
A Pattern based model driven approach to

model transformations

Biju Appukuttan1 biju@dcs.kcl.ac.uk

Tony Clark2 anclark@dcs.kcl.ac.uk

Sreedhar Reddy3 sreedharr@pune.tcs.co.in

Laurence Tratt2 laurie@tratt.net

R. Venkatesh3 rvenky@pune.tcs.co.in

1 Tata Consultancy Services, Pune, India. On deputation to Kings College

London.

2 Department of Computer Science, King’s College London, Strand, London,

WC2R 2LS, United Kingdom.

3 Tata Consultancy Services, Pune, India.

Abstract

The OMG’s Model Driven Architecture (MDA) initiative has been the focus of
much attention in both academia and industry, due to its promise of more rapid
and consistent software development through the increased use of models. In order
for MDA to reach its full potential, the ability to manipulate and transform mod-
els – most obviously from the Platform Independent Model (PIM) to the Platform
Specific Models (PSM) – is vital. Recognizing this need, the OMG issued a Request
For Proposals (RFP) largely concerned with finding a suitable mechanism for trans-
forming models. This paper outlines the relevant background material, summarizes
the approach taken by the QVT-Partners (to whom the authors belong), presents
a non-trivial example using the QVT-Partners approach, and finally sketches out
what the future holds for model transformations.

1 Introduction - Transformations and MDA

The OMG Queries/Views/Transformations (QVT) RFP [1] defines the MDA vision thus:

MDA defines an approach to IT system specification that separates the specification of
system functionality from the specification of the implementation of that functionality on
a specific technology platform, and provides a set of guidelines for structuring specifica-
tions expressed as models.

The MDA approach and the standards that support it allow the same model specifying
system functionality to be realized on multiple platforms through auxiliary mapping



standards... and allows different applications to be integrated by explicitly relating their
models.

In less technical terms, MDA aims to allow developers to create systems entirely with
models 1 . Furthermore, MDA envisages systems being comprised of many small, manageable
models rather than one gigantic monolithic model. Finally, MDA allows systems to be
designed independently of the eventual technologies they will be deployed on; a PIM can
then be transformed into a PSM in order to run on a specific platform.

���

������

��������	
�����

� �� ��	� �
� � 	�

��������	
�����

� �� ��	� �
� � 	�

� ��� ���� � 	� �� ��

��������	� � � ���� � �� �

� �� ��	� �� � �

� � � �� ����� � 	� �� ��

Fig. 1. Transformations and MDA

Figure 1 – based partly on a D’Souza example [2] – shows an overview of a typical usage of
MDA. It shows a company horizontally split into multiple departments, each of which has
a model of its system. These models can be considered to be views on an overall system
PIM. The PIM can be converted into a PSM. In order to realize this vision, there has to be
some way to specify the changes that models such as that in figure 1 undergo. The enabling
technology is transformations. In figure 1 a transformation T1 integrates the company’s
horizontal definitions into an overall PIM, and a transformation T2 converts the overall
PIM into PSMs, one for each deployment platform.

The following are some representative MDA related uses where transformations are, or could
be, involved:

• Converting a model ‘left to right’ and/or ‘right to left’. This is a very common operation
in tools, for example saving a UML model to XML and reading it back in again.

• Abstracting a model. Abstracting away unimportant details, and presenting to the user
only the salient points of the model, is a vital part of MDA.

• Reverse engineering. For example, a tool which recovers Java source code from class files.
• Technology migration. This is similar to reverse engineering, but whereas reverse engineer-

ing is simply trying to recover lost information, technology migration is effectively trying
to convert outdated systems into current systems. For example, a tool which migrates
legacy COBOL code to Java.

Transformations are undoubtedly the key technology in the realization of the MDA vision.
They are present explicitly – as in the transformation of a PIM to a PSM – and implicitly
– the integration of different system views – throughout MDA.

1 This does not mean that everything must be specified fully or even semi-graphically –
the definition of model allows one to drill down right to source code level.

2



2 QVT

In order for MDA to reach its full potential, the ability to manipulate and transform mod-
els is vital. Although there has been much discussion [3,4] of the problem area, as well as
attempts at filling this gap in the past [5–8], little practical progress has been made. Recog-
nizing the need for a practical solution for transformations, the OMG issued a Request For
Proposals (RFP) [1] largely concerned with finding a suitable mechanism for transforming
models. This paper is based on the QVT-Partners 2 initial submission [9] to the QVT RFP.
An updated version of this paper based on the revised QVT partners submission is being
worked on at the moment.

3 Fundamental concepts

It is our view that to provide a complete solution to the problem of a practical definition
of transformations, the following complimentary parts are necessary:

(1) The ability to express both specifications and implementations of transformations.
(2) A mechanism for composing transformations.
(3) Standard pattern matching languages which can be used with declarative and imper-

ative transformations.
(4) A complete semantics, which are defined in terms of existing OMG standards.

The solution outlined in this paper can be seen to be chiefly concerned with solving two
overarching problems: the need to provide a framework into which different uses of trans-
formations can be accommodated, and the need to provide a standard set of languages
for expressing transformations. In solving these needs, the solutions to other fundamental
requirements as mentioned earlier in this section follow fairly automatically.

4 A definition of transformations

This section outlines the points of our definition of transformations that are most relevant
to this paper. See also section 7.

4.1 Framework

We define an overall framework for transformations that allows one to use a variety of dif-
ferent transformation styles. This framework also transparently allows transformations to
change style throughout the lifetime of a system. Such transparency is enabled by identifi-
cation of two distinct sub-types of transformations: relations and mappings.

Relations are multi-directional transformation specifications. Relations are not executable
in the sense that they are unable to create or alter a model. They can however check two
or more models for consistency against one another

Typically relations are used in the specification stages of system development, or for
checking the validity of a mapping.

2 http://qvtp.org/

3



Mappings are transformation implementations. Unlike relations, mappings are potentially
uni-directional. Mappings can refine any number of relations, in which case the mapping
must be consistent with the relations it refines.

�

� � 	


 � �



�

�

����� ��� � ���

����� � �  !"� #�$"$

%&��'�'�� ��(

Fig. 2. A high level relation being refined by a directed mapping

Figure 2 shows a relation R relating two domains. There is also a mapping M which refines
relation R; since M is directed, it transforms model elements from the right hand domain
into the left hand domain.

As far as possible, the standard langauges for relations and mappings share the same syntax
and semantics. But by virtue of the fact that they are different concepts, there are differences
between the two. The most obvious difference is that whilst a relation simple consists of a
number of domains and an overall constraint, mappings also have an ”action body”.

)+* ,.-�- /10 ,�21-�3 410 56,�7 8 412

9+: * ,.7 8 4;2

< ,�=1=;8 21>

Fig. 3. Transformations, relations and mappings in the MOF hierarchy

Figure 3 shows how transformations, relations and mappings are placed within the MOF
[10] hierarchy. As Transformation is a super-type of Relation and Mapping, when we talk
about a transformation we effectively mean either a relation or a mapping, we don’t mind
which one. When we talk about a mapping, we specifically mean a mapping and only a
mapping and similarly for relations. The differentiation between specification and imple-
mentation is vital. In many complex applications of transformation technology it is often
unfeasible to express a transformation in operational terms. For example, during the initial
stages of system development, various choices, which will affect an implementation, may
not have been made, and thus it may be undesirable to write an implementation at that
stage. Another more general reason for the presence of specifications is that transformation
implementations often carry around large amounts of baggage, which whilst vital to the
transformations execution, obscure the important aspects of a transformation – by using
specifications, these important aspects can be easily highlighted. Nevertheless, implemen-
tations are vital for the final delivered system. We also propose a standard operational
transformation language to prevent the need to drop to low level technologies such as the
XML transformation system XSLT (XSL Transformations) [11] – in order for transforma-
tions to be a successful and integral part of MDA, it is essential that they be modelled. Our
proposal allows transformations to seamlessly and transparently evolve from specifications
to implementations at any point during the development life cycle.

4.2 Pattern Languages

Pattern languages are widely used in real world transformation technologies such as Perl-
esque textual regular expressions and XSL (note that the former is a declarative transfor-

4



mational language, whereas the latter is imperative). Clearly, any solution needs to have
pattern languages, as they are a very natural way of expressing many – though not all
– transformations. Our solution provides standard pattern matching languages for both
relations and mappings; a pattern replacement language is also defined for relations, allow-
ing many specifications utilizing the pattern language to be executable. Furthermore, we
also provide graphical syntax to express patterns, as well as the more conventional textual
representation.

5 Transformations

Our definition of transformations comes in two distinct layers. Reusing terminology familiar
from the UML2 process, we name these layers infrastructure and superstructure.

5.1 Infrastructure

?+@1A�B C D�E.B1F�G�H1B D�I

J+K D�A�A

L1C D�H1A.M N1C O6D.B P N;H

Q+R K D�B P N1H STD�U1U;P H1V

W+N1B ?+H1X YZC

Q+R K D�B P N1H

?+B B C P @1[;B R

\+N;O6D�P H

S]N;X1R K ^_K R.O6R�H;B

J N1H;A�B C D�P H;B`

a.b c d e�f�g h c

g i.f d e�f�g h c`
`

a�i.j+k"b f c

Fig. 4. Infrastructure meta model

Figure 4 shows the infrastructure abstract syntax package. This package can be merged
with the standard MOF definition to produce an extended version of MOF. Original MOF
elements are shown in grey; our new elements are in black. The infrastructure contains
what we consider to be a sensible minimum of machinery necessary to support all types of
transformations. The infrastructure is necessarily low-level and not of particular importance
to end users of transformations. Its use is a simple semantic core [12].

5.2 Superstructure

Compared to the infrastructure, the superstructure contains a much higher-level set of
transformation types and is suitable for end users. Figure 5 shows a transformation meta-
model that extends the transformations meta-model given in Infrastructure. The elements
Transformation, Relation, Domain, And, Or and Mapping inherit from and extend the
corresponding elements in the infrastructure. Elements from MOF core are shown in gray.

The heart of the model is the element Relation. It specifies a relationship that holds between
instance models of two or more Domains. Each Domain is a view of the meta-model, and

5



Classifier Constraint

Association DependancyClass Transformation

ClassRole Domain Relation RelationDependancy

AssociationRole Refinement And Or SubRelation Elaboration

Dependancy Mapping Transformation Operation Action

end1

end2

typeembeds

end1 end2

subDomainPath

mapping1 1

*

*

related
Domain parent

child

conjunct disjunct

*

*2..*

2..* 2..*

type

*1..*

Not

negate

Fig. 5. Superstructure meta model

is constituted of Class and association roles. A Role has a corresponding type that the
elements bound to it must satisfy. A Domain may also have an associated query to further
constrain the model specified by it. The query may be specified as an OCL expression. A
Relation also may have an associated OCL specification. This may be used to specify the
relationship that holds between the different attribute values of the participating domains.
A binary directed-relation is a special case with a source Domain and a target Domain.

5.3 Concrete syntax

Our solution defines a graphical concrete syntax for transformations. Figure 6 lists the most
important notations.

lTml]nop

����������	
�� � �  �	
�� � �� � 
�� � � � � 
� � 	� 	�� � � �	� �� � 
�� � � � � � �	� 	�� � 
� � 	

Fig. 6. Concrete Syntax for transformations

6 An example

In order to illustrate the salient features of our approach, we present an example of trans-
formations between simplified UML models and XML.

DTD x XML UML x XML

DTD x UMLDTD UML Models

XML

Fig. 7. The overall Transformation framework

Figure 7 shows the overall view of this transformation example. We divide the example into
three parts:-

6



(1) The actual transformation of the UML Models to XML represented by UML x XML.
(2) Verification of the generated XML against the DTD represented by DTD x XML.
(3) We attempt to capture the relationship between UML Diagrams and DTDs. This is

represented by DTD x UML.

6.1 The example model

�

�

� � � � � � � 	 
 � � �

 � � � � � � � � 	

� � � � � � � 	 
 � � �

� � � � � � � � 	 
 � � �

 � � � 	 	 
 � � � 	 �

� 	 	 
 �

� � �

� � � � � � � � � � � � � � � � � � � 	 � � �� 	 	 
 � � � 	 �

�

�

� � 
 � � 	

� � 
 � � 	
� � � �

� � � � � � � � 	 
 � � �

� � 	 �  � � � ! " � � � � 	 
 � � �

� � � � � � � � � � � 	

� � � #

� � � 	 � � � �

� � � 	 � � � �

Fig. 8. The example meta-model

Figure 8 shows a simplified model of UML class diagrams. Each ModelElement has a name;
the pathName operation returns a string representing the element’s full pathname. The
operation is defined thus:

context ModelElement::pathName(): String

if not self.parent then

self.name

else

self.parent.pathName() + "." + self.name

endif

We assume that all elements have a unique pathname. This can be trivially enforced by
placing constraints on Package and Class to ensure that none of their contents share the
same name.

Figure 8 (right hand side) shows a simplified model of XML. We prefix both elements in the
model by XML to avoid having to qualify references via a package name. The model captures
the notion of XML elements having a number of attributes, and containing XML elements.

In the rest of this section, we gradually build up a relation from our UML model to XML,
from a number of small pieces.

6.2 Building up the transformation

���
� � � � � 	 � 
 � � � �

�� �  � � �

� � � � � 	 � �� �  � � � �

� � � �� � � � � �

� � � � � 	 � � � � � � �

� � � � � � 	 � 
 � � � �

� � � � � � � � � � � �

� � � � � 	 � � � � �

� � � � � � 	 � 
 � 
 � � � � � � � �  

� � � � � � � � � � � �


 �

� � � � ! � � � � !

Fig. 9. A UML package to XML relation

Figure 9 shows a relation between the UML Package and XML using a pattern language.
Although at first glance figure 9 may look like a standard UML class diagram, it should
rather be thought of as something in between a class diagram and an object diagram. Notice

7



how some attributes in the transformation have constant values given to them, whilst others
have variables – each variable name must have the same value across the diagram.

Thus to examine figure 9 in detail, each Package instance is related to an XMLElement with
the name Package. The XML element has two XMLAttribute. The first is the name of the
package which has a value of pName, thus forcing it to be the same literal name as the UML
package. To allow us to reference elements (which is necessary for association ends), we
also force each XML element to have a unique identifier – the properties of the pathName

operation mean we can use it to produce unique identifiers.

When written in more conventional form, the UML package would be related to the following
chunk of XML:

<Package name=pName id=p.pathName() ></Package>

The relations CxE and AxE for Classes and Attributes respectively are much the same as
for PxE for Package.

����
� � � � 	 
 	 � � � � �

�� �  � � � � �  �

� � � � 	 
 � �� �  � � � � �  � �

� � � �� � � � � �

� � � � 	 
 	 � � � � � �

� � � � � 	 
 	 � � � � �

� � � �� � � � � � � �

� � � � 	 
 	 � � � �

� � � � � 	 
 	 � � � � � � � � � � �  

� � � �� � � � � � � �

� �

� � � � � � � � � �

� � � � 	 
 � �� �  � � � � �  � �� � �

� � � �� � � � � �

� � � � 	 
 	 � � � � � �

� � � � � 	 
 	 � ! � � � �

� � � �� � � � � � � �

� � � � 	 
 	 � � � �

� � � � � 	 
 	 � � � � � � � � � � �  	 	 " 	 � � � � ! �

� � � �� � � � � � � �

� � � � � � � � � �

� � � � 	 
 � �� �  � � � � �  � �� � �

� � � �� � � � � �

� � � � 	 
 	 � � � � � �

� � � � � 	 
 	 � # � � � �

� � � �� � � � � � � �

� � � � 	 
 	 � � � �

� � � � � 	 
 	 � � � � � � � � � � �  	 " 	 � � � � # �

� � � �� � � � � � � �

� � � � �
� � � � �

� � � � 	 
 	 � # � � � �

$ � � � �

� � � � 	 
 	 � ! � � � �

$ � � � �

� � � # � � � !

� � � � 	 
 	 � � � % �

� � � � � 	 
 	 � � � � � # � � � � � � � � � �  

� � � �� � � � � � � �

� � � � 	 
 	 � � � % �

� � � � � 	 
 	 � � � � � ! � � � � � � � � � �  

� � � �� � � � � � � �

� � � � �� � � � �

� � � � � �

Fig. 10. Transformation of Association

Figure 10 shows the relation ASxE for Association. This is more involved than the previous
relations as an association is comprised of two association ends which also need to be related
to XML. Note that it is not the model elements the association ends reference that are
related, but rather the references themselves. This is where the unique id we have forced
onto XML elements comes into play. The UML association is thus related to the following
chunk of XML:

<Association name=aName id=asc.pathName() >

<AssociationEnd name=c1Name id=asc.pathName()+"end1"

ref=asc.end1.pathName() />

<AssociationEnd name=c1Name id=asc.pathName()+"end2"

ref=asc.end2.pathName() />

</Association>

8



6.3 Putting it all together

In this section, we slot the individual relations in the previous sub-section together to form
one overall transformation. This creates several new issues that are not present when the
relations exist in isolation.

In general, additional constraints will be needed to ensure a relation is completely modelled.
For example, a common issue is the need to ensure that all of the contents of an element
(e.g. a UML package) are related to a corresponding element (e.g. an XML element). Fig-
ure 11 shows how the individual relations in the previous section slot together. Note the
inheritance relationships in this figure. The transformation of the abstract ModelElement is
captured by the abstract transformation MxE. The information inherited from the abstract
ModelElement play a key role in the transformation of the individual elements. Similarly,
the individual transformations are derived from the abstract transformation MxE defined on
the ModelElement.

�������

� � �	 	

�
 �

� 
 �

�   � � � �  � � 
 �

�

� 	 	 � �� � � � �

� � 
 �

�� � �

�� � �

�� �  �� � 	

� �� �� � � � ��������

� �  � � �� �� 

� �� �� � � � � � �	 	 �

� �  � � �� �� 

� �� �� � � � �   � � � �  ��

� �  � � �� �� 

� �� �� � � � � 	 	 � �� � � � � �

� �  � � �� �� 

! �� �� 

�� �  �� � 	

����� � � � �� � � � 	 


	 � �

	 � �

	 � � �

�

�

�

! �� �� 

�

�

�

�

�	 �


!










Fig. 11. Transformation composition

In order to ensure that all of the contents of an element Package are related to a corre-
sponding XMLElement the following ‘round trip’ constraint is needed:

context PxE:

self.p.contains->size() = self.sub->size() and

self.p.contains->forAll(m |

self.sub->exists(cxe |

cxe.m = m))

There are various ways that this constraint can be phrased to achieve the same end result.
This particular method makes use of the fact that if the number of contents in p.contains

is the same as sub and every element in p.contains has a transformation which is also a
member of sub then the round trip is enforced. At the moment the user needs to explicitly
enforce this constraint via OCL; we anticipate in the future adding a way to allow the user
to specify that the round trip needs to be enforced, without forcing them to write out the
entire constraint. The relevant constraint could be trivially generated from a boiler-plate –
at the time of writing, unfortunately no OCL equivalent to macros or template programming
such as found in [13] exists. We expect this shortcoming to be remedied in the relatively
near future.

9



We now use the example object model in figure 12 to illustrate a complete transformation.
This model consists of a package pkg1 which contains two classes cls1 and cls2 and an
association assoc1 between these two classes. Furthermore, cls1 contains an attribute
attr1.

���������	
��

 � �� 	�
�

��������� � � ��

 � � �� �

��������� � � � �

 � � �� �

���������� � � ��

 � � � � � � � � �

���������� � � � ��

 � � � � � � �� � � �

��� ���

��� ���� ���� ���

Fig. 12. Object model example to illustrate transformations

Figure 13 shows the complete relations, which combines several of the preceding relations,
such as figure 9 and 11, and a few other similar relations which we do not have space for.

The end result of this transformation is the following XML output:

<Package name="pkg1" id="pkg1">

<Class name="cls1" id="pkg1.cls1">

<Attribute name="attr1" id="pkg1.cls1.attr1" />

</Class>

<Class name="cls2" id="pkg1.cls2">

</Class>

<Association name="assoc1" id="pkg1.assoc1">

<AssociationEnd name="cls1" id="pkg1.assoc1.end1" ref="pkg1.cls1" />

<AssociationEnd name="cls2" id="pkg1.assoc1.end2" ref="pkg1.cls2" />

</Association>

</Package>

6.4 Validation of the generated XML against the DTD

A simplified DTD for the Class Diagram in the standard format is shown below:

<!DOCTYPE ClassModel [

<!ELEMENT Package

(Package|Class|Association)*>

<!ATTLIST Package

Name CDATA #REQUIRED

id ID #REQUIRED>

<!ELEMENT Class (Attribute)*>

<!ATTLIST Class

Name CDATA #REQUIRED

id ID #REQUIRED>

<!ELEMENT Attribute>

<!ATTLIST Attribute

Name CDATA #REQUIRED

id ID #REQUIRED>

<!ELEMENT Association (AssociationEnd AssociationEnd)>

10



:PxE

:CxE

:AxE

:ASxE

end1

end2contains

parent

contains

contains

name = “Package”

:XMLElement

name = “Class”

:XMLElement

name = “Attribute”

:XMLElement

name = “Association”

:XMLElement

sub

sub

sub

sub

sub

sub

parent

name = “assoc1”

:Association

name = “pkg1”

:Package

name = “attr1”

:Attribute

name=”cls1"

:Class

name=”cls2"

:Class

name=”name”
value=”pkg1”

:XMLAttribute

name=”id”
value=”pkg1”

:XMLAttribute

name=”name”
value=”cls1”

:XMLAttribute

name=”id”
value=”pkg1.cls1”

:XMLAttribute

name=”name”
value=”attr1”

:XMLAttribute

name=”id”
value=”pkg1.cls1
.attr1”

:XMLAttribute

name = “Class”

:XMLElement
sub

sub

name=”name”
value=”cls2”

:XMLAttribute

name=”id”
value=”pkg1.cls2”

:XMLAttribute

:CxE

name=”name”
value=”assoc1”

:XMLAttribute

name=”id”
value=”pkg1.assoc1”

:XMLAttribute

name = “AssociationEnd”

:XMLElement

name=”name”
value=”cls1”

:XMLAttribute

name=”id”
value=”pkg1.assoc1.end1”

:XMLAttribute

name=”ref”
value=”pkg1.cls1”

:XMLAttribute

name = “AssociationEnd”

:XMLElement

name=”name”
value=”cls2”

:XMLAttribute

name=”id”
value=”pkg1.assoc1.end2”

:XMLAttribute

name=”ref”
value=”pkg1.cls2”

:XMLAttribute

sub sub

attrsattrs

parent p

c

a

asc
c

x

x

x

x

x

contains

Fig. 13. Complete transformation of the example in figure 12

<!ATTLIST Association

Name CDATA #REQUIRED

id ID #REQUIRED>

<!ELEMENT AssociationEnd>

<!ATTLIST AssociationEnd

Name CDATA #REQUIRED

id ID #REQUIRED

ref IDREF #REQUIRED>

]>

The DTD (Document Type Definition) represents the skeletal structure of the output gen-
erated for an XML representation of the class diagram. Thus, the DTD can be used for type
checking of the output XML document to ensure that the generated XML is conforming to
the Class Diagram’s DTD. This is done by the means of Validation scripts. The scripts can
be written in OCL or any other OCL like language.

11



6.5 Relationship between DTDs and the UML Diagrams

DTD

ELEMENT

ATTLIST

BodyDef

* Empty SeqOr

ATTLIST

Attributes

Attributes

*

* *
*

*

*

sub

sub sub

Fig. 14. A Simplified Meta Model for DTDs

Figure 14 shows a simplified meta model for DTDs. For simplicity, we ignore some attributes
which are non relevant with this example.

name=”ClassModel”

:DTD

name=”Class”

:ELEMENT

name=”Package”

:ELEMENT
Name:CDATA
id:ID

:ATTLIST

name=”Attribute”

:ELEMENT

name=”Association”

:ELEMENT

name=”AssociationEnd”

:ELEMENT

name=”AssociationEnd”

:ELEMENT

Name:CDATA
id:ID

:ATTLIST

Name:CDATA
id:ID

:ATTLIST

Name:CDATA
id:ID

:ATTLIST

Name:CDATA
id:ID
ref:IDREF

:ATTLIST

Name:CDATA
id:ID
ref:IDREF

:ATTLIST

sub sub

ref

sub

sub

sub

Fig. 15. DTD for Class Diagrams

Figure 15 shows an instance of the DTD Meta Model shown in figure 14. This is the model
representation of the Class Diagram DTD shown in the previous subsection. Herein we
define an XML Document named ClassModel having the ELEMENTS Package, Class, At-
tribute, Association and AssociationEnd. Package can contain any number of Elements of
type Package, Class and Association. Each Element has two attributes (defined by the !AT-

TLIST keyword) Name and ID respectively. The Element AssociationEnd has an additional
Attribute ref which is used to reference the class which forms the AssociationEnd as shown
by the dotted association named ref.

On close observation of the Class Diagram Models in figure 8 and DTD meta model in
figure 14, one comes across a set of relationship between the two models as shown in figure
16. Basically, each Meta object in the class diagram gets transformed into a corresponding
ELEMENT in the DTD. The contains relation in the Class Diagram becomes the sub

relation in the DTD. Note the transformation of Associations in figure 16(c). In this case,

12



name=”Package”

ELEMENT
Name:CDATA
id:ID

ATTLIST

name=”Association”

ELEMENT

name=”AssociationEnd”

ELEMENT

name=”AssociationEnd”

ELEMENT

Name:CDATA
id:ID

ATTLIST

Name:CDATA
id:ID
ref:IDREF

ATTLIST

Name:CDATA
id:ID
ref:IDREF

ATTLIST
sub

sub

name=pName

Package
PxxE

name=”Class”

ELEMENT

name=cName

Class
CxxE

name=”Attribute”

ELEMENT
Name:CDATA
id:ID

ATTLIST

name=aName

Attribute
AxxE

p e

c e

name=ascName

Association
ASxxE

asc

name=cName

Class

Name:CDATA
id:ID

ATTLIST

name=cName

Class

end1

end2

contains

(a)

(b)

(c)

a

e

Fig. 16. Transformations of Class Diagrams to DTD

on transformation, the ATTLIST of AssociationEnds has an additional attribute ref which
refers to the classes which the association links to.

This gives us a specification which can to used to generate DTDs from Class Diagrams or
for that matter, from any UML Model.

6.6 Mapping

The example defined thus far is a relation – thus, being declarative, it is not necessarily
executable. In our definition mappings, which are operational and potentially directed,
transformations can be created which refine relations. Although we do not have sufficient
space to write out a complete mapping which refines the relation we have created up until
this point, we hope it is fairly trivial to imagine pseudo-code along the following lines which
would take in UML and export XML:

function uml_to_xml(model:ModelElement):

if type(model) == Package:

xml = XMLElement("Package", id=model.pathName())

for e in model.contains:

xml.append(uml_to_xml(e))

...

Of course, this operational definition can be given in any programming language e.g. Java,
Python or C++.

Another point of advantage is that, since the specification has been defined in terms of
relations, it is possible to seek many alternative approaches to implementing this while

13



satisfying the relationship specification. Thus there can be several mapping choices for a
given relation spec.

7 Other features

In this section we outline some other useful features of our definition of transformations.

7.1 Transformation Reuse

In order for transformations to scale up, it is essential to encompass features for reusing
existing transformations and composing further transformations from existing ones. Our
proposal caters to this requirement in two different ways – transformations can be reused
either through the specialization mechanism or by using a more powerful composition mech-
anism. A composite transformation is formed of a parent transformation and a number of
component transformations which are linked to the parent via logical connectives such as
and, etc. The example described in this paper reuses transformations by specializing the
MxE transformation defined on the ModelElement (figure 11).

7.2 Inter Transformability

Applying the conclusions drawn in subsection 6.5 to the figure 7, it becomes possible that
- given any two of the DTD, XML or Class Diagrams, one can verify is correctness with
respect to the third. For example, given the Class Diagram and the DTD, it is possible
to verify that the XML is representative of the Class Diagram and conforms to the DTD
specifications. Or, given the DTD and the XML document, one can verify that the Class
Diagram is representative of the XML document.

There is also the possibility of generating the third given any two of them. for example,
given the DTD and the XML Document, one can generate the Class diagram using a set of
transformation specifications.

8 Conclusions

We originally motivated the need for a practical definition of transformations to allow models
to be manipulated; this need is enshrined in the OMG QVT RFP. We then outlined our ap-
proach to transformations, and presented a non-trivial example. To summarize, our solution
provides: the ability to express transformations as both relations and mappings; standard
pattern languages for both relations and mappings; powerful mechanisms for reusing trans-
formations and for composing transformations; a succinct definition in two parts utilizing
an infrastructure – the simple semantic core, and a superstructure – where the rich end-user
constructs exist.

The future for model transformations is hard to precisely predict since it is undoubtedly
the case that we are still in the early stages of model transformation technology. We expect
approaches such as the one we outline in this paper to be further enhanced and, as real
world experience in the area develops, to evolve in different directions. We also expect that
in the future specific transformation language variants will be created to handle particular

14



problem domains; nevertheless we feel that most of the fundamental concepts, as outlined
in this paper, will hold true no matter the type of transformation involved.

This research was funded by a grant from Tata Consultancy Services. The authors would
also like to thank Dr James Willans and Paul Sammut of University of York and Mr Girish
Maskeri of Tata Consultancy Services for their invaluable help with this paper.

References

[1] Object Management Group, Request for Proposal: MOF 2.0 Query / Views /
Transformations RFP, ad/2002-04-10 (2002).

[2] D. DSouza, Model-driven architecture and integration - opportunities and
challenges, http://www.kinetium.com/catalysis-org/publications/papers/2001

-mda-reqs-desmond-6.pdf (2001).

[3] J. Bézivin, From object composition to model transformation with the MDA, in:
TOOLS 2001, 2001.

[4] M. A. de Miguel, D. Exertier, S. Salicki, Specification of model transformations based
on meta templates, in: J. Bezivin, R. France (Eds.), Workshop in Software Model
Engineering, 2002.

[5] K. Lano, J. Bicarregui, Semantics and transformations for UML models, in: J. Bézivin,
P.-A. Muller (Eds.), The Unified Modeling Language, UML’98 - Beyond the Notation.
First International Workshop, Mulhouse, France, June 1998, 1998, pp. 97–106.

[6] K. Lano, J. Bicarregui, UML refinement and abstraction transformations, in: Second
Workshop on Rigorous Object Orientated Methods: ROOM 2, Bradford, May, 1998.,
1998.

[7] W. M. Ho, J.-M. Jézéquel, A. L. Guennec, F. Pennaneac’h, UMLAUT: An extendible
UML transformation framework (1999).

[8] T. Levendovszky, G. Karsai, M. Maroti, A. Ledeczi, H. Charaf, Model reuse with
metamodel-based transformations, in: C. Gacek (Ed.), ICSR, Vol. 2319 of Lecture Notes
in Computer Science, Springer, 2002.

[9] QVT-Partners initial submission to qvt-rfp,
http://www.qvtp.org/downloads/1.0/qvtpartners1.0.pdf (2003).

[10] Object Management Group, Meta Object Facility (MOF) Specification,
formal/00-04-03 (2000).

[11] W3C, XSL Transformations (XSLT), http://www.w3.org/TR/xslt (1999).

[12] M. Gogolla, Graph transformations on the UML metamodel, in: J. D. P. Rolim, A. Z.
Broder, A. Corradini, R. Gorrieri, R. Heckel, J. Hromkovic, U. Vaccaro, J. B. Wells
(Eds.), ICALP Workshop on Graph Transformations and Visual Modeling Techniques,
Carleton Scientific, Waterloo, Ontario, Canada, 2000, pp. 359–371.

[13] T. Sheard, S. P. Jones, Template meta-programming for Haskell, in: Proceedings of the
Haskell workshop 2002, ACM, 2002.

15


