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PREFACE

Since publishing the first edition in 2004 we were pleasantly surprised by how much
momentum Applied Metamodelling created. The fundamental tenors of the book have
been cited in a vast number of papers and book and key ideas have been influential in
a number of technology initiatives including the Eclipse Modeling Project [EMP08].

A recurring response that we commonly receive is a frustration that although the
book gives readers the knowledge to apply metamodelling, they cannot easily do this
using the XMF technology which was used to construct the examples in the book. This
is about to change with the release of XMF as an open source technology in the first
quarter of 20082.

Much has happened since 2004 but the fundamental problem of complexity in soft-
ware and systems remains. This second version of the book makes a number of correc-
tions to the original text and includes a number of new chapters including two addi-
tional case studies which demonstrate the application and benefits of metamodelling.

2See http://www.ceteva.com for more details
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PREFACE

(First Edition)

Modern day system developers have some serious problems to contend with. The
systems they develop are becoming increasingly complex as customers demand richer
functionality delivered in ever shorter timescales. They have to manage a huge di-
versity of implementation technologies, design techniques and development processes:
everything from scripting languages to web-services to the latest ’silver bullet’ design
abstraction. To add to that, nothing stays still: today’s ’must have’ technology rapidly
becomes tomorrow’s legacy problem that must be managed along with everything else.

How can these problems be dealt with? In this book we propose that there is a com-
mon foundation to their resolution: languages. Languages are the primary way in which
system developers communicate, design and implement systems. Languages provide
abstractions that can encapsulate complexity, embrace the diversity of technologies and
design abstractions, and unite modern and legacy systems.

Language-Driven Development

Understanding how we can manage languages to best fit the needs of developers is
the key to improving system development practises. We call this Language-Driven De-
velopment. The right languages enable developers to be significantly more productive
than using traditional development practices. Rather than dealing with a plethora of
low level technologies, developers can use powerful language abstractions and devel-
opment environments that support their development processes. They can create mod-
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els that are rich enough to permit analysis and simulation of system properties before
completely generating the code for the system. They can manipulate their models and
programs in significantly more sophisticated ways than they can code. Moreover, pro-
vided the language definitions are flexible, they can adapt their languages to meet their
development needs with relative ease.

Metamodelling

In order to realise Language-Driven Development, we need the ability to rapidly design
and integrate semantically rich languages in a unified way. Metamodelling is the way to
achieve this. A metamodel is a model of a language that captures its essential proper-
ties and features. These include the language concepts it supports, its textual and/or
graphical syntax and its semantics (what the models and programs written in the lan-
guage mean and how they behave). Metamodels unify languages because the same
metamodelling language is used in each case. Significant advantage can be made of this
unification to construct powerful and flexible design environments for languages. These
enable the rapid assembly of Language-Driven Development tools that give developers
the power they need to design their systems faster, cheaper and more flexibly.

Purpose of this Book

The aim of this book is to advance the state of the art in metamodelling to the point at
which it can realise the Language-Driven Development vision. Traditionally, metamod-
elling has focused on the design of data centric models of language concepts. In this
book, we go way beyond that, showing how they can capture all aspects of languages,
including concrete syntax, abstract syntax and semantics in a sound and pragmatic way.

This book also aims to fill a large gap in the metamodelling literature, providing a
technically rich book on an a subject that is mentioned often, but for which there is
little concrete material available. Metamodels are increasingly being used across wider
application domains, and it is the intention that this book will provide good advice to
metamodellers irrespective of the languages and tools they are using.

Scope of this Book

The scope of this book is deliberately not restricted to software systems. Many other
types of domains, from systems engineering to business, manufacturing and even phys-
ical engineering, can benefit from the ideas presented here.
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Intended Audience

This book should be useful to anyone who has an interest in the design of languages,
language and model-driven development, and metamodelling. Our intention is that the
book has an industrial focus, and we have tried hard to ensure that it is relevant to real
practitioners. In particular, everything in this book has been implemented, therefore
ensuring that it is has been tried and tested.

Relationship to Other Approaches

We do not claim that the ideas presented in this book are new. Approaches to rapidly
designing languages in flexible ways have been around since the early days of LISP,
ObjVLisp and Smalltalk. Meta-case tools have been widely touted as a means of design-
ing tailored tools and languages. Efforts by the Object Management Group (OMG) to
standardise facilities for capturing language meta-data are already influencing the way
vendors build tools. More recently, work on domain specific languages has highlighted
the benefits of rapidly designing languages targeted at specific application domains.

In this book we have combined many of these approaches on top of existing standards
to facilitate the definition of languages in a general and complete way. An important
emphasis has been on raising the level of abstraction at which complex aspects of lan-
guage design such as the definition of concrete syntax and semantics are expressed.
Thus we model languages, but in sufficient detail that these models can be turned into
semantically rich development environments and tools. This capability has not been
achieved in such a complete way before.

Organisation of this Book

This book is organised into three parts. The first and shortest part gives an overview
of challenges facing the system development industry and proposes Language-Driven
Development as a way forward to addressing those challenges.

The middle part provides a detailed treatment of metamodelling. It contains the fol-
lowing chapters:

Metamodelling : introduces the key features of languages and describes what meta-
models are and how they can capture those features.

A Metamodelling Facility : presents an overview of an executable metamodelling fa-
cility that provides a number of powerful languages for capturing the syntax and
semantics of languages.

Abstract Syntax : describes how metamodels can be used to define the concepts that
are provided by the language.
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Concrete Syntax : describes how the textual and diagrammatical syntaxes of language
can be modelled.

Semantics : introduces semantics and the motivation for having them in language
definitions. The chapter goes on to describe four different approach to describing
semantics.

Executable Metamodelling : discusses how the addition of a small number of action
primitives to a metamodelling language turn it into a powerful metaprogramming
environment for Language-Driven Development.

Mappings : motivates and presents two languages for transforming and relating meta-
models.

Reuse : this chapter describes a number of different approaches to reusing existing
language metamodels.

The final part provides a number of indepth case studies each describing a specific
example of metamodelling. These examples range from the design of a small general
purpose language to a domain specific language for modelling interactive television
based applications. The case studies are a significant resource for demonstrating meta-
modelling best practice.
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CHAPTER 1

LANGUAGE-DRIVEN DEVELOPMENT

This chapter provides an introduction to Language-Driven Development. It outlines
current problems facing software and systems developers today, and explains how an
integrated architecture of semantically rich, evolvable languages can provide huge pro-
ductivity benefits to industry.

Language-driven development is fundamentally based on the ability to rapidly de-
sign new languages and tools in a unified and interoperable manner. We argue that ex-
isting technologies do not provide this capability, but a language engineering approach
based on metamodelling can. The detailed study of metamodelling and how it can realise
the Language-Driven Development vision will form the focus for the remainder of this
book.

1.1 Challenges Facing Developers Today

When discussing software and systems engineering, it is only a matter of time before
the topic of managing complexity arises. The desire to manage complexity was the driv-
ing force behind the emergence of the aforementioned disciplines, and despite many
valiant attempts to master it, the problem is still with us today. However, we believe
that the nature of today’s systems are quite different to those developed when those
disciplines emerged, and in turn the developers of today’s systems face different chal-
lenges to those in previous decades. In particular, it is no longer sufficient to manage
complexity alone. Instead, we believe that most of today’s development challenges boil
down to a combination of three important factors: complexity, diversity and change.

The remainder of this section describes each of these challenges in more detail.
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Complexity

ChangeDiversity

Figure 1.1: Challenges Facing Developers Today

1.1.1 Coping with Complexity

As hardware costs have plummeted and development and manufacture techniques
have improved, the demands for more sophisticated systems have been relentless. Of
course, the more sophisticated the requirements of a system are, the larger and more
complex the deployed system is likely to be. Increased system complexity typically
brings with it the following problems:

• longer development times;

• more complex assembly due to number of components and number of people
involved;

• increased cost and time for testing;

• increased maintenance costs.

Overall, this results in an increased time to market for any system, and increased
development and maintenance costs in order for there to be any confidence that the
quality of the system is not compromised.

For software systems, as well as the problems outlined above which relate to the
fundamental increase in lines of code, there is an additional qualitative difference to the
systems being developed today compared to those of decades past. Modern systems
are increasingly distributed in nature, as demonstrated by the ubiquity of enterprise
applications. This adds another dimension to software complexity, and brings added
challenges of communication and security to those listed above.

Since the challenge of managing complexity is the main topic of many software and
systems engineering books (such as [Som95, Boo94, Jac92], it will not be discussed in
further detail here. Potential solutions to the complexity challenge are described in
section 1.2.2.
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1.1.2 The Challenge of Diversity

The challenge of diversity reflects how developers have to manage in a non-homogenous
environment. Life would be much easier if there was only one programming language
and one deployment platform, but of course this is not the case, and for very good rea-
sons. Diversity is not really a single challenge, but a category of challenges, outlined
below. Section 1.2.4 describes how diversity as a whole can be managed.

Diverse Domains

The requirements of large systems often relate to a variety of domains that need to
be reconciled by different stakeholders. These requirements may range far and wide,
including functional, safety, security and performance considerations. Each domain
often has its own specialist approach for dealing with appropriate requirements, but
their specialist nature inevitably precludes them from being applied in other domains.

Diverse Customer Requirements

The ’one size fits all’ approach to software and systems is increasingly inappropriate in
today’s market. Vendors who offer products that can be tailored to the specific needs
of a customer have a strong commercial advantage, but developing products that are
truly customisable such that they can meet the demands of a broad customer base is
a far from trivial matter. Despite the fact that two products being offered to different
customers may share significant functionality, large rewrites and redesign are often re-
quired because the functional components of a system are too tightly coupled to allow
large scale reuse. In addition, many systems are designed at too lower a level of abstrac-
tion to yield optimum flexibility.

Diverse Implementation Technologies

Systems are often deployed across a number of different implementation technologies
which need to be integrated, or need to be deployed for a number of separate imple-
mentation technologies. These implementation technologies each have their own re-
quirements and languages. However, the separation between the core functionality and
the requirements of the deployment platform is rarely kept clean during the develop-
ment of the system. It has been recognised that in order to support redeployment and
integration (or indeed other customisation such as that described above), systems need
to be designed at a high level of abstraction; thus software and system modelling has
become popular, but these models are rarely complete (this is described more fully in
section 1.2.2). Software models in particular seldom get beyond the specification of their
behaviour, such that code cannot be completely generated. Even when code is gener-
ated, full testing and validation is usually required, which consumes a significant chunk
of development effort.
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Diverse Tools and Artefact Types

During the development of a system, a large number of artefacts are created, including
requirements specifications, design documentation, design and analysis models, anal-
ysis and simulation data and of course the code (for software systems). Unfortunately,
these artefacts are often prevented from being truly valuable assets because:

• they are often created by different incompatible tools or using different languages,
some of which may no longer be supported, such that the artefacts become un-
maintainable;

• the forms of artefacts are incompatible, and many are written in informal lan-
guages, such that there is no clear way to integrate the information they contain;

• artefacts such as design models are rarely kept in step with changes to the im-
plementation artefacts such as code, because there is no automatic way to do so,
vastly reducing their value as assets;

• the artefacts that are kept up to date, such as code, are often tightly coupled to the
integration technology, reducing their value as reusable assets;

• many artefacts only exist on paper rather than electronic form, so any maintenance
or integration tasks has to be manually.

This may be fine for one-off systems, but systems are rarely built from scratch - they
are often based on existing systems, and as such would ideally reuse as much as possible
from the baseline system.

1.1.3 The Only Constant is Change

Nearly all systems evolve over time. Typical reasons for this are:

• change in customers requirements or market trends;

• change in implementation technologies or deployment platforms;

• support for additional functionality and features;

• availability of more effective implementation solutions;

• bug fixes.

One can see a parallel between the challenges of change and diversity described
above. The distinction is that diversity is meant to reflect the potential variations of a
system at one point in time, whereas change is meant to reflect the variation of a single
system over time.
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Once again the problem of managing change is intertwined with the problem of com-
plexity. Traditionally systems have been developed at too lower level of abstraction,
and code is not always the ideal starting point for managing change.

Ultimately, managing change is costly and timely - system maintenance is well known
to be an expensive activity, and that is only part of the bigger challenge of managing
change. Problems are compounded when a tool, platform or other technology involved
in the design, development and deployment of the system becomes obsolete. It can
either become even more expensive or in some cases impossible to continue to maintain
a system. It is clear then that any technique or technology that can aid in managing
change will have a direct beneficial effect on the bottom line and shorter lead times for
delivery. This is the topic of section 1.2.5.

1.2 Language-Driven Development - Providing the
Solution

1.2.1 Languages are the Future

One of the distinguishing features of being human is our use of language. Languages
are fundamental to the way we communicate with others and understand the meaning
of the world around us.

Languages are also an essential part of systems development (albeit in a more for-
malised form than natural languages). Developers use a surprisingly varied collection
of languages. This includes high-level modelling languages that abstract away from
implementation specific details, to languages that are based on specific implementation
technologies. Many of these are general-purpose languages, which provide abstractions
that are applicable across a wide variety of domains. In other situations, they will be
domain specific languages that provide a highly specialised set of domain concepts.

In addition to using languages to design and implement systems, languages typically
support many different capabilities that are an essential part of the development pro-
cess. These include:

• Execution: allows the model or program to be tested, run and deployed;

• Analysis: provides information of the properties of models and programs;

• Testing: support for both generating test cases and validating them must be pro-
vided;

• Visualisation: many languages have a graphical syntax, and support must be pro-
vided for this via the user interface to the language;

• Parsing: if a language has a textual syntax, a means must be provided for reading
in expressions written in the language;
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• Translation: languages don’t exist in isolation. They are typically connected to-
gether whether it is done informally or automatically through code generation or
compilation;

• Integration: it is often useful to be able to integrate features from one model or
program into another, e.g. through the use of configuration management.

Languages are the true universal abstractions, and hold the key to managing the chal-
lenges described in section 1.1. This section describes how particular facets of languages
can help to solve the individual problems described above, and how they can combine
to from the holistic solution of Language-Driven Development.

1.2.2 Rich Organised Abstraction

Abstraction has long been used as a means to allow humans to cope with complexity.
Abstraction concerns distilling the essential characteristics of something relative to a
particular perspective of the viewer. The two key ideas here are that some non-essential
details are ignored, and that a particular context needs to be defined in order for the
abstraction to make sense. Often abstraction involves the ‘chunking’ and organisation
of information in a particular problem domain in order to allow the viewer to better
comprehend the problem, by separating concerns. It is this information chunking that
is the fundamental means for overcoming the limited human capacity for complexity,
and languages are the means for capturing abstractions.

Organised abstraction is the key tool that formed the basis of the disciplines of soft-
ware and systems engineering from the outset right through to recent trends in model-
driven development. However, there has been a backlash against modelling and con-
cerns that high-level abstraction doesn’t work for complex large scale systems. This has
come from a recognition that current model-driven technologies have failed to deliver
the increased productivity that was promised. However, we argue that it abstraction is
still a crucial tool - it’s just that the wrong abstractions have been used in the past.

This is partly because there has been a tendency for inappropriate languages to be
used for capturing abstractions - this is covered in section 1.2.3. More significantly,
modelling languages often use ’high-level’ as an excuse to suggest that their abstractions
need not be unambiguous, complete, meaningful or executable. This simply does not
work. Abstraction is a means of hiding detail appropriately from various stakeholders,
but that detail must still be there. Also, if such abstractions have no meaning or its
meaning is ambiguous, then the potential applications on that abstraction are severely
limited - validation, verification, translation, integration, execution and simulation rely
heavily on semantically precise abstractions.

1.2.3 Appropriate Abstraction Through Multiple Languages

Section 1.1.2 highlighted how diversity lies at the heart of modern system development.
Going a step further, we suggest that the challenge really boils down to a diversity of
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languages:

• specialists require languages to address the particular facets of the problem that
lie within their domain - often within each specialist domain there are numerous
languages, with new languages being developed all the time;

• there are countless implementation languages - some differences are due to the
continuing trend of increasing abstraction, some are due to the fact that differ-
ent paradigms or individual languages are better suited to a particular problem-
solution pair than others, and some are simply down to competitive commercial
interests;

• the languages and syntax that capture the artefacts created during the develop-
ment lifecycle.

We propose that rather than trying to subdue this diversity by forcing everyone to
talk (or model) using the same language, we should embrace it and allow everyone to
use whatever language best suits their needs. In many cases, this may be a general-
purpose modelling or programming language, as these will be widely supported by
tools and techniques, but in some cases more specialised languages may be more ap-
propriate. An example of this might be an inventory-based system, where developers
consistently have to express their models in terms of inventory type concepts such as
resources, services and products. By allowing engineers and domain experts to express
themselves in the languages that they are both most comfortable with and that will give
them the most expressive power, productivity can increase with corresponding gains
for industry.

The argument against this is that by having a single standard language, there is only
one language for developers to learn, so everyone can communicate more easily, and
interoperability between tools will be much simpler. Whilst this is undoubtedly true, in
order to make a modelling language that suits the needs of everybody (not just software
engineers), it will suffer from the following problems:

• it will necessarily be a very large, bloated language;

• there are often contradictory needs of a language from different domains that can-
not be reconciled in a single language;

• any gain made in widening the applicability of a language to different domains
will be at the expense of the richness of the language that makes it so suitable for
a particular domain.

The compromises that can happen due to conflicting requirements of a language can
be seen clearly in programming languages. These languages sit uncomfortably between
the realms of the computer hardware and the human developer. As humans, we want
readable, maintainable and reusable code, but ideally we also want to produce a set of
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efficient machine instructions to keep the computer happy. The trend of increasing ab-
straction that has resulted in Object-Oriented Programming has resulted in more usable
languages, but at the expense of performance. Thus a single language is not enough.

1.2.4 Integration - Weaving the Rich Tapestry of Languages

In section 1.2.3, we suggested that large productivity gains could be achieved by open-
ing up the full spectrum of languages. However, this vision will not work with isolated
language islands - we need to find a way for all the models and other artefacts for a
system written in these disparate languages to make sense as a meaningful whole. In
order for that to happen, the languages themselves must be integrated.

Language integration between two languages means that some or all of the language
constructs of each language are in some way mapped to corresponding constructs of
the other language. Some common applications of language integration are outlined
below:

Transformation

The most publicised application of language integration is that of transformation, where
an artefact in one language is transformed into an artefact of another. This type of ac-
tivity is of prime importance in MDA (see section 1.3.2), as reflected by dominance of
the concept of transforming Platform Independent Models (PIMs) to Platform Specific
Models (PSMs). Language-Driven Development goes a step further by enabling high-
level models to be transformed directly into fully compiled executable systems, so long
as the appropriate languages that capture such views of a system are integrated appro-
priately. Transformation activities also include reverse engineering, and generation of
any secondary artefacts such as documentation or even full test beds for systems.

Artefact Integration

If a system is comprised of a number of subsystems from different domains, and these
different system aspects are described in different languages, then by integrating the
languages, those aspects can themselves be weaved together to form a unified view of
the system. This is typically used to integrate language artefacts that are at a similar
level of abstraction.

Equivalence Verification

Sometimes it is important to check whether an artefact written in one language is equiv-
alent to one written in another. For example, it may be important to check whether an
implemented system conforms to a precise system specification written in a high-level
language. Again if the two languages are integrated appropriately, then this will be
possible.

c©Ceteva 2008.



1.2. LANGUAGE-DRIVEN DEVELOPMENT - PROVIDING THE SOLUTION 9

Synchronisation

Language integration can also enable language artefacts to be synchronised. For exam-
ple, whilst in some cases it might be appropriate to generate code for a system from a
high-level model as a one-shot activity, in many cases it is desirable to keep the model
and code in step. Similarly, if you have a diagramming language that allows graphical
representation of a modelling languages, it is important to keep the graphical entities in
step with any changes to the model.

1.2.5 Evolvability - The Key to Managing Change

Languages evolve in the same way as systems, and the best way to protect systems
against change and obsolescence is to protect the languages that describe them. They
should be flexible and extensible to cope with changing requirements, and when a new
version of a language is developed, mappings (as described in section 1.2.4 should be
provided to provide full traceability between versions. In this way, an artefact written
in an earlier version should able to be transformed into the new version. With some
legacy systems, the language is no longer well-supported. In these cases, the language
should be described and integrated within the Language-Driven Development frame-
work, such that corresponding artefacts can be transformed into artefacts in a new more
current and appropriate language. In summary, good language design (see Chapter 9)
together with language integration enables both languages and systems to evolve in a
controlled fashion.

1.2.6 Language-Driven Development - The Complete Solution

This section has described how languages can provide the overall solution to the chal-
lenges described in section 1.1 - more specifically an integrated framework of semanti-
cally rich, flexible and evolvable languages appropriate to their needs. This Language-
Driven Development framework will:

• allow the contruction of agile abstractions that are resistant to change;

• enable those abstractions to be transformed into, integrated with, validated against
or synchronised with abstractions written in other languages;

• support powerful applications (editors, analysis and simulation tools, the afore-
mentioned transformers and integrators) to be written and applied on those ab-
stractions.

The right languages enable developers to be significantly more productive than using
traditional development technologies because engineers and domain experts can speak
in the languages they understand. Rather than dealing with low level coding issues, de-
velopers can use powerful language abstractions and development environments that
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support their development processes. They can create models that are rich enough to
permit analysis and simulation of system properties before completely generating the
code for the system, and are more reusable and agile. They can manipulate their models
and programs in significantly more sophisticated ways than they can code. Moreover,
provided the language definitions are flexible, they can adapt their languages to meet
their development needs with relative ease.

Language-Driven Development is the next generation development paradigm which
can provide a step gain in productivity through the recognition that languages, rather
than objects or models, are the abstractions needed for today’s development environ-
ment.

1.3 From Model-Driven to Language-Driven
Development

Much of what has been described in this chapter has a lot in common with model-
driven development approaches such as the OMG’s Model Driven Architecture (MDA).
However, there are two prime motivations for distinguishing Language-Driven Devel-
opment from model-driven approaches:

• the term model suggests a focus on high-level abstractions and modelling languages,
with other artefacts seen as of lesser value. We feel that languages itself are the
truly central abstractions, and that modelling languages form an undoubtedly use-
ful yet partial subset of the spectrum of useful languages in system development.
Consequently, all language artefacts, not just models, have a crucial role to play in
the process;

• the prominent model-driven approach, MDA, is limited in its scope of application,
compared to the full potential of Language-Driven Development (see section 1.3.2.

The remainder of this section examines two key model-driven technologies from the
Object Management Group, UML and MDA, and assesses their suitability for the basis
of Language-Driven Development.1

1.3.1 The Unified Modelling Language

The Unified Modelling Language (UML) came out of a desire to consolidate all the no-
tations in the various object-oriented methodologies that had arisen in the eighties and
nineties, such as Schlaer-Mellor [SM88] and OMT [RBP+91]. UML consists of a number
of different notations that allow different views of a software system to be modelled at

1Two other key technologies underpinning MDA are the Meta-Object Facility (MOF) and the
Query/View/Transformations language (QVT). MOF is the metamodelling language for MDA, and
QVT is the mappings language for MOF - both are described in section 3.5.
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different stages of the development lifecycle. Both static and dynamic aspects of a sys-
tem can be captured, and facilities are also provided to enable model management and
limited extensibility. A textual constraint language (OCL) is included to allow the state
space represented by a model to be further constrained in ways that are too complex to
be captured by the graphical notations alone.

As highlighted earlier, there are certainly advantages of having a common language
such as UML, particularly with regard to communication. In line with this, UML has
been well-received and is now the de facto software modelling language. However, it
has some major shortcomings:

Imprecise semantics

The UML 1.x specification [uml01] falls some way short of providing a precise seman-
tics. Whilst its syntax is mostly well specified, the semantics of those syntactic elements
is either missing or provided informally using English. This has led to a situation where,
as of version 1.3, no tool could claim to be UML compliant [CEF+99]. This in turn
has inhibited model interchange between tools, leading back to the situation of vendor
lock-in. In addition, as explained earlier, models written in such an informally specified
language are open to misinterpretation, a potentially dangerous or expensive problem.
Whilst a major revision of UML will be released soon, draft versions of the UML 2.0
standard do not indicate major improvements with regard to semantics.

Limited scope and flexibility

UML has been successfully applied across the software development community, and it
is increasingly being applied to non-software domains such as systems engineering[uml02],
and specialised software domains such as real time and high integrity systems. The di-
verse modelling requirements that this widespread use brings makes defining what a
unified modelling language should be a considerable problem. Early attempts to en-
hance UML to support new requirements adopted a ’mud-packing’ approach[Kob99],
which involved making direct amendments to the monolithic definition of UML itself.
This resulted in a language that became increasingly large, unwieldy to use, incompre-
hensible, and difficult to maintain and test for consistency.

In order to overcome these problems, UML was refactored from a one-size-fits-all
modelling language into a family of languages. The foundation of the UML family is
a stable core UML metamodel, consisting of minimal modelling concepts that are sup-
ported by all family members. Each dialect of UML consists of the UML core metamodel
and one or more extensions to the core known as ‘profiles’. The profile mechanism is
quite straightforward to apply, but is limited as it is based upon constraining existing
language constructs rather then modifying or adding new language constructs.
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Non-executability

UML is not in itself executable - it was designed to be a declarative language. In other
words you cannot run a UML model as defined in the specification, merely define a
specification to which any executable program must conform. This is certainly useful,
but does not (in the general case) allow executable code to be generated automatically
from the model. This was deemed to be a desirable application of models, so an Action
Semantics extension was provided. Whilst this was a step in the right direction, like
much of UML, the semantics of this extension is weakly defined.

These shortcomings are constantly being addressed by revisions of the language. At
the time of writing, UML 2.0 is due to be released in the near future. This addresses
some of the problems of imprecise semantics, and improves the profile mechanism of
UML 1.4, but it is still limited by the fundamental flaw of trying to have a one-size-
fits-all language. UML started out as general purpose object-oriented modelling lan-
guage, and was good at describing high level object-oriented software models. But as a
consequence of its popularity, attempts were made to tailor for more and more highly
specialised uses for which it was not originally intended. Developing it as an extensi-
ble language was a major step forward, but the core that the profiles are built upon is
still an object-oriented core, which does not suit the needs of all languages. We are not
proposing that UML should be scrapped, simply that it used where it makes sense to
use it - and use other languages where the abstractions provided by UML do not fit.

1.3.2 MDA

The Model Driven Architecture is framework for unifying a number of technologies
based around OMG standards such as UML, MOF, CWM and CORBA. It is founded
on the metamodelling language MOF, which is used to define other languages such as
UML and CWM.

Primarily MDA concerns models and mappings between those models. The most
widely recognised application of MDA is the mapping or transformation between Plat-
form Independent Models (PIMs) and Platform Specific Models (PSMs). A key idea
is that system models are constructed that realise all the functional requirements, but
are completely independent of platform, programming language and other implemen-
tation issues (PIMs). Instead of producing code for a system manually, a model that
contains all the constructs and details needed for the system to operate on the intended
implementation technology (the PSM) is generated from the appropriate PIM using a
mapping. Because the core functionality of a system is captured in the PIM, if that sys-
tem needs to be deployed on to a new platform, a new PSM can be generated simply
by changing the PIM to PSM mapping. Thus faster platform migration and platform
independence are achieved through the large scale reuse that PIMs provide [mda01].

MDA is an ambitious vision that could change the way software is developed in the
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future. However, as with UML, it has some problems:

• whilst the MDA vision is grand, the technology for implementing it is very vaguely
specified. So weak in fact that any modelling tool which has some simple code
generation facility can (and in most cases does) claim to implement MDA. MDA
is more useful as a marketing tool than anything else;

• MDA is too fixed on the notion of platform. What constitutes a platform is unclear
at best - the transition from the most abstract model of a system to the most re-
fined model may include several stages of models, each which could considered
Platform Specific when compared to the previous stage, or Platform Independent
when compared to the following stage. In any case, PIM to PSM mappings are
just one of a whole spectrum of potential applications of Language-Driven Devel-
opment;

• MDA is built on a weak inflexible architecture. This will be discussed in the con-
text of metamodelling in section 2.8.

Language-Driven Development is not just about PIM to PSM mappings - it is about
being able to capture all aspects of the software and systems development process in a
unified way, through the rich tapestry of languages described in section 1.2.

1.4 Language Engineering and Metamodelling

In order for a development process to be truly adaptable, it is not simply a case of en-
abling it to support a number of pre-defined languages. If a development process limits
itself to the application of a fixed set of languages, it will still necessarily limit the range
of problems that it can address as well as the potential solutions it can provide. Instead,
a development process should incorporate the ability to adopt and construct whatever
languages provide the best fit. In other words, on top of the disciplines of Software and
System Engineering, there needs to be a new discipline for Language Engineering.

Language engineering is required whenever the integrated language framework does
not support the problem-solution pair. For example, if Language-Driven Development
is required on a problem domain that has its own specialist language or if a new pro-
gramming language is developed, then that language must be captured in an appropri-
ate form to support Language-Driven Development technologies. However language
engineering involves not just the construction of semantically rich languages for cap-
turing appropriate abstractions (section 1.2.2). It also involves the integration of such
languages within the language framework (section 1.2.4) and the evolution of such lan-
guages (section 1.2.5). Thus language engineering provides the foundation for all we
have described in this chapter.

Language engineering is a more complex activity than software and system engineer-
ing needing specialised skills, however only a fraction of Language-Driven Develop-
ment practitioners will be involved in this activity. For most system developers, it will
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14 CHAPTER 1. LANGUAGE-DRIVEN DEVELOPMENT

be sufficient to know that languages need not be static entities, and that languages can
be customised, extended and created as needed. Some of these language engineering
tasks they may be able to carry out themselves, and some (particularly the creating of
new languages entirely) will have to be carried out by language specialists.

In order to be able to engineer languages, we need a language for capturing, describ-
ing and manipulating all aspects of languages in a unified and semantically rich way.
This language is called a metamodelling language. Metamodels (models of languages)
are the primary means by which language engineering artefacts are expressed, and are
therefore the foundation for Language-Driven Development. While we have motivated
Language-Driven Development in this chapter, the rest of the book will explore how
metamodelling (the process of creating metamodels) can realise the Language-Driven
Development vision.

1.5 Conclusion

This chapter has outlined some of that the key challenges facing developers today are
complexity, diversity and change. It has proposed that Language-Driven Development
can help developers to manage these challenges by utilising the following tools:

• abstraction through rich languages helps to manage complexity;

• integration of multiple appropriate languages help to manage diversity;

• flexible, evolvable languages help manage change.

An outline as to how Language-Driven Development differs from model-driven de-
velopment was then given, along with an overview of existing model-driven technolo-
gies and their limitations. The chapter closed with an introduction to the discipline of
Language Engineering, which this book is fundamentally about, and is described in
more detail in the following chapter.

Language-Driven Development provides practitioners with an integrated framework
of rich evolvable languages appropriate to their needs. Productivity can be increased
because engineers and domain experts can speak in the languages they understand, and
both the problem space and solution space are opened up to their full extent, and arte-
facts developed in this way will be more agile, powerful, reusable and integrated. This
approach offers a paradigm shift beyond object-oriented programming and modelling
that has major implications for industry in terms of cost reduction and productivity.
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CHAPTER 2

METAMODELLING

2.1 Introduction

The previous chapter described the benefits of using semantically rich languages to pre-
cisely capture, relate and manipulate different aspects of a problem domain. These
languages may be general purpose languages, domain specific languages, modelling
languages or programming languages. In order to realise these benefits, a way must be
found of defining languages in a unified and semantically rich way. In this chapter we
begin exploring a means of achieving this using metamodels.

This chapter sets out to explain a number of key aspects of metamodelling that lay the
foundation for the rest of this book. An important starting point is to understand the
features of languages that a metamodel must be capable of describing. A definition of a
metamodel is then given, and the type of language necessary to construct metamodels
with is explored. This language, a metamodelling language, is just another example
of a language. As we will shall see later in the book, all language metamodels can be
described in this language: thus facilitating the unified definition of the languages that
underpins Language-Driven Development.

2.2 Features of Languages

Whilst the nature, scope and application of the languages used in systems development
is naturally diverse, there are a number of key features they all share. Understanding
these features is a first step towards developing a generic approach to modelling lan-
guages.
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2.2.1 Concrete Syntax

All languages provide a notation that facilitates the presentation and construction of
models or programs in the language. This notation is known as its concrete syntax. There
are two main types of concrete syntax typically used by languages: textual syntax and
visual syntax.

A textual syntax enables models or programs to be described in a structured textual
form. A textual syntax can take many forms, but typically consists of a mixture of dec-
larations, which declare specific objects and variables to be available, and expressions,
which state properties relating to the declared objects and variables. The following Java
code illustrates a textual syntax that includes a class with a local attribute declaration
and a method with a return expression:

public abstract class Thing
{
private String nameOfThing;
public String getName()

{return nameOfThing;}
}

An important advantage of textual syntaxes is their ability to capture complex expres-
sions. However, beyond a certain number of lines, they become difficult to comprehend
and manage.

A visual syntax presents a model or program in a diagrammatical form. A visual
syntax consists of a number of graphical icons that represent views on an underlying
model. A good example of a visual syntax is a class diagram, which provides graphical
icons for class models. As shown in Figure 2.1 it is particularly good at presenting an
overview of the relationships and concepts in a model:

The main benefit of a visual syntax is its ability to express large amounts of detail in
an intuitive and understandable form. Its obvious weakness is that only certain levels
of detail can be expressed beyond which it becomes overly complex and incomprehen-
sible.

In practice, utilising a mixture of diagrammatical and textual syntaxes gains the ben-
efits of both forms of representation. Thus, a language will often use visual notations to
present a higher level view of the model, whilst textual syntax will be used to capture
detailed properties.

2.2.2 Abstract Syntax

The abstract syntax of a language describes the vocabulary of concepts provided by the
language and how they may be combined to create models. It consists of a definition of
the concepts, the relationships that exist between concepts and well-formedness rules
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LittleThing
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things

Figure 2.1: Visualising concepts and relationships

that state how the concepts may be legally combined.
Consider a simple state machine language. An abstract syntax model of this language

may include concepts such as State, Transition and Event. In addition, there will be
relationships between concepts, such as a Transition being related to a source and target
State. Finally, well-formedness rules will be defined that ensure, for example, that no
two transitions may be triggered by the same event.

It is important to emphasise that a language’s abstract syntax is independent of its
concrete syntax and semantics. Abstract syntax deals solely with the form and struc-
ture of concepts in a language without any consideration given to their presentation or
meaning.

2.2.3 Semantics

An abstract syntax conveys little information about what the concepts in a language
actually mean. Therefore, additional information is needed in order to capture the se-
mantics of a language. Defining a semantics for a language is important in order to be
clear about what the language represents and means. Otherwise, assumptions may be
made about the language that lead to its incorrect use. For instance, although we may
have an intuitive understanding of what is meant by a state machine, it is likely that
the detailed semantics of the language will be open to misinterpretation if they are not
defined precisely. What exactly is a state? What does it mean for transition to occur?
What happens if two transitions leave the same state. Which will be chosen? All these
questions should be captured by the semantics of the language.

It is critical that semantics should be captured in a way that is precise and useful to the
user of the language. An abstract mathematical description has little benefit if it cannot
be understood or used. Instead, a semantic definition that provides rich ways of inter-
acting with the language should be the goal of the language designer: An executable
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18 CHAPTER 2. METAMODELLING

language should have an operational semantics that allows it be run; A language which
contains type concepts, such as classes, should permit the creation of objects according
to the rules of instantiation, and so on.

2.2.4 Mappings

In the real world, languages do not exist in isolation. They will have a relationships
to other languages. This may be via translation (concepts in one language are trans-
lated into concepts in another language); semantic equivalence (a language may have
concepts whose meaning overlaps with concepts in another language) or abstraction (a
language may be related to another language that is at a different level of abstraction).
Capturing these relationships is an important part of a language’s definition as it serves
to place the language in the context of the world around it. Furthermore, mappings
exist between the internal components of languages, such as between a concrete and
abstract syntax, and are an important part of a language’s architecture (see section 9.4).

2.2.5 Extensibility

Languages are not static entities: they change and evolve over time. For instance, new
concepts may be added that enable common patterns of model or code to be expressed
more succinctly, whilst unused elements of the language will eventually die out. The
ability to extend a language in a precise and well-managed way is vital in order to
be able to support adaptability. It allows the language to adapt to new application
domains and to evolve to meet new requirements. Furthermore, extensibility enables
the commonality and differences between languages to be precisely captured.

2.3 Modelling Languages vs. Programming Languages

A strong distinction has traditionally been made between modelling languages and pro-
gramming languages (a fact reflected by the two distinct modelling and programming
communities!). One reason for this is that modelling languages have been traditionally
viewed as having an informal and abstract semantics whereas programming languages
are significantly more concrete due to their need to be executable.

This is not the case in this book. Here, we view modelling languages and program-
ming languages as being one and the same. Both have a concrete syntax, abstract syntax
and semantics. If there is a difference, it is the level of abstraction that the languages
are targeted at. For instance, UML tends to focus on specification whilst Java empha-
sises implementation. However, even this distinction is blurred: Java has been widely
extended with declarative features, such as assertions, whilst significant inroads have
been made towards developing executable versions of UML.

Another common distinction made between modelling and programming languages
is their concrete syntax. Modelling languages tend to provide diagrammatical syntaxes,
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whilst programming languages are textual. However, the representational choice of a
language should not enforce this distinction. There is nothing to say that a modelling
language cannot have a textual syntax or that programming language cannot have a
visual syntax: it is purely a matter of representational choice. Indeed there is already a
human readable textual form of UML and tools that provide visual front ends to pro-
gramming languages like Java are commonplace.

If modelling languages and programming languages are essentially the same, why
can’t the mature techniques used to define programming languages be used to design
modelling languages? The answer is that they can - indeed many of the techniques pre-
sented here have their foundation in programming language design. However, there
is one important element that is missing from many approaches to defining program-
ming languages, and that is unification. It is the ability to define multiple languages
that co-exist in a unified meta-architecture that make metamodelling such a powerful
technology.

Thus, the techniques that are developed in this book are equally as applicable to pro-
gramming languages as they are to modelling languages. A critical failing of modelling
languages is that they have not, until now, been given the precise, executable definitions
that programming languages enjoy.

2.4 What is a Metamodel?

In its broadest sense, a metamodel is a model of a modelling language. The term ”meta”
means transcending or above, emphasising the fact that a metamodel describes a mod-
elling language at a higher level of abstraction than the modelling language itself.

In order to understand what a metamodel is, it is useful to understand the difference
between a metamodel and a model. Whilst a metamodel is also a model (as defined
in chapter 1), a metamodel has two main distinguishing characteristics. Firstly, it must
capture the essential features and properties of the language that is being modelled.
Thus, a metamodel should be capable of describing a language’s concrete syntax, ab-
stract syntax and semantics. Note, how we do this is the major topic of the rest of this
book!

Secondly, a metamodel must be part of a metamodel architecture. Just as we can use
metamodels to describe the valid models or programs permitted by a language, a meta-
model architecture enables a metamodel to be viewed as a model, which itself is de-
scribed by another metamodel. This allows all metamodels to be described by a single
metamodel. This single metamodel, sometimes known as a meta-metamodel, is the key
to metamodelling as it enables all modelling languages to be described in a unified way.
How metamodels can be described by a meta-metamodel is discussed in more detail in
section 2.8.

It is important to be aware that there is a good deal of confusion about what is meant
by a metamodel in the literature. Many standards such as UML [uml01], CWM [cwm04]
and MOF [mof00] provide ‘metamodels’ that claim to define the standard, yet they only
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focus on the abstract syntax of the languages. They should really be viewed partial
metamodels (or even just models) as they do not provide a complete language defini-
tion.

2.5 Why Metamodel?

As discussed in chapter 1, system development is fundamentally based on the use of
languages to capture and relate different aspects of the problem domain.

The benefit of metamodelling is its ability to describe these languages in a unified
way. This means that the languages can be uniformly managed and manipulated thus
tackling the problem of language diversity. For instance, mappings can be constructed
between any number of languages provided that they are described in the same meta-
modelling language.

Another benefit is the ability to define semantically rich languages that abstract from
implementation specific technologies and focus on the problem domain at hand. Using
metamodels, many different abstractions can be defined and combined to create new
languages that are specifically tailored for a particular application domain. Productivity
is greatly improved as a result.

2.5.1 Metamodels and Tools

The ability to describe all aspects of a language in a metamodel is particularly important
to tool developers.

Imagine the benefits of loading a metamodel of a language into a tool that defined all
aspects of the language. The tool would immediately understand everything relating
to the presentation and storage of models or programs in the language, the users’ inter-
action with and creation of models or programs, and how to perform semantically rich
activities, such as execution, analysis and testing. Furthermore, any number of other
languages could also be loaded in the same way, enabling the construction of seman-
tically rich development environments. Because all the languages are defined in the
same way, interoperability between the tools would be straightforward. This flexibility
would not just be restricted to user level languages. Another example might be loading
an extension to the meta-metamodel, such as a new kind of mapping language. This
language would then be immediately available to capture mappings between different
languages.

Allowing all aspects of tools to be modelled in a single, platform independent meta-
modelling language will have big implications for the software engineering industry.
Firstly, the interoperability and flexibility of tools will be drastically increased. This will
lead to a marketplace for tool metamodels. Metamodels that provide partial definitions
of languages could be easily extended to provide many other capabilities by vendors
with expertise in a specific modelling domain.
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Secondly, rich metamodels will have a significant benefit to the standards community.
As we have argued, there is currently no means of capturing complete language defini-
tions in existing metamodelling languages. As a result, standards that use metamodels
to describe the languages they define suffer because their informal definitions can be
interpreted in many ways. Complete metamodels of standards such as UML would
greatly enhance the rigour by which the standard is implemented and understood -
something that all stakeholders will benefit from.

2.6 Where do you find Metamodels?

Metamodels have been around for many years in a wide variety of different application
domains and under various pseudonyms: ”data model”, ”language schema”, ”data
schema” are all terms we have seen. Wherever there is a need to define a language, it
is common to find a metamodel. This is particularly the case for standards, which by
virtue of being a standard must have a precise definition. Examples include AP233 and
SysML (systems engineering), SPEM (process modelling), OSS (telecoms) and CWM
(data warehousing). The Object Management Group (OMG) has been particularly in-
volved in their use in the standards arena. One of the largest metamodels (about 200
pages long) is contained in the UML specification [uml01]. With the advent of MDA
[mda] and the increasing need for standardisation across the systems development com-
munity, the number of applications of metamodels is set to grow significantly.

Finally, although many developers may view metamodels as being un-connected
with their daily work, it is interesting to note that many are already using metamodels
without knowing it! Many developers have already experienced the benefits of design-
ing frameworks containing a vocabulary of language concepts. For example, developers
of financial systems will use concepts such as financial transactions, accounts, and so on.
In reality, they are defining a language for their domain.

2.7 Metamodelling Languages

A metamodel is written in a metamodelling language, which is described by a meta-
metamodel. As described above, the aim is that the same metamodelling language
(and meta-metamodel) is used to describe any number of different languages. Thus,
provided that the modelling languages have been defined in the same metamodelling
language, it is possible to treat their definitions in a unified manner. For example, they
can be stored and manipulated in the same way, or related by mappings.

What distinguishes a metamodelling language from a general purpose programming
language like Java or a modelling language like UML? The answer is that a metamod-
elling language is a language specifically designed to support the design of languages.
An essential requirements of a metamodelling language therefore is its ability to con-
cisely capture all aspects of a modelling language, including its syntax and semantics.
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The next chapter will examine in detail the required components of a metamodelling
language.

2.8 Metamodel Architectures

A metamodelling language places requirements on there being a specific metamod-
elling archictecture. This architecture provides a framework within which some key
features of a metamodel can be realised. An important property of a metamodel ar-
chitecture is that it describes a classification hierarchy. Models written in the language
are instances of the concepts that are defined in the metamodel - the structure of the in-
stances is classified by the metamodel. Furthermore, many languages have their own
notion of classification (although they need not), and the pattern is repeated until a
point is reached at which further classification does not occur. This repeating pattern
of classification/instantiation contributes to what is commonly known as a meta-level
architecture - a concept that will be described in more detail in the next sections.

2.8.1 Traditional Metamodel Architecture

The traditional metamodel architecture, proposed by the original OMG MOF 1.X stan-
dards is based on 4 distinct meta-levels. These are as follows:

M0 contains the data of the application (for example, the instances populating an object-
oriented system at run time, or rows in relational database tables).

M1 contains the application: the classes of an object-oriented system, or the table def-
initions of a relational database. This is the level at which application modeling
takes place (the type or model level).

M2 contains the metamodel that captures the language: for example, UML elements
such as Class, Attribute, and Operation. This is the level at which tools operate
(the metamodel or architectural level).

M3 The meta-metamodel that describes the properties of all metamodels can exhibit.
This is the level at which modeling languages and operate, providing for inter-
change between tools.

Each level in this hierarchy represents an instance of a classifier relationship. As
shown in figure 2.2, elements at M0 are instances of classes at M1, which themselves
can be viewed as instances of metamodel classes, which can be viewed as instances of
meta-metamodel classes.

The unifying factor in this architecture is the meta-metamodel. It defines the simplest
set of concepts required to define any metamodel of a language.
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Figure 2.2: Example of the 4 Layer Meta Architecture

2.8.2 Golden Braid Metamodel Architecture

Although the 4-layer metamodel is widely cited, its use of numbering can be confusing.
An alterative architecture is the golden braid architecture [Hof79]. This architecture
emphasises the fact that metamodels, models and instances are all relative concepts
based on the fundamental property of instantiation.

The idea was first developed in LOOPS (the early Lisp Object Oriented Programming
System, and then became a feature of both ObjVLisp [Coi87] and also CLOS (the Com-
mon Lisp Object System).

Underpinning the golden braid architecture is the relationship between a Class and
an Object. A Class can be instantiated to create an Object. An Object is said to be an
instance of a Class. This fact can be determined through a distinct operation, of(), that
returns the Class that the Object was created from.

In addition, a Class is also a subclass of Object. This means that a Class can also
be instantiated by another Class: its meta Class. This relationship is key to the meta-
architecture, as it enables an arbitrary number of meta-levels to be described through
the instantiation relationship.

In practice, there will be a distinct Class that all elements in the meta-architecture are
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instances of. This is the meta-metaclass, which is effectively used to bootstrap the entire
metamodel architecture. This class will be defined as part of the meta-metamodel (the
model of the metamodelling language used to model all languages).

In terms of the 4-layer metamodel, it is clear that it can be viewed as the result of
stamping out the golden braid architecture over a number of different levels. Thus,
there is no notion of a meta-metamodel: it is just a metamodel that describes models,
which themselves may be metamodels.

The golden braid architecture offers a great deal of flexibility. Thus it forms the foun-
dation of the XMF metamodelling language, which will be presented in chapter 3.

Meta Object Protocol

A related aspect of the golden braid architecture is its use of a meta-object protocol
(MOP). A meta-object protocol is a set of classes and methods that allow a program to
inspect the state of, and alter the behaviour of its meta-metamodel at run-time. These
make it possible to easily adapt the metamodelling language to support different types
of behaviours. For instance, changing the way that inheritance works, or modifying
how the compiler works without having to change the code for the compiler. This adds
further flexibility to the metamodelling process.

2.9 The Metamodelling Process

The task of creating a metamodel for a language is not a trivial one. It will closely match
the complexity of the language being defined, so for example, a language containing
rich executable capabilities will be much more complex to define than a simple static
language.

However, there is a clearly defined process to constructing metamodels, which does
at least make the task a well-defined, if iterative, process. The process has the following
basic steps:

• defining abstract syntax

• defining well-formedness rules and meta-operations

• defining concrete syntax

• defining semantics

• constructing mappings to other languages

Much of the remainder of the book will focus on the detail involved in this process.
Initially, we will present the tools necessary to create metamodels in the first place; the
armoury of metamodelling facilities that is the metamodelling language.
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2.10 Five levels of Metamodelling

We are often asked by clients how they can assess the quality of a metamodel. To help
them, we have found the following five levels to be useful:

Level 1 This is the lowest level. A simple abstract syntax model must be defined, which
has not been checked in a tool. The semantics of the language it defines will be
informal and incomplete and there will be few, if any, well-formed rules.

Level 2 At this level, the abstract syntax model will be relatively complete. A signifi-
cant number of well-formedness rules will have been defined, and some or all of
the model will have been checked in a tool. Snapshots of the abstract syntax model
will have been constructed and used to validate its correctness. The semantics will
still be informally defined. However, there may be more in the way of analysis of
the language semantics.

Level 3 The abstract syntax model will be completely tried and tested. Concrete syn-
tax will have been defined for the language, but will only have been partially
formalised. Typically, the concrete syntax will be described in terms of informal
examples of the concrete syntax, as opposed to a precise concrete syntax model.
Some consideration will have been given to the extensibility of the language ar-
chitecture, but it will not be formalised or tested.

Level 4 At level 4, the concrete syntax of the language will have been formalised and
tested. Users will be able to create models either visually and textually and check
that they result in a valid instance of the abstract syntax model. The language
architecture will have been refactored to facilitate reuse and extensibility. Models
of semantics will have begun to appear.

Level 5 This is the topmost level. All aspects of the language will have been modelled,
including its semantics. The semantic model will be executable, enabling users of
the language to perform semantically rich operations on models written in the lan-
guage, such as simulation, evaluation and execution. The language architecture
will support good levels of reuse, it will have been proven to do so through real
examples. Critically, the completed metamodel will not be reliant on any external
technology - it will be a fully platform independent and self contained definition
of the language that can be used ‘as is’ to generate or instantiate tools.

Most of the metamodels we have seen do not achieve a level greater than 2. Even
international standards such as UML do not exceed level 3. Yet, reaching level 5 must
be an aspiration for all language developers.
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2.11 Conclusion

This chapter has outlined some of the key features of system development languages.
All languages have a concrete syntax, which defines how they are presented, an abstract
syntax that describes the concepts of the language, and a semantics that describes what
the concepts mean. A metamodel is a model of all these different aspects of a language.
Crucially, a metamodel can also be thought of as a model, written in a metamodelling
language, which is itself is also described by a metamodel. This enables all metamodels
to be described in the same way. This facilitates a truly unified approach to language
definition.
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CHAPTER 3

A METAMODELLING FACILITY

3.1 Introduction

In order to be able to construct semantically rich models of languages, a facility that
fully supports language definition is required. This is known as a metamodelling facility.
A metamodelling facility should provide the ability to capture the key features of a lan-
guage, including its syntax and semantics in a unified and platform independent way,
along with support for other important language design requirements such as extensi-
bility and executability.

This chapter gives a brief introduction to a metamodelling facility called XMF (eX-
ecutable Metamodelling Facility). XMF extends existing standards such as MOF, OCL
and QVT with rich executable metamodelling capabilities. It provides a number of lan-
guages for metamodelling, all based around a core executable meta-architecture and
metamodelling framework.

XMF will form the foundation for exploring metamodelling throughout the rest of
this book.

3.2 Requirements of a Metamodelling Facility

Before introducing XMF, it is important to understand some of the key requirements of
a metamodelling facility.

Firstly, as discussed in the previous chapter, a metamodelling facility should provide
metamodelling languages that can capture all the essential features of a language. They
should include languages that can capture the abstract syntax, concrete syntax and se-
mantics of a language. In addition, it should provide facilities for manipulating meta-
models, including the ability to map them to other metamodels and extend metamodels
to support new language definitions.
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Secondly, it should provide a meta-architecture in which the metamodelling lan-
guages (including their semantics) are themselves described in terms of a core meta-
modelling language. This ensures that the languages are self defined and complete,
and enables their definitions to be readily reused to create new language definitions.

Finally, to gain maximum flexibility, a metamodelling facility must be platform in-
dependent. In other words, its metamodels should be self sufficient and independent
of implementation specific descriptions of the language being modelled. Thus, reliance
on the implementation of the language’s behaviour in a programming language or the
assumption that there will be an external database that manages object creation and
persistence is completely avoided.

3.2.1 XMF

XMF aims to provide a rich environment for language design that supports the key
requirements of a metamodelling facility. It combines and extends a number of stan-
dard object-oriented modelling facilities to provide a minimal, but expressive, platform
independent language for metamodelling. It includes the following features:

• Support for core OO modelling concepts such as packages, classes, and associa-
tions to describe language concepts and their relationship to one another.

• A constraint language, which can used to describe well-formedness rules.

• A set of action primitives, which can be used to capture the behavioural seman-
tics of a language and for manipulating metamodels. This turns it into a meta-
programming language.

• A concrete syntax language which can be used to model the concrete syntax of any
modelling language.

• A generic metamodel framework, which supports standard plug-points and ma-
chinery for expressing model element instantiation, execution, expression evalua-
tion and reflection.

• Conformance to the golden-braid metamodel architecture described in section
2.8.2, ensuring that the language, including its semantics is completely self de-
scribed.

• A collection of richer metamodelling facilities. In particular, languages for ex-
pressing mappings (both uni-directional and bi-directional) between metamodels.

The following sections present an overview of the key features of XMF. This is not a
full definition, but will reference fuller descriptions of the components of the language
where appropriate.
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3.3 XMF Features

3.3.1 Core OO Modelling Concepts

XMF provides the standard OO modelling concepts that are supported by MOF and
UML, including packages, classes and associations. These are visualised using class
diagrams. Figure 3.1 shows an example of a class diagram of a simple model consisting
of a package with a number of classes and associations. This model describes a simple
StateMachine, where a StateMachine contains States and Transitions, and Transitions
have source and target states.

Transition
StringsourceName

StringtargetName

Named
Stringname

State

StateMachine
StringstartName

*

transitions

* states

Figure 3.1: An example of a class diagram

Note that associations are defined in terms of attributes. Thus, a uni-directional as-
sociation (with a single arrow head) is visual syntax for an attribute of the target type
belonging to the source class. A bi-directional association (with no arrow heads) is vi-
sual syntax for a pair of attributes plus a constraint that ensures they are inverses of one
another.

XMF also provides a concrete syntax for packages and classes. The equivalent con-
crete representation of the StateMachine class diagram shown in figure 3.1 is shown
below.

1 @Package StateMachines
2 @Class isAbstract Named
3 @Attribute name : String end
4 end
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5 @Class StateMachine extends Named
6 @Attribute startName : String end
7 @Attribute states : Set(State) end
8 @Attribute transitions : Set(Transition) end
9 end
10 @Class State extends Named
11 end
12 @Class Transition
13 @Attribute sourceName : String end
14 @Attribute targetName : String end
15 end
16 end

Line 1 shows the start of a package named StateMachines, which contains all the sub-
definitions relating to StateMachines.

Line 2 contains the start of a class definition for the class Named, which is an abstract
class for a named element. Line 5 is the start of the definition of the StateMachine
class. It defines three attributes. The first attribute is the name of the starting state of
the StateMachine. The other two attributes are states and transitions, and their types
are Set(State) and Set(Transition). These types correspond to the ”*” multiplicity of the
equivalent association ends in the class diagram.

Lines 10 and 12 are the start of the State and Transition class definitions. The State
class specialises the class Named, and therefore inherits a name attribute. A Transition
has two attributes sourceName and targetName, which are the names of its source and
target states.

As chapter 5 will show, the concrete representation of a modelling language should
be clearly distinguished from its abstract syntax representation. Here, two different
concrete syntaxes are being used to capture the same information.

3.3.2 Imports

Just as in UML and MOF, a package can be imported into another package. The result is
that all referenceable elements in the imported package can be referenced by elements
in the importing package. Consider the following package:

@Package X
@Class Y end

end

@Package A imports X
@Class B
@Attribute b : Y end

end
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end

Because the package A imports the package X, elements in the package X can be
referenced without the need to provide a full path name.

3.3.3 Constraints

It is often necessary to state well-formedness rules about concepts in a model. These
rules are often made informally, for example in the context of figure 3.1 it might be
useful to specify that all transitions have unique names. A constraint language provides
a means of succinctly and unambiguously expressing complex well-formedness rules.
The well-formedness rule mentioned above can be added to the class StateMachine as
follows:

context StateMachine
@Constraint NoTwoTransitionsWithTheSameName
transitions->forAll(t1 |

transitions->forAll(t2 |
t1.name = t2.name implies t1 = t2))

end

Another well-formedness rule requires that the starting state must be one of the states
of the state machine:

context StateMachine
@Constraint ValidStartingState

states.name->includes(startName)
end

The constraint language used in XMF is OCL [WK99]. The primary difference be-
tween the OCL used here and standard OCL is the use of a different syntax for decla-
rations. In this case ”@Constraint” is used as opposed to the ”inv:” declaration used in
standard OCL. The reason for this choice will become apparent later when we consider
the need for a flexible parsing language.

3.3.4 Queries

OCL can be used to write queries. A query is used to produce a value in the context of
a current object state; it does not cause any side effects. The following is an example of
a query:
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context StateMachine
@Operation getState(n:String):State

self.states->select(s | s.name = n)->sel
end

This will filter the states of a state machine, selecting those states whose name matches
the string n. Here, sel, is an in-built operation that selects a single element from a collec-
tion. Again, note that the declaration of a query differs from that in the OCL standard.
Another example of query returns true if there exists a state with the name n:

context StateMachine
@Operation isState(n:String):Boolean

self.states->exists(s | s.name = n)
end

end

3.3.5 Actions and XOCL

OCL is by design a static language and does not change the state of objects it refers to.
In some situations this is a good thing because it guarantees side-effect free evaluation.
However this limitation makes it very difficult to describe operational behaviour in
a way which can be readily executed. Standard OCL provides pre-/post- conditions
as a way of specifying the effect of an operation, however in general these cannot be
executed.

An alternative approach is to augment OCL with action primitives. The XOCL (eXe-
cutable OCL) language extends OCL with a number of key behaviour primitives. This
is a essential step towards making XMF a true meta-programming environment (see
chapter 7).

An example of the use of actions in XOCL can be seen in the state machine of figure
3.1. If it was required to add new states to the state machine dynamically then the
following XOCL statement can be written:

context StateMachine
@Operation addState(name:String)

self.states := self.states->including(StateMachines::State(name))
end

end

New instances of classes can be created by calling its constructor. A constructor is
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an operation that has the same name as the class. It takes a sequence of values as an
argument, which are then used to intialise the object’s slots. In the case of the state
machine, three constructors are required, one for each concrete class. The first intialises
the name of a state, the second assigns a source and target state name to a transition, and
the third initialises a new state machine with a name, a starting state, a set of transitions
and set of states. Constructors also support getters and setters via the ? and ! notations
- a ? results in the creation of a getX() operation, while a ! results in an addX() operation
where X is a non-singleton attribute. Note, that if the body of the constructor is empty,
the default action is to set the attribute values (slots) of the created object with the values
of the parameters.

context State
@Constructor(name)
end

context Transition
@Constructor(sourceName,targetName)
end

context StateMachine
@Constructor(name,startName,states,transitions) ?
end

The body of the next example illustrates how OCL conditional expressions and log-
ical operators can be combined with XOCL actions to define the operation of adding a
transition. This operation takes the name of the new transition and the name of a source
and target state. The isState() query is then used to check that the states belong to the
StateMachine before creating a transition between them. The last line of the if statement
shows how XOCL deals with the printing of strings to the console.

context StateMachine
@Operation
addTransition(source:String,target:String)
if self.isState(source) and self.isState(target) then
self.transitions := self.transitions->
including(StateMachines::Transition(source,target))

else
"Invalid State in addTransition()".println()

end
end

As this example shows, augmenting OCL with a small number of action primitives
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results in a powerful and expressive programming language. Furthermore, as we will
see in later chapters of this book, because the language works at the XMF level, it also
provides a rich meta-programming environment that can be used to construct sophis-
ticated facilities such as parsers, interpreters and compilers. Indeed, it is so expressive
that it has been used to implement XMF itself.

3.3.6 Instantiation

A useful notation for visually representing the instances of a metamodel is a snapshot
- a notation popularised by the Catalysis method [DW99]. A snapshot shows objects,
the values of their slots (instances of attributes) and links (instances of associations). A
snapshot of a metamodel will thus show objects and links that are instances of elements
in the metamodel. The example shown in figure 3.2 is a snapshot of the StateMachine
metamodel. It shows an instance of a StateMachine containing two states and three
transitions.

 
:StateMachine

 
:Transition

 

:Set(<<Class Transition>>)

 
:Transition

 

:Set(<<Class State>>)

 
:State

 
:Transition

 
:State

transitions

 

states

 

 

  

Figure 3.2: A snapshot showing an instance of the statemachine metamodel

Of course, because XMF provides an interpreter, instances of models can be easily
created and tested via its interpreter console.

3.3.7 Concrete Syntax

The concrete syntax of a modelling language defines the notation that is used to present
models in the language. A notation may be textual, or diagrammatical, or a mixture
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of both. A key part of any metamodelling language is the ability to model both these
aspects in a platform independent way, and as a result facilitate the rapid creation of
parsers and diagram editors for a new language.

Textual Syntax

XMF provides a generic parser language that can be used to model the textual syntax of
any language. This language, called XBNF (the reader will be starting to see a pattern
to our naming conventions by now!) allows new textual constructs to be defined that
can be used as input to a model parser. These new constructs to be defined as:

@<NAME>
<BODY>

end

where <NAME> is the name of the construct and<BODY> is an XBNF expression.
An XBNF expression consists of a number of EBNF definitions within which XOCL

variables are embedded, followed by an XOCL expression. When a construct is parsed,
the XBNF expression is used to match each parsed element with the variables. These
variables can then be used within the XOCL action to create instances of classes that
populate a model of the abstract syntax of a language.

Imagine that we wish to create a concrete syntax for the simple StateMachine exam-
ple. One part of this task would be to create a concrete syntax for states. This might take
the form:

@State On
end

@State Off
end

The following XBNF defines the syntax for parsing states and populating instances of
the class State.

State ::= name = Name {[| State(name) |]}

Now we have a new construct. When we type:

@State X end
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we will get an instance of the class State named X.
Chapter 5 will provide more detail on the use of XBNF.

Diagrammatical Syntax

In order to model the diagrammatical syntax of a modelling language, XMF provides
a generic model of diagram elements such as boxes, lines, etc, that can be tailored to
support specific types of diagrams. Bi-directional mappings are used to model the re-
lationship between a specific diagram model and the model of the language’s abstract
syntax. This ensures that whenever changes are made to a diagram, they are reflected
in the model and vice versa. By providing an interpreter (written in XMF) for display-
ing instances of a diagrammatical syntax model, it is possible to construct new diagram
editors for a specific modelling language in very short timescales. Chapter 5 provides
more detail on this aspect.

3.3.8 Mappings

Chapter 1 highlighted the fact that one important use case of languages is to transform
or relate them to other languages. Mappings describe how models or programs in one
language are transformed or related to models or programs in another. In order to
describe these mappings, mapping languages are required.

Two types of mapping languages are included in XMF: a uni-directional pattern ori-
ented mapping language called XMap, and a bi-directional synchronisation language
called XSync.

Uni-directional Mappings

XMap, is a declarative, executable language for expressing uni-directional mappings
that is based on pattern matching.

To illustrate the use of XMap, figure 3.3 shows a simple model of C++ classes which
will be used as the target of a mapping from a state machine.

A C++ class is a namespace for its attributes and operations (methods). An attribute
has a type, and for the purposes of this example, its type may either be another class
or an enumeration type. An enumeration type has a value, which is the sequence of
strings in the enumeration. An operation has a name and a body, which contains a
simple string representation of the body of the operation.

A mapping from from the StateMachine model in figure 3.1 to the C++ in 3.3 can be
defined. This maps a StateMachine to a C++ class, where each state in the state machine
is mapped to a value in an enumerated type called STATE. Each transition in the state
machine is mapped to a C++ operation with the same name and a body, which changes
the state attribute to the target of the transition.

The mapping can be modelled in XMap as shown in figure 3.4. The arrows repre-
sent mappings between elements of the two languages. A mapping has a domain (or
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CPPOp

Stringbody

Named

Stringname

EnumerationType

Set(String)values

CPPType

CPPAttCPPClass

*

operations

*

attributes

 

type

Figure 3.3: A simple model of C++ classes

domains), which is the input to the mapping, and a range, which is the output. The
first mapping, SM2Class, maps a state machine to a C++ class. The second mapping,
Transition2Op, maps a transition to an operation.

SM2Class

Transition

(from Root::StateMachines)

CPPClass

(from Root::CPP)

CPPOp

(from Root::CPP)

StateMachine

(from Root::StateMachines)

Transition2Op

range

domain

domain

range

Figure 3.4: A mapping between state machines and C++ classes

In order to describe the details of the mapping, XMap uses a textual mapping lan-
guage based on pattern matching. Working backwards, the definition of the mapping
between a transition and an operation is as follows:

context Transition2Op
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@Clause Transition2Op
StateMachines::Transition

[sourceName = S,
targetName = T]

do
CPP::Operation
[name = S+T,
body = B]

where
B = "state = " + T

end
end

A mapping consists of a collection of clauses, which are pattern matches between
source and target objects. Whenever a source object is successfully matched to the input
of the mapping, the resulting object in the do expression is generated. Variables can
be used within clauses, and matched against values of slots in objects. Because XMap
builds on XOCL, XOCL expressions can also be used to capture complex relationships
between variables.

In this example, whenever the mapping is given a Transition with a sourceName
equal to the variable S and a targetName equal to T, it will generate an instance of the
class Operation, whose name is equal to the concantenation of S and T, and whose body
is equal to the variable B. The where clause is used to define values of variables, and it
is used here to define the variable B to be concatenation of the text ”state = ” with the
target state name. For instance, given a transition between the states ”On” and ”Off”,
the resulting operation will have the name ”OnOff” and the body ”state = Off”. Note
that it would be quite possible to model a part of the syntax of C++ expressions, and
equate B with an instance of an expression class.

The mapping between state machines and C++ classes is shown below:

context SM2Class
@Clause SM2Class
StateMachines::StateMachine
[states = S,
transitions = TS]

do
CPP::CPPClass

[attributes =
Set{CPP::CPPAtt

[name = "state",
type = T]},

operations = O]
where
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T = CPP::EnumerationType
[name = "STATE",
values = S->collect(s | s.name)];

O = TS->collect(t | Transition2Op(t))
end

Here, a state machine with a set of states, S, and a set of transitions, TS, is mapped to
a C++ class with a distinguised attribute state of type T, and a set of operations, O. The
value of T is an EnumerationType whose name is “STATE” and whose values are the
names of the states in S. Finally, the transitions are mapped to operations by iterating
through the transitions in TS and applying the Transition2Op mapping.

This mapping illustrates the power of patterns in being able to match arbitrarily com-
plex structures of objects. As shown by the class CPPClass, objects may be matched with
nested objects to any depth. It also shows the necessity of a rich expression language
like OCL for capturing the complex navigation expressions that are often encountered
when constructing mappings.

Synchronised Mappings

While it is common to want to translate from one language to another, there is also a
requirement to keep different models in sync. For example, an abstract syntax model
will need to be kept in sync with a model of its concrete syntax, or a model may need
to be synchronised with code. To achieve this, XMF provides a bi-directional mapping
language called XSync. This enables rules to be defined that state how models at either
end of a mapping must change in response to changes at the other end, thus providing
a declarative language for synchronisation. This language will be explored in greater
detail in chapter 8.

3.4 XMF Architecture

As outlined in the previous chapter, XMF follows the golden braid metamodel architec-
ture, and therefore is defined in its own language. Understanding the architecture of
XMF is important for many reasons. Firstly, it provides a good example of a language
definition in its own right - the fact that XMF is self describing makes a strong state-
ment about the expressibility of the language. Secondly, XMF acts as a foundation for
many other metamodel definitions. For instance, it can be viewed as a subset of the
UML metamodel, and many other types of modelling languages can also be viewed as
extensions of the core architecture.

Figure 3.5 shows the key components of the XMF architecture. At the heart of XMF is
the XCore metamodel. This provides the core modelling concepts of the metamodelling
language (as described in section 3.3.1). This metamodel also provides a framework for
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language extension (a topic discussed in more detail in chapter 9). Around it, sit the
metamodels for the OCL, XOCL, XBNF, XMap and XSync languages.

The classes and relationships in these metamodels correspond precisely to the mod-
elling features that have been used in this chapter. For example, the package and classes
shown in the StateMachine abstract syntax model in figure 3.1 are concrete syntax rep-
resentations of instances of the classes XCore::Package and XCore::Class. Expressions
in a concrete syntax model are themselves instance of XBNF::Grammar, and so on.

XSync

 

XCore

 

XBNF

 

XMap

 

XOCL

 

Figure 3.5: Overview of XMF Architecture

3.4.1 XCore Metamodel

As shown in figure 3.6, the classes that are defined in the XCore metamodel provide
the core modelling concepts used in XMF such as Class and Package. As we discuss
metamodelling in more detail in later chapters, many of the features of this metamodel
will discussed in detail.
There are however, some key parts of this model that are worth pointing out here:

Elements and Objects The most fundamental modelling concepts in XMF are elements
and objects. Elements are the root of all modelling concepts, in other words, every
type of modelling concept in XMF is an element. All elements are instances of a
classifier. Elements do not have structure or state. Objects on the other hand are
elements that encapsulate data values - called slots in XMF. An object’s slots must
conform to the name and type of the attributes of the class it is an instance of.
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Performable The performable class represents the root of all modellng concepts that
can be evaluated in the context of an environment (a collection of variable bind-
ings) to return a result. An OCL expression is a good example of a performable
concept.

Classification In XMF some types of modelling elements are modelled as Classifiers.
A Classifier is an element that can be instantiated via the new() operation to create
new instances. Good examples of these elements are classes and datatypes, which
can be instantiated to create objects and datavalues. All elements have an of() op-
eration, which returns the classifier that the element was instantiated from. For
example the objects statemachine1, statemachine2 will return the class StateMa-
chine while the object fido might return the class Dog.

Reflection An important property of all XMF models is that classes are also objects.
This apparently strange assumption means that classes can also be viewed as in-
stances of classes. This capability is an important one, as it enables any operation
that can be carried out on an object such as executing its operations, or mapping
it to another object can also be applied to classes.

XOCL The XOCL class is an extension of OCL, and is the root of all imperative expres-
sions that can change the state of a model (not shown here).

Snapshot A snapshot is a collection of elements, and may therefore include any type
of element that is available in XMF.

Grammar A grammar can be evaluated in the context of sequence of tokens to generate
an instance of a model.

In addition, the XCore metamodel defines a number of abstract classes that provide
a framework for language design. This framework will be discussed in greater detail in
chapter 9.

3.5 Relationship to Existing Metamodelling Languages

The requirement to be able to construct metamodels is not a new one, and not sur-
prisingly a variety of languages have been proposed as metamodelling languages. The
most notable of these are UML and the MOF (the Meta Object Facility). The MOF is the
standard language for capturing meta-data, and goes further than the UML in meeting
the requirements of a metamodelling language. Nevertheless, whilst the MOF provides
many of the features necessary to define metamodels, there are a number of crucial areas
in which it needs to be extended.

• The MOF does not explicitly support executable metamodelling in a platform in-
dependent way. Although it does provide OCL, this does not support the con-
struction of operations that change the state of a model. An alternative might be
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to use the Action semantics. This is a platform independent language for exe-
cuting models that is currently a part of the the UML 1.5 metamodel. There are
a number of problems with this language however. Firstly, it does not have a
concrete syntax, which has slowed its adoption. Secondly, it is a complex lan-
guage that includes many constructs that are not relevant to metamodelling, such
as concurrent actions. Whilst work is ongoing to resolve the first issue, XOCL re-
solves both by the minimal extension of OCL, resulting in a powerful executable
metaprogramming language.

• The MOF does not support an extensible grammar language. This is important in
being able to model new concrete syntax grammars in MOF.

• The MOF currently is not defined fully in terms of itself. Its semantics and syntax
are stated in a form (a mixture of OCL, and informal English) that prevents it from
being completely self describing and self supporting.

• The MOF currently does not support mapping languages such as the XMap and
XSync languages described above. Work is currently proceeding on an extension
to MOF called QVT (Queries, Views, Transformations), which aims to define a lan-
guage for doing uni-directional mappings, but it is unclear at this stage whether
it will support all the capabilities of XMap in the short to medium term. There is
unlikely to be support for synchronised mappings in the near future.

XMF aims to provide these extensions in the most concise and minimal fashion nec-
essary to support precise, semantically rich metamodelling.

3.6 Conclusion

This chapter has described some of the essential features of XMF, an extended MOF like
facility that provides the ability to define platform independent metamodels of seman-
tically rich languages. These facilities will be used throughout the rest of this book to
illustrate the metamodelling process in greater detail.
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Figure 3.6: The XCore Metamodel
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CHAPTER 4

ABSTRACT SYNTAX

4.1 Introduction

Just as the quintessential step in object oriented design is constructing a model of system
concepts, constructing an abstract syntax model is an essential first step in the design of
a modelling language. An abstract syntax model describes the concepts in the language
and their relationships to each other. In addition, it also defines the rules that determine
whether a model written in the language is valid or not. These are the well-formedness
rules of the language.

Imagine a business modelling language suitable for modelling high level business
rules about business data. An appropriate language for this domain might provide
modelling concepts such as ”data model”, ”data entity”, and ”business rule”. In addi-
tion, there will be relationships between these concepts: a ”data model” may be com-
posed of a number of ”data entities”. There will also be rules describing the valid mod-
els that may be constructed in the language, for instance, ”a datamodel cannot contain
data entities with the same name” might be one such rule.

The concepts, relationships and rules identified during this step will provide a vocab-
ulary and grammar for constructing models in the language. This will act as a founda-
tion upon which all other artefacts of the language design process will be based.

This chapter describes the steps required to construct abstract syntax models, along
with examples of their application to the definition of the abstract syntax model of a
simple modelling language.

4.2 Modelling Abstract Syntax

As stated, the purpose of an abstract syntax model is to describe the concepts in a lan-
guage and the relationships that exist between those concepts. In the context of a lan-
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guage definition, a concept is anything that represents a part of the vocabulary of the
language. The term abstract syntax emphasises a focus on the the abstract representa-
tion of the concepts, as opposed to their concrete representation. As a result, abstract
syntax models focus on the structural relationship that exist between language concepts.
Note that it is not the purpose of the abstract syntax model to describe the semantics of
the language. These aspects will be described later.

An abstract syntax model should also describe the rules by which a model written
in the language is deemed to be well-formed, i.e. is syntactically valid. These provide
a more detailed description of the syntactical rules of the language than is possible by
describing the concepts and relationships alone. Well-formedness rules are particularly
useful when it comes to implementing a tool to support the language as they can be
used to validate the correctness of models as they are created.

Constructing an abstract syntax model has much in common with developing an ab-
stract grammar for a programming language, with the exception that the language is
more expressive than that used in programming language design.

Abstract syntax models are written in a metamodelling language. As described in
chapter 3, the metamodelling language we will use, called XMF, provides a number of
modelling abstractions suitable for modelling languages. For the purposes of modelling
abstract syntax only a subset of XMF will be required. This is the subset suitable for
capturing the static properties of language concepts and well-formedness rules, and
includes:

• Classes to describe the concepts in the language.

• Packages to partition the model into manageable chunks where necessary.

• Attributes and associations to describe the relationships between concepts.

• Constraints, written in OCL, to express the well-formedness rules.

• Operations, written in XOCL, to describe operations on the state of a model.

4.3 The Process

There are a number of stages involved in the development of an abstract syntax model:
concept identification; concept modelling; model architecting; model validation and
model testing. These stages are described below.

4.3.1 Concept Identification

The first stage in modelling the abstract syntax of a language is to utilise any information
available to help in identifying the concepts that the language uses, and any obvious
rules regarding valid and invalid models.

There are a number of useful techniques that can be used to help in this process:
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• Construct a list of candidate concepts in the language. Focus on determining
whether the concepts make sense as part of the language’s vocabulary. In par-
ticular, identify concepts that match the following criteria:

– Concepts that have names.

– Concepts that contain other concepts, e.g. a class containing attributes.

– Concepts that record information about relationships with other concepts,
e.g. named associations between classes.

– Concepts that play the role of namespaces for named concepts.

– Concepts that exhibit a type/instance relationship.

– Concepts that are recursively decomposed.

– Concepts that are a part of an expression or are associated with expressions.

• Build examples of models using the language.

– Utilise any notation that you think appropriate to represent each type of con-
cept. Use this notation to build models of meaningful/real world examples.

– In the case of a pre-existing language there should be resources already avail-
able to help in the identification of concepts. These may include BNF defini-
tions of the language syntax, which can be translated into a metamodel and
examples of usage. Other sources of inspiration include existing tools, which
will provide automated support for building example models. Such tools
may also provide additional facilities for checking valid and invalid models,
which will be useful when identifying well-formedness rules or may provide
more detailed examples of the language syntax.

Once some examples have been constructed, abstract away from them to identify
the generic language concepts and relationships between concepts. It is often useful to
annotate the examples with the modelling concepts as a precursor to this step. Examples
of invalid models can also be used to help in the identification of well-formedness rules.

It is important during this process to distinguish between the concrete syntax of a
language and its abstract syntax. Whilst it is common for the structure of the abstract
syntax to reflect its concrete syntax, this need not be the case. For example, consider a
language which provides multiple, overlapping views of a small number of core mod-
elling concepts. In this case, the abstract syntax should reflect the core modelling con-
cepts, and not the concrete syntax.

’Modelling the diagrams’ is a common mistake made by many novice modellers. If
in doubt, ask the following questions when identifying concepts:

• Does the concept have meaning, or is it there purely for presentation? If the latter,
then it should be viewed as concrete syntax. An example might be a ”Note”, which
clearly does not deserve to be modelled as an abstract syntax concept.
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• Is the concept a derived concept or is it just a view on a collection of more primitive
concepts? If the latter, a relationship should be defined between the richer concept
and the more primitive concept.

In general, the best abstract syntax models are the simplest ones. Any complexity due
to diagrammatical representation should be deferred to the concrete syntax models.

4.3.2 Use Cases

A useful technique to aid in the identification of modelling language concepts is to con-
sider the different use cases associated with using the language. This is almost akin to
writing an interface for a metamodel, i.e. a collection of operations that would be used
when interacting with the metamodel. Some typical use cases might include creating
and deleting model elements, but may also include semantically rich operations such as
transforming or executing a model. The detailed descriptions that result from the use
case analysis can then be mined for modelling language concepts.

4.3.3 Concept Modelling

Once concepts have been identified, standard object-oriented modelling features, classes,
packages, and associations are applied to model the concepts in the language. There are
many examples of developing conceptual models available in the literature, for instance
[Lar02] devotes a significant amount of time to this subject.

In general, concepts will be described using classes, with appropriate attributes used
to capture the properties of the concepts. Some concepts will have relationships to other
concepts, and these will be modelled as associations. Where it makes sense to define
categories of concepts, generalization can be used to separate them into more general
and more specific types of concepts.

A useful strategy to apply at this stage is to reuse existing language definitions where
possible. There are a number of techniques that can be used to achieve this, including:

• Extending or tailoring an existing metamodel to fit the new language. This can be
achieved by specializing classes from the existing metamodel or by using package
extension to import and extend whole packages of concepts.

• Utilising language patterns. A language pattern may be realised as a framework of
abstract classes that capture a repeatedly used language structure, or by a package
template (a parameterized package).

A full discussion of reuse techniques will be presented in chapter 9.
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4.3.4 Well-formedness Rules

Once a basic model has been constructed, start identifying both legal and illegal exam-
ples of models that may be written in the language. Use this information to define a
set of well-formedness rules in OCL that rule out the illegal models. When defining
rules, look to identify the most general rules possible, and investigate the implications
of what happens when rules are combined - sometimes rules can conflict in unexpected
ways. There are many books available that can help guide this process (see [WK99] for
example). Reusing existing language components can also minimise the effort involved
in writing well-formedness rules, as constraints can be reused as well via inheritance.

4.3.5 Operations and Queries

Operations and queries should also be defined where appropriate. Examples of op-
erations include general utility operations such as creating new model elements and
setting attribute values, or operations that act as test harnesses. Examples of queries
might include querying properties of models for use in constraints and operations, or
for validation purposes. Operations that change the state of models should take any
constraints into account, ensuring that if a constraint holds before the operation is in-
voked, it will continue to hold afterwards. Note that in general it is best to focus on
using operations to test out the model - avoid at this point writing operations that im-
plement other features of the language such as semantics.

4.3.6 Validation and Testing

It is important to validate the correctness of the abstract syntax model. Investing in this
early on will pay dividends over full language design lifecycle. A useful (static) tech-
nique for doing this is to construct instances of the abstract syntax model that match
those of example models. An object diagram is a useful way of capturing this informa-
tion as it shows instances of classes (objects) and associations (links). There are tools
available that will both help create object diagrams, and also check they are valid with
respect to a model and any OCL constraints that have been defined.

The best means of testing the correctness of a language definition is to build a tool
that implements it. Only then can the language be tested by end users in its entirety.
The architecture of a tool that facilitates the rapid generation of tools from metamodels
will be discussed in detail in later versions of this book.

4.4 Case Study

The best way to learn about metamodelling is to tackle a real example. An example of
a simple, but widely known modelling language, is a StateMachine. StateMachines are
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widely used as a notation for modelling the effect of state changes on an object. StateMa-
chines are a good starting point for illustrating metamodelling as they are simple, but
have enough features to exercise many facets of the metamodelling process.

Many different types of State Machine languages are described in the literature. This
chapter will concentrate on a simplified form of StateMachines. Later chapters will
show this language can be extended with richer modelling capabilities.

As shown in figure 4.1, a StateMachine is essentially a visual representation of states
and transitions. The StateMachines described here are a form of object-oriented (OO)
StateMachines. As such, they describe the state changes that can occur to an instance of
a class, in this case a Library Copy.

Onshelf
/self.return:=null

OnLoan

borrow(returndate)
[self.currentdate() < returndate]/

self.return:=date
return() destock()

lost()

Figure 4.1: An example of a StateMachine

StateMachines have an initial state and an optional final state, which are represented
by a filled circle and double filled circle respectively. In addition, StateMachines pro-
vide guards, actions and events. Guards are owned by transitions, and are boolean
expressions that must evaluate to true before a transition can be invoked. Guards are
represented by square brackets after an event name. An example of a guard is shown in
figure 4.1 attached to the borrow event.

In order to describe the effect of a transition on the state on an object, actions can also
be attached to transitions. Actions are written in an action language, which in this case
is XOCL. Actions can also be attached to states, and are invoked when the state is first
entered. An example of an action that sets the returndate of a Copy is shown in the
figure 4.1.

Finally, events are associated with transitions via an event. Events have a name and
some optional parameters. It is the receipt of an event that causes a transition to be
triggered. Events can be generated by StateMachine actions.
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4.4.1 Identification of Concepts

Based on the example shown in figure 4.1, the following candidate concepts can be
immediately identified:

State A named representation of the state of an object at a particular point in time.

Initial State The initial state that the object is in when it is created.

Final State The final state of the object - typically when the object has been destroyed.

Transition A state change. A transition has a source and target state.

Event A named event that causes a transition to occur.

Action An executable expression that may be attached to a transition or a state. Actions
are invoked whenever the transition occurs, or a state is entered.

Guard A boolean expression which must be evaluated to be true before a transition can
occur.

Figure 4.2 shows the same StateMachine model ’marked up’ with some of the identi-
fied concepts.

Onshelf
/self.return:=null

OnLoan

destock()

borrow(returndate)
[self.currentdate() < returndate]

/self.return:=date
return()

lost()

Initial
State

State

Transition

Event

Final
State

Guard

Action

Parameter

Figure 4.2: An annotated example of a StateMachine
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At this stage it would also be possible to start listing the concepts that are used in the
body of guards and actions, such as equality (”=”), assignment (”:=”). This would be
a precursor to constructing models of the expression language they belong to. How-
ever, this is not necessary because we assume that the expression languages are already
defined (in this case OCL and XOCL).

4.4.2 The Model

Once some candidate concepts have been identified, the next step is to construct the
model.

An important question to ask at this point is whether each concept is a distinct ab-
stract syntax concept. States and Transitions are clearly core to StateMachines, as they
capture the central concepts of state and state change. However, initial states and final
states could be argued not to be concepts in their own right. An initial state can be mod-
elled as an attribute of the StateMachine, whilst a final state can be viewed as a property
of the instance (the instance has been deleted).

The result of constructing the abstract syntax model is shown in figure 4.3.

Named

Stringname

Action

StateMachine

StringstartName

Guard
Transition

StringtargetName

StringsourceName

EventArg

Stringname

Stringtype

State

Event

Stringname

 

action

 guard
*

transitions

 

action

* states

<<ordered>> eventArg

 event

Figure 4.3: An abstract syntax metamodel for StateMachines

There are a number of points to note about the model:

• Transitions reference their source and target states by name.
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• The actions and guards of states and transitions are associated with the classes
Action and Guard respectively. These will be extended in the next section to deal
with the language needed to construct action and guard expressions.

• The initial state of a StateMachine is represented by the attribute startName. This
is a good example of where the abstract syntax does not match the concrete syntax
one to one (in other words, the visual representation of an initial state does not
have a counterpart class concept in the abstract syntax model).

• Transitions are optionally associated with an event, which has a name, and a se-
quence of arguments, which have a name and a type.

4.4.3 Metamodel Reuse

Once the basic concepts have been identified, the next step is to identify opportunities
for reusing existing metamodelling concepts. There are two main places where this
occurs.

Firstly, elements may specialise existing metamodel concepts. As described in chapter
9.2, XMF provides a framework of classes that are specifically designed for reuse when
metamodelling. In this example, one type of element that can be reused is a NamedEle-
ment. Rather than inventing a new concept, we can specialise this class wherever we
want a concept to have a name.

Before proceeding we must be clear about the exact properties of the concept we are
specialising. A brief look at the XCore framework in section 9.5 tells us that named
elements also have owners. Moreover, named elements also inherit the ability to be
navigated to via pathnames (this is defined in their concrete syntax definition). While
there are a number of classes that have a name, it does not make sense for them all
to have owners and to be accessible via pathnames. In particular, concepts like Event,
Message and their arguments types do not have this property. The classes State and
StateMachine on the other hand, do. A State has a name and it is likely that it will need
to know about the state machine it belongs to. A StateMachine will be owned by a class.

Another concept that we may wish to specialise is a Contained element. A contained
element has an owner, but does not have a name. In this example, Transition fits that
criteria.

Reuse can also be achieved by referencing existing metamodel concepts. For example,
in order to precisely write guards and actions, a metamodel of an appropriate expres-
sion language will be required. It is much easier to reuse an existing metamodel that
provides the necessary expression types than to build this model from scratch. In this
case the XOCL metamodel provides a good match: it includes both constraint style
(OCL) expressions and action style expressions.

Thus, the model needs to be changed so that actions and guards are associated with
XOCL expressions. A convenient way of achieving this is to use the class XMF::Operation
to encapsulate the expression bodies. The resulting metamodel is shown in figure 4.4
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EventArg

Stringname

Event

Stringname

Element

(from Root::XCore)

NamedElement

(from Root::XCore)

Stringname

StateMachine

StringstartName

State

Contained

(from Root::XCore)

Transition

StringsourceName

StringtargetName

Performable

(from Root::XCore)

Operation

(from Root::XCore)

 type

<<ordered>>

args

*

transitions

 

action

* states

 

guard

 guardexp

 

action

 event

Figure 4.4: An extended abstract syntax metamodel for StateMachines

Finally, the type of a parameter is replaced with the class XMF::Element. This enables
parameter types to be of any XMF type, thereby reusing XMF’s type machinery.

4.4.4 Well-formedness Rules

Once the concepts and relationship in the StateMachine language have been identified,
well-formedness rules can be defined. Here are some examples:
Firstly, it must be the case that all states have a unique names:

context StateMachine
@Constraint StatesHaveUniqueNames
states->forAll(s1 |

states->forAll(s2 |
s1.name = s2.name implies s1 = s2))

end

Secondly, the initial state of the StateMachine must be one the StateMachine’s states:

context StateMachine
@Constraint StatesIncludeInitialState
states->exists(s | s.name = startName)
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end

4.4.5 Operations

Next, operations are added that will be used to create elements of a StateMachine. The
first adds a state to a StateMachine and sets the owner of State to be the StateMachine.
Note the operation cannot be invoked if the name of the new State conflicts with an ex-
isting state in the StateMachine, thus ensuring that StatesHaveUniqueNames constraint
is not broken.

context StateMachine
@Operation addState(state:StateMachines::State)

if not self.states->exists(s | s.name = state.name) then
self.states := states->including(state);
self.state.owner := self

else
self.error("Cannot add a state that already exists")

end

The second adds a transition (again setting the owner to be the StateMachine):

context StateMachine
@Operation addTransition(transition:StateMachines::Transition)

self.transitions := transitions->including(transition);
self.transition.owner := self

end

Similar operations will need to be defined for deleting states and transitions.
The following query operations are defined. The first returns the initial state of the

StateMachine provided that it exists, or returns an error. An error is a pre-defined oper-
ation on XMF elements that is used to report errors.

context StateMachine
@Operation startingState()
if states->exists(s | s.name = startName) then

states->select(s | s.name = startName)->sel
else

self.error("Cannot find starting state: " + startName)
end

end
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The second returns the set of transitions starting from a particular state:

context StateMachine
@Operation transitionsFrom(state:String)

transitions->select(t | t.sourceName = state)
end

4.4.6 Validating the StateMachine Metamodel

In figure 4.5 a partial snapshot corresponding to the StateMachine in figure 4.1 is shown.

 
:Event

 
:StateMachine

 
:Event

 

:Set(<<Class Transition>>)

 
:Event

 

:Set(<<Class State>>)

 
:Event

 
:Transition

 
:Transition

 
:Transition

 
:Transition

 
:State

 
:State

event

transitions

event

states

event

 

event

 

 

 

 

 

Figure 4.5: A snapshot (object diagram) corresponding to figure 4.1

A number of different properties of the model can be usefully tested by snapshots.
These include checking the well-formedness rules and query operations by running
them against the snapshot.
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However, this is about as far as we can go. At this point, the model is just a model
of the abstract syntax and nothing more. Other aspects of the StateMachine language,
including its concrete syntax and semantics, must be modelled before a precise, self con-
tained language definition is obtained. These aspects will be explored in the following
chapters.

4.5 Conclusion

This chapter has examined the process and modelling language required to model the
abstract syntax of languages. The result is a definition of the concepts in a language and
the relationship and rules that govern them. However, this is just a first step towards
a complete definition of the language. Only once the concrete syntax and semantics of
the language are modelled does it become a complete definition of the StateMachine
language.
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CHAPTER 5

CONCRETE SYNTAX

5.1 Introduction

Although an abstract syntax describes the underlying vocabulary and grammar of a lan-
guage, it does not define how the abstract syntax is presented to the end user, that detail
is described by a concrete syntax which can either be in diagrammatic or textual form.
Many contemporary modelling languages use diagrammatic concrete syntax such as
state machines and class diagrams, but diagrammatic syntaxes are often limited by the
real estate of the user’s display and some languages such as OCL have only a textual
syntax.

Dealing with concrete syntax is a two stage process. The first stage involves interpret-
ing the syntax and ensuring that it is valid. In the second stage, the concrete syntax is
used to build the abstract syntax. These stages are equally applicable to both text and
diagrams although there is an important difference in the way the concrete syntaxes
are constructed by the end user. Diagrams are commonly constructed interactively and
therefore incrementally, consequently the syntax must be interpreted in parallel to the
user’s interaction. On the other hand, textual syntax is usually interpreted in batch,
the user constructs the complete model using the syntax and only then is it passed to
the interpreter. This style of processing syntax is comparable to programming language
compilers and interpreters.

The first part of this chapter describes the XBNF textual parser component of XMF
and demonstrates how it can be used to realise the interpreting of text based concrete
syntax and the construction of the abstract syntax. The second part of the chapter dis-
cusses how diagrammatic syntax is defined and how it is linked and synchronised with
abstract syntax using XSync.
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5.2 Textual Syntax

In this section we describe the parsing of text using XBNF. The XBNF language is based
on EBNF which is a popular approach to describing the grammars of languages, because
of this the grammars of most textual languages are easily available (Ada, Java, SQL,
for example). Once a grammar for a language has been defined, the next step is to
define how abstract syntax is constructed (or synthesised) as a result of the parsing
input using the grammar. Although the approach described in this section is oriented
towards producing the type of abstract syntax structures described in chapter 4, the
mechanisms used are generic one and can be generally applied to a wide range of text
parsing problems.

5.2.1 Parsing text using EBNF

The interpretation of textual syntax involves defining the rules by which streams of
ASCII characters are deemed to be valid concrete syntax. These rules are commonly
referred to as the grammar rules of a language. A grammar consists of a collection of
clauses of the form:

NAME ::= RULE

where a RULE defines how to recognise a sequence of input characters. An example of
a rule is the following:

Calculator ::= Mult ’=’

which defines that to satisfy the rule Calculator the input characters must first satisfy
Mult, which is a non-terminal because it refers to another rule, followed by a terminal
’=’. A terminal is understood to be a sequence of characters in quotes. A Mult is a mul-
tiplicative expression possibly involving the multiplicity (*) and division (/) operators,
the grammar for Mult is defined as:

Mult ::= Add (’*’ Mult | ’/’ Mult)

The rule for Mult shows a number of typical grammar features. A Mult is successfully
recognised when an Add is recognised followed by an optional ’*’ or ’/’ operator. The
choice is described by separating the two or more options (terminals or non-terminals)
using the vertical bar. Consequently this rule defines three possibilities:

• The input stream satisfies Add followed by a ’*’ followed by Mult.

• The input stream satisfies Add followed by a ’/’ followed by Mult.

• The input stream satisfies Add.

The grammar for Add is the same as Mult except Add recognises addition expres-
sions:

Add ::= Number (’+’ Add | ’-’ Add)
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5.2.2 Parsing text using XBNF

XBNF augments EBNF with details concerned with managing multiple grammars. Firstly
it is necessary to put grammars somewhere so that they can be used when required,
secondly it is necessary to be able to specify given an ASCII stream which grammar
should be used to understand the stream. In order to illustrate XBNF we will define the
grammar for a state machine. The following is an example of a state machine’s textual
concrete syntax:

@StateMachine(Off)
@State Off
end

@State On
end

@Transition(On,Off)
end

@Transition(Off,On)
end

end

As in this example, all textual syntax dealt with by XMF is littered with @ symbols.
These symbols are special because the word immediately after the symbol indicates
where the top level grammar rules can be found which validate the syntax immediately
after the declaration. In the above example, this specifies that the syntax (Off) should
be understood in the context of the grammar defined in class StateMachine, that Off and
On should be understood in terms of the grammar defined in the class State and that
(On,Off) and (Off,On) should be interpreted in the context of the grammar defined in the
class Transition. The three classes to interpret this collective syntax is defined below1:

@Class StateMachine
@Grammar
StateMachine ::= ’(’ startName = Name ’)’ elements = Exp*

end
end

@Class State
@Grammar
State ::= name = Name

1Note that Name is a built in rule which matches any combination of alphanumeric characters
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end
end

@Class Transition
@Grammar
Transition ::= ’(’ sourceName = Name ’,’ targetName = Name ’)’

end
end

The grammar rules are embedded in the body of the @Grammar. These say that the
textual syntax for a StateMachine consists of a Name (the name of the starting state) fol-
lowed by zero or more Exp referring to the whichever grammar rules parses the body
of the StateMachine (which is likely to be State or Transition). A State consists only of a
Name (its name). A Transition consists of two names parsing the source and target state
of the transition.

The @ grammar reference symbol as a means of referring to different grammars offers
massive flexibility since language grammars can be mixed. It is possible to use the state
machine language in the context of regular XOCL expressions for example (since XOCL
and all XMF languages are defined using precisely the method outlined in this book).
Sometimes however the @ symbol can be inconvenient when an existing language must
be parsed since the text of that language must be augmented with the @ grammar ref-
erence symbol in order to parse it using XBNF. In this case it is possible to collectively
define the grammar rules such that only a single top-level @ is required. For instance,
consider the case of the following state machine grammar definition:

@Class StateMachine
@Grammar
StateMachine ::= ’(’ startName = Name ’)’ elements = (State |

Transition)*.

State ::= name = Name.

Transition ::= ’(’ sourceName = Name ’,’ targetName = Name ’)’.
end

end

This grammar will support the parsing of the following syntax which has a single @
denoting the single required rule:

@StateMachine(Off)
State Off
end
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State On
end

Transition(On,Off)
end

Transition(Off,On)
end

end

5.2.3 Building Abstract Syntax

Having established whether a given textual syntax is valid, the next step is to model the
construction of the abstract syntax. The steps taken by XBNF are illustrated in figure
5.1. As can be seen from this, XBNF produces XMF abstract syntax as a result of the
parse and evaluates this to produce an abstract syntax model. At first glance this may
seem confusing since there are two different types of abstract syntax and an evaluation
step from one to the other. The need for this is based on the generality of the XBNF
mechanisms, XBNF can be used in the context of a more conventional interpreter where
textual input such as 5 + 5 evaluates to the result 10. The grammar produces the abstract
syntax of 5 + 5 and the evaluator evaluates this abstract syntax to produce the value
10. In the definition of a model based language however, the value required from the
evaluator is the model based abstract syntax of the type defined in chapter 4. In which
case the grammar rules must produce XMF abstract syntax that evaluates to the value
of model based abstract syntax. To avoid confusion, for the remainder of this chapter
XMF abstract syntax will be refereed to as abstract syntax and abstract syntax model will
be refereed to as abstract syntax value.

Raw abstract syntax can be defined as a result of grammar rules however defining this
can be verbose and time consuming, an alternative is to use a powerful XMF tool which
eases the process of this definition. This tool is designed around the observation that
it is often the case that the required abstract syntax can be expressed in terms of an ex-
isting XMF based concrete syntax. For example the state machine abstract syntax value
described in chapter 4 is expressed in terms of the syntax for classes and operations.
The tool, called quasi-quoting, allows the description of new concrete syntax in terms
of old concrete syntax, because most languages tend to be built from existing languages
(and rarely from scratch) we deal with this method in detail in the next sections.

Quasi-quoting

Rather then describing the abstract syntax that gives rise to the abstract syntax value,
quasi-quotes enables the user to instead say ”give me the abstract abstract syntax that
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Figure 5.1: The process of translating textual syntax to model-based abstract syntax

you get if you parsed this existing concrete syntax”. Quasi-quotes can be used to find
the abstract syntax of any concrete textual syntax by enclosing the textual syntax as
exemplified in the following way:

[| ... |]

For example, the following quasi-quotes will return the abstract syntax for StateMachine:

[| StateMachine() |]

Often the abstract syntax returned by quasi-quotes is not the required abstract syntax,
instead it is desirable to be able to drop values into this which have been parsed and
stored by the grammar rules. Syntactically a drop is enclosed by < and >. For example,
the grammar for StateMachine parses the starting state startName which, when evaluated
to produce the abstract syntax, should be passed to the constructor of StateMachine. This
is done in the following way (ignoring elements for the time being):

context StateMachine
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@Grammar
StateMachine ::= ’(’ startName = Name ’)’ elements = Exp {
[| StateMachine(<startName>) end |]

}.
end

The same approach can be used to construct the abstract syntax for a state:

context State

@Grammar
State ::= name = Name {
[| State(<name>) end |]

}.
end

Here the abstract syntax has the name dropped into the quasi-quotes, and the body of
an operation. When this is evaluated to produce the abstract syntax value, these will
be passed as parameters to the constructor of State. Transition and StateMachine can be
defined in a similar way:

context Transition

@Grammar
Transition ::= ’(’ sourceName = Name ’,’ targetName = Name ’)’ {

[| Transition(<sourceName>,<targetName>) |]
}.

end

context StateMachine

@Grammar
StateMachine ::= ’(’ startName = Name ’)’ elements = Exp* {
[| StateMachine(<startName>,<elements>) |]

}.
end
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Sugar

One of the side effects of using the quasi-quoting mechanism, as illustrated in the pre-
vious section, or creating abstract syntax directly, is that the original concrete syntax is
lost since the translation does not record details of the original concrete syntax. Often
it is desirable to be able to make the transition back from the abstract syntax to the con-
crete syntax, a good example of where this is useful is during the process of debugging
a model. In order to support this XMF provides a further tool called Sugar2. Instead of
the grammar rules constructing the abstract syntax directly, they instantiate classes of
type Sugar which then create the abstract syntax and provide methods for doing other
things such as translating the consequent abstract syntax back to the concrete syntax.

An example of Sugar class is illustrated below:

@Class StateSugar extends Sugar
@Attribute name : String end

@Constructor(name) end

@Operation desugar()
[| State(<name>) |]

end

@Operation pprint(out,indent)
format(out,"@State ˜S",Seq{name})

end
end

Any class extending Sugar must override the abstract operation desugar() which should
return the required abstract syntax. The additional (and optional) method pprint is used
to pretty print the original concrete syntax from the abstract syntax. This method takes
an output stream (to print the text to) and an indent variable which denotes the current
indentation of the textual syntax. In the above example, the text @State and the state
name is sent to the output stream.

The grammar rule constructs Sugar classes as appropriate:

context State
@Grammar
State ::= name = Name action = Exp* {
StateSugar(name,action)

2The process of Sugaring and Desugaring (often used in programming language theory) is used to de-
scribe the process of translating to and from new syntax using existing syntax. It captures the idea
that the new syntax is not adding any fundamentally new semantics to the language, merely making
existing syntax more palatable (or sweeter!) to the end user of the syntax.
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}.
end

5.3 Diagrammatic Syntax

As indicated in the introduction to this chapter, the major difference between diagram-
matic syntax and textual syntax is that diagrammatic syntax is interpreted incrementally
whereas textual syntax is interpreted in batch. This presents a different set of challenges
for diagrammatic syntax to that of its textual counterpart, the incremental nature of its
construction must be taken into account when devising an architecture in order to sup-
port it. A further challenge for diagrammatic languages is being able to specify the valid
concrete syntax of the diagram in a textual language such as XMF. As we have discussed
in the previous section, this is well understood for textual syntax using notations such
as EBNF, but for diagrams it is less clear how the equivalent can be achieved. In the
following sections we discuss the XMF approach to doing this.

5.3.1 Parsing Diagrams

In order to describe how to interpret a diagram, we must first define what it means
to be a diagram at some (useful) level of abstraction. This is achieved by forming a
model of diagrams in XMF as illustrated in figure 5.2, this model shares many parallels
with OMG’s diagram interchange model []. A key characteristics which it shares with
the diagram interchange model is that its generality enables it to capture the concrete
syntax concepts, and the relationship between these, for a broad spectrum of diagram
types ranging from sequence diagrams to state machines to class diagrams.

Clearly the model shown in figure 5.2 does abstract from details that may be im-
portant such as their rendering and the paradigm of interaction that gives rise to their
state being changed. This detail is outside the scope of the model, but is an impor-
tant component of realising this approach in the context of a real tooling environment.
One approach to dealing with this detail is to interface to some external tool that un-
derstands how to render the concepts and respond to user interaction. Since this is an
implementation detail we do not dwell on it here, instead we make the assumption that
the instantiating of concepts in figure 5.2 results in the concrete display of the denoted
element. Moreover we assume that interaction with the concrete display, moving a node
for example, results in the state of its model-based counterpart being updated. A suit-
able implementation of this scenario can be black boxed such that new diagram types
are constructed only as a result of dealing with the model.

Specific diagramming types are described by specialising the model of diagrams, this
is shown in figure 5.3 for state machines. In this a StateDiagram is a type of Diagram, the
Graph of a StateMachine is constrained to contain TransitionEdges and StateNodes (which
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Figure 5.2: A model of diagrams

are specialised Edges and Nodes respectively). A TransitionEdge is constrained to be the
source and target of StateNodes, and a StateNode is displayed using an Elipse.

5.3.2 Building Abstract Syntax

As the user interactively constructs instances of the model of diagrams the abstract syn-
tax should be concurrently constructed as appropriate. One approach to achieving this
is to embed operations in the concrete syntax which generate abstract syntax on the fly.
Although this approach would work well in practice, a deficiency is that it couples the
abstract syntax to the concrete syntax. In practice it may be desirable to have a single
diagram type generating different abstract syntaxes under different circumstances. A
much more flexible approach is to form a mapping between the concrete syntax and
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Figure 5.3: Specialising the model of diagrams for state machines

abstract syntax which neither side know about. This scenario is illustrated in figure 5.4.

AS CSMapping

Figure 5.4: Mapping between diagram syntax and abstract syntax

In this the mapping listens to changes in the concrete syntax for changes that impact
the abstract syntax and updates the abstract syntax appropriately. Given a StateDiagram
and an StateMachine:

@Class StateDiagram extends Diagram
...

end
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@Class StateMachine

@Attribute startName : String end
@Attribute states : Set(State) end
@Attribute transitions : Set(Transition) end

...
end

A mapping is defined:

@Class StateMachineXStateDiagram

@Attribute statemachine : StateMachine end
@Attribute diagram : StateDiagram end
@Attribute stateMaps : Set(StateXNode) end
@Attribute transitionMaps : Set(TransitionXTransitionEdge) end
...

The mapping knows about the top level constructs of the statemachine’s concrete and
abstract syntax. When the mapping is constructed, a listener (or daemon) is placed on
the diagram’s graph, such that when a state added or removed, a method is invoked
adding or removing a State from the abstract syntax statemachine:

@Constructor(statemachine,diagram)
self.addDaemons()

end

@Operation checkDiagramDaemons()
if not diagram.hasDaemonNamed("stateAdded") then

@SlotValueChanged + stateAdded(
diagram.graph,"nodes",newStateNode)

self.stateNodeAdded(newStateNode)
end

end;
if not diagram.hasDaemonNamed("stateRemoved") then

@SlotValueChanged - stateRemoved(
diagram.graph,"nodes",removedStateNode)

self.stateNodeAdded(removedStateNode)
end

end
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end

Listeners to detect the addition and removal of transitions are implemented in a similar
way. The methods for adding and removing the State from the statemachine are specified
as follows:

@Operation stateNodeAdded(newStateNode)
if not stateMaps->exists(map | map.stateNode = newStateNode)
then

let name = self.newStateName() then
state = State(name)
in newStateNode.setName(name);
self.add(StateXNode(state,newStateNode,self));
statemachine.add(state)

end
end

end

@Operation classRemoved(class)
@Find(map,classMaps)
when map.class = class
do self.remove(map);

map.node.delete()
end

end
end

The style of mapping concrete syntax to abstract syntax can be nested within con-
tainership relationships such that a new mapping is generated from a listener, which
in turn listens to the newly mapped elements and generates new mappings as concrete
syntax elements are created ... This gives rise to the hierarchy exemplified in figure
5.5 where only the top level mapping between concrete syntax element A and abstract
syntax element A’ is generated statically (i.e. not via listeners).

5.3.3 Building Diagrams from Abstract Syntax

The approach to mapping concrete syntax to abstract syntax described in the previous
section can equally be applied to the inverse mapping of abstract syntax to concrete
syntax, potentially this can be done simultaneously so that changes to either side of the
mapping result in an update to the other. Such bi-directional mappings are particu-
larly desirable in a scenario where an abstract syntax is the source of multiple concrete
syntaxes (which are effectively views on the abstract syntax) a change to one concrete
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Figure 5.5: An example of how listeners can generate mappings which can themselves
listen and generate mappings

syntax will propagate the change to another concrete syntax via the shared abstract syn-
tax. A screenshot of the XMF-Mosaic using this style of bi-directional concrete syntax
definition is shown in 5.6.

5.4 Conclusion

In order to support the rapid creation of concrete syntaxes for a modelling language,
higher level modelling languages are required. This chapter has described XBNF, a lan-
guage for modelling textual syntaxes. In order to model diagrammatical syntaxes, a
framework for modelling common diagrammatic primitives is required, along with a
language for describing how the diagrammatic syntax is synchronised with the under-
lying abstract syntax model of the language. In chapter 8 XSync is introduced which is a
declarative language for defining the synchronisation of data and languages. XSync can
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Figure 5.6:

be used to succinctly define the types of synchronisations between abstract and concrete
syntax discussed in this chapter.
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CHAPTER 6

SEMANTICS

6.1 Introduction

The purpose of this chapter is to describe how the semantics of modelling and program-
ming languages can be described using metamodels. The semantics of a modelling lan-
guage describes what the language means in terms of its behaviour, static properties
or translation to another a language. The chapter begins by motivating the need for
semantics and then describes a number of different approaches to defining semantics
using metamodels. These approaches aim to provide a way of constructing platform
independent models of semantics - thus enabling the semantics of a language to be in-
terchanged between metamodelling tools. An example of how the approaches can be
used to define the semantics of the StateMachine language is then presented.

6.2 What is Semantics?

In general terms, a language semantics describes the meaning of concepts in a language.
When using a language, we need to assign a meaning to the concepts in the language if
we are to understand how to use it. For example, in the context of a modelling language,
our understanding of the meaning of a StateMachine or the meaning of a Class will form
a key part of how we choose to use them to model a specific aspect of a problem domain.

There are many ways of describing meaning of a language concept. Consider the
ways in which the meaning of concepts in natural languages can be described:

• In terms of concepts which already have a well defined meaning. For instance ”a
car consists of a chassis, four wheels, an engine, body, and so on”. This is only
meaningful if the concepts themselves are well defined.
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• By describing the properties and behaviour of the concept: ”a car can be stationary,
or can be moving, and pressing the accelerator increases its speed”.

• As a specialisation of another concept. For instance, ”a truck is a vehicle with a
trailer”.

• By describing the commonly shared properies of all possible instances of a con-
cept. For example, the concept of a car could be described in terms of the valid
properties that every instance of a car should have.

In a natural language, semantics is a correlation or mapping between concepts in a
language with thoughts and experiences of concepts in world around us. Although a
more formal approach to semantics is required for modelling and programming lan-
guages, there is a close parallel to the approaches used to express natural language
semantics described above. In both cases, a key requirement of a semantics is that it
should be of practical use in understanding the meaning of a language.

6.3 Why Semantics?

A semantics is essential to communicate the meaning of models or programs to stake-
holders in the development process. Semantics have a central role to play in defining the
semantically rich language capabilities such as execution, analysis and transformation
that are required to support Language-Driven Development. For example, a language
that supports behaviour, such as a StateMachine, requires a semantics in order to de-
scribe how models or programs written in the language execute.

Traditionally, the semantics of many modelling languages are described in an infor-
mal manner, either through natural language descriptions or examples. For instance,
much of the UML 1.X specification [uml01] makes use of natural language descriptions
of semantics.

However, an informal semantics brings with it some significant problems:

• Because users have to assign an informal or intuitive meaning to models, there
is significant risk of misinterpretation and therefore misuse by the users of the
modelling language.

• An informal semantics cannot be interpreted or understood by tools. Tool builders
are thus required to implement their own interpretation of the semantics. Unfortu-
nately, this means that the same language is likely to be implemented in different
ways. Thus, two different tools may offer contradictory implementations of the
same semantics, e.g. the same StateMachine may execute differently depending
on the tool being used!

• An informal semantics makes the task of defining new languages difficult. It
makes it hard to identify areas where concepts in the languages are semantically
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equivalent or where there are contradictions. It is harder still to extend an existing
language if the semantics of the language are not defined.

• Standards require precise semantics. Without them, a standard is open to misun-
derstanding and misuse by practitioners and tool developers while significantly
limiting interoperablity.

6.4 Semantics and Metamodels

While it is clear that semantics is crucial part of a language definition, the question is
how should semantics be described? One approach is to express semantics in terms of
a formal, mathematical language. Many academic papers have been written describing
the semantics of modelling languages in this way. Yet, the complex mathematical de-
scriptions that result are hard to understand and are of limited practical use. Another
approach is to express semantics in terms of an external programming language. This
is a far more practical solution. Nevertheless, it results in a definition which is tied to
a specific programming language thus compromising its platform independence. Fur-
thermore, being forced to step out of the metamodelling environment into a program-
ming language makes for a very non-intuitive language definition process.

An alternative strategy is to describe the semantics of languages using metamodels.
There are some significant benefits to this approach. Firstly, the semantics of a lan-
guage is fully integrated in the language’s definition, which means the task of relating
it to other language design artifacts (concrete syntax, mappings, abstract syntax, etc) is
immediately simplified. Secondly, because the same metamodelling language is used
across all languages, semantic definitions become reusable assets that can be integrated
and extended with relative ease. Finally, and most crucially, semantics definitions are
platform independent - they can be interchanged in the same way, and if they are un-
derstood by the tool that imports them, they can be used to drive the way that the tool
interacts with the language. For instance, a semantics that describes how a StateMa-
chine executes can be used to drive simulators across a suite of compliant tools. The
ability to define semantics in a platform independent way is crucial to the success of
Language-Driven Development. It enables tools to be constructed for languages that
are both portable and interoperable irrespective of the environment in which they are
defined.

It is important to note that a metamodel semantics is quite different from the abstract
syntax model of a language, which defines the structure of the language. However, an
abstract syntax model is a pre-requisite for defining a semantics, as a semantics adds a
layer of meaning to the concepts defined in the abstract syntax. Semantics in this sense
should also be distinguished from static semantics, which are the rules which dictate
whether or not an expression of the language is well-formed. Static semantics rules are
those employed by tools such as type checkers.
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6.5 Approaches

There are many different approaches to describing the semantics of languages in a meta-
model. This section examines some key approaches and gives examples of their appli-
cation. All the approaches are motivated by approaches to defining semantics that have
widely been applied in programming language domains. The main difference is that
metamodels are used to express the semantic definitions.

The approaches include:

Translational Translating from concepts in one language into concepts in another lan-
guage that have a precise semantics.

Operational Modelling the operational behaviour of language concepts.

Extensional Extending the semantics of existing language concepts.

Denotational Modelling the mapping to semantic domain concepts.

Each approach has its own advantages and disadvantages. In practice, a combina-
tion of approaches is typically used, based on the nature of individual concepts in the
language. In each case, it is important to note that the semantics are described in the
metamodelling language - no external formal representation is used. The following sec-
tions describe each of the approaches, along with a small example of their application.

6.6 Translational Semantics

Translational semantics is based on two notions:

• The semantics of a language is defined when the language is translated into an-
other form, called the target language.

• The target language can be defined by a small number of primitive constructs that
have a well defined semantics.

The intention of the translational approach is to define the meaning of a language in
terms of primitive concepts that have their own well defined semantics. Typically, these
primitive concepts will have an operational semantics (see later).

The advantage of the translational approach is that provided there there is a machine
that can execute the target language, it is possible to directly obtain an executable se-
mantics for the language via the translation. This approach is closely related to the role
played by a compiler in implementing a richer programming language in terms of more
primitive executable primitives.

The main disadvantage of the approach is that information is lost during the trans-
formation process. While the end result is a collection of primitives, it will not be
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obvious how they are related to the original modelling language concepts. There are
ways to avoid this, for instance information about the original language concepts can
be ”tagged” onto the target language, thus enabling it to retain information about the
structure of the original language. Alternatively, one may consider maintaining infor-
mation about the mapping between the two models.

The translational approach can be incorporated in a language definition in many dif-
ferent ways:

• Within a language metamodel by translating one concept into a concept that has
a semantics, e.g. translating a case statement into a sequence of if statements,
where the if statements have an operational semantics. Another example might
be translating a rich mapping language into a collection of primitive mapping
functions with additional information tagged onto the primitives to indicate the
structure of the source language.

• Between language metamodels, by translating one metamodel into another. For
example, an abstract syntax metamodel for UML can be mapped to a metamodel
of a small well-defined language such as XCore, or to a programming language
such as Java.

6.6.1 Approaches

There are a number of different approaches to implementing a transformational seman-
tics in XMF:

• A mapping can be defined between the abstract syntax of the source and target
languages. This could be written in a mapping language (such as XMap), or im-
plemented by appropriate operations on the source model.

• The result of parsing the concrete syntax of the source language can be used to
directly create an instance of the target language.

• The result of parsing the concrete syntax can be translated directly into machine
code that can be run on the XMF virtual machine.

In the second approach, the intermediate step of generating an abstract syntax model
for the source language can be omitted. The concrete syntax of the source language
thus acts as sugar for the target language. This approach is particularly useful when
constructing new types of expressions that can be desugared into a number of more
primitive concepts, e.g. translating a case statement into a collection of if expressions.

The third approach requires the construction of machine code statements but has the
advantage of resulting in a highly efficient implementation.
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6.6.2 Example

Because XMF provides a number of well defined primitives, it is a good target for trans-
lation. As an example, consider defining a semantics for StateMachines via a translation
from the StateMachine abstract syntax model (described in chapter 4). The mapping
language used in this example is described in detail in chapter 8. A summary of the
approach taken is shown in figure 6.1.

Operation
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Class
(from Root::XCore)

Transition

StringtargetName

StringsourceName
Transition2Op

StateMachine

SM2Class

Event
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*transitions
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*

states
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event
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Figure 6.1: Overview of the translational mapping example

The aim is to translate a StateMachine into an instance of a XCore Class such that
semantics of the StateMachine is preserved. This is achieved by ensuring that the Class
simulates the behaviour of the StateMachine:

• The StateMachine is translated into a Class containing an attribute called state,
whose permitted values are the enumerated state names of the StateMachine.

• The Class will inherit all the attributes and operations of the StateMachine’s con-
text class.

• Each transition of the StateMachine is translated into an operation of the Class
with the same name as the transition’s event.

• The transition will contain code that will simulate the invocation of the transition’s
guard and actions, causing the value of state to change.

The following pattern of code will thus be required in the body of each operation:
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if <guard> then
self.state := <target-state-name>;
<action>

end

Where <guard> and <action> are the bodies of the corresponding transition’s guard
and action, and <target-state-name> is the name of the state that is the target of the
transition.

The most challenging part of this translation is creating the appropriate code bodies
in each operation. The following code shows how XOCL can be used to define an op-
eration, transitionOp(), which given the guard, action, event name and target name of
a transition, returns an XCore operation that simulates the transition. This operation is
called by the transition2Op mapping. Note that in the operation transitionOp() an op-
eration cannot be assigned a name until it is declared, thus setName() is used to assign
it a name after it has been declared.

@Map Transition2Op
@Operation
transitionOp(g:Operation,a:Operation,eventName,targetName)
let op = @Operation()

if g() then
a();
self.state := targetName

end
end
in

op.setName(eventName);
op

end
end

@Clause Transition2Op
Transition
[event = Set{

Event
[name = N]

},
name = T,
guard = G,
action = A]

do
self.transitionOp(G,A,N,T.name)

end
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end

This definition of transitionOp() makes use of the fact that in XMF an Operation is
also an Object and can therefore be assigned to a variable.

As an example, consider the simple traffic light model shown in figure 6.2. The re-
sult of applying the Transition2Op mapping to the GreenRed() transition will be the
following XOCL operation:

Red

/self.RedAmber()

Green

self.GreenRed()

GreenRed()
[self.count < 10]

        self.count := self.count+1

Amber

/self.AmberGreen()

RedAmber()

AmberGreen()

Figure 6.2: The traffic light example

@Operation GreenRed()
if g() then

a();
self.state := "Red"

end
end

where g and a are the following anonymous operation definitions:

@Operation anonymous()
self.count < 10

end

@Operation anonymous()
self.count := self.count + 1

end
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6.7 Operational Semantics

An operational semantics describes how models or programs written in a language can
be directly executed. This involves constructing an interpreter. For example, an assign-
ment statement V := E can be described by an interpreter that executes the steps that it
performs: Evaluate the expression E and then change the value bound to the variable V
to be the result.

The advantage of an operational semantics is that it is expressed in terms of opera-
tions on the language itself. In contrast, a translational semantics is defined in terms of
another, possibly very different, language. As a result, an operational semantics can be
easier to understand and write.

Writing an interpreter as part of a metamodel relies on the metamodelling language
itself being executable. Provided this is the case, concepts can define operations that
capture their operational behaviour.

Typically, the definition of an interpreter for a language follows a pattern in which
concepts are associated with an operational description as follows:

• Operations will be defined on concepts that implement their operational semantics
e.g. an action may have an run() operation that causes a state change, while an
expression may have an eval() operation that will evaluate the expression.

• The operations typically take an environment as a parameter: a collection of vari-
able bindings which will be used in the evaluation of the concepts behaviour, and
a target object, which will be the object that is changed as a result of the action or
which represents the context of the evaluation.

• The operations will return the result of the evaluation (a boolean in the case of a
static expression) or change the value of the target object (in the case of an action).

6.7.1 Example

A StateMachine can be given an operational semantics by defining an interpreter that
executes a StateMachine. It is implemented by constructing a run() operation for the
StateMachine class. We also add an attribute messages, which records the messages
that are pending on the StateMachine as a result of a send action on a transition:
The code that executes the run() operation is below. More details about the executable
language used here, and the use of executability as a means of defining semantics, will
be explained in chapter 7.

@Operation run(element)
let state = self.startingState() in
@While state <> null do

let result = state.activate(element) then
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Figure 6.3: StateMachine model extended with message queues

transitions = self.transitionsFrom(state) then
enabledTransitions = transitions->select(t |
t.isEnabled(element,result) and
if t.event <> null then

messages->head().name = t.event.name
else

true
end) in

if enabledTransitions->isEmpty then
state := null

else
let transition = enabledTransitions->sel in

transition.activate(element,result + self.messages->
head().args.value);

state := transition.target();
if transition.event <> null then

self.messages := self.messages->tail()
end

end
end

end
end
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end
end

The operation takes the element that the StateMachine is being applied to. It first sets
the state to be the starting state, then enters a while loop. Provided that the StateMa-
chine has not terminated (state <> null) the following is peformed:

1. The entry action on the current state is invoked by calling its activate operation.

2. The collection of enabled transitions is determined by selecting all the transitions
that leave the current state such that the evaluation of their guard is true, and that
an event is waiting on the machine that corresponds to the event on the transition.

3. If there are no enabled transitions, the state is set to null, and the run() operation
terminates.

4. If there are enabled transitions, one of them is chosen and its action is invoked,
before assigning the state to be the target of the transition.

Consider the traffic light example shown in figure 6.2. If the current state of the
StateMachine is Green, then the above semantics ensures that the guard on the GreenRed()
transition will be evaluated and if it returns true the action on transition will be exe-
cuted.

As this example shows, complex behaviour can be captured in terms of operational
definitions. Moreover, the definition can immediately be tested and used within a tool
to provide semantically rich means of validating and exercising models and programs
written in the language.

6.8 Extensional Semantics

In the extensional approach, the semantics of a language is defined as an extension to
another language. Modelling concepts in the new language inherit their semantics from
concepts in the other language. In addition, they may also extend the semantics, adding
new capabilities for example.

The benefit of the approach is that complex semantic concepts can be reused with
minimum effort. For example, a business entity need not define what it means to create
new instances, but can inherit the capability from Class.

The extensional approach has some commonality with the notion of a profile ([uml01]).
A profile provides a collection of stereotypes, which can be viewed as sub-classes of
UML or MOF model elements. However, by performing the extension at the meta-
model level, greater expressibility is provided to the user, who can add arbitrarily rich
semantic extensions to the new concept. A suitable tool can make use of this informa-
tion to permit the rapid implementation of new modelling languages. It may recognise
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that an extension has occurred, and use stereotype symbols to tailor the symbols of the
original modelling language to support the new language (see section 9.2.2).

6.8.1 Example

As an example, consider the requirement to be able to create multiple instances of the
same StateMachine. This can be achieved by specialising the class Class from the XCore
metamodel (see figure 6.4. Because Class is instantiable, the StateMachine will also
inherit its semantics.

NamedElement
(from Root::XCore)

State

Class
(from Root::XCore)

Contained
(from Root::XCore)

StateMachine Transition

 

source
*states

 

target

*

transitions

Figure 6.4: Example of extending the class Class

By specialising the class NamedElement a State can be owned by a StateMachine and
can be navigated to via a pathname. Similarly, a Transition can owned by a StateMa-
chine, but in this case it cannot have a name as it specialises the class Contained.

While the extensional approach is appealing in terms of its simplicity, it does have its
disadvantages. Firstly, it is tempting to try and ’shoe-horn’ the complete semantics of a
language into this form. In practice this is usually not possible as there will be concepts
that simply do not fit. In these cases, other approaches to defining semantics must be
used.

6.9 Denotational Semantics

The purpose of denotational semantics is to associate mathematical objects, such as
numbers, tuples, or functions, with each concept of the language. The concept is/are
said to denote the mathematical object(s), and the object is called the denotation of the
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concept. The objects associated with the concept are said to be the semantic domain of
the concept. A widely used example of this in programming language semantics is the
denotation of the operation + by a number. For instance, the denotation of 4+5 is 9.

A denotational semantics can be thought of as semantics by example. By providing
all possible examples of a concept’s meaning, it is possible to define precisely what it
means. In the above example, there is only one denotation. However, many concepts
are denoted by a collection of examples. To describe the semantics of an Integer, the
set of all positive numbers would be required, i.e. the denotation of Integer is 0..infin-
ity. Denotational descriptions of semantics tend to be static, i.e. they enumerate valid
instances of a concepts, and a non-executable fashion.

Here are some common examples of denotational relationships found in metamodels:

• The denotation of a Class is the collection of all Objects that may be an instance of
it.

• The denotation of an Action is a collection of all possible state changes that can
result from its invocation.

• The denotation of an Expression is the collection of all possible results that can be
obtained from evaluating the expression.

A denotational semantics can be defined in a metamodel by constructing a model
of the language’s abstract syntax and semantic domain and of the semantic mapping
that relates them. Constraints are then written that describe when instances of semantic
domain concepts are valid with respect to their abstract syntax. For example, constraints
can be written that state when an Object is a valid instance of a Class.

The advantage of the denotational approach is its declarative nature. In particular,
it captures semantics in a way that does not commit to a specific choice of operational
semantics. For instance, while an operational semantics would have to describe how
an expression is evaluated, a denotational semantics simply describes what the valid
evaluation/s of the expression would be.

In practice a purely denotational approach is best used when a high-level specifica-
tion of semantics is required. It is particularly useful in a standard where commitment
to a specific implementation is to be avoided. Because they provide a specification of se-
mantics they can be used to test implementations of the standard: candidate instances
generated by an implementation can be checked against the denotational constraints.
A good example of the denotational semantics approach is the OCL 2.0 specification
[ocl04], where they are used to describe the semantics of OCL expressions.

6.9.1 Example

We can describe the execution semantics of a StateMachine by modelling the semantic
domain concepts that give it a meaning. A useful way of identifying these concepts
is to consider the vocabulary of concepts we would use to describe the behaviour of a
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StateMachine. This might include concepts such as a state change (caused by a transi-
tion), examples of statemachines in specific states, and message queues.

Figure 6.5 shows an example of a semantic domain that might result from generalising
these concepts into a model.

Element
(from Root::XCore)

StateChange

MessageArg
Stringname

StateMachineInstance
Stringstate

Message
Stringname

 value

 after

<<ordered>>

args

 

before

<<ordered>>messages

Figure 6.5: A semantic domain for StateMachines

The denotation of a StateMachine is essentially a model of the valid state changes
that may occur to the StateMachine at any point in time. Here a StateMachineInstance
is used to model a StateMachine at a specific point in time. It has a state, and a sequence
of messages which are waiting to be consumed by the machine. State changes represent
the invocation of a transition, causing the StateMachine to move from one state (the
before state) to another (the after state).

Using this model, many different examples of valid StateMachine behaviours can be
tested. The snapshot in figure 6.6 shows a fragment of the behaviour of a machine that
has two transitions from the state A to the state B and back again.

In order to complete the model, the relationship between the semantic domain and
abstract syntax model must also be modelled. This relationship, commonly called a
semantic mapping, is crucial to defining the semantics of the language. It makes precise
the rules that say when instances of semantic domain concepts are valid with respect
to a abstract syntax model. In this case, when a particular sequence of state changes is
valid with respect to a specific StateMachine.

Figure 6.7 shows the semantic mapping model. A StateMachineInstance is associ-
ated with its StateMachine, while a StateChange and Message are associated with the
Transition and Event that they are instances of.

Finally, well-formedness rules will be required. An example is the rule which guar-
antees that the before and after states of a StateChange commutes with the source and
target states of the transition it is an instance of:
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:Seq(<Class Message>)

 
:StateMachineInstance

 
:StateMachineInstance

 

:Seq(<Class Message>)

 
:StateChange

 
:Message

 
:Message  

messages messages

 

after

 

before

Figure 6.6: An example snapshot of a StateMachine’s behaviour

context StateChange
self.transition.sourceName = self.before.state.name and
self.transition.targetName = self.after.state.name

Other rules will be required to ensure that the state changes associated with a state
machine are valid with respect to its execution semantics. These will describe such
aspects as the conditions under which transitions are enabled, and the order in which
they may fire.

6.10 Process

The choice of semantics depends on the type of language being defined. The following
pointers provide a guide to choosing the most appropriate approach.

• If a declarative, non executable semantics is required, use the denotational ap-
proach.

• If a language has concepts that need to be evaluated, executed or instantiated then
they should be modelled using an operational, translational or extensional ap-
proach. The choice of approach will be based on the following:

– If a concept is clearly a sugared form of more primitive concepts, adopt a
translation approach. This avoids having to construct a semantics for the
concept from scratch - reuse the semantic machinery that has already been
defined for the primitive concepts. This approach should only be used when
it is acceptable to loose information about the original concept.
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StateChange

EventArg

StateMachineInstance
Stringstate

Event Message
Stringname

StateMachine

MessageArg
Stringname

Transition

 

 

 

 

 

 

 

 

Figure 6.7: Semantic mapping model for the StateMachine language

– If information must be kept about the concept and it is possible to reuse an
existing concept use the extensional approach.

– If there is no convenient means of reusing an existing concept use the opera-
tional approach to construct an interpreter.

Note, there are no hard and fast rules to choosing an approach. The primary aim
should be to develop a semantic model that meets the needs of the stakeholders of the
language.

6.11 Conclusion

Semantics is crucial in being able to understand the meaning of a modelling language,
to be able to interact with it a meaningful way, and to be able to support truly inter-
operable language definitions. This chapter has shown that a language semantics can
be successfully captured with a metamodel. The key advantages are that the semantics
becomes an integrated part of the language definition while remaining understandable
to users and modelling tools.

c©Ceteva 2008.



CHAPTER 7

EXECUTABLE METAMODELLING

7.1 Introduction

The purpose of this chapter is to describe how the addition of executable primitives to
a metamodelling language can result in a powerful meta-programming environment in
which many different operational aspects of languages can be described. This includes
the ability to model the operational behaviour of a modelling or programming language
and the ability to quickly create many types of applications to manipulate models.

7.2 Why Executable Metamodelling?

Executable metamodelling is a natural evolution of a growing trend towards executable
modelling [Mel02]. Executable modelling enables the operational behaviour of system
models to be captured in a form that is independent of how the model is implemented.
This is achieved by augmenting the modelling language with an action language or
other executable formalism. Executable models enable a system to be tested before im-
plementation begins, resulting in improved validation of the system design. Further-
more, it is also possible to generate executable code from an executable model, as there
is sufficient information to generate method bodies, etc, in the target programming lan-
guage.

The ability to execute metamodels has additional benefits over and above those associ-
ated with executable modelling. At the simplest level, many developers need the facility
to access and manipulate models at the metamodel level. For instance, a developer may
need to analyse general properties of their models, or to globally modify certain fea-
tures of a model, or write useful functions that automate a time consuming modelling
task. Being able to quickly add some functionality that will perform the required task
will thus save time and improve the modelling process.
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More generally, the addition of executability to metamodels facilitates what is almost
metamodelling nirvana: the ability to model all aspects of a modelling language as a
unified, executable entity. A static metamodel cannot model the operational behaviour
of a language. Yet, in the semantic rich tools that are required by Language-Driven
Development, capturing this aspect of a language is essential. With an executable meta-
modelling language, all of this can be described in the metamodel itself.

The advantage is that the modelling language definition becomes completely self con-
tained, and can be interchanged between any modelling tool that supports the necessary
metamodelling machinery. Such definitions are not reliant on platform specific technol-
ogy but the metamodel architecture that they are defined within (which as we shall see
can itself be modelled independently of other technologies).

7.2.1 Executability and XMF

Because XMF is also defined in terms of an executable metamodel, XMF can effectively
implement everything associated with supporting itself as a language definition lan-
guage, including the construction of parsers, compilers, interpreters and so on. The
key advantage is that there is unification in the way that all modelling languages are
constructed. Thus, a language for modelling StateMachines will use entirely the same
meta-machinery as a language for modelling user interactions, business use cases, and
so on. Moreover, because the definition is in effect a program, it will be as precise and
unambiguous as any program written in a programming language. Of course, it is still
necessary that the machinery developed to support XMF is as generic as possible to fa-
cilitate the rapid construction of new modelling languages - being executable does not
necessarily mean that it is generic.

A unified executable metamodelling environment offers important advantages to the
language developer. We have seen many metamodelling tools where the developer has
to contend with a multitude of ill-fitting languages for dealing with each of the different
aspects required for tool design. For instance, a repository for dealing with meta-data, a
scripting language for model manipulation, a GUI framework for user interface design,
and lexx and yacc for parser construction. An approach in which all these languages are
unified under a single executable metamodelling umbrella offers a far more effective
and productive development environment.

Executable metamodelling is at the heart of the tool development vision described
in chapter 2. By supporting executability, metamodels are enriched to the point where
they can support a multitude of semantically rich tool capabilities.

7.2.2 Executable Metamodelling and Programming

How does executable metamodelling relate to programming? Not at all? In fact it is
a natural extension (see section 2.3). Rather than thinking about modelling languages
as being different to programming languages, executable metamodelling really views
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modelling languages as part of a spectrum of programming languages, where each
language is only different in the abstractions and behaviour it encapsulates. Indeed,
executable metamodelling can be thought of as next generation programming: whilst
many programming languages are fixed in what they can represent, executable meta-
modelling offers infinite extensibility and flexibility.

7.3 Adding Executability

How can executability be added to a metamodelling language? The answer (briefly dis-
cussed in chapter 3) is to provide the action primitives necessary to support execution.
These in combination with a suitable model querying and navigation language, result
in a powerful metaprogramming language.

The language proposed here is XOCL (eXecutable OCL). XOCL is a combination of
executable primitives and OCL (the Object Constraint Language). The motivations for
this combination are discussed in section 3.5.

The action primitives that are provided by XOCL are as follows:

Slot Update Assigns a value to a slot of an object via the assignment expression ”:=”.
An example of slot update might be self.x := self.x + 1.

Object Creation Creates a new instance of a class via a new operation on a class from
which the object is created. An example might be: fido := Dog().

Sequential Operator Enables two expressions to be executed in sequence via the op-
erator ”;”. For instance, self.x:=self.x+1; self.x:=self.x+2 will result
in x being incremented by 3.

XOCL expressions can be used in the bodies of expressions belonging to behavioural
modelling elements such as operations and mappings. The following operation is de-
scribed in the context of the class X:

context X
@Operation doIt():Integer
self.x := self.x + 1;
self.x

end

The above primitives provide the minimal actions necessary to add sequential exe-
cutability to OCL. Concurrent execution can be supported by adding a suitable concur-
rency primitive such as fork(), which allows multiple threads of execution to be prop-
agated. While the majority of metamodels only require sequential execution, there are
some cases where concurrency needs to be supported. Examples include providing
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models of communication between clients and a server or in describing the operational
semantics of concurrent modelling languages.

Finally, it is important that XMF provides the necessary architecture to support exe-
cution in an object-oriented environment. This aspect, called a Meta-Object Protocol or
MOP will be discussed in later versions of this book.

7.3.1 XOCL Extensions

While OCL provides a number of useful imperative style constructs, such as if and for
loop expressions, there are a small number of extensions that we have found to be very
useful when using it as a programming language. These include:

While expressions: standard while loops as provided by many programming languages:

@While x < 10
do x := x + 1

end

Find expressions: a simplified way of traversing collections of models and finding an
element that matches specific criteria. If xset contains an x whose value is greater than
zero, y will be incremented by 1.

@Find (x,set)
when x > 10
do
y := y + 1

end

Tables provide efficient lookup over large data structures:

let table = Table() in
table.put(key,value);
table.get(key)

end

The case statement as provided by many programming languages:

@Case(x)
x > 1 do x := x + 1;
x = 0 do x := 2
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end

TypeCase expressions: selects a case statement depending on the type of object that is
passed to it.

@Case(x)
Boolean do x := false;
Integer do x := 0

end

Because objects are fundamental to XMF, a number of operations are provided for ac-
cessing and manipulating their properties:

• The operation of() returns the class that the object is an instance of, e.g. StateMa-
chines::State.of() returns XCore::Class.

• The operation getStructuralFeatureNames() returns the names of the slots (at-
tribute values) belonging to an object, e.g. if x is an instance of the class StateMa-
chines::State, then x.getStructuralFeatureNames() will return the set containing
”name”.

• The operation get() takes a name and return the value of the slot of that name, e.g.
x.get(”y”) will return the value of the slot called ”y”.

• The operation set() take a name and a value, and sets the value of the slot called
name to be the value, e.g. x.set(”y”,10), will set the value of the slot called ”y” to
10.

7.4 Examples

The best way to understand the benefits of executable metamodelling is to look at some
real examples. This section provides a number of examples that provide general utility
operations for manipulating metamodels. Other parts of the book (notably chapter 6)
describe how executability can be used to define semantics. The case study chapters at
the end the book also provide examples of executable metamodels.

7.4.1 Example 1: Model Merge

Merging the contents of two packages is a very useful capability that has many applica-
tions, including versioning (merging different versions of a model together) and model
management (breaking up large models into composable pieces that can be merged into
a single artefact). The following operation is defined on a package.
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context Package
@Operation merge(p:Package)

self.contents()->collect(c1 |
if p.contents()->exists(c2 | c1.isMergable(c2)) then

c1.merge(c2)
else

c1
end)->union(
p.contents()->select(c2 | self.contents()->exists(c1 |
not c1.isMergable(c2))))

end

The operation merges an element belonging to the package p with an element belong-
ing to the contents of the package provided they are mergeable. Note contents() is an
meta-operation belonging to all containers (see section 9.5. The conditions under which
two elements are mergeable will be defined on a case by case basis. For example, two
elements may be mergeable if they have the same name and are of the same type. If
two elements are mergeable, then the result of the merge will be defined via a merge()
operation on the elements’ types.

7.4.2 Example 2: Find and Replace

This example defines a simple algorithm for finding and replacing named elements in
the contents of a Namespace. It works by determining whether an object is a specialisa-
tion of the class NamedElement, and then performs the appropriate substitution if the
element name matches a name in the to be replaced in the subs list:

context Namespace
@Operation replace(subs:Set(Sub))
@For i in self.contents
if i.isKindOf(NamedElement) then

if subs->exists(r | r.from = i.name) then
i.name := subs->select(s | r.from = i.name)->sel.to

end
end

end

Where the class Sub is defined as follows:

@Class Sub
@Attribute from : String end
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@Attribute to : String end
end

Applying this operation to any Namespace is now straightforward. For instance, the
operation replaceStateName() can be written like so:

context StateMachine
@Operation replaceStateName(subs:Set(Sub))
self.replace(subs);
self

end

This operation is a useful mechanism for performing global search and replace on
models and programs.

7.4.3 Example 3: Walker

The previous example is restricted as it only applies to Namespaces. In many situations,
one wants to be able to walk over any structure of objects in a metamodel performing
arbitrary tasks. These tasks may include find and replace, but could be anything from
constraint checking to the global invocation of operations.

This can be achieved using a walker. A walker recursively descends into an elements
structure and dispatches to appropriate operations depending on the values of compo-
nent elements. A critical requirements is that the walker can handle cycles in a structure.
It does this by recording the elements that have been walked, and then using this infor-
mation to ignore those elements if they are met again.

@Class Walker
@Attribute table : Table end
@Attribute refCount : Integer end
@Attribute visited : Integer (?) end

@Constructor()
self.initWalker()

end

@Operation initWalker()
self.table := Table(1000)

end
end
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The class Walker contains a hashkey table, in which a list of all the walked elements
is kept along with an integer reference to the element. A count is kept of the number of
elements that have been walked along with the number of references created.

context Walker
@Operation encounter(e:Element)

self.encounter(e,self.newRef())
end

@Operation encounter(e:Element,v:Element)
// Save a reference to v against the walked value e.
table.put(e,v)

end

@Operation newRef():Integer
self.refCount := refCount + 1;
refCount

end

The encounter() operation is called when a new element is encountered. It creates a
new reference for the element, and adds it to the table.

The following operations deal with walking the tree. The operation encountered()
returns true if the element has already been encountered.

context Walker
@Operation encountered(e:Element):Boolean

// Returns true when we have already walked e.
table.hasKey(e)

end

@Operation getRef(e:Element):Element
table.get(e)

end

@AbstractOp reWalk(e:Element,arg:Element):Element end

The operation walk() performs the task of walking an element. If the element has
already been encountered then the operation reWalk() is run (this will be specialised for
specific applications, but in most cases it will do nothing). Otherwise, depending on the
type of element that is being walked, appropriate element walkers will be called.

context Walker
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@Operation walk(e:Element,arg:Element):Element
// Walk the element e with respect to the argument.
self.visited := visited + 1;
if self.encountered(e)

then self.reWalk(e,arg)
else

@TypeCase(e)
Boolean do self.walkBoolean(e,arg) end
Integer do self.walkInteger(e,arg) end
Null do self.walkNull(arg) end
Operation do self.walkOperation(e,arg) end
SeqOfElement do self.walkSeq(e,arg) end
SetOfElement do self.walkSet(e,arg) end
String do self.walkString(e,arg) end
Table do self.walkTable(e,arg) end
Object do self.walkObject(e,arg) end
else self.defaultWalk(e,arg)

end
end

end

The most complex of these walkers is the object walker. This gets all the structural
feature names of the object, i.e. the names of the attributes of the class the object is an
instance of. To do this, it uses the getStructuralFeatureNames operation defined
on the class Object to return the names of the structural features. It then walks over each
of the slots that correspond to each structural feature:

context Walker
@Operation walkObject(o:Object,arg:Element):Element
self.encounter(o);
@For name in o.getStructuralFeatureNames() do

self.walkSlot(o,name,arg)
end

end

Again, walkSlot() will be defined on an application basis, but in general will simply
get the element value of each slot and call its walker.

This example illustrates the benefits of being able to program at the meta-level. It
allows the designer to produce code that is reusable across multiple metamodels irre-
spective of what they define. It does not matter whether the object that is being walked
is a StateMachine or a BusinessEntity. At the meta-level they are all viewed as objects.
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7.4.4 Example 4: Meta-Patterns

This example shows how meta-operations can stamp out a structure over existing model
elements. This can be used as the basis for capturing libraries of reusable patterns at the
meta-level.

The following operation captures a simple containership pattern, which can be used
to stamp out a containership association between two classes and adds an add() opera-
tion to the owning class.

Given a pair of classes, c1 and c2, the operation first creates an instance of an attribute,
a, whose name is the name of c2, and whose type is the class c2. Next, an anonymous
operation is created called c2. It takes an object x and sets the value of the attribute
name c2 to the value of x including its existing contents. It’s name is then set to ”add”
plus the name of c2. Finally, both the attribute and the operation are added to the class
c1.

context Root
@Operation contains(c1 : Class,c2 : Class):Element

let a = Attribute(Symbol(c2.name),Set(c2));
o = @Operation anonymous(x : Element):Element

self.set(c2.name,self.get(c2.name)->including(x))
end

in o.setName("add" + c2.name);
c1.add(a);
c1.add(o)

end
end

Figures 7.1 and 7.2 show the result of applying the operation to two classes.

Account

Bank

Figure 7.1: An example model before applying the contains operation

c©Ceteva 2008.



7.5. CONCLUSION 101

Account

Bank

addAccount()

*

Account

Figure 7.2: An example model after applying the contains operation

7.5 Conclusion

This chapter has aimed to show the benefits that can be achieved through the extension
of traditionally static metamodelling languages to fully executable metamodelling. The
resulting language can be used in the definition of useful meta-level utility operations
right through to the construction of complete modelling language definitions. This has
wide-reaching applications for how we treat metamodels. Rather than viewing them
as static entities, they can now be viewed as highly abstract programming devices for
language design.
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CHAPTER 8

MAPPINGS

8.1 Introduction

A mapping is a relationship or transformation between models or programs written in
the same or different languages. Mappings are a key part of the metamodelling process
because of the important role they play in describing how instances of one metamodel
are to be mapped to instances of other metamodels.

In the world of system development, mappings are everywhere: between abstract
(platform independent) models and platform specific implementations, between legacy
code and re-engineered systems, across and within application and organisational do-
mains. Each of type of mappings places different requirements on the type of mapping
language that is required. Sometimes, a one shot, unidirectional transformation is re-
quired. Other times, a mapping must maintain consistency between models, perhaps
by continuously reconciling information about the state of both models. A mapping
language has to be able to deal with all these requirements.

At the time of writing, work is already underway, initiated by the Object Management
Group in the form of a request for proposals (RFP) [qvt02] to design a standard map-
ping language, provisionally entitled QVT (Queries, Views, Transformations). Even
though there are many proposed meta-models for a mapping language there are some
basic foundations which are fairly independent of the particular meta-model itself. This
chapter begins with a discussion on applications and existing technologies and tech-
niques for mappings and moves on to identify the requirements for an ideal mapping
language. Two languages, XMap and XSync are then described that together address
the complete requirements.
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8.2 Applications Of Mappings

The application of mappings can be broadly divided into vertical, horizontal and vari-
ant dimensions of a problem domain [Boa01].

8.2.1 Vertical Mappings

Vertical mappings relate models and programs at different levels of abstraction. Exam-
ples include mapping between a specification and a design, and between a design and
an implementation. In MDA the mapping from more abstract models to less abstract,
more detailed models and programs is typically known as a PIM (platform independent
model) to PSM (platform specific model) mapping. Note, these terms are somewhat rel-
ative (machine code can be viewed as platform specific in relation to Java, yet Java is
often viewed as a platform specific in relation to UML).

The precise nature of a vertical PIM to PSM mapping will be dependent upon the
nature of the target platform. For example, the following platform properties may be
taken into account:

• Optimisation: improving one or more aspects of the efficiency of the resultant
platform specific code, e.g. efficiency of memory usage, speed of execution, and
usage of dynamic memory allocation.

• Extensibility: generating platform specific code that is more open to adaptation,
e.g. through the use of polymorphic interfaces.

• Language paradigm: Removing (or adding) language features, for instance substi-
tuting single inheritance for multi-inheritance or removing inheritance altogether.

• Architecture: if the target platform is a messaging broker, such as CORBA, rules
will be defined for realising the platform independent mapping in terms of appro-
priate interface calls to the message broker.

• Trustworthiness: visible and clear mappings may allow some level of reasoning
to be applied to the target notation, which may enable certain properties (e.g. per-
taining to safety) to be automatically established.

It is important to note that vertical mappings may also go in the reverse direction, e.g.
from implementation to design. This is particularly appropriate for reverse engineer-
ing. Here the essence of the functionality of the platform specific language is reverse
engineered into another language. Typically, this process will not be an automatic one,
but must be supported by tools.
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8.2.2 Horizontal Mappings

Whilst vertical mappings have received much attention in the MDA literature, hori-
zontal mappings are just as important. Horizontal mappings describe relationships be-
tween different views of a problem domain. Examples of these include:

System Views

In large systems, many different aspects of the problem domain will need to be inte-
grated. This may include different aspects of the business domain such as marketing
or sales, or the technology domain such as safety or security. Critically, many of these
different aspects will overlap. Horizontal mappings can be defined between languages
that capture these different views, allowing them to be consistently managed.

Language Views

Complex systems can rarely be modelled using a single notation. As the popularity
of UML has demonstrated, different notations are required to precisely and succinctly
model different view points of the system. For instance, in UML, class diagrams are
used to model the static structure of a system and a completely different language, state
machines for example, to model the dynamic view point. Even though these notations
are different they describe the same system with overlapping views and hence there
exists a relationship between them.

As shown in chapter 5, horizontal mappings provide a means of integrating language
notations in a way that ensures changes in one view automatically updates other views.
Figure 8.1 shows how this might work for a small part of UML. Here, it is assumed
that there is a core OO modelling language, with its own, precisely defined semantics.
Many of the different modelling notations provided by UML are modelled as a view on
the underlying OO modelling language. Mappings reconcile changes to the diagrams
by making changes to the underlying OO model, which in turn may impact models in
other diagrams.

Of course, previous chapters have shown that horizontal mappings are also necessary
for integrating different aspects of a modelling language. Mappings between concrete
syntax and abstract syntax, and between abstract syntax and a semantic domain are all
critical parts of a language definition.

8.2.3 Variant Dimensions

Variant dimensions include product families and product configurations. Mappings
can model the relationship between variant dimensions enabling each dimension to be
precisely related to one another.
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CoreUML

Activities

State
Machines Collaborations

Model
Management

Use
Cases

Figure 8.1: An example of a horizontal mapping between core UML and its diagrams

8.3 Types of Mappings

8.3.1 Unidirectional Mappings

Unidirectional mappings take an input model or collection of input models and gen-
erate an output model in one go. A unidirectional mapping may record information
about the relationship between the input and output model, but there is no dependency
of the input model on the output model. If the input model/s change, then the entire
mapping must be rerun again in order to re-generate the output model.

An example of a one shot mapping is a code generator, that takes a platform indepen-
dent model as its input, and generates a platform specific model or program.

8.3.2 Synchronised Mappings

Synchronised mappings are a special class of mapping where it is important to continu-
ously manage consistent relationships between models. This requirement can occur in
many different situations. One common example is maintaining consistency between
a model and the code that it is being transformed to. This would be a requirement
if a programmer wants to add/change code whilst maintaining consistency with the
model it is generated from. In this scenario a change to the code would be immedi-
ately reflected back in the model, and vice versa: if the model was changed, it would be
reflected in changes in the code. In the context of horizontal mappings, synchronised
mappings have an important part to play in maintaining consistency between different
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viewpoints on a model.

8.4 Requirements of a Mapping Language

When applying mappings on real projects it becomes apparent that there are some key
requirements that a mapping language must support if it is to be of practical use. These
include the following:

• Support for mappings of relatively high complexity. For example, the mapping
language should be able to model complex mappings, such as transforming an
object oriented model into a relational model including the mapping of the same
attribute to different columns for foreign key membership [qvt02]. In practice,
this means that the mapping language must provide good support for arbitrarily
complex queries of models (to be able to access the information necessary to drive
a complex mapping), and support the ability to modify models using relatively
low level operations (such operations can, if used sensibly, significantly reduce
the size and complexity of a mapping).

• Support for reuse. It should be possible to extend and adapt mappings with ease.
This meets the need to be able to reuse existing mappings rather than having to
create them from scratch each time.

• Facilitate the merging of models. If the source metamodel of a mapping represents
a graph then any duplicate elements that are generated by the mapping must be
merged.

• Provide mechanisms that support the structuring of mappings, e.g. being able to
model the fact that a mapping owns or is dependent on sub-mappings.

• Be able to record information about a mapping to provide traceability during the
mapping process.

• Integration within the metamodel architecture, so that mappings may access mod-
els at all levels.

• Support for execution. It may seem obvious, but a mapping should be executable
in order to support the physical generation of new models from a mapping. This
is contrasted with a non-executable mapping (see below).

• Provide diagrammatic notations that can be used to visualize mappings. Visual
models have an important role to play in communicating the overall purpose of a
mapping.

• Support for bi-directional and persistent mappings. As described above, this is
essential in being able to support mappings where models must be synchronised
with other models.
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• Support for mapping specifications. A mapping specification is a non-executable
description of ‘what’ a mapping does, which does not commit to‘how’ the map-
ping will be implemented. Mapping specifications are a valuable means of vali-
dating the correctness of an executable mapping, or as a contract between a de-
signer and an implementor.

An important question to ask at this point is whether all these requirements can be
addressed by a single mapping language. In our experience, it does not make sense to
have a ’one size fits all’ mapping language because not all the requirements are compli-
mentary. In particular, there is a strong distinction to be made between a bi-directional
and unidirectional mapping languages. Each are likely to be targeted at different types
of problems and thus have different requirements in terms of expressibility and effi-
ciency.

Instead, it is better to use a small number of mapping languages, each targeted at a
specific mapping capability, yet still capable of being combined within a single model.
This is strategy taken in this book. In the following sections, two mapping languages,
XMap and XSync are described each aimed at addressing complimentary mapping ca-
pabilities.

8.5 XMap

XMap is a language designed to support unidirectional mappings. It includes the fol-
lowing features:

Mappings Mapping are the used to model unidirectional transformations from source
to target values. Mappings have state and can be associated with other mappings.

Syntax Mappings have a visual syntax, enabling them to be drawn between model ele-
ments in a class diagram, and a concrete syntax for describing the detailed aspects
of the mapping.

Executability Mappings have an operational semantics enabling them to be used to
transform large models.

Patterns Mappings are described in terms of patterns. A pattern describes what a map-
ping does in terms of how a value in the source model is related to a value in the
target model - this provides maximum declarative expressibility, whilst also re-
maining executable. Patterns are described in a pattern language that runs over
OCL expressions.

OCL Mappings can make use of OCL to express complex model navigations.

In addition, XMap provides Mapping specifications. These are multi-directional, non-
executable, transformation specifications. In the general case they are non-executable,
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but useful restricted types of mapping specification can be automatically refined into
mappings. Mapping specifications are written in a constraint language, in this case
OCL. Typically they are used in the specification stages of system development.

The syntax and semantics of XMap are described in exactly the same way that all
languages are defined in XMF: as an XMF metamodel, with an operational semantics
expressed in terms of XOCL.

8.6 XMap Syntax

XMap has a visual syntax and a textual syntax. As shown in figure 8.2 the visual syntax
consists of a mapping arrow that can be associated with other model elements such as
classes in a class diagram. A mapping has a collection of domain or input elements that
are associated with the tail of the arrow, and a single range or output element that is
associated with the end of the arrow.

A2B

X Y

rangedomain

Figure 8.2: An example mapping

The textual syntax of a mapping consists of a mapping declaration, which is equiva-
lent to a mapping arrow on a diagram:

@Map <name>(<domain_1>,<domain_2>,...<domain_n>)-><range>

end

A mapping contains a collection of clauses of the form:

@Clause <name>
<pattern>

end

Note, each clause must have a different name.
A pattern is the mechanism that is used to match values in the domain of the mapping

to values in the range. It has the general form:

<exp> do
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<exp>
where

<exp>

Expressions are written in a mixture of XOCL expressions and patterns expressions,
where a pattern expression is a syntactical relationship between expressions containing
variables that are bound by pattern matching. A common pattern used in mappings
is to relate object constructors. These describe a pattern match between a domain ob-
ject constructor and a range object constructor subject to there being a pattern match
between slot value expressions. An example of this is:

X[a = A] do
Y [b = A]

Here the variable, A, is bound to the value of the slot a of any instance of the class
X using the expression a = A. This value is then matched with the value of the slot b.
The result of this expression will be to match any instance of the class X with the class
Y, subject to the value of the slot b being equal to the value of a.

Patterns can contain arbitrarily complex expressions. For instance, this expression
matches a with another constructor, which contains a variable c, which is then matched
with b:

X[a =
Z[c = A]] do
Y [b = A]

Patterns may also be embedded in sets and sequences:

X[a =
Set{Z[c = A]]} do
Y [b = A]

In this case, the slot a must be an instance of an attribute of type Set(Z) and provided
it contains an single instances of Z will be matched.

Patterns can also be used in a very implicit fashion, to state properties of values that
must match. For instance, consider the requirement to match a with an object belonging
to a set, subject to a slot being of a specific value. This could be expressed as follows:

X[a = S->including(Z[c = 1,d = A]]) do
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Y [b = A]

This will match an object belonging to the set a subject to its slot c being equal to 1.
The value of S will be the remaining elements of the set.

The ’where’ component of a clause can be used to write additional conditions on the
pattern. Consider the following pattern, in which the relationship between the variables
A and B are related by a where expression:

X[a = A]] do
Y [b = B]
where B = A + 1

Finally, a mapping clause may call other mappings. This is achieved by creating an
instances of the mapping, and passing it the appropriate domain values:

X[a = A]] do
Y [b = B]
where B = mapIt(A)

Here, the value of B is assigned the result of passing the value of A to the mapping
called mapIt. Note that a mapping can also be instantiated and then invoked. This
enables values to be passed to the mapping via its constructor, e.g. mapIt(5)(A).

Finally, it is common to iterate over a collection of values, mapping each one in turn.
This type of mapping would look like so:

X[a = A]] do
Y [b = B]
where B = A->collect(a | mapIt()(a))

This would pass each element of A into the mapIt() mapping collecting together all their
values and assigning them to B.

8.7 XMap Examples

This section demonstrates two mappings written using XMap: a mapping from StateMa-
chines to Java and a mapping from Java to XML. Together they aim to demonstrate the
main features of XMap and to give an understanding of the essential requirements of a
mapping language.

c©Ceteva 2008.



112 CHAPTER 8. MAPPINGS

8.7.1 StateMachines to Java

The purpose of this mapping is to translate a StateMachine into a Java class. The source
of the mapping is the StateMachines metamodel described in chapter 4 and the class
diagram for this metamodel is repeated below.

EventArg

Stringname

Event

Stringname

Element

(from Root::XCore)

NamedElement

(from Root::XCore)

Stringname

StateMachine

StringstartName

State

Contained

(from Root::XCore)

Transition

StringsourceName

StringtargetName

Performable

(from Root::XCore)

Operation

(from Root::XCore)

 type

<<ordered>>

args

*

transitions

 

action

* states

 

guard

 guardexp

 

action

 event

Figure 8.3: The abstract syntax metamodel for StateMachines

The target of the mapping is a simple model of Java as shown in figure 8.4. A Java
program is a collection of named classes. A Java class has a collection of member prop-
erties, which may be named fields (attributes) or methods. A method has a name, a
body and a return type and a sequence of arguments that have a name and a type.

The mapping is shown in figure 8.5. It maps a StateMachine into a Java class with
an attribute called state and maps each transition to a method that changes the value of
state from the source state to the target state.

The detail of the StateMachine mapping are described by the following code. A map-
ping consists of a collection of clauses, which are pattern matches between patterns
of source and target objects. Whenever a collection of source values is successfully
matched to the input of the mapping, the resulting collection of values after the do
expression is generated. Variables can be used within clauses, and matched against val-
ues of slots in objects. Because XMap builds on XOCL, XOCL expressions can also be
used to capture complex relationships between variables.

c©Ceteva 2008.



8.7. XMAP EXAMPLES 113

Member
Stringname

Arg
Stringtype

Stringname

Field
Stringtype

Program Class
Stringname

Method
Stringbody

Stringtype

*

classes

* members

<<ordered>>

args

Figure 8.4: The abstract syntax metamodel for Java

@Map SM2Class(StateMachines::StateMachine)->Java::Class
@Clause ToClass
s = StateMachine
[name = N,
transitions = T,
states = S] do

Class
[name = N,
members = M->including(

Field
[name = "state",
type = "String" ])]

where M = T->collect(t | Transition2Method(t))
end

In this example, whenever the mapping is given a StateMachine object with a name
equal to the variable N, a set of transitions T and a set of states S, it will generate an
instance of the class Java::Class. This will have a name equal to N and members that
includes a single state attribute named ”state” and a set of methods, M. The where
clause is used to calculate the value M. It matches M with the results of iterating over
the transitions, T, and applying the Transition2Method mapping.
The mapping from transitions to Java methods is shown below:

@Map Transition2Method(Transition)->Java::Method
@Clause Transition2Method
t = Transition
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Transition2Op

Exp2String

SM2Class

BinExp
(from Root::OCL)

Transition
(from Root::Languages::StateMachines)

Class
(from Root::Languages::StateMachines::Java)

Member
(from Root::Languages::StateMachines::Java)

StateMachine
(from Root::Languages::StateMachines)

range

domain

domain

domain range

Figure 8.5: The StateMachine to Java mapping

[event = Event[name = N] ] do
Method

[name = N,
body = B]

where
B = "if (" + Exp2String()(t.guardexp.performable) + ")\n" +
" this.state := " + "\"" + t.targetName + "\"" + "; \n"

end
end

This mapping matches a Transition owning an Event named N to a Java Method with
a name N and a body B. This mapping illustrates how patterns can capture arbitrar-
ily nested structures: any depth of object structure could have been captured by the
expression.

The definition of the body, B, requires some explanation. Because the mapping gen-
erates a textual body, this expression constructs a string. The string contains an ”if”
expression whose guard is the result of mapping the transition’s guard expression (an
instances of the OCL metamodel) into a string (see below). The result of the ”if” ex-
pression is an assignment statement that assigns the state variable to be the target of the
transition.
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Mapping Guard Expressions

Whilst the above mapping deals with the mapping to the superstructure of Java, it does
not deal with mapping the guards and actions of the StateMachine. However, in order
to be able to run the Java, these will need mapping across too. As an example, the
following mapping describes how some sub-expressions of OCL can be mapped into
Java code.

@Map Exp2String(OCL::BinExp)->String
@Clause BinExp2String
BinExp
[binOp = N,
left = L,
right = R] do
self(L) + " " + N + " " + self(R)

end
@Clause IntExp2String
IntExp
[value = V] do
V

end
@Clause Dot2String
Dot
[name = N,
target = S] do
if S->isKindOf(OCL::Self) then

"self"
else
self(S)

end + "." + N
end
@Clause BoolExp2String
BoolExp
[value = V] do
V

end
end

This mapping contains a number of clauses, which are matched against an sub-expression
of OCL. In order to understand this mapping, it is necessary to understand the OCL
metamodel. The relevant fragment of this is shown below in figure 8.6.

The first clause of this expression matches against any binary expression, and gen-
erates a string containing the results of mapping the left hand expression followed by
the binary operator and the result of mapping the right hand expression. The follow-
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IntExp
(from Root::OCL)

Integervalue

OCL
(from Root::OCL)

BoolExp
(from Root::OCL)

Booleanvalue

Dot
(from Root::OCL)

Stringname

BinExp
(from Root::OCL)

Stringvalue

 

target

 

right

 left

Figure 8.6: Fragment of OCL expression metamodel

ing clauses describe what should happen for integer expressions, dot expressions and
boolean expressions.

As an example, consider the StateMachine in figure 6.2. The body of the guard on the
GreenRed transition will be parsed into an instance of an OCL expression. The mapping
described above will translate the transition and its guard expression into the following
Java code:

public GreenRed() if (self.count < 10)
this.state := "Red";

8.7.2 Mapping to XML

This section gives an example of using XMap to map between Java and XML. The aim
of this example is to illustrate the ability of mappings to record information about the
execution of a mapping.

A model of XML is shown in figure 8.7. An XML document consists of a root node,
which may be an element, or a text string. Elements can have attributes, which have a
name and a value. Elements may also have child nodes.

A mapping between Java and XML maps each element of the Java model (classes,
fields, methods and arguments into XML elements. The relationship between XML
elements and their children matches the hierarchical relationship between the elements
in the Java model. The mapping diagram is shown in figure 8.8.

The mapping from a Java program to an element is shown below. The operation
getId() will return an id ref for an element if that element has already been generated,
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Attribute
Stringvalue

Stringname
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Stringtag

Text

Stringtext
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Document

*
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<<ordered>>

children

 

root

Figure 8.7: Abstract syntax model for XML

alternatively it will create a new one and place it in a table. All subordinate mappings
can reach this mapping via their ’owner’ slot.

@Map MapProg(Java::Program)->XML::Element

@Attribute mapClass : MapClass = MapClass(self) end
@Attribute idTable : Table = Table(100) end

@Operation getId(name)

if idTable.hasKey(name) then
idTable.get(name)

else
idTable.put(name,"id" + idTable.keys()->size.toString());
idTable.get(name)

end
end

@Clause Program2Element
Program
[classes = C]

do
Element
[tag = "Program",
attributes = Set{},
children = E]
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Stringname

Arg
(from Root::Languages::StateMachines::Java)
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Figure 8.8: Mapping from Java to XML

where
E = C->collect(c | mapClass(c))

end
end

The mapping from classes to XML elements is more complicated. It maps a class with
name N and members M to an element tagged as a ”Class” containing two attributes.
The first attribute corresponds to the name attribute of the class, and thus has the name
”name” and value N. The second attribute provide an id for the element, which is the
result of running its getId() operation.

@Map MapClass(Java::Class)->XML::Element

@Attribute owner : MapProg end
@Attribute mapMember : MapMember = MapMember(self) end

@Constructor(owner) end

@Operation getId(name)
owner.getId(name)

end

@Clause Class2Element
Class
[name = N,
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members = M] do
Element
[tag = "Class",

attributes =
Set{}->including(

Attribute
[name = "name",
value = N])->including(

Attribute
[name = "id",
value = self.getId(N)]),

children = E]
where
E = M->collect(m | mapMember(m))

end
end

Exactly the same strategy is used to map Field, Methods and Arguments to XML Ele-
ments. The following shows the mapping for Fields:

@Map MapMember(Java::Member)->XML::Element

@Attribute owner : MapClass end
@Attribute mapArg : MapArg = MapArg(self) end

@Constructor(owner) end

@Operation getId(name)
owner.getId(name)

end

@Clause Field2Element
Java::Field

[name = N,
type = T] do

Element
[tag = "Field",

attributes =
Set{}->including(

Attribute
[name = "name",
value = N])->including(

Attribute
[name = "type",
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value = self.getId(T)]),
children = Set{}]

end
end

8.8 Mapping Specifications

A mapping specification is useful in describing what a mapping does as opposed to how
it is to be implemented. Mapping specifications do not require any additional modelling
facilities beyond OCL. As shown in figure 8.9, a mapping specification consists of a
number of mapping classes, which sit between the elements of the models that are to be
mapped.

AttXField

Att2Field

ClassXJavaClass

Class
Class2Class

Attribute Field

JavaClass

*attXField

 

field

 

attribute*attributes

 

javaClass

* attributes

 

class

domain

 

type

range

 

type rangedomain

Figure 8.9: An example mapping specification

OCL is then used to define the constraints on the relationship between the models.
The following constraint requires that the names of the two classes must be the same.

context ClassXJavaClass
@Constraint SameNames
class.name = javaClass.name

end

This constraint ensures that there is an AttXField mapping for each attribute owned by
a class:
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context ClassXJavaClass
@Constraint AttXFieldForClassAtt
class.attributes = attXField.attribute

end

Similar constraints will be required for Java classes.
Mapping specifications are a useful means of validating a mapping. This can be

achieved by firstly specifying the mapping. Next, an implementation of the mapping is
designed so that whenever it is run it will generate instances of the appropriate mapping
specification classes. The constraints on the mapping specification can then checked to
test that the mapping implementation has satisfied the mapping specification.

8.9 Mapping Issues

8.9.1 Merging

The previous example highlights an important issue that often occurs when writing
mappings: how to merge duplicate elements. Duplicate elements typically occur when
mapping graph like structures. Elements in the graph may have references to other ele-
ments in the graph that have already been mapped. In this situation, naively following
the link and mapping the element will result in duplicate elements being generated.

A good example is a mapping between UML and Java (a simplified model is shown in
figure 8.10). One way to implement this mapping is to traverse each of the classes in the
package, and then map each class and its associated attributes to Java classes and fields.
A problem arises because Java classes reference their types (thus introducing a circular
dependency). At the point at which a Att2Field mapping is executed, the generated
Field’s type may already have been generated. If the Att2Field mapping then generates
a new type, it will be duplicated.
There are a number of solutions to this problem:

• Maintain a table of generated elements and check it before generating a new ele-
ment. The Java to XML mapping described above is an example of this.

• Run the mapping and then merge duplicate elements on a case by case basis. An
example of how this is achieved in XOCL can be found in section 7.4.1.

• Use a generic mechanism that can run over object graphs merging duplicate ele-
ments. The walker algorithm defined in section 7.4.3 can form the basis for such
an algorithm.

In all cases, criteria must be identified for mergeable elements. In above mapping, the
criteria for merging two types is that they have the same name. In general, the criteria
must be defined on a case by case basis, and accommodated in the mappings.
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Figure 8.10: A simplified UML to Java mapping

8.9.2 Traceability

A common requirement when constructing mappings is to keep information about the
mapping. There are two strategies that can be used to achieve this:

• Create instances of reverse mappings or mapping specifications as the mapping is
performed. The result will be a graph of reverse mappings or mapping specifica-
tions connecting the domain and range elements.

• Extend the mapping language so that it records a trace of the executed mappings
in a generic.

The former approach is most appropriate when wishing to reverse the mapping or
check that it satisfies a specification of the mapping. The latter approach is most useful
when analysing or debugging a mapping.

8.10 XSync

Very often mappings are required that are not uni-directional, but which synchronise
elements, ensuring that if changes occur in one element they are reflected in another.
There are many applications of synchronised mappings, including:

• Maintaining consistency between views on a common collection of elements: for
instance, keeping diagrams consistent with models and vice versa.

• Managing multiple models of a system: for example, a large systems development
project might use multiple tools to design different aspects of a system but be
required to maintain consistency where design data overlaps.
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• Supporting round trip engineering where models are maintained in sync with
code and vice versa.

XSync is a mapping language that permits the modelling of synchronised mappings.
It enables rules about the relationship between concepts in two or more models to be
captured at a high level of abstraction. Synchronised mappings can be run concurrently,
continuously monitoring and managing relationship between elements.

8.10.1 Examples

The following code describes a simple XSync model in which we want to maintain con-
sistency between two instances of a class. The class is defined as follows:

context Root
@Class Point
@Attribute x : Integer end
@Attribute y : Integer end
@Constructor(x,y) ! end

end

We create two instances of the class, p1 and p2:

Root::p1 := Point(100,100); Root::p2 := Point(1,2);

Now we create a synchronised mapping:

Root::n1 :=

@XSync
@Scope
Set{p1,p2}

end
@Rule r1 1

p1 = Point[x=x;y=y];
p2 = Point[x=x;y=y] when p1 <> p2

do
"The points match".println()

end
@Rule r2 1

p1 = Point[x=x1];
p2 = Point[x=x2] when p1 <> p2 and x1 < x2

do
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"Incrementing x".println();
p1.x := x1 + 1

end
@Rule r3 1

p1 = Point[y=y1];
p2 = Point[y=y2] when p1 <> p2 and y1 < y2

do
"Incrementing y".println();
p1.y := y1 + 1

end
end;

A synchronised mapping consists of a scope and a collection of synchronisation rules.
The scope of the mapping is the collection of elements over which the mapping applies.
In this case, it is the two instances of Point, p1 and p2.

A rule describes the condition under which an action should occur. Actions are used
to describe synchronisations but they may also cause other side effects. This is impor-
tant because in practice it is often necessary to perform other tasks such as generating
reports, modifying values and so on.

A rule takes the form of a pattern, a boolean ’when’ clause and a ’do’ action. Provided
that the ’when’ clause is satisfied by variables introduced by a matched pattern, the ’do’
action will be invoked.

In this example, rule r1 checks to see whether p1 and p2 match against instances of
Point that have the same x and y values. If they do, and p1 and p2 are not the same
element, the ’do’ action is invoked to display a message. Rule r2 matches the x values
of p1 and p2 against the variables x1 and x2. If x1 is less than x2, the value of p1’s x is
incremented. Rule r3 does the same for the y values. The result of running this mapping
with two points with different x or y values will be to increment the values until they
are synchronised.

The previous example is limited as it is fixed to two specific instances. The following
shows how a synchronisation mapping can be parameterised by an operation:

context Root
@Operation sameName(c1,c2)

@XSync
@Scope
Set{c1,c2}

end
@Rule r1 1
x1 = Class[name = n1] when x1 = c1;
x2 = Class[name = n2] when x2 = c2 and n1 <> n2
do x1.name := x2.name

end
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end
end

This mapping applies to any pair of classes and synchronises the name of the first
with the second. Such a mapping would be useful for synchronising concrete syntax
classes and abstract syntax classes, for example see chapter 5.

This section has provided a short introduction to the XSync synchronisation language.
Future versions of this book will explore a number of deeper issues, including its appli-
cation to the synchronisation of complex structures, and the different execution models
it supports.

8.11 Conclusion

Mappings are a central part of Language-Driven Development as they enable key rela-
tionships between many different types of problem domain to be captured. Mappings
exist between vertical, horizontal and variant dimensions of a problem domain. In the
context of languages, mappings are needed to synchronise abstract and concrete syn-
taxes and to relate models and programs written in different languages.
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CHAPTER 9

REUSE

9.1 Introduction

Languages are hard to design. The effort that goes into producing a language definition
can be overwhelming, particularly if the language is large or semantically rich. One
way to address this problem is to find ways of designing languages so that they are
more reusable and adaptable. By reusing, rather than re-inventing, it is possible to
significantly reduce the time spent on development, allowing language designers to
concentrate on the novel features of the language.

This chapter looks at techniques that can be used to design reusable metamodels.
These include approaches based on the use of specific extension mechanisms such as
stereotyping and class specialisation, and richer mechanisms that support the large
grained extension of modelling languages, such as meta-packages and package spe-
cialisation. An alternative approach based on the translation of new concepts into pre-
defined is also discussed.

The following sections examine each of these approaches in turn, identifying their
advantages and disadvantages and offering practical advice on their application.

9.2 Extension Based Approaches

This approach involves extending and tailoring concepts from an existing metamodel.
The most common mechanisms for implementing extension are class specialisation and
stereotyping.
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9.2.1 Specialisation

Specialisation has been widely used as a reuse mechanism by OO programming lan-
guages for many years. Since XMF is an OO metamodelling language, it is not surpris-
ing that this mechanism can also be used to reuse language concepts.

One of the best ways to support this approach is to provide a collection of classes (a
framework) that supports a collection of reusable language concepts. These concepts
can then be specialised to support the new language concepts.

The XCore framework (see section 9.5) aims to support the abstractions found in pop-
ular metamodelling frameworks such as MOF [mof00] and EMF [emf08] at a usable
level of granularity. An important difference between XCore and other frameworks is
that XCore is a platform independent, executable language with a precisely defined syn-
tax and semantics. This means that these semantics can be extended as well to rapidly
define semantically rich language concepts. For example, if the class XCore::Class is
specialised by the class X, all instances of X will inherit the properties of a class, includ-
ing the following:

• They can be instantiated.

• They can have attributes, operations and constraints.

• They can be serialized.

• Their instances can be checked against any constraints.

• Their operations can be invoked on their instances.

• They have access to the grammar and diagram syntax defined for classes.

Furthermore, because the class Class also specialises Object, all operations that apply
to an Object can also be applied to instances of X, such as executing its meta-operations,
mapping it to another concept and so on.

Having an executable semantics for a metamodelling framework adds significant
value because semantics can be reused along with the structural properties of the lan-
guage concepts.

Example

Consider the requirement to model the concept of a mapping. A mapping has the fol-
lowing properties:

• It has a domain, which is a collection of input types to the mapping.

• It has a range, which is the result type of the mapping.

• A mapping can be instantiated and the state of a mapping instance can be recorded.
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• Operations can be defined on an mapping and can be executed by its instances.

• A mapping owns a collection of clauses that define patterns for matching input
values to output values.

• A mapping instance can be executed, matching inputs to clauses and resulting in
an output value.

Many of these properties can be reused from existing XCore concepts, thus avoiding
the need to model them from scratch. The model in figure 9.1 shows how this might be
done by specialising the class Class.

NamedElement
(from Root::XCore)

Class
(from Root::XCore)

ClauseMapping

run()

<<ordered>>

domain

 

range

<<ordered>>

clauses

Figure 9.1: Reuse of the class Class to define a new Mapping concept

The mapping class reuses all the properties of Class, including attributes, operations
and the machinery to support instantiation and operation invocation. Other properties,
such as having domain and range types, and executing mappings are layered on top.

9.2.2 Stereotyping, Tags and Profiles

Stereotypes are a widely used device that enable existing modelling concepts to be
treated as virtual subclasses of an existing metamodelling class. This is achieved by
associating metamodel classes with information about what stereotypes they may sup-
port. An example of this might be to stereotype the class Class as a Component and the
class Association as a Component Connector.

Tags and tagged values are closely related to stereotypes. These have the same effect
as extending metamodel classes with additional attributes and information about the
values these attributes may be assigned. An example of tag and tagged value might
be the tag ”visibility” attached to an Operation, which can have the values, ”public”,
”private” or ”protected”.
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Together, stereotypes and tags can be used to create what is called a profile: a collec-
tion of stereotyped concepts that form the vocabulary of a new or hybrid modelling
language.

Many UML tools provide support for stereotypes, tags and tagged values, allowing
them to be visually displayed in an editor with an appropriate identifier. Figure 9.2
shows a class diagram with two stereotyped classes and a stereotyped association.

Display
<<Interface>>

Render
<<Interface>>

 <<Connector>>

render

Figure 9.2: Using stereotypes to model interfaces and connectors

The advantage of stereotypes and tags is that they add a convenient level of tailorabil-
ity to modelling tools that would otherwise be unavailable.

Nevertheless, stereotypes and tags suffer from being semantically weak and are not
a replacement for a well-defined metamodel of the language. As the example in figure
9.3 shows, they offer little control over the correct usage of the language: for instance,
a model written in a component modelling language might not permit interfaces to
be connected to classes, yet this will not be ruled out by stereotypes. Furthermore,
stereotypes are not able to capture the semantics of a language as they cannot change
the properties of meta-classes.

Display
<<Interface>>

Render

 <<Connector>>

render

Figure 9.3: An example of inconsistencies that can arise through the use of stereotypes

While UML profiles [uml01] allow additional constraints to be defined on stereotypes,
there are few if any tools available that support this capability.

9.2.3 Package specialisation and Meta-Packages

Although specialisation can be used to directly extend metamodel concepts, this is a
significantly more involved process than defining stereotypes because a concrete syntax
for the concepts will also have to be modelled if they are to be used in a tool. A better
solution would be one that combines the simplicity of stereotypes with the power of
specialisation.

One way of achieving this is through the use of package specialisation and meta-packages.
Package specialisation is a relationship between two packages where the child package
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specialises the parent package. The consequence of this is that it enables a package of
language concepts to be clearly identified as extensions of a package of existing lan-
guage concepts (the parent package).

As an example, figure 9.4 shows a package of component concepts specialising the
XCore package.

XCore

 

Component

 

Figure 9.4: Specialising the XCore package

Inside the components package some choices are made about the XCore classes that
are to be specialised. These are shown in figure 9.5. Additional constraints can be added
to rule out certain combinations of components, for example, a connector must always
connect two interfaces.

Connector

Class
(from Root::XCore)

InterfaceConnector

Attribute
(from Root::XCore)

Component

Interface

Figure 9.5: specialising XCore concepts

This provides sufficient information to determine whether a concept should be rep-
resented as a native concrete syntax element or as a stereotyped element. However, a
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way must now be found of using the specialised package. This is where meta-packages
come in useful. A meta-package is a package of elements that are instances of elements
in another package (the meta-package). In the components example, a package contain-
ing a model written in the components language is related to the components package
by a meta-package relationship (see figure 9.6).

Components

 

AModel

 

XCore

 

metaPackage

Figure 9.6: A metapackage relationship between a model and the components package

If a tool understands that the model is an instance of a package that specialises the
XCore package it can provide appropriate stereotypes for each of the specialised ele-
ments (see figure 9.7 for an example). These stereotyped elements can be used to con-
struct models, which can then be checked against any constraints in the components
package. Because the stereotyped elements are real instances of meta-model elements
all the semantics inherited from XCore will be available as well.

Meta-packages are a more generic concept than just a mechanism for dealing with
concrete syntax. Consider a language expressed as a meta-package that already has
tools developed for the language. If a new language differs from the existing one in
a few minor but important ways we would like to make use of the existing tools but
clearly work with the new language. The new language can be defined as an extension
of the meta-package. A package whose meta-package is the new languages can thus be
supplied to the development tools using the standard principle of substitution.

If tools are generic with respect to the meta-package, then it can tailor itself by provid-
ing specific instances of functionality for each new language feature that is a sub-class of
a corresponding feature in the meta-package. This may cover a wide range of different
aspects of tool functionality.
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Widget
<<Component>>

Render
<<Interface>>

Renderer
<<Component>>

Display
<<Interface>>

 <<Connector>>

render 

<<InterfaceConnector>>display

 

<<InterfaceConnector>> render

Figure 9.7: A model written in the components language

As an example, imagine that a configuration management tool expects instances of
any sub-package of XCore and provides facilities such as rollback, model-merge etc,
based on all the sub-classes of Class, Association, Attribute etc then a wide variety of
development tools can be constructed each of which works with a different language
but which all use the same development code.

9.3 Translation Based Approaches

The aim here is to define new modelling concepts by a translation to existing concepts
that implement their required properties. As described in chapter 8, there are a variety
of ways of translating between metamodel concepts. These include:

• Defining a translation from the concrete syntax of a concept to an appropriate
abstract syntax model written in another language. The new language is thus a
sugar on top of the existing language.

• Translating from the abstract syntax of the new concept into the appropriate ab-
stract syntax model.

• Maintaining a synchronised mapping between concepts.

By translating into an existing primitive, the effort required to model the semantics of
the new concept is significantly reduced. The translation approach is akin to a compi-
lation step, in which new concepts are compiled into more primitive, well-defined con-
cepts. The advantage is that layers of abstraction can be built up, each ultimately based
on a core set of primitives support by a single virtual machine. This greatly facilitates
tool interoperability as the virtual machine becomes a single point of tool conformance.
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9.3.1 Example

A common approach to implementing associations is to view them as a pair of attributes
and a constraint, where associations between classes are implemented as attributes on
each class plus a round-trip constraint that must hold between instances of the classes.
A translation can be defined between an association model (either expressed as concrete
or abstract syntax) and the more primitive concept of class and attribute.

9.4 Family of Languages

As the number of languages built around a metamodelling language architecture grows,
it is very useful to be able to manage them in a controlled way. One approach is to
organise them into families of languages [CKM+99]. In a family of languages, each
member is related to another language through its relationship to a common parent.
The result is a framework of languages that can be readily adapted and combined to
produce new language members: in other words a language factory or product line
architecture.

There are a number of mechanisms that are useful realising such a framework. Pack-
ages are a good mechanism for dividing languages into language components, which
can be combined using package import. An example of such an arhictecture is shown
in figure 9.8.

Packages can be broken down further, both vertically and horizontally. Vertical de-
composition decomposes a language into a sub-language components that incremen-
tally build on each other. An example might be an expression language that is arranged
into packages containing different types of expressions: binary, unary and so on.

A horizontal decomposition breaks a language into different aspects. It makes sense
to make a distinction between the concrete syntax, abstract syntax and semantic domain
of the language component (see figure 9.9).

9.5 The XCore Framework

Figure 9.10 shows the class framework for XCore. This framework is based on a com-
bination of MOF and other metamodelling frameworks such as Ecore with necessary
extensions to support executability. As such it should be viewed as an example of a
typical metamodelling language framework.

Within this framework there are a number of abstract classes that encapsulate the
generic properties of common types of language concepts. The following table identifies
some of the key ones:

Classifier A classifier is a name space for operations and constraints. A classifier is
generalizable and has parents from which it inherits operations and constraints.
A classifier can be instantiated via new(). In both cases the default behaviour is to
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AsynchronousConnectors

 

Components

 

SynchronousConnectors

 

XCore

 

Connectors

 

imports

imports

imports

imports

Figure 9.8: A language architecture

return a default value as an instance. If the classifier is a datatype then the basic
value for the datatype is returned otherwise ’null’ is returned as the default value.
Typically you will not create a Classifier directly, but create a class or an instance
of a sub-class of Class.

Container A container has a slot ’contents’ that is a table. The table maintains the
contained elements indexed by keys. By default the keys for the elements in the
table are the elements themselves, but sub-classes of container will modify this
feature accordingly. Container provides operations for accessing and managing
its contents.

DataType DataType is a sub-class of Classifier that designates the non-object classifiers
that are basic to the XMF system. An instance of DataType is a classifier for values
(the instances of the data type). For example Boolean is an instance of DataType
- it classifies the values ’true’ and ’false’. For example Integer is an instance of
DataType - it classifies the values 1, 2, etc.

NamedElement A named element is an owned element with a name. The name may
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SemanticMapping

 

AbstractSyntax

 

SemanticDomain

 

importsimports

Figure 9.9: Horizontal language components

be a string or a symbol. typically we use symbols where the lookup of the name
needs to be efficient.

Namespace A name space is a container of named elements. A name space defines
two operations getElement() and hasElement() that are used to get an element by
name and check for an element by name. Typically a name space will contain dif-
ferent categories of elements in which case the name space will place the contained
elements in its contents table and in a type specific collection. For example, a class
is a container for operations, attributes and constraints. Each of these elements
are placed in the contents table for the class and in a slot containing a collection
with the names ’operations’, ’attributes’; and ’constraints’ respectively. The special
syntax ’::’ is used to invoke the getElement() operation on a name space.

StructuralFeature This is an abstract class that is the super-class of all classes that de-
scribe structural features. For example, Attribute is a sub-class of StructuralFea-
ture.

TypedElement A typed element is a named element with an associated type. The type
is a classifier. This is an abstract class and is used (for example) to define Attribute.

9.6 Conclusion

This chapter has shown the importance of being able to reuse language definitions
rather than having to design new languages from scratch. Two approaches were pre-
sented: specialisation and translation. specialisation involves reusing pre-existing lan-
guage concepts via class specialisation. A framework of language concepts is important
for this purpose. The advantage of the approach is that it enables tools to rapidly adapt
their functionality to support new concepts. Translation involves mapping new con-
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cepts to existing concepts. It is particularly useful when constructing layered definitions
in which richer abstractions are translated down onto more primitive abstractions.
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Figure 9.10: Overview of the XCore class framework
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CHAPTER 10

CASE STUDY 1: AN
ASPECT-ORIENTED LANGUAGE

10.1 Introduction

This chapter presents a metamodel for a simple aspect-oriented language (AOL). We
construct an abstract syntax model for the language, along with an operational seman-
tics and a concrete syntax definition.

10.2 AOL

The AOL enables different aspects of components to be modelled separately from the
component itself, thus facilitating the separation of concerns. The AOL is a general
purpose language because it can be applied across multiple languages provided that
they can access its metamodel. An example of its syntax is shown below:

@Aspect <name>
...
@Class <path>

<namedelement>
...

end
end

The aspect named <name> adds one or more named elements to the class referenced
by the path <path>. In the version of AOL presented here, classes are the components
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that aspects are added to, but in practice any element can be viewed as a component.
As an example, consider the requirement to extend the class Box with the ability to

generate SVG (Scalable Vector Graphics). Rather than merging this information into the
class definition, an aspect can be used to separate out this additional capability:

@Aspect ToSVG
@Class Box
@Operation toSVG(parentx,parenty,out)
if self.shown() then
format(out,"<rect x=\"˜S\" y=\"˜S\" width=\"˜S\" height=\"˜S\"
fill =\"#DBD5D5\" stroke=\"black\" stroke-width=\"1\"/>˜\%",
Seq{parentx+x,parenty+y,width,height});
@For display in displays do

display.toSVG(parentx+x,parenty+y,out)
end

end
end

end

It is important to note that this is a much simpler mechanism than that used by aspect-
oriented programming languages such as AspectJ. Nevertheless, it is still a useful and
practical mechanism for separating out different aspects of a model.

10.3 Language Definition Strategy

The approach taken to defining the syntax and semantics of this language is to clearly
separate syntax concepts from semantic concepts. Parsing the concrete syntax for AOL
results in an intermediate abstract syntax definition, which is then desugared into a
model of the AOL’s operational semantics.

10.4 Abstract Syntax

10.4.1 Identification of Concepts

Based on the example shown above the following candidates for concepts can be imme-
diately identified:

Aspect An aspect has a name and contains a collection of components.

Class A class is a syntax concept that has a path to the class that the named element is
to be added to. A class is also a component.
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NamedElement The element that is added to the class referenced by its path.

10.4.2 Abstract Syntax Model

An extended abstract syntax model is shown in figure 10.1.

Name
(from Root::Parser::BNF)

Class

Aspect

Performable
(from Root::XCore)

ComponentDef

Path
(from Root::OCL)

 name

<<ordered>>

elements

<<ordered>>components

 

path

Figure 10.1: An abstract syntax model for AOL

There are a number of points to note about the model:

• Aspects have a name and are containers of component definitions. A component
definition is the abstract superclass of all aspect component definitions

• Class specialises component and has a path to the class that its elements are to
be added to. The elements of Class are of type Performable (the Root class for all
parsable elements).

• Class is not the class XCore::Class, but is purely a syntactical concept.

10.5 Semantics

The abstract syntax model focuses purely on syntax and does not define a semantics.
This is important for the AOL because there is a clear separation between the language’s
syntax and the result of parsing the syntax, which is to add a new named element to an
existing class.

To specify the semantics of the language we must therefore build a semantic model.
This is presented in figure 10.2.
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Container
(from Root::XCore)

ComponentAspect

NamedElement
(from Root::XCore)

Stringname

NameSpace
(from Root::XCore)

*

components

*
contents

 

nameSpace

Figure 10.2: A semantic model for the AOL

A component has a namespace and a collection of named elements that are to be
added to the namespace.

The following operation is required in order to add elements to a component:

context Component
@Operation add(e:NamedElement)

self.contents := contents->including(e)
end

The semantics of adding a named element to the namespace referenced by the com-
ponent is defined by the following operation:

context Component
@Operation perform()
@For e in self.contents do
nameSpace.add(e)

end
end
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10.6 Concrete Syntax

A concrete syntax for the AOL is defined in XBNF as follows. An aspect is a name
followed by a sequence of component definitions. The result of parsing an aspect is to
create an instance of the abstract syntax class Aspect.

Aspect ::= name = Name components = (ComponentDef)* { Aspect(name,
components) }.

An aspect is then desugered into an instance of the semantics class Aspect:

context Aspect
@Operation desugar()
components->iterate(c e = [| Aspects::Semantics::Aspect(<StrExp(

name)>) |] | [| <e>.add(<c>) |])
end

An abstract syntax class definition is a path followed by a sequence of expressions,
which are the result of parsing the elements that are to be added to the class:

Class ::= path = Path elements = Exp* { Class(path,elements) }.
Path ::= root = VarExp names = (’::’ Name)* { Path(root,names) }.

Desugaring an abstract syntax class creates an instance of the class Semantics::Component
whose namespace is the class given by the path of the syntax class, and whose elements
are the named elements of the abstract syntax class:

context Class
@Operation desugar()
elements->iterate(c e = [| Aspects::Semantics::Component(<path>)

|] | [| <e>.add(<c>) |])
end

Once the desugaring process has occurred, the perform() operation will be run on
each component to add the named elements to the class referenced by its path.
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10.7 Conclusion

This chapter has shown that the key features of a simple aspect-oriented language can
be captured within metamodels. The strategy taken was to keep the abstract syntax
and semantic models separate and use the concrete syntax definition to firstly create
an instance of the abstract syntax model, and then desugar it into an instance of the
semantic model.
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CHAPTER 11

CASE STUDY 2: A TELECOMS
LANGUAGE

11.1 Introduction

This chapter presents an example of the definition of a domain specific modelling lan-
guage: a telecoms modelling language. The approach taken is to extend the XCore
metamodel and to use package extension and metapackages to construct stereotyped
concrete syntax elements for the language. Mappings are then constructed from the
language metamodel to a metamodel of Java and a metamodel of a user interface lan-
guage. The work presented in this chapter is based on an earlier case study described
in [GAC+04].

11.2 The Case Study: OSS/J Inventory

Developing and operating Operational Support Systems (OSS) for telecommunications
companies (telcos) is a very expensive process whose cost continuously grows year on
year. With the introduction of new products and services, telcos are constantly chal-
lenged to reduce the overall costs and improve business agility in terms of faster time-
to-market for new services and products. It is recognised that the major proportion of
overall costs is in integration and maintenance of OSS solutions. Currently, the OSS
infrastructure of a typical telco comprises an order of O(1000) systems all with point-to-
point interconnections and using diverse platforms and implementation technologies.
The telcoms OSS industry has already established the basic principles for building and
operating OSS through the TMF NGOSS programme [NGOSS] and the OSS through
Java initiative [oss04]. In summary, the NGOSS applies a top-level approach through
the specification of an OSS architecture where:
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• Technology Neutral and Technology Specific Architectures are separated.

• The more dynamic ”business process” logic is separated from the more stable
”component” logic.

• Components present their services through well defined ”contracts”

• ”Policies” are used to provide a flexible control of behaviour in an overall NGOSS
system.

• The infrastructure services such as naming, invocation, directories, transactions,
security, persistence, etc are provided as a common deployment and runtime frame-
work for common use by all OSS components and business processes over a ser-
vice bus.

The case-study was based upon OSS component APIs specified in Java and J2EE by
OSS/J. The case-study was specifically driven by the OSS/J Inventory component API
[Gau04] and set as its goal to automatically conduct compliance tests between the API
specification and the results of the case study. This end acquired more value by the fact
that this particular API specification lacks, as of yet, a reference implementation and
compatibility kit that would permit its practical validation.

The exercise had two main objectives:

• Construction of a domain specific language metamodel for the OSS/J Inventory:
The OSS/J Inventory specification document includes a UML class diagram of an
inventory meta-model and some textual, i.e. informal, description of its seman-
tics. The meta-model defines the types of information/content the inventory will
manage, such as products, services and resources.

• Automatic generation of a system implementation conforming to standard OSS/J
architectural patterns and design guidelines: In order to comply with the OSS/J
guideline, the case-study aims at implementing an application tool that allows
users to manage the inventory content through a simple GUI. Example users of
such a tool may be front-desk operators who respond to customer calls and access
the inventory to setup a new or change the state of an existing product/service
instance.

Figure 11.1 shows how a language definition for the inventory modelling language
was constructed. Firstly, a metamodel for the inventory DSL was defined by extend-
ing the XCore meta-model. XOCL was used to specify meta-model constraints so that
models written in the inventory language can be checked for correctness. That is, by
means of XOCL, the meta-model semantics can be formally captured and automatically
enforced, in contrast to the informal, textual description of the semantics presented in
the OSS/J Inventory API specification document. Next, mapping rules written in XMap
were constructed to transform the inventory meta-model into meta-models of two tar-
get platform specific languages: EJB and Java.
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Figure 11.1: Overview of the inventory language definition

11.3 Abstract Syntax Model

Figure 11.2 shows the abstract syntax model for the inventory language. As mentioned
earlier, it includes concepts from the OSS/J Core Business Entities, which are a subset of
TMF’s NGOSS standard. The inventory language consists of the following constructs:

• Entity, that represents any type of information included in the inventory. Accord-
ing to the specification, three types of inventory content are defined, namely, Prod-
uct, Service and Resource, which extend type Entity.

• EntitySpecification, that represents configurations of Entities, i.e. constraints, such
as range of values or preconfigured setting on features of the Entity. Again, the API
specification defines three subtypes of EntitySpecification, namely, ProductSpec-
ification, ServiceSpecification and ResourceSpecification, each representing spec-
ifications for Service, Product and Resource, respectively. EntityAttribute, that
represents relationships between Entity types.

A number of concepts from the XCore package are specialised in order to reuse their
syntax and semantics:
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ResourceSpec
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(from Root::XCore)
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(from Root::XCore)
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EntitySpecEntity EntityAttribute

Product
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Figure 11.2: The abstract syntax model for the inventory language

• Entity specialises the class XCore::Class, hence it can be instantiated and contain
attributes, operations and constraints.

• EntitySpecification specialises XCore::Constraint. It can, therefore, be owned by
an Entity and contain an evaluate-able XOCL expression. In the Inventory API
specification document, EntitySpecification is represented as a UML class, which
has a simple semantics, and thereby great modelling incapacity to express in full
potential the concept semantics as an Entity configuration constraint. Therefore,
by modelling EntitySpecification as a pure constraint, rich expressive power is
conveyed to the concept enabling it to represent complex Entity configurations.

• EntityAttribute specialises the class XCore::Attribute and is used to associate dif-
ferent Entity types.

11.3.1 Well-formedness Rules

A number of constraints (well-formedness rules) apply to the inventory language. These
are expressed in OCL. As an example, the following OCL constraint states that if an En-
tity specialises another Entity it must be of the same type as the parent entity. That is,
entity IPStream S of figure 11.3, for instance, can inherit from IPStream, as both are of
type Service, but cannot inherit from IPVPN that is of type Product. Here, of() is an
XOCL operation that returns the meta-class of the entity (i.e. the class that the entity is
an instance of).
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context Entity
@Constraint SameParentType
parents->select(p |

p.isKindOf(Entities::Entity))->forAll(p |
p.of() = self.of())

end

Another noteworthy constraint, formally delivering an important semantic property
of the OSS/J Inventory API specification, involves the association of an Entity type
with the correct type of EntitySpecification. In other words, classes of type Service,
for instance, can only have specifications of type ServiceSpecification and not of type
ProductSpecification or ResourceSpecification. The XOCL for the constraint follows:

context Entity
@Constraint CorrectSpecs
self.constraints->forAll(c |
let ctype = c.of()
in @Case ctype of

[ IML::Entities::ServiceSpec ] do
self.isKindOf(IML::Entities::Service)

end
[ IML::Entities::ProductSpec ] do
self.isKindOf(IML::Entities::Product)

end
[ IML::Entities::ResourceSpec ] do

self.isKindOf(IML::Entities::Resource)
end

end
end)

11.4 Concrete Syntax

Because package extension and meta-packages (see section 9.2.3) will be used to in-
troduce stereotyped diagram elements for the language, there is no need to define a
separate concrete syntax model.

11.5 Semantics

Because all concepts in the inventory language specialise XCore concepts that already
have an executable semantics, and the concepts add no further semantic properties,
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there is no need to define a separate model of semantics.

11.6 Instantiation

In figure 11.3 an inventory model is presented, which is an instance of the inventory
specific metamodel (its meta-package). It illustrates a subset of an IP Virtual Private
Network (IPVPN) product. The model shows an IPVPN containing (containedServices
attribute) many IPStream entities, an ADSL service that comes in different offerings
for home and for office premises represented by IPStream S and IPStream Office, re-
spectively. IPStream S is further specialised by IPStream S500, IPStream S1000 and IP-
Stream S2000, entities differentiating on the downstream bandwidth of the link that is,
respectively, 500, 1000 and 2000 kbps. Individual features of the latter entities are de-
fined in the accompanying ServiceSpec constraints, namely, S500Spec, S1000Spec and
S2000Spec. Similarly, features of the IPVPN product and the IPStream S service are
specified in the IPVPNSpec and IPStream SSpec specification constraints.

S2000_Spec

<<ServiceSpec>>

IPStream_S
<<Service>>

S1000_Spec

<<ServiceSpec>>

IPVPNSpec

<<ProductSpec>>

S500_Spec

<<ServiceSpec>>

IPStream
<<Service>>

StringcontentionRatio

StringunitType

IntegerupStream

IntegerdownStream

IPStream_SSpec

<<ServiceSpec>>

IPVPN
<<Product>>

IPStream_2000

IPStream_Office
<<Service>>

IPStream_1000IPStream_500

constraints

*<<EntityAttribute>>

containedServices

constraints

constraints

constraints

constraints

Figure 11.3: An inventory model

Because all model entities of figure 11.3 are instances of inventory meta-classes that
specialise Entity, which, in turn, extends class XCore::Class, they inherit the ability to
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have constraints, attributes and operations (and their associated specialisations, namely,
Specifications and EntityAttribute). As an example, the IPStream S2000 is associated
with S2000Spec, which has the following XOCL body:

self.upStream = 250 and
self.downStream = 2000 and
self.unitType ="kbps"

In addition, XOCL can be used to write operations on the inventory model. XOCL
extends OCL with a small number of action primitives, thus turning it into a program-
ming language at the modelling level. As an example, the following operation creates
an instance of an IPStream and adds it as a containedServices attribute to an IPVPN:

context IPVPN
@Operation addIPStream(up,dwn,unit,con)

self.containedServices :=
self.containedService->including(IPStream(up,dwn,unit,con))

end

Finally, because the entities in the model are themselves instantiable, it is possible to
create an instance of the IPStreamModel and check that the instance satisfies the con-
straints that are defined in the inventory model (see figure 11.4). This is a further level
of instantiation that is possible because of the metaPackage relationship between the
inventory model and the inventory language meta-model. Furthermore, the operations
on the model can be executed, allowing all aspects of the model to be validated.

 
:IPStream_S500

 
:IPVPN

 
:IPStream_S1000

 

:Set(<Service IPStream>)

 

containedServices

 

Figure 11.4: A snapshot (instance) of the IPVPNModel
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11.7 Transformations

Using XMap, two mappings have been defined from the inventory language. The first
generates EJBs, while the second focuses on the generation of Java and a Java class tool.
We concentrate on the second one here.

The model of figure 11.5 shows the mappings used to generate Java. Rather than
mapping directly from the inventory language meta-model, a more generic approach
is taken in which the mapping was defined from XCore classes. Because the inventory
language extends the XCore meta-model, they therefore also apply to inventory models
(and any other language specialisations defined in the future).

OCL
(from Root::OCL)

TranslateClass

TranslateOCL

Class
(from Root::XCore)

Field
(from Root::Languages::MicroJava::Structure)

Class
(from Root::Languages::MicroJava::Structure)

Attribute
(from Root::XCore)

TranslateConstraint

TranslateAttribute

Constraint
(from Root::XCore)

Package
(from Root::Languages::MicroJava::Structure)

Method
(from Root::Languages::MicroJava::Structure)

Package
(from Root::XCore)

TranslatePackage

domain

domain

range

range

domain

domain

range

range

domain

Figure 11.5: Overview of the XCore to Java mapping

Every element in the XCore package has a mapping to a corresponding element in
the Java meta-model. The following clause describes a mapping from an XCore class to
a Java class:

context TranslateClass
@Clause MapClass
XCore::Class[name = name,

parents = P,
operations = O,
constraints = C,
attributes = A] do

classToMicroJava(name,P,O,C,A)
end
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Here, a Class is mapped to a Java Class, which is the result of passing the class’s name,
parents, operations, constraints and attributes into the operation classToMicroJava().
This operation is shown below:

context XCore::Class
@Operation classToMicroJava(name,P,O,C,A)
let K = constraintsToMicroJava(C);

M = O->asSeq->collect(o | XCoretoMicroJava(o));
F = A->asSeq->collect(a | XCoretoMicroJava(a))

in if P = Set{Object}
then [| @Java class <name> { <* F + K + M *> } end |]
else

let parent = P->sel.name.toString()
in [| @Java class <name> extends <Seq{parent}> { <* F + K + M

*> } end |]
end

end
end

Briefly, the operation makes use of quasi quotes (see chapter 5) to ’drop’ the name,
parent and (once they have been translated) the attributes, operations and constraints
into a syntactical definition of a Java class. This is possible because an XBNF grammar
has been defined for the MicroJava language. The result will be an instance of the Mi-
croJava language metamodel, which can then outputted as a program in textual form.

An important point to make about the mapping is that it translates all elements of
an XCore model (and by specialisation and inventory model) into Java. This includes
the bodies of operations and constraints, which are translated into Java operation. The
resulting Java program can be run and checked against the behaviour of the original
model running on the VM.

11.8 Tool Mapping

While the above mapping generates a standalone Java program corresponding to an
inventory model, it would more useful to users of the language if the model it rep-
resents could be interacted with via a user interface. To achieve this, a mapping was
constructed from XCore to a meta-model of a tool interface for managing object mod-
els. This represents a domain specific language for tools. The meta-model of the class
tool interface is shown in figure 11.6. A class tool provides an interface that supports
a standard collection of operations on objects, such as saving and loading objects and
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checking constraints on objects. In addition, a class tool defines a number of managers
on classes, which enable instances of classes to be created and then checked against their
class’s constraints or their operations run.

ReflectOperation
Stringreflect

toXML()

InstanceOperation
Stringname

Tool
Stringname

toXML()

CheckConstraints

toXML()

CheckAllOperation

toXML()

ReflectClassOperation
Stringreflect

toXML()

Manager
Stringclass

toXML()

SaveInstanceOperation

toXML()

LoadOperation

toXML()

DeleteClassOperation

toXML()

InstanceManager

toXML()

DeleteInstanceOperation

toXML()

SaveOperation

toXML()

LoadClassOperation

toXML()

ClassOperation
Stringname

ReflectInstanceOperation
Stringreflect

toXML()

ToolOperation
Stringname

NewOperation

toXML()

*

managers

*operations

 

instanceManager

*operations

*

operations

Figure 11.6: The class tool metamodel

A mapping can be defined to the class tool meta-model (not shown here), which
generates a tailored user interface for creating and manipulating instances of a meta-
modelling language such as the inventory language. Applying this mapping to the
IPVPN model shown in figure 11.6 results in the generation of the class tool in figure
11.7. Here, buttons have been generated for each of the entities in the model. These
allow the user to create new instances, edit their slot values and delete instances. As the
figure shows, a button for invoking the addIPStream() method defined earlier has also
been added in the GUI executing functionality that implements in Java the method’s
behaviour described in the model with XOCL.

11.9 Conclusion

This chapter has shown how a relatively light weight approach to extending a meta-
model can be used to define a domain specific modelling language. Metapackages were
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Figure 11.7: The generated class tool

used to ensure consistancy of models against its metmodel. Because of the complete-
ness of the new language, it was then possible to generate a complete deployment of
domain specific language in Java.
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CHAPTER 12

CASE STUDY 3: A SIMPLE
PROGRAMMING LANGUAGE

12.1 Introduction

This chapter describes how XMF can be used to define the syntax and semantics of a
simple action based programming language called XAction. It begins by presenting
the XAction language and then define a concrete grammar for it. Next a variety of
approaches, including operational and translational approaches are used to define an
executable semantics for the language. Note, this chapter provides an in depth technical
treatment of semantics.

12.2 XAction

XAction is a simple action language with values that are either records or are atomic.
An atomic data value is a string, integer or boolean. A record is a collection of named
values. XAction is block-structured where blocks contain type definitions and value
definitions. XAction has simple control structures: conditional statements and loops.
The following is a simple example XAction program that builds a list of even numbers
from 2 to 100:

begin
type Pair is head tail end
type Nil is end
value length is 100 end
value list is new Nil end
while length > 0 do

begin
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if length % 2 = 0
then
begin
value pair is new Pair end
pair.head := length;
pair.tail := list;
list := pair;

end
end;
length := length - 1;

end
end

The definition of XAction is structured as a collection of XMF packages. The Values
package defines the semantic domain for XAction; it contains classes for each type of
program value. Executable program phrases in XAction are divided into two categories:
Expressions and Statements. Expressions evaluate to produce XAction values.
Statements are used to control the flow of execution and to update values.

@Package XAction
@Package Values end
@Package Expressions end
@Package Statements end

end

The rest of this section defines the syntax of XAction by giving the basic class definitions
and the XBNF grammar rules for the language constructs.

12.2.1 XAction Values

XAction expressions evaluate to produce XAction values. Values are defined in the
Values package and which is the semantic domain for XAction. Values are either atomic:
integers and booleans, or are records. We use a simple representation for records: a
sequence of values indexed by names.

XAction records are created by instantiating XAction record types. A record type
is a sequence of names. Types raise an interesting design issue: should the types be
included as part of the semantic domain since evaluation of certain XAction program
phrases give rise to types that are used later in the execution to produce records. The
answer to the question involves the phase distinction that occurs between static analysis
(or execution) and dynamic execution. Types are often viewed as occurring only during
static analysis; although this is not always the case. We will show how the semantics of
XAction can be defined with and without dynamic types.

All values are instances of sub-classes of the class Value:
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context Values
@Class Value
@Attribute value : Element end
@Constructor(value) ! end

end

Atomic values are either booleans or integers. Each class defines operations that the
semantic domain provides for manipulating XAction values. The classes below show
the structure and a representative sample of operations:

context Values
@Class Bool extends Value
@Operation binAnd(Bool(b))
Bool(value and b)

end
@Operation binOr(Bool(b))
Bool(value or b)

end
end

context Values
@Class Int extends Value
@Operation binAdd(Int(n))
Int(value + n)

end
end

Record types are sequences of names. A type provides a new operation that instantiates
the type to produce a new record. This operation is only meaningful if we have dynamic
types:

context Values
@Class Type extends Value
@Attribute names : Seq(String) end
@Constructor(names) ! end
@Operation new()
Record(self,names->collect(n | Seq{n | null}))

end
end
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Records are sequences of values indexed by names; the names are found by navigating
to the type of the record:

context Values
@Class Record extends Value
@Attribute type : Type end
@Attribute fields : Seq(Element) end
@Constructor(type,fields) ! end
@Operation lookup(name:String)

fields->at(type.names->indexOf(name))
end
@Operation update(name:String,value:Element)

fields->setAt(type.names->indexOf(name),value)
end

end

12.2.2 XAction Expressions

XAction expressions are program phrases that evaluate to produce XAction values. The
following classes define the expression types:

context Expressions
@Class Exp
end

end

A binary expression has a left and right sub-expression and an operation. The name of
the operation is represented as a string:

context Expressions
@Class BinExp extends Exp
@Attribute op : String end
@Attribute left : Exp end
@Attribute right : Exp end
@Constructor(op,left,right) ! end

end

An atomic constant expression is either an integer or a boolean:
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context Expressions
@Class Const extends Exp
@Attribute value : Element end
@Constructor(value) ! end

end
end

A new record is produced by performing a new expression. The type to instantiate is
given as a string. An alternative representation for types in new expressions would be
to permit an arbitrary expression that evaluates to produce a type. This design choice
would rule out static typing and force the language to have dynamic types. We wish to
use XAction to illustrate the difference between dynamic and static types in semantic
definitions so we use strings to name types in new expressions:

context Expressions
@Class New extends Exp
@Attribute type : String end
@Constructor(type) ! end

end
end

A variable is just a name:

context Expressions
@Class Var extends Exp
@Attribute name : String end
@Constructor(name) ! end

end

A record field ref is:

context Expressions
@Class FieldRef extends Exp
@Attribute value : Exp end
@Attribute name : String end
@Constructor(value,name) ! end

end

The concrete syntax of expressions is defined by the XBNF grammar for the class Exp.
The grammar parses the expression syntax and synthesizes instances of the expression
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classes:

context Exp
@Grammar
// Start at Exp. Logical operators bind weakest.
Exp ::= e = ArithExp [ op = LogicalOp l = Exp { BinExp(op,e,l) } ].
LogicalOp ::= ’and’ { "and" } | ’or’ { "or" }.
// The ’.’ for field ref binds tighter than ’+’ etc.
ArithExp ::= e = FieldRef [ op = ArithOp a = FieldRef { BinExp(op,e

,a) } ].
ArithOp ::= ’+’ { "+" }.
// A field reference ’.’ optionally follows an atomic expression.
FieldRef ::= e = Atom (’.’ n = Name { FieldRef(e,n) } | { e }).
// Atomic expressions can be arbitrary exps if in ( and ).
Atom ::= Const | Var | New | ’(’ Exp ’)’.
Const ::= IntConst | BoolConst.
IntConst ::= i = Int { Const(i) }.
BoolConst ::= ’true’ { Const(true) } | ’false’ { Const(false) }.
Var ::= n = Name { Var(n) }.
New ::= ’new’ n = Name { New(n) }.

end

12.2.3 XAction Statements

XAction statements are used to:

• Introduce new names associated with either types or values.

• Control the flow of execution.

• Perform side effects on records.

The following classes define the statement types for XAction:

context Statements
@Class Statement
end

end

A block (as in Pascal or C) contains local definitions. Names introduced in a block are
available for the rest of the statements in the block (including sub-blocks) but are not
available when control exits from the block:
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context Statements
@Class Block extends Statement
@Attribute statements : Seq(Statement) end
@Constructor(statements) ! end

end
end

A declaration introduces either a type or a value binding:

context Statements
@Class Declaration isabstract extends Statement
@Attribute name : String end

end
end

A type declaration associates a type name with a sequence of field names. To keep
things simple we don’t associate fields with types:

context Statements
@Class TypeDeclaration extends Declaration
@Attribute names : Seq(String) end
@Constructor(name,names) ! end

end
end

A value declaration associates a name with a new value. The value is produced by
performing an expression at run-time:

context Statements
@Class ValueDeclaration extends Declaration
@Attribute value : Exp end
@Constructor(name,value) ! end

end
end

A while statement involves a test and a body:

context Statements
@Class While extends Declaration
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@Attribute test : Exp end
@Attribute body : Statement end
@Constructor(test,body) ! end

end
end

An if statement involves a test, a then-part and an else-part:

context Statements
@Class If extends Declaration

@Attribute test : Exp end
@Attribute thenPart : Statement end
@Attribute elsePart : Statement end
@Constructor(test,elsePart) ! end

end
end

context Statements
@Class FieldUpdate extends Declaration
@Attribute record : Exp end
@Attribute name : Exp end
@Attribute value : Exp end
@Constructor(record,name,value) ! end

end
end

context Statements
@Class Update extends Declaration
@Attribute name : String end
@Attribute value : Exp end
@Constructor(name,value) ! end

end
end

context Statement
@Grammar extends Exp.grammar
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Statement ::= Block | Declaration | While | If | Update |
FieldUpdate.

Block ::= ’begin’ s = Statement* ’end’ { Block(s) }.
Declaration ::= TypeDeclaration | ValueDeclaration.
TypeDeclaration ::= ’type’ n = Name ’is’ ns = Name* ’end’ {

TypeDeclaration(n,ns) }.
ValueDeclaration ::= ’value’ n = Name ’is’ e = Exp ’end’ {

ValueDeclaration(n,e) }.
FieldUpdate ::= e = Exp ’.’ n = Name ’:=’ v = Exp ’;’ {

FieldUpdate(e,n,v) }.
While ::= ’while’ e = Exp ’do’ s = Statement ’end’ {

While(e,s) }.
If ::= ’if’ e = Exp ’then’ s1 = Statement ’else’ s2 = Statement ’

end’ {
If(e,s1,s2) }.

Update ::= n = Name ’:=’ e = Exp ’;’ {
Update(n,e) }.

end

12.3 An Evaluator for XAction

As described in the introducion we are interested in defining XAction operational se-
mantics. We will do this in a number of different ways in the rest of this note. The first,
and possibly most straightforward, approach is to define an interpreter for XAction in
the XOCL language. This involves writing an eval operation for each of the XAction
syntax classes. The eval operation must be parameterized with respect to any context
information that is required to perform the evaluation. An XAction program p is then
evaluated in a context e by: p.eval(e).

12.3.1 Evaluating Expressions

Expression evaluation is defined by adding eval operations to each class in Expressions
as follows:

context Exp
@AbstractOp eval(env:Env):Value
end

Evaluation of a constant produces the appropriate semantic domain value:
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context Const
@Operation eval(env)
@TypeCase(value)
Boolean do Bool(value) end
Integer do Int(value) end

end
end

Evaluation of a variable involves looking up the current value. The value is found in the
current context of evaluation: this must contain associations between variable names
and their values. This is the only thing required of the XAction evaluation context and
therefore we represent the context as an environment of variable bindings:

context Var
@Operation eval(env)
env.lookup(name)

end

Evaluation of a binary expression involves evaluation of the sub-expressions and then
selecting an operation based on the operation name. The following shows how XAction
semantics is completely based on XOCl semantics since + in XAction is performed by +
in XOCL.

context BinExp
@Operation eval(env)
@Case op of
"and" do left.eval(env).binAnd(right.eval(env)) end
"or" do left.eval(env).binOr(right.eval(env)) end
"+" do left.eval(env).binAdd(right.eval(env)) end

end
end

Creation of new records is performed by evaluaing a new expression. The interpreter
has dynamic types so the type to instantiate is found by looking up the type name in
the current environment:

context New
@Operation eval(env)
env.lookup(type).new()

end
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Field reference is defined as follows:

context FieldRef
@Operation eval(env)
value.eval(env).lookup(name)

end

12.3.2 Evaluating Statements

XAction statements are performed in order to introduce new names, control flow or to
update a record field. Statements are defined to evaluate in a context and must observe
the rules of scope that require variables are local to the block that introduces them.
The context of execution is an environment; evaluation of a statement may update the
supplied environment, so statement evaluation returns an environment:

context Statement
@AbstractOp eval(env):Env
end

A value declaration evaluates the expression part and then extends the supplied envi-
ronment with a new binding:

context ValueDeclaration
@Operation eval(env)
env.bind(name,value.eval(env))

end

A type declaration extends the supplied environment with a new type:

context TypeDeclaration
@Operation eval(env)
env.bind(name,Type(names))

end

A block must preserve the supplied environment when its evaluation is complete. Each
statement in the block is performed in turn and may update the current environment:

context Block
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@Operation eval(originalEnv)
let env = originalEnv
in @For statement in statements do

env := statement.eval(env)
end

end;
originalEnv
end

A while statement continually performs the body while the test expression returns
true. A while body is equivalent to a block; so any updates to the supplied environ-
ment that are performed by the while body are discarded on exit:

context While
@Operation eval(originalEnv)
let env = orginalEnv
in @While test.eval(env).value do

env := body.eval(env)
end;
originalEnv

end
end

An if statement conditionally performs one of its sub-statements:

context If
@Operation eval(env)
if test.eval(env).value
then thenPart.eval(env)
else elsePart.eval(env)
end

end

context FieldUpdate
@Operation eval(env)
record.eval(env).update(name,value.eval(env))

end
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context Update
@Operation eval(env)
env.update(name,value.eval(env))

end

12.4 A Translator for XAction with Run-Time Types

The previous section defines an interpreter for XAction. This is an appealing way to
define the operational semantics of a language because the rules of evaluation work
directly on the abstract syntax structures. However the resulting interpreter can often
be very inefficient. Furthermore, an interpreter can lead to an evaluation phase distinc-
tion. Suppose that XAction is to be embedded in XOCL. XOCL has its own interpretive
mechanism (the XMF VM); at the boundary between XOCL and XAction the XOCL in-
terpretive mechanism must hand over to the XAction interpreter – the XAction code that
is performed is a data structure, a completely alien format to the VM. This phase dis-
tinction can lead to problems when using standard tools, such as save and load mecha-
nisms, with respect to the new language. For example a mechanism that can save XOCL
code to disk cannot be used to save XAction code to disk (it can, however, be used to
save the XAction interpreter to disk).

An alternative strategy is to translate the source code of XAction to a language for
which we have an efficient implementation. No new interpretive mechanism is required
and no phase distinction arises. Translation provides the opportunity for static analy-
sis (since translation is performed prior to executing the program). As we mentioned
earlier, static analysis can translate out any type information from XAction programs;
the resulting program does not require run-time types. Since static analysis requires a
little more work, this section describes a simple translation from XAction to XOCL that
results in run-time types; the subsequent section shows how this can be extended to
analyse types statically and remove them from the semantic domain.

12.4.1 Translating Expressions

Translation is defined by adding a new operation desugar1 to each sbatract syntax
class. There is no static analysis, so the operation does not require any arguments. The
result of the operation is a value of type Performable which is the type of elements
that can be executed by the XMF execution engine.

context Exp
@AbstractOp desugar1():Performable
end
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An XAction constant is translated to an XOCL constant:

context Const
@Operation desugar1():Performable
@TypeCase(value)
Boolean do BoolExp(value) end
Integer do IntExp(value) end

end
end

An XAction binary expression is translated to an XOCL binary expression. Note that
the sub-expressions are also translated:

context BinExp
@Operation desugar1():Performable
@Case op of
"and" do [| <left.desugar1()> and <right.desugar1()> |] end
"or" do [| <left.desugar1()> and <right.desugar1()> |] end
"+" do [| <left.desugar1()> + <right.desugar1()> |] end

end
end

An XAction new expression involves a type name. Types will be bound to the appro-
priate variable name in the resulting XOCL program; so the result of translation is just
a message new sent to the value of the variable whose name is the type name:

context New
@Operation desugar1():Performable
[| <OCL::Var(type)>.new() |]

end

XAction variables are translated to XOCL variables:

context Var
@Operation desugar1():Performable
OCL::Var(name)

end

XAction field references are translated to the appropriate call on a record:
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context FieldRef
@Operation desugar1():Performable
[| <value.desugar1()>.ref(<StrExp(name)>) |]

end

12.4.2 Translating Statements

An XAction statement can involve local blocks. The equivalent XOCL expression that
provides local definitions is let. A let expression consists of a name, a value expres-
sion and a body expression. Thus, in order to translate an XAction declaration to an
XOCL let we need to be passed the body of the let. This leads to a translational
style for XAction actions called continuation passing where each desugar1 operation is
supplied with the XOCL action that will be performed next:

context Statement
@AbstractOp desugar1(next:Performable):Performable
end

A type declaration is translated to a local definition for the type name. Note that the ex-
pression names.lift() translates the sequence of names to an expression that, when
performed, produces the same sequence of names: list is a means of performing eval-
uation in reverse:

context TypeDeclaration
@Operation desugar1(next:Performable):Performable

[| let <name> = Type(<names.lift()>)
in <next>
end

|]
end

A value declaration is translated to a local decinition:

context ValueDeclaration
@Operation desugar1(next:Performable):Performable

[| let <name> = <value.desugar1()>
in <next>
end

|]
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end

A block requires each sub-statement to be translated in turn. Continuation passing al-
lows us to chain together the sequence of statements and nest the local definitions ap-
propriately. The following auxiliary operation is used to implement block-translation:

context Statements
@Operation desugar1(statements,next:Performable):Performable
@Case statements of
Seq{} do

next
end
Seq{statement | statements} do
statement.desugar1(Statements::desugar1(statements,next))

end
end

end

Translation of a block requires that the XOCL local definitions are kept local. Therefore,
the sub-statements are translated by chaining them together and with a final continua-
tion of null. Placing the result in sequence with next ensures that any definitions are
local to the block.

context Block
@Operation desugar1(next:Performable):Performable

[| <Statements::desugar1(statements,[| null |])> ;
<next>

|]
end

A while statement is translated to the equivalent expression in XOCL:

context While
@Operation desugar1(next:Performable):Performable

[| @While <test.desugar1()>.value do
<body.desugar1([|null|])>

end;
<next>

|]
end

c©Ceteva 2008.



12.5. A TRANSLATOR FOR XACTION WITHOUT RUN-TIME TYPES 173

An if statement is translated to an equivalent expression in XOCL:

context If
@Operation desugar1(next:Performable):Performable

[| if <test.desugar1()>.value
then <thenPart.desugar1(next)>
else <elsePart.desugar1(next)>
end

|]
end

context FieldUpdate
@Operation desugar1(next:Performable):Performable

[| <record.desugar1()>.update(<StrExp(name)>,<value.desugar1()>);
<next>

|]
end

context Update
@Operation desugar1(next:Performable):Performable

[| <name> := <value.desugar1()>;
<next>

|]
end

12.5 A Translator for XAction without Run-Time Types

It is usual for languages to have a static (or compile time) phase and a dynamic (or run
time) phase. Many operational features of the language can be performed statically. This
includes type analysis: checking that types are defined before they are used and allocat-
ing appropriate structures when instances of types are created. This section shows how
the translator for XAction to XOCL from the previous section can be modified so that
type analysis is performed and so that types do not occur at run-time.

c©Ceteva 2008.



174 CHAPTER 12. CASE STUDY 3: A SIMPLE PROGRAMMING LANGUAGE

12.5.1 Translating Expressions

Since types will no longer occur at run-time we will simplify the semantic domain
slightly and represent records as a-lists. An a-list is a sequence of pairs, the first ele-
ment of each pair is a ket and the second element is a value. In this case a record is
an a-list where the keys are field name strings. XOCL provides operations defined on
sequences that are to be used as a-lists: l->lookup(key) and l->set(key,value).

The context for static analysis is a type environment. Types now occur at transla-
tion time instead of run-time therefore that portion of the run-time context that would
contain associations between type names and types occurs during translation:

context Exp
@AbstractOp desugar2(typeEnv:Env):Performable
end

Translation of a constant is as for desugar1:

context Const
@Operation desugar2(typeEnv:Env):Performable

self.desugar1()
end

Translation of binary expressions is as for desugar1 except that all translation is per-
formed by desugar2:

context BinExp
@Operation desugar2(typeEnv:Env):Performable

@Case op of
"and" do [| <left.desugar2(typeEnv)> and

<right.desugar2(typeEnv)> |] end
"or" do [| <left.desugar2(typeEnv)> and

<right.desugar2(typeEnv)> |] end
"+" do [| <left.desugar2(typeEnv)> +

<right.desugar2(typeEnv)> |] end
end

end

Translation of a variable is as before:

context Var
@Operation desugar2(typeEnv:Env):Performable
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self.desugar1()
end

A new expression involves a reference to a type name. The types occur at translation
time and therefore part of the evaluation of new can occur during translation. The type
should occur in the supplied type environment; the type contains the sequence of field
names. The result of translation is an XOCL expression that constructs an a-list based
on the names of the fields in the type. The initial value for each field is null:

context New
@Operation desugar2(typeEnv:Env):Performable

if typeEnv.binds(type)
then
let type = typeEnv.lookup(type)
in type.names->iterate(name exp = [| Seq{} |] |

[| <exp>->bind(<StrExp(name)>,null) |])
end

else self.error("Unknown type " + type)
end

end

A field reference expression is translated to an a-list lookup expression:

context FieldRef
@Operation desugar2(typeEnv:Env):Performable

[| <value.desugar2(typeEnv)>->lookup(<StrExp(name)>) |]
end

12.5.2 Translating Statements

A statement may contain a local type definition. We have already discussed continu-
ation passing with respect to desugar1 where the context for translation includes the
next XOCL expression to perform. The desugar2 operation cannot be supplied with
the next XOCL expression because this will depend on whether or not the current state-
ment extends the type environment. Therefore, in desugar2 the continuation is an
operation that is awaiting a type environment and produces the next XOCL expression:

context Statement
@AbstractOp desugar2(typeExp:Env,next:Operation):Performable
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end

A type declaration binds the type at translation time and supplies the extended type
environment to the continuation:

context TypeDeclaration
@Operation desugar2(typeEnv:Env,next:Operation):Performable

next(typeEnv.bind(name,Type(names)))
end

A value declaration introduces a new local definition; the body is created by supplying
the unchanged type environment to the continuation:

context ValueDeclaration
@Operation desugar2(typeEnv:Env,next:Operation):Performable

[| let <name> = <value.desugar2(typeEnv)>
in <next(typeEnv)>
end

|]
end

Translation of a block involves translation of a sequence of sub-statements. The follow-
ing auxiliary operation ensures that the continuations are chained together correctly:

context Statements
@Operation desugar2(statements,typeEnv,next):Performable

@Case statements of
Seq{} do

next(typeEnv)
end
Seq{statement | statements} do
statement.desugar2(

typeEnv,
@Operation(typeEnv)

Statements::desugar2(statements,typeEnv,next)
end)

end
end

end
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A block is translated to a sequence of statements where local definitions are imple-
mented using nested let expressions in XOCL. The locality of the definitions is main-
tained by sequencing the block statements and the continuation expression:

context Block
@Operation desugar2(typeEnv:Env,next:Operation):Performable

[| <Statements::desugar2(
statements,
typeEnv,
@Operation(ignore)

[| null |]
end)>;

<next(typeEnv)>
|]

end

A while statement is translated so that the XOCL expression is in sequence with the
expression produced by the contintuation:

context While
@Operation desugar2(typeEnv:Env,next:Operation):Performable

[| @While <test.desugar2(typeEnv)>.value do
<body.desugar2(typeEnv,@Operation(typeEnv) [| null |] end)>
end;
<next(typeEnv)>

end
|]

end

The if statement is translated to an equivalent XOCL expression:

context If
@Operation desugar2(typeEnv:Env,next:Operation):Performable

[| if <test.desugar2(typeEnv)>.value
then <thenPart.desugar2(typeEnv,next)>
else <elsePart.desugar2(typeEnv,next)>
end

|]
end
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context FieldUpdate
@Operation desugar2(typeEnv:Env,next:Operation):Performable

[| <record.desugar2(typeEnv)>.update(
<StrExp(name)>,
<value.desugar2(typeEnv)>);

<next(typeEnv)>
|]

end

context Update
@Operation desugar2(typeEnv:Env,next:Operation):Performable

[| <name> := <value.desugar2(typeEnv)>;
<next(typeEnv)>

|]
end

12.6 Compiling XAction

The previous section shows how to perform static type anslysis while translating XAc-
tion to XOCL. XOCL is then translated to XMF VM instructions by the XOCL compiler
(another translation process). The result is that XAction cannot to anything that XOCL
cannot do. Whilst this is not a serious restriction, there may be times where a new lan-
guage wishes to translate directly to the XMF VM without going through an existing
XMF language. This may be in order to produce highly efficient code, or because the
language has some unusual control constructs that XOCL does not support. This section
shows how XAction can be translated directly to XMF VM instructions.

12.6.1 Compiling Expressions

context Exp
@AbstractOp compile(typeEnv:Env,valueEnv:Seq(String)):Seq(Instr)
end

context Const
@Operation compile(typeEnv,valueEnv)
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@TypeCase(value)
Boolean do

if value
then Seq{PushTrue()}
else Seq{PushFalse()}
end

end
Integer do

Seq{PushInteger(value)}
end

end
end

context Var
@Operation compile(typeEnv,valueEnv)
let index = valueEnv->indexOf(name)
in if index < 0

then self.error("Unbound variable " + name)
else Seq{LocalRef(index)}
end

end
end

context BinExp
@Operation compile(typeEnv,valueEnv):Seq(Instr)
left.compile(typeEnv,valueEnv) +
right.compile(typeEnv,valueEnv) +
@Case op of
"and" do Seq{And()} end
"or" do Seq{Or()} end
"+" do Seq{Add()} end

end
end

context New
@Operation compile(typeEnv,valueEnv):Seq(Instr)
self.desugar2(typeEnv).compile()

end
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context FieldRef
@Operation compile(typeEnv,valueEnv):Seq(Instr)
Seq{StartCall(),

PushStr(name)}
value.compile(typeExp,valueExp) +
Seq{Send("lookup",1)}

end

12.6.2 Compiling Statements

context Statement
@AbstractOp compile(typeEnv:Env,varEnv:Seq(String),next:Operation):

Seq(Instr)
end

context TypeDeclaration
@Operation compile(typeEnv,varEnv,next)

next(typeEnv.bind(name,Type(names)),varEnv)
end

context ValueDeclaration
@Operation compile(typeEnv,varEnv,next)

value.compile(typeEnv,varEnv) +
Seq{SetLocal(name,varEnv->size),

Pop()} +
next(typeEnv,varEnv + Seq{name})

end

context Statements
@Operation compile(statements,typeEnv,varEnv,next)

@Case statements of
Seq{} do

next(typeEnv,varEnv)
end
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Seq{statement | statements} do
statement.compile(

typeEnv,
varEnv,
@Operation(typeEnv,varEnv)

Statements::compile(statements,typeEnv,varEnv,next)
end)

end
end

end

context Block
@Operation compile(typeEnv,varEnv,next)

Statements::compile(
statements,
typeEnv,
varEnv,
@Operation(localTypeEnv,localVarEnv)

next(typeEnv,varEnv)
end)

end

context While
@Operation compile(typeEnv,varEnv,next)

Seq{Noop("START")} +
test.compile(typeEnv,varEnv) +
Seq{SkipFalse("END")} +
body.compile(typeEnv,varEnv,

@Operation(typeEnv,varEnv)
Seq{}

end) +
Seq{Skip("START")} +
Seq{Noop("END")} +
next(typeEnv,varEnv)

end

context If
@Operation compile(typeEnv,varEnv,next)
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test.compile(typeEnv,varEnv) +
Seq{SkipFalse("ELSE")} +
thenPart.compile(typeEnv,varEnv,

@Operation(typeEnv,varEnv)
Seq{Skip("END")}

end) +
Seq{Noop("ELSE")} +
elsePart.compile(typeEnv,varEnv,
@Operation(typeEnv,varEnv)

Seq{Skip("END")}
end) +

Seq{Noop("END")} +
next(typeEnv,varEnv)

end

12.7 Abstract Syntax to Concrete Syntax

We have shown how XAction is translated from concrete syntax to abstract syntax by
defining an XBNF grammar. It is often useful to be able to translate in the opposite
direction and produce concrete syntax from abstract syntax. This can be done with or
without formatting. The latter is useful only when the concrete syntax is to be consumed
by a machine or when it can be supplied to a pretty-printing tool.

Formatting of code can be performed in fairly sophisticated ways, for example allow-
ing the width of the page to be supplied as a parameter to the formatter. This section
shows how a simple code formatter for XAction can be defined by attaching pprint
operations to the abstract syntax classes.

An expression is formatted by supplying it with an output channel, it is assumed that
the channel is in the correct output column:

@AbstractOp pprint(out:OutputChannel) end

A variable is pretty-printed by printing its name:

context Var
@Operation pprint(out)
format(out,"˜S",Seq{name})

end

A constant is pretty-printed by printing its value:
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context Const
@Operation pprint(out)
format(out,"˜S",Seq{value})

end

A new expression prepends the type with the keyword:

context New
@Operation pprint(out)
format(out,"new ˜S",Seq{type})

end

A binary expression pretty-prints the left sub-expression, the operator name and then
the right sub-expression:

context BinExp
@Operation pprint(out)
left.pprint(out);
format(out," ˜S ",Seq{op});
right.pprint(out)

end

A statement is pretty-printed by supplying it with the output channel and the current
level of indentation. The indentation controls how many tab-stops must be output after
each newline. This is necessary because statements can be nested and indentation is
used to visualise the level of nesting.

context Statement
@AbstractOp pprint(out:OutputChannel,indent:Integer) end

A block is pretty-printed by incrementing the indentation for each nested statement:

context Block
@Operation pprint(out,indent)
format(out,"begin");
@For s in statements do

format(out,"˜%˜V",Seq{indent + 2});
s.pprint(out,indent + 2)

end;
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format(out,"˜%˜Vend",Seq{indent})
end

An if statement is pretty-printed as follows:

context If
@Operation pprint(out,indent)
format(out,"if ");
test.pprint(out);
format(out,"˜%˜Vthen˜%˜V",Seq{indent,indent + 2});
thenPart.pprint(out,indent+2);
format(out,"˜%˜Velse˜%˜V",Seq{indent,indent + 2});
elsePart.pprint(out,indent+2);
format(out,"˜%˜Vend",Seq{indent})

end

A type declaration is pretty-printed as follows, note the use of { to iterate through the
sequence of field names in the format control string:

context TypeDeclaration
@Operation pprint(out,indent)
format(out,"type ˜S is ˜{,˜;˜S˜} end",Seq{name,names})

end

A value declaration:

context ValueDeclaration
@Operation pprint(out,indent)
format(out,"value ˜S is ",Seq{name});
value.pprint(out);
format(out," end")

end

A while statement:

context While
@Operation pprint(out,indent)
format(out,"while ");
test.pprint(out);
format(out," do˜%˜V",Seq{indent+2});
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body.pprint(out,indent+2);
format(out,"˜%˜Vend",Seq{indent})

end

12.8 Conclusion

This chapter has shown how XMF can be used to define the operational semantics of
languages. We have shown how to implement an interpreter for a simple language and
how to translate the language to existing XMF languages. We have discussed a num-
ber of different issues relating to language translation, in particular how much work is
performed statically and how much is left to run-time.

c©Ceteva 2008.



186 CHAPTER 12. CASE STUDY 3: A SIMPLE PROGRAMMING LANGUAGE

c©Ceteva 2008.



CHAPTER 13

CASE STUDY 4: INTERACTIVE TV

13.1 Introduction

An increasing number of interactive applications can be downloaded onto devices such
as mobile phones, PDAs, web-browsers and TV set-top boxes. The applications involve
presenting the user with information, options, menus and buttons. The user typically
enters information by typing text and choosing amongst alternatives. An event is gener-
ated by the user clicking a button or selecting from a menu. Once an event is generated
an engine that services the interactive application processes the event, updates its inter-
nal state and then produces a new dialog to present to the user.

The dialogs required by the interactive applications tend to be fairly simple and are
often used in conjunction with other applications such as being broadcast together with
TV video and audio content. The technology used to construct the interactive applica-
tion should be accessible to as broad a spectrum of users as possible, including users
whose primary skill is not in developing interactive software applications.

Technologies used for interactive displays include Java-based technologies such as
the Multimedia Home Platform (MHP)[MHP08] , HTML and JavaScript. These tech-
nologies are very platform specific. They include a great deal of technical detail and
are certainly not approachable by a non-specialist. Furthermore, the general low-level
nature of the technologies does not enforce any standard look-and-feel to interactive
applications. The applications developed for a given client (for example a single TV
company) should have a common look and feel that is difficult to enforce at such a
low-level.

A common way to abstract from technical detail and to enforce a common look-and-
feel for a suite of applications it to develop a domain-specific language (DSL) whose con-
cepts match the expectations and skill-levels of the intended users. A DSL for interactive
applications will include constructs for expressing textual content, buttons and choices.
The DSL leaves the rendering of the display features and the event generation to a dis-
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play engine that enforces a given look-and-feel. The display engine can be replaced,
changing the look-and-feel without changing the DSL.

In addition to the DSL supporting high-level features for expressing display content,
it must provide some means for describing what the application does. Normally, appli-
cation processing algorithms are expressed at a low-level in program-code. If the DSL is
designed with an execution engine then the same approach to abstraction from rendering
detail can be applied to abstraction from the operational detail.

An executable DSL is a language for expressing complete applications without de-
tailed knowledge of implementation technologies. The xDSL is a modelling language,
instances of which are expressed as data. An execution engine processes the data and
runs the application. The xDSL engine can be embedded within devices and other soft-
ware applications in order to run the models.

This chapter describes the design of an xDSL for interactive applications. The xDSL
has a textual syntax and is implemented in the tool XMF [XMF08]. XMF is a platform for
developing DSL-based applications. It provides an extensive high-level language called
XOCL for developing applications and XOCL can be extended with new language con-
structs. The design of XMF has been based on Common Lisp [Lis08], Smalltalk, Scheme
[Sch08] and ObjVLisp [Coi87]. The DSL for interactive applications described in this
chapter can be developed on any platform, but XMF is ideally suited to the task.

The rest of this chapter is structured as follows: section 13.2 describes an architecture
for interactive applications based on an xDSL; section 13.3 describes the xDSL from the
point of view of the application developer, it outlines the language features in terms
of a simple application involving a quiz; section 13.4 describes how the xDSL is imple-
mented on XMF; section 13.5 shows how the rendering engine can be simulated and
connected to the xDSL engine to simulate the execution of an interactive application;
section 13.6 shows how the application models can be serialized as XML; section 13.7
concludes by reviewing the key features of the approach and the technology used to
develop the xDSL engine.

13.2 Interactive Application Architecture

Figure 13.1 shows an overview of the architecture for an interactive application xDSL.
XMF is used as the DSL implementation engine. XMF provides facilities for developing
text-based modelling languages and their associated execution engines. The xDSL is
written as a model in XMF, the applications are then loaded onto the xDSL engine and
executed.

The application generates display information in a general-purpose format; in this
case XML. The XML display information is sent to a rendering engine. The engine un-
derstands the display features of the DSL and interprets them in terms of the rendering
technology. This achieves a separation of concerns whereby the DSL can focus on the
information content and execution logic whereas the rendering engine can focus on a
standard way of displaying the information without necessarily having to understand
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Figure 13.1: Application Architecture
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anything about the application that is being rendered.
The rendering engine controls the hardware that interacts with the user. The user

generates events that are sent back to the xDSL engine. In principle the events can
be very detailed and can be encoded in a suitable DSL. The example presented in this
chapter uses a very simple encoding of events.

When the xDSL receives an event, it must process the data in an appropriate way
to produce more display information for the rendering engine. The processing infor-
mation is expressed in the application model running on the xDSL engine. The dis-
play/event loop continues until the application is terminated.

The architecture shown in figure 13.1 has been used a number of times based on
the XMF processing engine. The development environment XMF-Mosaic is completely
based upon a number of rendering engines based on various features of Eclipse: browsers,
property editors and diagram editors. The architecture has also been successfully used
where XMF is deployed as a web-application and the rendering engine is a standard
web-browser (using various combinations of HTML and the Google Web Toolkit).

13.3 A DSL for Interactive Applications

This section presents a simple interactive application expressed using the xDSL and
then shows it running. The following section shows how the xDSL is implemented in
XMF.

Textual languages are developed in XMF by extending the basic language with new
language features. XMF has a small basic language; the rest is developed by extension.
Each new language feature starts with an ’@’ character; the feature may be used wher-
ever any normal language construct is expected. In this way, the XMF engine can be
developed into any special purpose DSL engine.
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The following fragment shows the start of an interactive application:

@Model Quiz
// The Quiz model describes an interactive application
// for a TV quiz. Viewers are presented with a sequence
// of questions and get a final score...
score : Integer;
// Screen definitions...

end

Each model consists of a collection of screens. Each screen describes how it is to be
rendered and how it responds to events. For example, the following screen starts the
application. It places some text above a button named Start. When the engine receives
a Start event then the application makes a transition to the screen named Question1:

screen START()
vertical

text Welcome to the Quiz. Click the button to Start end
button Start

go Question1()
end

end
end

Options are offered using a construct that lists the options (how they are displayed is
up to the rendering engine). The option group is named; the name is used to refer to the
particular option value that the user selects when the event returns to the xDSL engine.
This is a typical way of encoding variable information during dialogs: http does this
and can be used to determine the values of fields and choices on HTML screens. The
first part of the Question1 screen uses options as shown below:

screen Question1()
vertical

text What is the capital of England? end
options Choice

option London;
option Paris;
option Madrid;

end
// Question1 continues...
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Layout can be handled using many sophisticated schemes. A useful, simple way to
specify layout is to use horizontal and vertical flow, where these can be nested. The op-
tions are displayed below the text in the fragment given above. In the fragment below,
the buttons for Next and Quit are displayed next to each other (but below the options):

// ... Question1 continues...
horizontal

button Next
// Next action continues...

end
button Quit
go Quit()

end
end

end
end

The Next event is received after the user has chosen an option. If the option is correct
then the user is congratulated and the score is incremented, otherwise the user is told
the correct answer. In both cases the dialog continues with the next question.

Actions may be conditional, the conditional expression may refer to choice variables,
values of variables passed to screens and the current state of the model instance. Ac-
tions may also produce displays (without having to go to a new screen) which allows
variables to be scoped locally within an action 1. In the following, the Next action has
two local displays that are used to respond to the choice:

// ...Next action continues...
if Choice = "London"
then
display

text Well Done end
button Next

score := score + 1;
go Question2()

end
end

else
display

text Wrong! Answer is London. end
button Next

1We really should have a let-construct and some local variables here to show that the nested display has
access to locally-scoped variables over a user-transaction.
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go Question2()
end

end
end

The DSL is simple and closely matches the concepts required to define an interactive
application. It could be extended in a variety of ways, for example pattern matching
event data and further display concepts. It includes execution by encoding event han-
dlers. It deals with complexity by being simple and supporting nesting with local scope
and modularity. A non-expert in interactive software applications should have no prob-
lems writing an application in this DSL.

The following shows a partial execution of this application. Since there is no render-
ing engine attached, the XML is printed and the responses encoded by hand:

<Screen>
<Vertical>

<Text text=’ Welcome to the Quiz. Click the button to Start ’/>
<Button name=’Start’/>

</Vertical>
</Screen>
Start <-- Event from rendering engine
<Screen>

<Vertical>
<Text text=’ What is the capital of England? ’/>
<Options name=’Choice’>
<Option name=’London’/>
<Option name=’Paris’/>
<Option name=’Madrid’/>

</Options>
<Horizontal>

<Button name=’Next’/>
<Button name=’Quit’/>

</Horizontal>
</Vertical>

</Screen>
Next Choice=London <-- Event from rendering engine
<Screen>

<Text text=’ Well Done ’/>
<Button name=’Next’/>

</Screen>
Next <-- Event from rendering engine
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Figure 13.2: Interactive Models

13.4 Implementation

The implementation of the xDSL has two main components: a syntax model and a gram-
mar that transforms text to instances of the syntax model, and a semantics model that
defines an execution engine. The syntax model defines a modeling language that de-
fines an application type; an instance of the type is defined by the semantics model. This
is a typical way to define a language: models represent things that can be performed in
some sense. Performing the models produces instances whose behaviour is expressed
by the model. Another way to think about this is that we aim to produce libraries of
reusable interactive applications (instances of the syntax model). A run-time occurrence
of an application is described by the semantic model.

XMF provides facilities for working with text including grammars, XML parsers and
XML formatters. The models have been developed using the XMF development engine
XMF-Mosaic and then run on the basic engine.

13.4.1 Syntax

The syntax for the DSL has two parts: the abstract syntax and the concrete syntax. The
abstract syntax consists of a collection of models that are described below. The concrete
syntax is defined by a collection of grammars that are defined at the end of this section.

Figure 13.2 shows the top-level model for the interactive application language. A
model consists of a collection of properties and a collection of screens. Each property
is defined by the model in figure 13.3; it has a name and a classifier. XMF has a meta-
model that provides features such as Class and Object. A type is called a Classifier in
XMF; Integer, String, Set(Object) are all XMF classifiers.

Screens are shown in figure 13.4. A screen has a collection of arguments. An action
may cause the application to make a transition to a screen in which case the transition
can supply argument values to be used when calculating the display for the screen. Fig-
ure 13.5 shows the model for displays. Each element of the display model can produce
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Figure 13.3: Properties

Figure 13.4: Screens

Figure 13.5: Displays
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Figure 13.6: Menus

XML output that is understood by the rendering engine. In addition, some of the dis-
play elements are associated with actions that will be performed when the appropriate
event is received by the xDSL engine.

The display elements of an application model refer to an XOCL class called Exp. This
is used wherever an executable fragment of code is required. It allows features of the
displays to be computed dynamically. For example when a transition to a screen is
made, the names of the buttons may depend on the values of the arguments that are
passed to the screen. This is the reason why a button has an exp: it is used to calculate
the label on the button in terms of the variables that are in scope at the time2. The Exp
class is a way of importing the models for XMF expressions into the displays model.

Menus are shown in figure 13.6. Each menu has a label that is computed (again de-
pending on the context) and an action. Actions are defined in figure 13.7. An action is
either a transition to a new screen (Go), a conditional action (If), an update to a variable
currently in scope (Update) or a local display.

The developer of an interactive application does not directly create instances of the
abstract syntax model. The idea is that they write in a text language that is parsed to
synthesize instances of the syntax model3.

XMF allows any class to be extended with a grammar. The class then defines a new
syntax construct that is completely integrated into the base language of XMF. Any num-
ber of classes can be added in this way and new syntax classes can build on existing
syntax classes. The following is a simple example of a class definition that implements
a simple guarded expression:

2Unfortunately no examples of this feature are given in the document. However, imagine a list of voting
options that will depend on the current state of the system.

3Another way of doing this is to use some form of graphical notation. XMF is designed to interface to
EMF [emf08]and GMF [gmf08]and therefore provide execution engines for EMF models.
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Figure 13.7: Actions

@NotNull [e1].m(e2,e3,e4)
else e5

end

where e1 evaluates to produce an object to which we want to send the message m
with args e2,e3 and e4. However, e1 might produce null in which case we don’t want to
send the message, we want to do e5 instead. This language construct is implemented as
follows in XMF:

c©Ceteva 2008.



198 CHAPTER 13. CASE STUDY 4: INTERACTIVE TV

@Class NotNull extends Sugar

@Attribute exp : String end
@Attribute name : String end
@Attribute isMessage : Boolean end
@Attribute args : Seq(Performable) end
@Attribute error : Performable end

@Constructor(exp,name,error) end

@Constructor(exp,name,args,error)
self.isMessage := true

end

@Grammar extends OCL.grammar
NotNull ::=

’[’ e = Exp ’]’ ’.’ n = Name NotNullTailˆ(e,n) ’end’.

NotNullTail(e,n) ::=
’(’ as = NotNullArgs ’)’ x = NotNullElse { NotNull(e,n,as,x) }

| x = NotNullElse { NotNull(e,n,x) }.

NotNullArgs ::=
e = Exp es = (’,’ Exp)* { Seq{e|es} }

| { Seq{} }.

NotNullElse ::=
’else’ Exp

| { [| null |] }.

end

@Operation desugar():Performable
[| let notNullValue = <exp>

in if notNullValue = null
then <error>
else <if isMessage

then Send([| notNullValue |],name,args)
else [| notNullValue.<name> |]
end>

end
end

|]
end
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end

The key features of the NotNull class are as follows:

• The class extends Sugar which means that it is defining a new syntax construct by
providing an operation called ’desugar’ whose responsibility is to turn an instance
of NotNull into program code.

• The grammar definition extends the OCL grammar and thereby imports all of the
basic grammar-rule definitions. This provides the rule for Exp which is the top-
level grammar-rule for all language constructs.

• Each grammar-rule consists of a name and a body. The rule may optionally have
arguments. The body consists of terminals (in ’ and’), builtins such as Name, rule-
calls (possibly with arguments) and actions (inside { and }). The rule actions are
any program expression, in most cases they use class-constructors to create an
instance of a named class.

• The desugar operation uses lifting-quotes ([— and —]) to create an instance of
syntax-classes. The opposite of lifting is dropping (¡ and ¿) used to calculate syntax
by evaluating a program expression.

The rest of this section describes how the grammar feature of XMF can be used to define
the interaction language. A model consists of a name followed by properties and screen
definitions:

context Model
@Grammar extends Property.grammar, Screen.grammar

Model ::= n = Name ps = Property* ss = Screen* ’end’ {
Model(n,ps,ss)

}.
end

A property is a name and a simple expression (that cannot include the ’;’ operator).
The property-rule action uses an interesting feature of syntax classes that allows the
expression to be dropped into the syntax element and is thereby evaluated to produce
a classifier for the property type:

context Property extends OCL::OCL.grammar
@Grammar extends OCL.grammar

Property ::= n = Name ’:’ e = SimpleExp ’;’ {
Property(n,Drop(e))

}.
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end

A screen has a name, arguments, menus and display elements. The rule for screen
arguments shows how optional elements are processed: it returns either a non-empty
sequence of names Seq{a—as} (head followed by tail) or the empty sequence Seq{}:

context Screen
@Grammar extends Menu.grammar, Display.grammar
Screen ::=

’screen’ n = Name ’(’ as = ScreenArgs ’)’
ms = Menu*
ds = Display*

’end’ { Screen(n,as,DisplayScreen(ms,ds)) }.
ScreenArgs ::=

a = Name as = (’,’ Name)* { Seq{a|as} }
| { Seq{} }.

end

A menu is shown below. This shows how expressions are captured in data. The
rule for a menu item name returns an instance of the class Exp that is used in data to
wrap an evaluable expression. There are two forms of construction for Exp: Exp(e) and
Exp(e,V,null). In both cases e is an instance of a syntax class. In the second case V is a
collection of variable names that occur freely in e. The values of variables in V can be
supplied when the expression is evaluated (via keyApply as shown below).

Another interesting feature of the menu item name rule is the use of ’lift’ to transform
a data element (in this case a string n) into an expression whose evaluation produces
the original data element:

context Menu
@Grammar extends OCL.grammar

Menu ::= ’menu’ n = MenuItemName is = MenuItem* ’end’ {
Menu(n,is)

}.
MenuItemName ::=

n = Name { Exp(n.lift()) }
| e = SimpleExp { Exp(e,e.FV(),null) }.
MenuItem ::=

Menu
| ’item’ n = MenuItemName a = Action ’end’ { MenuItem(n,a) }.

end
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Since Display is an abstract class, the grammar-rule for Display is a list of concrete
alternatives:

context Display
@Grammar extends Action.grammar, OCL.grammar
Display ::=

Text
| Button
| Options
| Horizontal
| Vertical.

Text ::= ’text’ t = Char* ’end’ {
Text(Exp(t.asString().lift()))

}.
Button ::=
’button’ n = ComputedName
as = Action*

’end’ { Button(n,as) }.
ComputedName ::=
n = Name { Exp(n.lift()) }

| e = SimpleExp { Exp(e,e.FV(),null) }.
Options ::=

’options’ n = ComputedName
os = Option*

’end’ { Options(n,os) }.
Option ::=

’option’ n = Name ’;’ { n }.
Horizontal ::=

’horizontal’
ds = Display*

’end’ { Horizontal(ds) }.
Vertical ::=

’vertical’
ds = Display*

’end’ { Vertical(ds) }.
end
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Action is another example of an abstract class:

contxt Action
@Grammar extends OCL.grammar

Action ::=
UpdateProperty

| IfAction
| Go
| DisplayScreen.
DisplayScreen ::=

’display’
ms = Menu*
ds = Display*

’end’ { DisplayScreen(ms,ds) }.
UpdateProperty ::=
n = Name ’:=’ e = SimpleExp ’;’ {

Update(n,Exp(e,e.FV(),null))
}.
Go ::= ’go’ n = Name ’(’ as = GoArgs ’)’ { Go(n,as) }.
GoArgs ::=
e = GoArg es = (’,’ GoArg)* { Seq{e|es} }

| { Seq{} }.
GoArg ::= e = SimpleExp { Exp(e) }.
IfAction ::=
’if’ e = SimpleExp
’then’ d = Action
IfActionTailˆ(e,d).

IfActionTail(e,d1) ::=
’else’ d2 = Action ’end’ { If(Exp(e,e.FV(),null),d1,d2) }

| ’end’ { If(Exp(e,e.FV(),null),d1,null) }.
end

13.4.2 Semantics

The semantics of the interactive application modelling language defines an instance
model for the syntax and also defines an execution engine for the instances. The instance
model is shown in figure 13.8. An instance of a Model is defined by the class Instance.
It should have a slot for each property of the model. The value of each slot should have
a type that is defined by the classifier of the corresponding property.

The class Engine defines the execution engine. An engine controls an instance and
maintains an id-table that maps event ids to handlers as shown below. The idea is
that each time an event occurs, a handler from the id-table is used to produce a new
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Figure 13.8: Semantics Model

XML display that is sent to the rendering engine. The XML data is calculated from the
information in the model and the current state of the instance slots.

The rest of this section defines the engine execution semantics. The following sec-
tion shows how the engine is connected to a rendering engine. The engine processes
a screen-transition using the ’go’ operation defined below. XMF supports many types
of input and output channel. The ’go’ operation shows an example of a string output
channel used to capture and then return the XML output data as a string:

context Engine
@Operation go(screen:String,args:Seq(Element))

let sout = StringOutputChannel()
in instance.go(screen,args,self,sout);

sout.getString()
end

end

An instance handles a screen-transition by looking up the screen in its model. If the
screen exists then it is requested to display itself with the supplied argument values:

context Instance
@Operation go(screen:String,args:Seq(Element),engine:Engine,out:

OutputChannel)
@NotNull [model.indexScreensByName(screen,null)].display(self,args

,engine,out)
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else self.error("No screen called " + screen)
end

end

A screen delegates the ’display’ message to its underlying display component. The
screen argument names are bound to the argument values to produce an environment of
bindings using the ’env’ operation:

context Screen
@Operation display(instance,args,engine,out)

display.display(instance,self.env(instance,args),engine,out)
end

context Screen
@Operation env(instance,values)
let env = args.zip(values)
in instance.slots()->iterate(slot env = env |

env.bind(slot.property().name(),slot.value()))
end

end

Each display element type : Button; Text; Horizontal; Vertical; and, Options imple-
ments a ’display’ operation that writes XML data to the supplied output channel. As
a side effect, if any of the elements have event handling actions then the engine is up-
dated with an appropriate handler for the event when it is received from the rendering
engine.

Each ’display’ operation shows the use of an XMF language feature @XML ... end
that is used to write XML output to a channel. The construct has the form:

@XML(out)
<TAG ATTS>
.. program code ...

</TAG>
end

where the literal XML data is written to the supplied output channel. In-between
writing the starting tag and ending tag, an arbitrary program is processed.

context DisplayScreen
@Operation display(instance,env,engine,out)

@XML(out)
<Screen>
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@For menu in menus do
menu.display(instance,env,engine,out)

end
@For display in displays do
display.display(instance,env,engine,out)

end
</Screen>

end
end

The ’display’ operation for text shows an example of the shortened form of the XML
construct with no body, and also the use of the ’keyApply’ operation of the Exp class.
The ’env’ argument supplied to ’display’ contains bindings for all variables in scope.
The ’keyApply’ operation performs the expression in the context of these variables:

context Text
@Operation display(instance,env,engine,out)

@XML(out)
<"Text" text=exp.keyApply(env)/>

end
end

A button contains an action that is used to handle the event arising from the user
pressing the button in the rendering engine. The ’display’ operation for Button shows
how an event handler is registered in the engine. The arguments passed to ’registerAc-
tions’ are the context required to perform the actions when the event associated with
’id’ is received:

context Button
@Operation display(instance,env,engine,out)

let id = exp.keyApply(env)
in engine.registerActions(id,instance,env,actions);

@XML(out)
<Button name=id/>

end
end

end

Horizontal and Vertical are similar:

context Horizontal
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@Operation display(instance,env,engine,out)
@XML(out)
<Horizontal>
@For display in displays do

display.display(instance,env,engine,out)
end

</Horizontal>
end

end
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The ’display’ operation for Options shows an example of interleaving of XML and
program code:

context Options
@Operation display(instance,env,engine,out)

@XML(out)
<Options name=exp.keyApply(env)>
@For option in options do

@XML(out)
<Option name=option/>

end
end

</Options>
end

end

The ’registerActions’ operation of Engine must define a handler for an event. The
definition associates the event identifier ’id’ with an operation in the id-table of the
engine. Actions are performed using their ’perform’ operation which expects to receive
arguments that include the current environment of variable bindings. The variables
available to an action include all those bound by selecting options on the display. These
display-bound variables are supplied to the handler (in the same way that http works)
as an environment ’env2’:

contxt Engine
@Operation registerActions(id,instance,env1,actions)

idTable.put(id,
@Operation(env2)
let value = null
in @For action in actions do

value := action.perform(instance,env2 + env1,self)
end;
value

end
end)

end

There are four types of action: If; Update; Go; and, Display. Each action produces
a result and the last action performed should return an XML string to be sent to the
rendering engine. If performs one of two actions (or nothing) depending on the outcome
of a test:
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context If
@Operation perform(instance,env,engine)

if exp.keyApply(env + instance.env())
then thenAction.perform(instance,env,engine)
else @NotNull [elseAction].perform(instance,env,engine) end
end

end

An update changes the value of a variable currently in scope. The variables in scope
are: the slots of the instance; the current screen arguments. The following operation
checks whether the named variable is a slot and updates the instance appropriately, or
updates the current environment:

context Update
@Operation perform(instance,env,engine)

@NotNull [instance.getSlot(name)].setValue(exp.keyApply(env +
instance.env()))

else env.set(name,exp.keyApply(env + instance.env()))
end

end

Go makes a transition to a new screen. The screen will produce the XML output.
Notice that the current ’env’ is not supplied to the ’go’ operation; therefore any variables
currently in scope are not available to the target screen unless their values are passed as
arguments:

context Go
@Operation perform(instance,env,engine)

engine.go(name,exps->collect(exp | exp.keyApply(env)))
end

Display is a way of locally displaying a screen without losing the variables that are
currently in scope:

context Display
@Operation perform(instance,env,engine)

let sout = StringOutputChannel()
in display.perform(instance,env,engine,sout);

sout.getString()
end
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end

13.4.3 Handling Events

Events occur when the user interacts with the rendering engine, for example by pressing
a button. When the event occurs, the current screen may contain any number of option
groups. Each option group is named and offers a number of alternative values. The
selected option may affect the behaviour of the engine in terms of variable updates and
screen transitions. Therefore, the event sent from the rendering engine to the xDSL
engine must encode the value of any option variables currently displayed.

In addition there may be any number of ways an event can be raised: menu selec-
tion or button press. Each must be uniquely identified and the event must supply the
identifier of the event that occurred.

An event is defined to have a format that starts with the event id and is followed by
any number of option variable/value pairs:

<ID> <VAR>=<VALUE> ... <VAR>=<VALUE>

The event is encoded as a string and must be decoded by the engine. This is easily
done by defining an event as a grammar-rule:

context Engine
@Grammar
Event ::= n = Name e = Binding* { Seq{n|e} }.
Binding ::= n = Name ’=’ v = Name { Seq{n|v} }.

end

When an event is received by the engine it is supplied to ’getDisplay’ which calculates
a new XML display string for the rendering engine. The operation uses the grammar
defined above to synthesize a pair Seq{id—env} containing the event id and an envi-
ronment of option-group variable bindings. If the id is bound in the id-table then the
handler is supplied with the environment:

context Engine
@Operation getDisplay(event:String)

let pair = Engine.grammar.parseString(event,"Event",Seq{}) then
id = pair->head;
env = pair->tail

in @TableGet handler = idTable[id] do
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idTable.clear();
handler(env)

else self.error("No handler for " + name)
end

end
end

13.5 Simulation

Figure 13.1 shows the architecture of an interactive application. The rendering engine
is external to the design of an xDSL; the relationship between the two is defined by the
XML schema for the display language and the format of event strings. However, it is
useful to be able to simulate the rendering engine in order to test the xDSL engine. This
can be done by setting up a simple test harness for a pair of data consumers and linking
the xDSL engine with a rendering engine simulation that reads events strings in from
the terminal.
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The following class implements a data producer-consumer pair:

@Class Consumer

@Attribute filter : Operation end
@Attribute other : Consumer (!) end

@Constructor(filter) ! end

@Operation consume(data)
other.consume(filter(data))

end
end

The filter operation is used to generate data that is supplied to the other consumer.
If a pair of Consumer instances are linked together then the data will bounce back and
forth as required. The following operation creates a filter for the xDSL engine:

@Operation mk_xDSL_filter(model:Model)
let engine = Engine(model.new())
in @Operation(event)

engine.getDisplay(event)
end

end
end

The following filter operation simulates the rendering engine. It does so by pretty-
printing the XML to the standard-output. An XML string can be transformed into an
XML tree using the ’asXML’ operation defined for String. The standard-input is flushed
and a line containing the event is read and returned:

@Operation renderFilter(xml:String)
xml.asXML().pprint(stdout);
"".println();
stdin.skipWhiteSpace();
stdin.readLine().stripTrailingWhiteSpace()

end

Given a model ’model’, the following code produces, and starts, a simulation:
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@Operation simulate(model:Model)
let eConsumer = Consumer(mk_xDSL_filter(model));

dConsumer = Consumer(renderFilter)
in eConsumer.setOther(dConsumer);

dConsumer.setOther(eConsumer);
eConsumer.consume("START")

end
end

13.6 XML Representation for Applications

A requirement for interactive applications is to be able to dynamically update the con-
tent and to be able to transfer the content from remote locations in a standard format.
The application describes in this chapter is completely represented in data. This means
that, although the application is executable, it can easily be serialized, sent over a com-
munications link, and then uploaded onto the device that is running the xDSL engine.

XMF provides support for encoding any data elements as XML. There is a basic
markup provided for all XMF data; the mechanisms for which can easily be extended to
provide bespoke XML encoding. Using the basic mechanisms, a model can be encoded
as follows:

@WithOpenFile(fout -> "c:/model.xml")
let xout = XMLOutputChannel(fout,NameSpaceXMLFormatter())
in xout.writeValue(model)
end

end

The resulting output is produced in an XML file that is shown in figure 13.9. The
XML markup shown in the figure is the default vanilla-flavour markup provided by
XMF. It is possible to add adapters to an XML output channel that filter the data as it
is processed and thereby use domain-specific markup. So instead of seeing Object and
Slot as element tags, we might use Screen and Button.

The XML can be read back in using the following code:

@WithOpenFile(fin <- ModelFile)
let xin = XMLInputChannel(fin,NameSpaceXMLInflater())
in xin.parse()
end

end
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Figure 13.9: A Serialized Model
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13.7 Conclusion

This chapter has described an approach to modelling systems whereby an engine for
an executable domain-specific language (xDSL) is used to develop and run the applica-
tions. The xDSL is designed to use concepts that are suited to the application domain
which allows the language to abstract away from implementation details; the language
is then executable, can be used with different implementation platform technologies,
and is suitable for use by people whose primary skill lies in the application domain
rather than the implementation technology.

A method for developing xDSLs has been shown that involves a separation of con-
cerns between syntax elements that describe type-level features of a model, and seman-
tics elements that define run-time features of an application. Experience has shown
that this separation is natural and allows the xDSL developer to effectively manage the
process.

We have shown how a textual syntax can be added to an xDSL. In practice, most
xDSLs will require a concrete syntax. The precise form of this will depend on the nature
of the application and who the intended users are. Sometimes, a purely graphical syntax
is appropriate (for example UML class-diagrams). Other times a purely textual syntax
works best, especially where executable features are involved and when complexity can
be controlled effectively using textual nesting. Often there is scope for a mixture of the
two where different aspects of the models are constructed using graphical or textual
syntax.

Modelling all features of a language has a number of benefits that arise because every-
thing is reified. Reification involves representing everything as data as opposed to pro-
gram code or transient non-tangible artifacts such as system events. Once everything is
reified, many types of analysis are possible including well-formedness checking, type
checking, application of style rules. It becomes easy to capture and apply patterns and
to perform refactoring. All features of an application can be transformed to a target
technology.

Modelling actions is particularly important here; often actions are left as unprocessed
strings of program code which makes it very difficult to analyze and run as part of an
xDSL engine. The application given in this paper has shown that it is straightforward to
model actions and to integrate them into the execution engine for an xDSL. By following
a few basic guidelines in terms of variable scope and control flow, actions are easy to
implement and are completely integrated into the xDSL, its analysis and transformation.

The approach models the xDSL and executes it directly using an engine (in this case
XMF). This is attractive because it provides a high degree of control over the language.
It should be contrasted with a translational approach to implementing a DSL whereby
the model is translated to the source code of a target language (such as Java or C++)
for which there is an implementation platform. This is an approach taken by Swul
[SWU08] and GMF [gmf08] for GUI applications. Translational approaches have some
advantages: notably open architectures; efficiency; arbitrary extensibility. However,
there are some significant disadvantages relating to the complexity of the generated
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code including maintainability and understandability. It should be noted that an xDSL
engine-based approach does not preclude a translational approach.

We have given a complete implementation of an interactive application xDSL using
the features of XMF. XMF is an engine that is specifically designed to support this kind
of application development. It has very high-level language features that support mod-
elling concepts, it is executable, and is designed to support textual language extension
through the use of extensible grammars. XMF directly supports textual xDSLs and pro-
vides native interfaces to Java and EMF/GMF for use with other concrete syntaxes.

XMF may be used to develop an xDSL and then deploy the language as a stand-alone
engine as shown in figure 13.1. XMF runs its own virtual machine and has a number
of interface features that allow it to connect to external applications. XMF may also be
used to develop an executable design of an application which is then exported on to
another implementation platform.
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CASE STUDY 5: GRAPHS

14.1 Introduction

Unfortunately, information is not always convniently organised in a tree structure. A
tree structure does not make allowances for relationships that span the tree or where
cycles occur in the data. For example, what happens when a company employee fills
two roles within the company in different departments? It would be approprate for
the employee to occur underneath both departments in the tree; the employee is shared
between the departments or equivalently there are two different paths from the root of
the tree to the employee.

Trees do not represent sharing and multiple paths very well. There are strategies; for
example, XML is a tree structured data format where labels are used to mark up the
elements in order to represent sharing. When data representation requires sharing, it is
usually because the data naturally forms a graph. Graphs can be encoded in trees (and
other forms of data representation), but if the data requires a graph then it is probably
best to use one and be done with it.

14.2 A Model of Graphs

Figure 14.1 shows a model of graphs. A graph consists of a set of nodes and a set of
edges. Each node has a label and a sequence of data. The label is used to identify the
node and the data is used by applications for whatever purpose they require.

Each edge has a label and data, and also has a source and target node. Edges go
between nodes and are directed. The diagram shown in figure 14.1 is itself an example
of a graph where the nodes are displayed as class boxes and the edges are shown as
attribute edges. Notice that the node labelled Element is shared (parent-wise) between
Edge and Node; equivalently there are two paths from the rot node (labelled Graph)
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Figure 14.1: Graphs

to the node labelled Element: Graph, Edge, Element and Graph, Node, Element. Such
sharing is difficult to represent using trees.

Graphs are a very rich form of data representation. There is a wealth of material
written about graphs and how to process them. Here are some useful operations on
graphs defined in XOCL:

context Graph
@Operation nodeFor(label:String):Node

@Find(node,nodes)
when node.label() = label
else null

end
end

The operation nodeFor returns the node with the supplied label, or null if no such
node exists. The operation edgesFrom returns the set of edges from a given node:

context Graph
@Operation edgesFrom(n:Node):Set(Edge)

edges->select(e | e.source() = n)
end
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Graphs are generally useful and therefore it is appropriate to have a general purpose
language construct to define a graph. As mentioned above, each use of a graph structure
will attach different amounts of data to the nodes and labels. The data is used to support
the application specific processing of the graph. Therefore, a general purpose language
construct for graph construction should support:

1. Arbitrary node and edge data.

2. Plug-points for the sub-classes of Graph, Node and Edge that are used to represent
the graph.

14.3 Graph Applications

Here are two examples of different graph applications:

@Graph(Routes,Location,Road)
London()

M1(200) -> Leeds
A1(50) -> Cambridge

end

@Graph(Plan,Task,Dependency)
Start("January")

-> Contractors
-> Plans

Contractors("March")
Plans("April")

end

The first graph is represented as an instance of the class Routes where the nodes and
edges are instances of the classes Location and Road. These classes are sub-classes of
Graph, Node and Edge repsectively. Locations have no data; the three locations have
labels London, Leeds and Cambridge.

An edge is listed below the source node. In the first example graph, there are two
edges with labels M1 and A1. The edges have data 100 and 50 (being the distance in
miles) and the label of the edge target is givn after -¿.

The second example is a plan graph. The nodes have data that represents the month
at which the task is completed. Edges have no labels or data (they just represent depen-
dencies).

The proposed structure for a graph definition has plug-points for the graph, node and
edge classes and a body consisting of a sequence of node definitions. A node definition
n is a node label, followed by node data in parentheses followed by a series of edge
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definitions for which the source of the node is n. An edge definition is an optional edge
label, optional edge data in parentheses, an arrow and then the label of the target node.
Here is an example:

@Graph(G,N,E)
n1(a,b,c)

e1(d) -> n2
e2() -> n3

n2()
e3() -> n1

n3()

When the parser encounters a graph definition it will synthesize program code that,
when evaluated, produces the required graph. Are there any rules that need to be ob-
served when this synthesis takes place? Given the model of graphs in figure 14.1, a
graph contains nodes and edges, and edges link nodes. Here is a possible program that
produces the graph above

(1) let g = G()
(2) in g.addToNodes(N("n1",Seq{a,b,c}));

g.addToNodes(N("n2"));
(3) g.addToNodes(N("n3"));
(4) g.addToEdges(E("e1",Seq{d},g.nodeFor("n1"),g.nodeFor("n2")));

g.addToEdges(E("e2",g.nodeFor("n1"),g.nodeFor("n3")));
(5) g.addToEdges(E("e3",g.nodeFor("n2"),g.nodeFor("n1")));
(6) g

end

Line (1) creates the graph using the supplied class G (a sub-class of Graph). Each
node must be added first in lines (2-3) so that edges can then be created between the
nodes in lines (4-5). Note that the supplied classes N and E are used to create the nodes
and edges. Finally the graph is returned in line (6).

The rules for graph construction are: create the graph, add the nodes and then add
the edges. Unfortunately, the graph definition construct does not follow this pattern; it
interleaves node and edge definitions. A strategy is required to untangle this interleav-
ing.

One way to address the interleaving is to have the parser synthesize an intermediate
graph definition that is processes using two or more passes. This is perfectly respectable,
and often a sensible way forward when the required processing is fairly complex.

In this case, the processing is not that complex, so another strategy is used. To see
how this works, a few definitions are required. An edge constructor expects a graph and
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an edge class; it adds some edges to the supplied graph. A node constructor expects a
graph, a node class, an edge class and a collection of edge constructors; it adds some
nodes to the supplied graph and then uses the edge constructor to add some edges.

Node definitions are synthesized into node constructors and edge definitions into
edge constructors. The trick is to build up the edge constuctors so that they are per-
formed after all the node constructors. Since the edge constructors are supplied to the
node constructors, this should be easy. Using the running example from above:

n3 =
@Operation(nodeConstructor)
@Operation(g,N,E,edgeConstructor)

g.addToNodes(N("n3"));
nodeConstructor(g,N,E,edgeConstructor)

end
end

The node definition for n3 is transformed into an operation that is supplied with a
node constructor and returns a node constructor. This construction allows n3 to be
linked with other noe constuctors without knowing any details – i.e. n3 can be defined
in isolation.

The node constructor for n2 is similar, but involves the addition of an edge construc-
tor:

n2 =
@Operation(nodeConstructor)
@Operation(g,N,E,edgeConstructor)

let e3 =
@Operation(g,E)

g.addToEdges(E("e3",g.nodeFor("n2"),g.nodeFor("n1")))
end

in g.addToNodes(N("n2"));
nodeConstructor(g,N,E,addEdges(edgeConstructor,e3))

end
end

end

Note how the edge constructor for e3 is added to the supplied edge contructor (using
the yet-to-be-defined addEdges) when the supplid node constructor is activated. This
is the key to deferring the construction of edges until all the nodes have been defined.

What should addEdges do? It is used to link all the edge constructors together so that
they all get activated. It takes two edge constructors and returns an edge constructor:
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@Operation addEdges(ec1,ec2)
@Operation(g,E)

ec1(g,E);
ec2(g,E)

end
end

The noe constructor for n1 is similar, but two edge constructors are required:

n1 =
@Operation(nodeConstructor)
@Operation(g,N,E,edgeConstructor)

let e1 =
@Operation(g,E)

g.addToEdges(E("e1",g.nodeFor("n1")Seq{d},g.nodeFor("n2")))
end;

e2 =
@Operation(g,E)

g.addToEdges(E("e1",g.nodeFor("n1"),g.nodeFor("n3")))
end then

edges = addEdges(e1,e2)
in g.addToNodes(N("n2"));

nodeConstructor(g,N,E,addEdges(edgeConstructor,edges))
end

end
end

The complete graph can now be defined by linking the node constructors together
and supplying a graph:

let nc = addNodes(n1,addNodes(n2,addNodes(n3,noNodes)))
in nc(G(),N,E,@Operation(g,E) g end)
end

Each of the node constructors are linked via an operation addNodes. The left-hand
argument of addNodes is an operation that maps a node constructor to a node construc-
tor. The right-hand argument is a node constructor. It is easier to see how this works
from the definition:

@Operation addNodes(nodeCnstrCnstr,nodeCnstr2)
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@Operation(g,N,E,edgeConstructor)
let nodeCnstr1 = nodeCnstrCnstr(nodeCnstr2)
in nodeCnstr1(g,N,E,edgeConstructor)
end

end
end

The mechanism used by addNodes is an example of a typical pattern that threads
sequences of operations together. It allows the node constuctor encoded in nodeCn-
strCnstr to occur before that encoded in nodeCnstr2 while also allowing the edge con-
structors produced by the first to be handed on to the second (because they are to be
deferrred until all the nodes are added to the graph).

There are two types of constructor, each of which can occur repeatedly in a sequence:
nodes and edges. When this occurs, it is usual to have some way to encode an empty
sequence; in this case there are noNodes and noEdges. Both of these are constructors:

@Operation noNodes(g,N,E,edgeConstuctor)
edgeConstructor(g,E)

end

@Operation noEdges(g,E)
null

end

noNodes is a node constructor that starts edge construction. Therefore, noNodes
should be the right-most node constuctor in a sequence that is combined using addNodes.
noEdges does nothing, and can occur anywhere in a sequence.

The grammar for graph definition synthesizes node and edge constructors combined
usin addNodes and addEdge. When an empty sequence is encountered, the gramar
synthesizes noNodes and noEdges respectively. The grammar is defined below:

@Grammar extends OCL::OCL.grammar
Data ::= ’(’ es = CommaSepExps ’)’ { SetExp("Seq",es) }.
Edges(s) ::= e = Edgeˆ(s) es = Edgesˆ(s)

{ [| addEdges(<e>,<es>) |] }
| { [| noEdges |] }.
Edge(s) ::= l = Label d = OptData ’->’ t = Label { [|
@Operation(g,E)
g.addToEdges(E(<l>,<d>,g.nodeFor(<s>),g.nodeFor(<t>)))

end
|] }.
Graph ::= ’(’ mkGraph = Exp ’,’ mkNode = Exp ’,’ mkEdge = Exp’)’
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GraphBodyˆ(mkGraph,mkNode,mkEdge).
GraphBody(mkGraph,mkNode,mkEdge) ::= ns = Nodes ’end’ { [|
<ns>(<mkGraph>(),<mkNode>,<mkEdge>,@Operation(g,E) g end)

|] }.
Label ::= NameExp | { "".lift() }.
NameExp ::= n = Name { n.lift() }.
Nodes ::= n = Node ns = Nodes

{ [| addNodes(<n>,<ns>) |] }
| { [| noNodes |] }.
Node ::= l = Label d = Data e = Edgesˆ(l) { [|
@Operation(Cn)
@Operation(g,N,E,Ce)

g.addToNodes(N(<l>,<d>));
Cn(g,N,E,addEdges(<e>,Ce))

end
end

|] }.
OptData ::= Data | { [| Seq{} |] }.

end
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