponding to a violation. It
depends on the operation calculatePenaltyForMaximalVio-
lation(), which is abstract. In a subsequent concrete class
PermanentFixedWindowFixedOccurrencesSteppedPenalty-
MaximalServiceBehaviourRestrictionConditionClause this
operation is overridden to calculate a penalty which varies
according to the length of the violation.

We used the permanent, fixed-window, fixed-occur-
rence, stepped-penalty, maximal, service-behavior restric-
tion condition clause type to implement a latency condition
on a service provider in SLA 1, an SLA developed as part of
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the case study described in Section 5. The clause is stated

using the HUTN as follows:

::sla1::slang::PermanentFixedWindowFixedOccurrences

SteppedPenaltyMaximalServiceBehaviourRestriction—

ConditionClause[nuisance]() {

maxOccurrences = 10;

window = ::types::Duration(10, min)

restrictedBehaviours = using ::sla1::slang::es

{ FixedLatencyAvailabilityDependentViolation

DependentFailureModeDefinition[nuisanceDelay] }

penalties = using ::sla1::slang {

SteppedPenalty() {

threshold = ::types::Duration(1, day)

penalty = ::combined::slang::FixedDeadline

FixedPoundsSterlingPaymentPenaltyDefinition[day1]

},

SteppedPenalty() {

threshold = ::types::Duration(2, day)

penalty = ::combined::slang::FixedDeadlineFixed

PoundsSterlingPaymentPenaltyDefinition[day2]

}

}

}

The behavior associated with this constraint is defined as

follows:

::sla1::slang::es::FixedLatencyAvailabilityDependent

ViolationDependentFailureModeDefinition

[nuisanceDelay]

(’’An annoying delay accessing a page’’) {

maxDuration = ::types::Duration(10, S)

operations = {

es::OperationDefinition[static1],

...

es::OperationDefinition[results8]

}

availabilityClauses =

{ ::sla1::slang::es::PermanentSteppedPenaltyFixed

DeadlineAvailabilityConditionClause[general] }

satisfyingConditions =

{ ::combined::slang::PermanentFixedWindowFixed

OccurrencesNoPenaltyMaximalServiceBehaviour

RestrictionConditionClause[throughput] }

usageModes = { es::InformalUsageModeDefinition

[anyUsage] }

}

These two SLA clauses define a latency condition that
applies throughout the duration of the agreement, for any
usage of any operation, except when either throughput or
availability conditions (defined elsewhere) are violated, and
hence the latency condition becomes irrelevant. A request is
considered to be overdue if it takes longer than 10 seconds to
return. Penalties apply in any interval where more than
10 overdue requests are observed in a window of 10 minutes.
If this behavior is observed to occur for more than one day, a
higher penalty applies. This is an example of the kind of
complex condition that can be formalized, and then stated
declaratively, following our approach to defining SLAng.

5 AN EVALUATION OF THE SLANG LANGUAGE FOR

ELECTRONIC-SERVICE SLAS

In [15], we describe a thorough evaluation of the current
version of the SLAng language. We wanted to discover
whether it was practical to use the language to define SLAs
in relation to a real service, whether the SLAs produced met
our requirements, and whether the language as a whole
appeared to be useful, such that using it offered a clear
advantage over other approaches, such as either natural
language or a language proposed in previous research. We
addressed these questions using several approaches: First,
we applied the language to defining SLAs in a case study
concerning a real service; second, we evaluated the
resulting SLAs against our requirements; third, we em-
ployed a set of metrics to measure the relative sizes of the
parts of the language specification relied on by the SLAs,
the extensions required, and the SLAs themselves, to
demonstrate that the SLA language was contributing a
large part of the meaning of the SLAs; finally, we compared
SLAng to related work in terms of the criteria defined by
our requirements. This latter exercise is summarized in the
next section. Here, we describe the case study.

The eMaterials project, now complete, funded a colla-
boration between UCL grid-computing researchers in the
Department of Computer Science (CS) and the UCL
Chemistry Department to investigate the computational
prediction of organic crystal structures from chemical
diagrams. This problem is relevant to the discovery of
new drugs, but is computationally demanding in general. A
large number of molecular packings must be considered for
each compound, the thermodynamic likelihood of each
being indicated by a calculation of the lattice energy.
Physical properties of likely crystals must then be esti-
mated. Computation involves search in a large space,
coupled with sophisticated analysis of the candidates.

Prior to the eMaterials project, the chemists would
execute this search using two Fortran programs, MOLPAK
and DMAREL and a combination of manual and batch
control, on a 4 CPU Silicon Graphics server. A typical search
would take between one and four months to complete [27].

Within UCL, the Information Services (IS) division is a
support group that manages computational and network
resources for the administrative departments and the
student population. It also administers the interdepart-
mental network. Individual departments may also have
independent groups fulfilling the same role for the
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academic staff, and this is the case for the Chemistry and
Computer Science Departments.

The eMaterials project funded the creation and admin-
istration of a computational grid, controlled by researchers
in the CS, but consisting of nodes maintained by IS. The aim
was to support the analysis activities of the chemists while
providing the opportunity to research grid engineering for
computer science.

This scenario represents a potentially interesting use of
SLAs. The project is now complete and, without a
centralized source of funding, the various participants must
consider how their costs are to be covered if the simulation
infrastructure is to continue to be used. For the purpose of
this case study, we adopted the assumption that the parties
remain financially independent and that the principle
benefit of the infrastructure is to the chemists. They must,
therefore, pay for it from funding into minerals research.
The various service providers must recuperate their costs
by charging for their services. In return, their clients may
expect them to provide quality-of-service guarantees.

The case study proceeded as follows:

1. An understanding of the state of development of the
scenarios was obtained. This included an under-
standing of who the stakeholders in the scenario are
and what requirements the service-provisioning
scenario is intended to meet for them.

2. On the basis of the understanding of the require-
ments developed in the first step, requirements
specifically relevant to SLAs were considered; this
involved an analysis of the risks to which the parties
were exposed in the (unmodified) scenario—we
achieved this objective by examining the system
use cases and considering, for each step, what
adverse outcomes could occur for each party.

3. A plan for the introduction of SLAs was made,
aiming to avoid modifying the existing scenario
significantly, which would imply redevelopment
costs; this involved developing an initial system of
SLAs for the scenario.

4. The SLAs developed in stage 3 were evaluated in
terms of the additional advantages they provided
with respect to the scenario requirements and any
associated costs or disadvantages that introducing
the new technology might imply. Consideration was
then given as to whether a significant benefit was
delivered compared to the cost of introducing SLAs,
and whether this benefit could be increased in a cost-
effective way by reengineering the original service to
better meet derived requirements.

Fig. 8 shows the deployment of the eMaterials service.
Dashed rectangles in the figure indicate networks. Arcs
between the various components represent communications
that pass through these networks. CS serves a number of
webpages, collectively known as the Polymorph Search

Webclient, allowing the chemists to configure and initiate
computational simulations. This traffic passes between
Chemistry and CS nodes via networks administered by
Chemistry, IS, and CS. Following the initiation of a
simulation, a BPEL workflow is created within a workflow
engine on a CS node [28]. This coordinates the submission of

the jobs constituting the simulation to a Condor submit

daemon [29], wrapped by the GridSAM Web service [30].

The daemon maintains a simple queue of jobs and

coordinates with a Condor controller on another node

to find free nodes in the condor cluster and allocate jobs. The

cluster nodes are provided by IS and reside within the

network maintained by IS. These nodes maintain periodic

communication with the Condor controller to indicate

their status, including information about their current

processing load due to other use (the nodes are computers

in labs made available to students and staff for general-

purpose computing). The nodes will also notify the Condor

submit daemon to indicate the completion of jobs. Condor

nodes communicate using an application-specific presenta-

tion-layer protocol over TCP. The workflow instance will

periodically poll the submit daemon via GridSAM to

determine whether jobs have completed, and possibly

schedule dependent jobs. The completion of certain jobs

indicates the availability of partial analysis results, which are

made available on the Polymorph Search Webclient

incrementally. The results are formatted for presentation on

the Web, which includes producing a scatter graph in PNG

format, by invoking the polyutilsPartner Web service,

which resides on the same node as the queue. The

polyutilsPartner web service invokes the wsplot

Web service hosted by Southampton University to produce

the required graph. The requests and responses from this
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service pass across the CS, JANET, and Southampton
networks.

The principal use case of the service is the configuration
and initiation of a simulation, although other use cases also
exist, such as the configuration of cluster nodes by CS
administrators, which we have not considered in the design
of our SLAs. For each of the steps described above, we
considered, for each party, what adverse events could occur
due to the actions of the other parties, or the services that
they provide.

The risks to chemists stem from the possibility that the
simulation might not complete, might deliver incorrect
results, or that conducting a simulation will be hindered
by usability issues affecting the Polymorph Search

Webclient. The Chemistry Department also assumes some
additional risks as a result of the need to interact with other
parties. These include security risks due to the need to accept
into their own network traffic appearing to originate from
within the CS network. Also, if Chemistry regards the results
of its simulations to have any proprietary value, then it
assumes a risk related to the possibility that simulation data
will be stolen when transmitted across the Internet. Finally,
Chemistry, by depending on a service provided by one or
more second parties, assumes a termination risk, based on
the possibility that those parties may choose to render the
service permanently unavailable at some point, resulting in
reintegration costs for Chemistry.

The Information Services division of UCL initially
assumes risks based on its interaction with other parties.
These include the security risks of interacting with
Chemistry and CS. IS also suffers a risk associated with
allowing CS to install and execute software on its computa-
tional nodes. IS provides both network and cluster-node
services and thus assumes two risks due to the potential
volume of legitimate service requests. IS is also exposed to
the risk, when providing these services, that it will not be
reimbursed for the costs involved.

CS similarly assumes security risks, risks related to
resource exhaustion by legitimate service requests, and the
risk that it will not be compensated for the resources it
contributes to the performance of the simulation.

The ISP, in this case JANET [31], assumes security risks
and resource exhaustion risks implicit in permitting
interactions between CS and Southampton. The ISP must
also find a way to charge for the use of its resources.

Southampton also assumes security and resource ex-
haustion risks providing the plotws Web-service. South-
ampton also wishes to recuperate its costs from providing
the service, by our assumption.

We next considered how a system of SLAs could be
designed to mitigate these risks. In principle, several
different systems of SLAs might be satisfactory to the
participants. However, we attempted to design a system
offering the highest possible level of monitorability for the
SLAs that it contains. According to the results of the
monitorability analysis described in Section 3, mutually
monitorable SLAs in a three-party service-provision scenar-
io with a client, provider, and network-service provider are
the most monitorable SLAs achievable if latency conditions
are required. The case-study scenario includes two similar

subscenarios: the provision of the Polymorph Search

Webclient by CS to Chemistry across the IS network, and
the provision of the plotws web service by Southampton to
CS across the Internet. In both cases latency conditions are
required in order to mitigate the risk that the production of
results is delayed.

These subscenarios differ from that considered in our
original analysis in two respects: First, the eMaterials
scenario contains five parties, rather than three, and the
possible influence on monitorability of the two extra parties
should not be neglected; and second, our original analysis
assumed that the client and the provider of the service were
nodes embedded in the network of the network-service
provider. In the eMaterials scenario, in contrast, all
computational nodes are embedded within networks
controlled by the same organizations that control the nodes.
Fortunately, in this case, these differences make only a small
practical difference to the monitorability result, allowing the
reuse of this result to inform the choice of SLAs in the
scenario. In both subscenarios, the additional, uninvolved
parties are clearly not respondents to any of the events in
the interaction directly because they apparently have no
means to perform trustworthy monitoring within the
networks operated by their peers. Neither can they monitor
the events indirectly by having them reported to them. Only
the involved parties could do such reporting, and they are
barred from doing so because they will necessarily have to
enter SLAs concerning these events, and therefore have an
interest, and therefore cannot report.

Service usages in both subscenarios still have end-to-end
QoS requirements, such as latency requirements. Requests
and responses pass over two extra network segments,
owned by the client and the service provider, respectively,
in addition to the segment owned by the network provider.
However, the interfaces to these peripheral network
sections may be regarded as being similar to nodes
embedded in the central network. The provider of the
electronic service in each case can guarantee the perfor-
mance of their own network segment, and hence provide
good service to the network provider at their mutual
interface. The network provider can, therefore, guarantee
good service at the interface to the client network, but not
beyond. QoS guarantees can only be provided for the client
as far as the boundary to the client’s network. However, if
the client manages their network correctly, this will allow
them to guarantee the end-to-end QoS of the service, so this
is adequate.

Consequently, we decided that an appropriate system of
SLAs for the scenario must include SLAs to govern service
provision at the interfaces between the Chemistry, IS, and
CS networks, and the Internet and Southampton’s network
for the two interactions already discussed. These SLAs will
be mutually monitorable, which will be the best degree of
monitorability obtainable for these subscenarios, without
the introduction into the scenario of additional parties, or
trusted monitoring solutions. An additional SLA is required
at the interface between CS and IS to govern the apparent
behavior of the cluster nodes. Note that this SLA will also
be mutually monitorable. The resultant system of five SLAs
is shown in Fig. 9.
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We next designed conditions for each of these SLAs.
Usually, the violation of these conditions resulted in the
need to pay a penalty, and often this implied an SLA safety
risk for some party. For example, if a webpage was not
returned promptly, IS could be required to pay a penalty to
Chemistry under the terms of SLA 1. However, the fault
may have been due to CS. Therefore, when designing the
SLAs it was necessary to extend the risk analysis to consider
SLA safety risks, and then add additional conditions to
mitigate these risks. For example, a latency condition was
added to SLA 2 to balance the risk to IS of the latency
condition in SLA 1. As our monitorability result implied, it
was eventually possible to design a completely safe system
of SLAs mitigating all of the original risks and all derived
SLA safety risks. At this point, we deferred consideration of
how SLAs could address security risks to future work.

Having determined the purpose for each SLA, we next
considered how these could be formalized using SLAng.
At this point, we discovered that, without a much greater
effort of analysis and measurement, it was difficult to
decide on realistic parameter values for the SLAs, even
though the nature of the risks and the conditions required
to mitigate them were well understood. This was due to
the effort required to determine both the usual perfor-
mance of the service and the magnitude of financial risks
associated with the service. We, therefore, focused on
specifying the SLAs, assuming these parameters could be
determined (or negotiated).

We noted that SLAs 1 and 2 have essentially the same
structure, differing only in the parameter values required,
because SLA 1 essentially resells the service sold by SLA 2,
possibly relaxing latency and reliability conditions some-
what. The same is true of SLAs 4 and 5. Since we were
largely ignoring parameter values, this limited the number
of SLAs that we needed to author to SLAs 1, 3, and 4. We
subsequently also abandoned the effort to specify SLA 3

due to the effort required to reverse engineer the protocols
used by Condor, which are largely undocumented.

We were successful in our efforts to specify SLAs 1 and 4
using SLAng. In both cases, as expected, it was necessary to
develop extensions to the core language in order to specify
what was required. We now give a brief description of
SLA 1, the more complex of the two.

Conditions included in SLA 1 are as follows:

1. latency conditions on the setup and invocation
operations of the webclient;

2. an availability condition relating to announced
service outages;

3. reliability conditions on the setup and invocation
operations of the webclient;

4. a latency condition on the amount of time taken for
simulation results to become available;

5. a reliability condition on results retrieval operations;
6. throughput conditions on all operations;
7. a payment scheme, charging chemistry for use of

the service;
8. a limit on the rate at which simulations can be

started;
9. a guarantee concerning the performance of the

simulation executables provided by chemistry;
10. termination penalties applicable to either party.

In addition, the SLA needed to describe constraints on its
administration and what standards of accuracy the parties
must adhere to when gathering evidence for the calculation
of violations. We decided that it would be appropriate for
SLA 1 to be administered on a weekly basis. Penalties in the
SLA were expressed as payments in Pounds Sterling, to be
settled within a specified period of the administration in
which the corresponding violation is decided.

Fig. 10 gives some examples of the extension classes
required to specify SLA 1. These include classes for
specifying penalty payments and several varieties of
service-behavior restriction condition clauses. Minimal
restrictions assign a penalty to any sufficiently long
sequence of the restricted behavior, whereas maximal
restrictions assign a single penalty to a sufficiently long
sequence regardless of its total length. A minimal restriction
with a fixed penalty is associated with a behavior definition
identifying successful initiation of a simulation, and is used
to implement per-use charging in the SLA. The various
maximal restrictions implement latency, reliability, and
throughput conditions. Latency and reliability conditions
have a stepped-penalty regime, dependent on the length of
the violating sequence of events. Throughput conditions
apply no penalties. However, service-usage records can
only be associated with various behaviors, such as latency
and reliability failures, if no concurrent throughput viola-
tion has occurred.

In addition, complex conditions were required to express
the latency conditions on the availability of results. Results
become available in a deferred-synchronous manner, with
the chemists needing to poll the webclient to recover them.
Clearly, no party should be penalized for late results if the
chemists do not poll. Moreover, the production of timely and
correct results depends on the performance of executables
provided by the Chemistry Department itself. Therefore,
these conditions must be depended on the correct operation
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of these executables. We found it to be quite possible to
formalize these rules in extensions using our metamodeling
approach. Full details of both SLAs are given in [15].

In conclusion, the case study demonstrated that, although
it may be difficult to determine exactly what needs to be
expressed in SLAs for a given scenario, our approach to
specifying the SLAs is practical, even for complex con-
straints. We were able to apply our monitorability result to
design a mutually monitorable system of SLAs for the
scenario. Our core SLAng language, which anticipates the
need for timeliness, reliability, and throughput conditions, is
an appropriate basis for defining the extensions and SLAs
needed in the scenario. Following our metamodeling
approach, this could be achieved with precision. In [15], we
showed, with the assistance of a number of measurements,
that the core SLAng language contributed a large part of the
information conveyed by the SLAs in the case study. The
formalization appears to be capturing significant knowledge,
and may be reused in any number of SLAs to reduce the cost
of their preparation without compromising precision.

6 RELATED WORK ON SLAS FOR ELECTRONIC

SERVICES

SLAs are currently employed in a variety of contexts,
including in relation to electronic services, although the
practice is far from ubiquitous. Also, SLAs are typically
not highly precise instruments to mitigate risk, as we have
suggested that they could be, but instead support a
broader Service-Level Management (SLM) approach. In
this section, we review the use of SLAs for SLM, and also
prior academic work that has discussed SLAs for
electronic services.

SLM is primarily concerned with maintaining the relation-
ship between a business and an IT service provider, largely
through the use of SLAs. Providers are either IT departments
within an organization or companies specializing in the
provision of IT services. In [32], the benefits of SLM are stated
as being primarily related to managing client expectations,
allowing the service provider to control the provisioning of a
service (and avoid overprovisioning), and defend them-
selves against unwarranted criticism from users.

SLM generally assumes long-lived and high-value rela-

tionships between client and provider. In SLM, SLAs are

created following a process of feasibility analysis and

negotiation that, in itself, takes time and is costly. A typical

term for an SLA is cited as being two years because shorter

terms would render the cost of producing the SLA prohibi-

tive. The need for a technical language to author SLAs is not

emphasized. SLAs for SLM also tend to make availability an

objective of prime concern, which, as we discuss in Section 3,

is, at best, only monitorable by the provider.
At the inception of a service-provisioning relationship,

an SLA may be regarded as an incentive offered by the

service provider for the client to enter the relationship.

However, once service provisioning commences, the SLA is

a much greater liability for the provider than the client.

Therefore, SLM can be regarded as primarily a marketing

activity on the part of the provider. Negotiating service

levels serves to build the relationship between the client

and provider. However, once the SLA has been agreed,

because it is informally written, and can only be monitored

by the provider, the provider will have disproportionately

more control over the relationship than the client; it will be

able to decide on both the interpretation of the SLA and

when events indicate that penalties should be paid.
Such relationships are acceptable when there is a

tolerable level of trust between the parties, perhaps in

addition to external forces that compel the provider to act in

good faith. In contrast, we make no such assumptions about

the culture in which an SLA is to be deployed. Precise,

monitorable SLAs should be more attractive to clients than

the kinds of SLAs in common use today. This could help

grow the market in electronic-service provisioning. The

drawback for the provider is that it will be obliged to

implement services that meet strict standards.
SLAs for electronic services have received considerable

attention in prior academic works, the majority of which are

concerned with defining formal languages for stating SLAs.

To our knowledge, our work given in [15] provides the first

systematic enumeration of requirements for such SLAs, the

most important of which we have discussed in this paper.
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Requirements for contract languages are considered in
relation to the Business Contract Language (BCL) in [33].
Here, the authors touch on high-level requirements for
business contracts such as the inclusion of security
provisions, access-control and obligation policies, specifica-
tions of standards for precision of measurements, feasibility
of checking contract provisions, conditions relating to
administration, and the need to have flexible specifications
for states, events, and temporal constraints.

The inclusion of requirements related to policies (e.g.,
access control) indicates a wider intended scope for BCL
than merely SLAs. However, the need to express security
requirements is potentially of relevance to SLAs. Some
security requirements can best be addressed by the
functional behavior of a service—for example, authentica-
tion. However, others such as data privacy constraints may
need to be expressed in an agreement. We have relegated
the consideration of security conditions to later work.
Overall, the requirements stated for BCL are largely in
accord our own, although they are not systematically
enumerated and, due to a lack of a definitive specification
for BCL, it is hard to assess how many of these require-
ments have been met by the language.

Requirements for agreements of several types are also
considered in work related to the X-contracts language [34].
Once again, these requirements cover much of the same
ground as our own, although precision requirements are
not emphasized, and measurement errors are not consid-
ered. Also, some of the requirements seem dubious as they
appear to be based on the assumption that earlier
requirements can be met. For example, a need to specify
third-party monitoring solutions is cited. However, trust-
worthy third-party monitoring may not be feasible without
further advances.

Some discussion of expressiveness requirements is also
provided in relation to the Web-Service Management
Language (WSML) [35], in which it is observed that SLA
conditions may be related to arbitrary external factors, and
several example conditions are given to support this
argument.

Most recent approaches to defining SLA languages have
provided, or asserted the availability of, an XML schema for
their language. This includes the Web-Service-Level Agree-
ment language (WSLA) [36], the Web-Services Offering
Language (WSOL) [37], the Rule-Based Service-Level
Agreement Language (RBSLA) [38], the Web-Services
Agreement Specification (WS-Agreement) [39], BCL, and
WSML. The use of XML is clearly intended to ease
integration with other Web-services technology, such as
WSDL or SOAP, that are also dependent on XML.

WSLA, WSOL, WSML, RBSLA, and WS-Agreement all
rely on the provision of extensions of some kind to permit
the complete expression of an SLA, with WSLA, WSML,
and WS-Agreement providing abstract data types in their
schemas to guide extensions, and RBSLA and WSOL
relying on the use of externally provided ontologies
(although the precise requirements for these remain unclear
in both cases). The languages surveyed provide very little
support for expressing latency, reliability, or throughput
conditions. In each case, either syntax for such conditions is

missing (therefore, the expression of such conditions relies
entirely upon language extensions), or syntactic elements
exist but are not accompanied by semantic definitions of
sufficient precision to support the calculation of violations.
The support provided by the abstract schema types is slight
and guidance in producing extensions is not provided. In
contrast, SLAng provides base classes that encode much of
the required semantics for these types of conditions, with
extensions required only to provide those details that are
SLA specific. These extensions are largely straightforward
to define as they involve the overriding of well-documented
abstract operations. In addition, examples provided of the
use of the languages are universally hypothetical, in
contrast to SLAng, the expressiveness of which has been
demonstrated in a case study involving a real service.

All of these languages suffer from imprecision due to a
number of factors. Universally, a separation exists between
the XML schema definition of the language and the
language specification document or documents. This hin-
ders traceability between SLAs and the definition of their
semantics. WSLA, WSOL, WSML, and WS-Agreement all
have informally defined semantics expressed solely using
natural language. The semantics for RBSLA are incomple-
tely specified. WSOL, RBSLA, and BCL have no definitive
language specification document, and instead are described
in collections of academic publications. Neither BCL nor
X-contracts benefit from a publicly available definition of
their syntax. Clearly, it is not currently feasible to adopt
these languages as the basis for specifying SLAs with
genuine financial implications, as the parties to these SLAs
would have no strong basis for arguing for any particular
interpretation of the SLAs in the event of a disagreement.

BCL, RBSLA, and X-contracts are principally concerned
with the expression of rules in a similar manner to, or
explicitly based on, deontic logic. Deontic logic allows the
statement of permissions and obligations for parties to
perform various actions [40]. This emphasis tends to create
a language that makes it easy to describe the protocols by
which interacting parties are bound, and results in useful
SLA terminology in situations where the risk is primarily
related to violations of this protocol. For example, the
failure to deliver goods following the submission of a
purchase order may result in an obligation to pay a penalty.

However, it is not clear how easy it is to use such
semantics as a basis for precisely describing more quanti-
tative conditions, such as a reliability condition limiting the
number of failed service requests within a sliding window.
In [41], formulas for calculating violations of quality-of-
service constraints are referred to as “definitional compo-
nents,” and it is suggested that they should be treated
separately from deontic norms.

Conversely, the highly expressive combination of EMOF
and OCL, used to define SLAng and its extensions,
supports the categorization of events and data in a very
understandable way, thanks to its reliance on object
orientation, and can also represent permissions and obliga-
tions implicitly by associating violations with the history of
monitored events. BCL and RBSLA tend to obscure the
semantics of complex conditions by relying on external
definitions. X-contracts, which have a representation and
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semantics based on finite-state machines, are likely to
require unfeasibly complicated statements to represent
conditions pertaining to a large amount of service history
due to the state-explosion problem.

These contract languages do highlight the advantages of
a more restricted formal underpinning in work relating to
the validation of contracts: for example, checking for
conflicting obligations or asserting liveness properties of
the protocols being described. EMOF and OCL, by contrast,
allow testing of these properties.

X-contracts are the only prior work to consider
monitorability in any sense. The authors recommend that
a middleware supporting nonrepudiable message ex-
change should be used to monitor contracts. This would
make it impossible to deny violations related only to
positive actions (for example, violations of prohibitions).
However, this does not seem to solve monitorability issues
related to obligations or temporal constraints because of
the difficulty of attributing the cause of delays or faults to
the action of a single party in the case where interaction is
with multiple remote parties, for example, both an
electronic and network-service provider.

To our knowledge, SLAng is unique in providing support
for accuracy constraints in relation to the gathering of
evidence. SLAng’s support for, and emphasis on conditions
relating to the termination of SLAs is also novel despite the
importance of mitigating termination risks. Both require-
ments are mentioned in early work related to BCL, but not
elaborated upon in later work describing the language.

Older related work is principally concerned with describ-
ing QoS for various types of electronic-service interface. This
includes OWL-S [42], QML [43], and QuO-QDL [44]. This
work relies on the implicit assumption that service
providers can be trusted to describe the quality-of-service
provided by their own services, and then deliver services to
that level. In our view, this is a fundamentally unrealistic
assumption, and the languages are unsuitable for describ-
ing SLAs since they do not allow the specification of
penalties. Moreover, the definitions of the metrics are
typically informal, hindering reliable analysis.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have described our motivation and
progress in working to develop language support for SLAs
with the principal purpose of mitigating outsourcing risks
related to electronic services. We have argued that an
inability to control the magnitudes of these risks is an
inhibiting factor in the adoption of the outsourcing model for
electronic services. SLAs can be used to mitigate these risks.
For these SLAs to be reliable from the client’s point of view,
they need to be precise, understandable, and monitorable so
that the meaning of the SLA cannot be disputed, and
trustworthy evidence can be brought to bear in the event of a
dispute between the parties. In current practice, SLAs are
typically neither precise nor monitorable. This may in part be
because, once agreed upon, SLAs represent a liability to a
service provider. However, it is also the case that prior work
has not shown how these properties can be incorporated in a
DSL for SLAs, whereas ours has. We have therefore
provided a facility such that if providers wish to provide

their clients with a greater incentive to enter outsourcing

agreements, potentially growing the market in outsourcing

of electronic services, albeit assuming a greater responsi-

bility for respecting the SLAs that they offer, then they may.
In our discussion of monitorability, we observed that,

under our assumptions concerning the intrinsic visibility of

events and what parties may be trusted to report events,

achieving highly monitorable SLAs will require ISPs to

become involved with the resale of individual electronic

services. They will also need to implement monitoring at

the edges of their networks. Clearly the costs in doing so are

undesirable. This mandates further research into trusted

monitoring platforms, which may modify assumptions

concerning visibility, or consideration as to how trust can

be achieved in situations where monitorability is reduced.

However, in lieu of further progress on these topics, ISPs

may wish to consider the possibility of reselling services.
Other avenues for future research are to consider how

SLAs can contribute to mitigating security risks, and to

continue the maturation of SLAng toward a version that can

be used in many cases without requiring significant effort to

define extensions. This latter effort will require the

identification of SLA terminology that is commonly

required based on further practical investigation of electro-

nic-service-provisioning scenarios. This could perhaps be

best achieved in the context of a standardization effort.
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