
ROO { A Model for Object-Oriented ReuseTony ClarkComputing DepartmentPhoenix BuildingUniversity of BradfordBD7 1DPe-mail: a.n.clark@comp.brad.ac.ukSeptember 18, 19971 AbstractBoth object-orientation and the Internet make the widespread reuse of softwarea possibility. Unfortunately, the potential bene�ts from these facilities have notbeen forthcoming. One reason for this is the lack of a coherent model for softwaredevelopment and reuse. This paper proposes such a model which is based uponmodelling software components using state transition machines. Reuse is madepossible by de�ning matching relations between component descriptions in termsof machine simulations. Both the development process and matching relations aregiven a formal semantics.2 IntroductionThe reuse of software components has long been a major aim of Software Engineer-ing [12]. We propose that there are two major reasons why this aim has not yetbeen realised. Firstly, no single organisation can a�ord to develop all the softwarewhich it will subsequently need to reuse (and until recently there has been no ef-fective mechanism which allows di�erent organisations to pool software resources).Secondly, if di�erent organisations are to contribute to a shared pool of softwarethere must be a high degree of standardisation in terms of software components, themechanisms by which the components are made available for reuse and the retrievalmechanisms which match a software requirement with a software component.The worldwide use of computers is currently undergoing a revolution in termsof information availability. In principle, a computer may gain access to informationat any point in the world using standard communications networks. The scope forinformation sharing and reuse is potentially enormous since information at a singlesite may be shared with all other sites in the world simply by locally making itavailable to the Internet [4].The amount and format of information which is available is a problem whichmust be overcome in order to e�ectively use the Internet as a shared resource.In order to deal with the quantity of information, searching must be automated.However, in order to automate the search for information, the format of the infor-mation must be complete, usable by the recipient and understood by the searchmechanisms.The object-oriented approach to software development o�ers advantages for thereuse of software components. It is claimed that object-oriented designs and imple-mentations are problem oriented, have a resilience to evolution and are amenableto domain analysis [16]. Software components are organised into collections of rela-tively small independent units, each of which performs a speci�c task. The object-oriented model of computation is organised around a message passing metaphor,where individual objects interact by sending data bearing messages.1

Java is an object-oriented programming language which compiles to a standardbinary format. Di�erent computer platforms may support Java by implementingan interpreter for the binary format. A Java program consists of a collection ofseparate class de�nitions. A class de�nition on one computer may be transportedvia the Internet to another computer and executed without recompilation. Thishigh degree of modularity and portability makes Java an ideal candidate to supportcode reuse.This work is aimed at developing a systematic method of producing object-oriented software which incorporates reuse. In particular we intend to target Javaas the development language since it provides excellent support for multi-platformportability. The method will support both publication of code for reuse and the de-velopment of new software which involves reuse. The proposed method is describedin the rest of the paper: x3 gives an overview of our model for object-oriented soft-ware development, documentation and reuse; x4 gives a formal semantics to themodel; x5 gives some simple examples of the approach; �nally, x6 concludes byanalysing the approach and outlining future work.3 A model of development and reuseThis section gives an overview of a model for software development and reuse. Themodel, called ROO, is the basis for a simple prototype tool, called ROOT, whichhas been developed. The model is given a formal semantics in x4.We view software development as a sequence of transformations which are ap-plied to an initial system description to produce a �nal system description. Eachtransformation adds detail to the current description and may be viewed as con-straining the collection of all programs which will satisfy it. The development pro-cess starts with an empty initial system description which is satis�ed by all possibleprograms. The development process ends when su�cient detail has been added toensure that only the required programs will satisfy the system description. Notethat one way of ensuring this is to transform the initial description into executablecode, i.e. to a singleton set of programs.Once a program has been developed in this way, it may be registered as availablefor reuse. Each of the system descriptions produced during a program's developmentwill document the program to varying degrees of speci�city. In general, the mostspeci�c system description is used to document a program.Once a library of system descriptions is established, it is possible to introducereuse to the development process. After applying a transformation to produce a sys-tem description d, the library is searched for a program p whose system descriptionmatches d. Given suitable matching criteria we may conclude that p implementsd. Providing that the only programs which satisfy d are those which match oursoftware requirements, then we conclude that p meets the software requirementsand may be reused.This section proceeds as follows: x3.1 describes the transformations which maybe applied to system descriptions; x3.2 describes the issues which apply to matchingsystem descriptions; x3.3 describes a model which is used for system descriptions;�nally, x3.4 gives an example using ROO.3.1 Re�nementSoftware development proceeds by performing transformations on a system descrip-tion. Each transformation increases the speci�city of the description and reducesthe number of programs which satisfy it. A system may be described at di�erent2

levels of abstraction. Transformations will change the level of abstraction. Ab-straction levels are similar to viewing a distant object: at high levels of abstraction(viewing from far away) it is di�cult to distinguish between di�erent elements ofan object; at low levels of abstraction (viewing from close up) individual elementscan be distinguished. In our model, development moves from a highly abstractsystem description to a detailed system description. There are two types of systemtransformation [22] [13]:1. Horizontal transformations leave the level of abstraction unchanged. Suchtransformations tend to modify the behaviour of the system, either by ex-tending, replacing or removing behaviour. Horizontal transformations tend tochange the character of a system description, for example by adding persis-tence capabilities to a data type or removing the 'reset' button on a menu.2. Vertical transformations change the level of abstraction but leave the essentialbehaviour of the system unchanged. Vertical transformations are like takingone step towards a system or away from it. A vertical transformation whichincreases abstraction will coalesce distinct elements of a system and it will nolonger be possible to distinguish between them after the transformation; forexample, merging a collection of non-empty stack con�gurations into a singleatomic nonempty con�guration. A vertical transformation which decreasesabstraction will decompose elements of a system into collections of elementswhich were previously indistinguishable; for example, decomposing the atomicnonempty stack back into a collection of individual stack con�gurations.Software development proceeds from an initial system description by applyinga sequence of horizontal and vertical transformations. The development proceedsfrom high to low abstraction until an error is discovered in the current system de-scription. At this point the developer backtracks to the point at which the transfor-mation which injected the error occurred and performs and di�erent transformation.The result of performing an entire development is a tree structure.3.2 MatchingIn order to reuse programs we require a measure of similarity between two pro-gram descriptions. This measure is formally de�ned in x4.3. This section gives anoverview of the possible de�nitions for similarity in the context of the proposedre�nement model. We propose a denotational semantics for system descriptions,and then use the semantics to de�ne matching constraints.Let d be a system description. The set D(d) contains all the sub-descriptions ofd. The set P (d) contains all the possible programs which satisfy d. For example,if d is the empty description then P (d) contains all the possible programs whichcould ever be written. If d is re�ned to d0 in a development process then d0 containsmore detail than d but P (d0) � P (d) since fewer programs will satisfy the extrabehavioural constraints.The set N(d) contains the names in the external interface of the system d. Theset S(d) is the signature of d, i.e. the set of names and types in the interface ofd. A renaming � may be applied to a description �(d) to change the names in thesignature of d.Given two system descriptions d1 and d2 we wish to decide whether or not anyprogram which satis�es one will also satisfy the other. The description d1 is to bethought of as a query, arising during a development process, and description d2 isto be thought of as a library entry which documents existing code. In practice, it islikely to be very di�cult to be certain of this relationship, so we intend to introduce3

a spectrum where descriptions matching at one end of the spectrum do so weaklyand descriptions matching at the other do so strongly.At the weak end of the spectrum we consider the names and signatures of thetwo descriptions. If: N(d1) � N(d2) (1)then we can conclude that all of the names in the interface of d1 are in the interfaceof d2 and there is a small likelihood that any program which implements d2 alsoimplements d1. Less weakly, if: S(d1) � S(d2) (2)then both the names and their types in the interface of d1 are contained in theinterface of d2. This increases the likelihood that any program which implementsd2 also implements d1.Both weak versions of the matching relation do not take the behaviour of thedescriptions into account. This can be taken into account as follows, if:d3 2 D(d2) ^ d4 2 D(d1) ^ P (d3) � P (�(d4)) (3)then we conclude that the implementations of some sub-description d3 of d2 arealso implementations of some sub-description d4 of d1 after a renaming. We mustbe careful about how sub-description is de�ned, since the degenerate case is theempty description. In practice, there will be some limit as to the minimum size ofa sub-description, for example one which minimally spans the behaviour of d1 insome sense.Stronger still, is the relation induced by the following condition:d3 2 D(d2) ^ d4 2 D(d1) ^ P (d3) � P (d4) (4)since no renaming is necessary. Next is the relation induced by the following con-dition: d3 2 D(d2) ^ P (d3) � P (�(d1)) (5)which forces the whole of the behaviour de�ned by d1 to be taken into account,albeit after a renaming. Finally, the strongest condition is:d3 2 D(d2) ^ P (d3) � P (d1) (6)the whole of the description d1 must be dealt with. Notice that equivalence P (d1) =P (d2) is not really sensible as a constraint since it implies that d1 and d2 are at thesame level of abstraction at which point we have implemented the code which weintend to reuse.Many current matching strategies use module signatures with pre- and post-conditions on each module operation (for example [14] [21] [1] [23]). Whilst lan-guages which are based on such methods are very expressive they are not necessar-ily executable and matching may involve theorem proving which may be arbitrarilycomplex. The work described in [24] is an example of a strategy based on matchingsignatures.Other strategies are based on keyword matching [3] which requires foresight onthe part of the library designer in order to predict the keywords which will be usedin a library search. We propose it is better to base a library search mechanismon the behaviour of the components, since this can be described in abstract termswithout resorting to subjective keywords. The relationship between behaviours andsubtyping is described in [2]. 4

3.3 ModellingThe proposed software development process involves system descriptions which aredenoted by software component descriptions. We would like a software componentdescription language to support the object-oriented model of computation, to beexecutable so that development is interactive, to support transformations and tosupport matching.The 3C model [22] requires that a software component description languagesupports the following three views of a software component: concept, content andcontext. The concept view describes what a component does; the content viewdescribes how the component achieves the behaviour; the context view describesthe domain of applicability for the component.Object-oriented development is particularly amenable to description using the3Cmodel. Each software object in a development is an independent unit which oftencorresponds closely to a domain object. The behaviour of an object is often looselycoupled to that of other objects and the independent nature of objects behaviourtends to lead to wide domains of applicability.Many current development methods for object-oriented software (for example[7] [15] [11] [17] [6] [18]) describe the behaviour of objects using state transitionmachines [5]. Such behaviour descriptions are suitable as a vehicle for componentdescription since they can be used to capture the abstract behaviour of an object(conceptual view) and they can be used to produce an implementation of an object(content view) as a result of transformations.The use of state transition machines for developing object-oriented softwaremeets our objectives since a machine is executable and is amenable to both hor-izontal and vertical transformations (see [9] for a description of state transitionmachine transformation in the context of Knowledge Based Systems). A compo-nent description language which is based upon state transition machines can begiven a formal semantics. The criteria for component reuse can be de�ned in termsof machine simulation. A request for a software component is made in terms ofthe required behaviour, supplied as a state transition machine. A given softwarecomponent is a likely candidate for reuse when its behaviour description is capableof simulating the required behaviour.A labelled state transition machine is represented as a triple (�;�;�). Themachines are used to represent system components and are precisely de�ned inx4. Informally, � describes the states which the software component can existin, � describes the operators which are available in the interface of the softwarecomponent and � describes the state changes which occur in response to activatingan operator.3.4 ExampleThis section gives a very simple example of a component development and showsmatching relationships between the resulting components. The aim is to produce asimple stack behaviour using horizontal and vertical transformations. The develop-
5

ment is shown in the following diagram:7?t18?t29 10?t4-t3 11where nodes refer to components produced during the development and labellededges refer to horizontal and vertical transformations. The universal initial com-ponent description, 7, contains a single state and a single operator which takesthe state to itself. This behaviour describes any component at the highest possi-ble level of abstraction: all component states are coalesced into a single state andall component operators are coalesced into a single operator which appears to donothing: � = fsg� = ff : 7! 7g� = ff : s 7�! sg (7)The signature of 7 de�nes the type of f to be 7 ! 7, i.e. it expects a value whosebehaviour is described by 7 and produces a value whose behaviour is described by7. There is one transition for 7 which is labelled with the operator f and has s assource and target states.The �rst development transformation is to lower the level of abstraction bydistinguishing between two stack states empty and nonempty. These are mutu-ally exclusive and are produced by applying the horizontal transformation t1 to 7producing 8: � = fempty;nonemptyg� = ff : 7! 7g� = ff : empty 7�! empty;f : empty 7�! nonempty;f : nonempty 7�! nonempty;f : nonempty 7�! emptyg (8)The component 8 has two states, a single operator and four transitions. The fourtransitions are produced by systematically splitting the source and target states inthe single transition f : s! s in 7.In general, at this point in development, a number of horizontal transformationswould be applied to 8 in order to tailor the new transitions. This is not necessary for8 since all the transitions are possible at this level of abstraction. A second verticaltransformation is applied to 8 to decrease the level of abstraction with respect to
6

the operation f . The transformation t2 produces 9:� = fempty;nonemptyg� = fpush : 7! 7;pop : 7! 7;top : 7! 7g� = fpush : empty 7�! empty;push : empty 7�! nonempty;push : nonempty 7�! nonempty;push : nonempty 7�! empty;pop : empty 7�! empty;pop : empty 7�! nonempty;pop : nonempty 7�! nonempty;pop : nonempty 7�! empty;top : empty 7�! empty;top : empty 7�! nonempty;top : nonempty 7�! nonempty;top : nonempty 7�! emptyg
(9)

The single operator f in 8 has been decomposed into three operators push, pop andtop. In 9 it is now possible to distinguish between three operators each of whicha�ects the stack state in the same way as operation f in 8. Notice that not all of thetransitions which are de�ned in 9 are required. A horizontal transformation t3 isapplied which removes undesirable transitions (in general, this would be performedby a sequence of horizontal transformations) producing 10:� = fempty;nonemptyg� = fpush : 7! 7;pop : 7! 7;top : 7! 7g� = fpush : empty 7�! nonempty;push : nonempty 7�! nonempty;pop : empty 7�! empty;pop : nonempty 7�! nonempty;pop : nonempty 7�! empty;top : empty 7�! empty;top : nonempty 7�! nonemptyg (10)
The component 10 correctly describes the behaviour of a simple stack object. Noticethat the type of the elements which are stored in the stack are de�ned by 7, i.e.they are totally unrestricted. It is unlikely that in a real development, the contentsof a particular stack would be unrestricted. To show how the model supports this,the elements of the stack are restricted to be components of type 10, i.e. stacks ofunrestricted stacks. This is achieved by performing a vertical transformation t4 toproduce 11: � = fempty;nonemptyg� = fpush : 10! 7;pop : 7! 7;top : 7! 10g� = fpush : empty 7�! nonempty;push : nonempty 7�! nonempty;pop : empty 7�! empty;pop : nonempty 7�! nonempty;pop : nonempty 7�! empty;top : empty 7�! empty;top : nonempty 7�! nonemptyg (11)

7

The sequence of component descriptions 7 { 11 describes a simple developmentprocess and gives an overview of the types of transformations which are used. Ateach step in the process further detail is added to the description which restrictsthe number of possible programs which satisfy it. At each step we would liketo search a software library in the hope of �nding programs whose componentdescriptions match the current step. Consider the constraints 1 { 6 described inx3.2. Each constraint is discussed with respect to the development given abovewhere a current development component will be referred to as a d-component anda library component will be referred to as an l-component:� Constraint 1 requires that the operator names of the d-component to bepresent in the l-component. In general, during development the d-componentnames at the outset will di�er from those at the end, for example N(7) = ffgandN(11) = fpush; pop; topg. Keyword matching is therefore unlikely to yielda high number of desirable matches.� Constraint 2 requires that the signature of the d-component is present in thesignature of the l-component. This su�ers from the same problems as con-straint 1; although, once type information has been added to d-component op-erators, for example 11, then this can be used to distinguish the d-componentsignature from l-components with the same interface of names.� Constraint 3 requires that some sub-behaviour of the d-component be consis-tent with some sub-behaviour of the l-component after a renaming. We mustbe careful when de�ning the criteria for consistent sub-behaviour. One possi-bility is that all the distinct d-states must be supported by the l-component,i.e. for each d-state there is a set of potential l-states. The sub-behaviourissue arises due to the following constraint: from each d-state there is a collec-tion of possible d-operators, also each d-state is associated with a collection ofl-states, all the d-operators must be supported by a corresponding l-operatorbut each l-state need not support all the corresponding l-operators.This constraint does not occur in the stack example, however consider thefollowing two component descriptions:� = fs1; s2g� = ff : 7! 7g� = ff : s1 7�! s2; f : s2 7�! s1g (12)� = fp1; p2; p3g� = fg : 7! 7g� = fg : p1 7�! p2; g : p3 7�! p1g (13)where 13 has been derived from 12 using a sequence of transformations. In12 it is possible to move freely from s1 to s2 and back again. In 13 the states2 has been split into p2 and p3 and many of the resulting transitions havebeen deleted. We can associate s1 with p1 and associate s2 with p2 and p3;however only part of the behaviour allowed by 12 in state s1 is supported by13 and the behaviour allowed by 12 in state s2 has been divided between p2and p3.� Constraint 4 is similar to constraint 3 except that no renaming is possible.This would force g and f to be the same in components 12 and 13.� Constraint 5 requires the behaviour of the d-component to be completely sup-ported by the l-component possibly after a renaming. Consider a d-component8

7 being matched against l-components 8 { 11. Using suitable renamings forf , all the l-components support the behaviour of the d-component.Now consider a d-component 8 being matched against l-components 7, 9 { 11.The d-component does not match 7 since there are insu�cient states in thel-component. The d-component does match all of the l-components 9 { 11using constraint 5 since the d-behaviour can be completely embedded withinthe corresponding l-behaviour.The d-component 11 does not match any of the l-components 7 { 10 usingconstraint 5 since its behaviour is too complex to be embedded.� Constraint 6 is similar to constraint 5 except that no renaming is possible.For example 8 matches 10 using constraint 5, but not using constraint 6.In conclusion, we have given an overview of ROO, an approach to softwaredevelopment using simple state transition machines and outlined a space of possiblematching constraints which can be used as criteria for reuse. The rest of this papergives the formal semantics of ROO and then gives an example in greater detail.4 Semantics of development and reuseEarlier sections in this paper have described a model for software development andreuse. This section makes this model precise by giving it a formal semantics.4.1 De�nitionsA software component is a triple (�;�;�) where � is a set of states, � is a signaturewhich is a set of operators, and � is a set of transitions.A state � 2 � is an atomic value. An operator � : �1 ! �2 2 � consists of anoperator identi�er � and a pair of types �1 and �2 which denote the domain andrange of the operator. A type � is a software component. A transition � : �1 7�! �2consists of an operator identi�er � and a pair of states; �1 is referred to as the sourcestate and �2 is referred to as the target state.The substitution [�1=�2] is used to replace �2 with �1. Similarly, [�1=�2] replaces�2 with �1. Substitutions are applied to operator identi�er and states respectively;the de�nition, where x is an operator identi�er or state, is as follows:x[x1=x2] = x1 when x = x2x[x1=x2] = x otherwiseThe in�x operators
 and � are used to denote binary relations.4.2 TransformationsA transformation may be either horizontal or vertical. Horizontal transformationsadd or delete states, transitions and operators. Vertical transformations re�ne thetype of operators or split states and operators.The horizontal transformations each add or delete a value from the relevant en-tries in the software components. They are de�ned below without further comment:addstate(�)(�;�;�) = (� [f�g;�;�)delstate(�)(�;�;�) = (�� f�g;�;�)addop(� : �1 ! �2)(�;�;�) = (�;� [f� : �1 ! �2g;�)delop(�)(�;�;�) = (�;�� f�g;�)addtrans()(�;�;�) = (�;�;� [fg)deltrans()(�;�;�) = (�;�;�� fg)9

The vertical transformations are slightly more complex. Each transformation isformally de�ned and then explained.splitstate(�1; �2; �3)(�;�;�) = ((�� f�1g) [f�2; �3g;�;�0)where�0 = Sff� : �[�2=�1] 7�! �0; � : �[�3=�1] 7�! �0g j � : � 7�! �0 2 SgwhereS = Sff� : � 7�! �0[�2=�1]; � : � 7�! �0[�3=�1]g j � : � 7�! �0 2 �gThe splitstate transformation involves an existing state �1 and two new states �2and �3. The e�ect is to replace �1 by both �2 and �3 in a given software component.To do this, the existing state is removed from � and the new states are added.Then each transition in � must be duplicated, replacing �1 with both �2 and �3,producing a new transition set �0.splitop(�1; �2; �3)(�;�;�) = (�; (�� f�1g) [f�2; �3g;�0)where�0 = Sff�[�2=�1] : �1 7�! �2; �[�3=�1] : �1 7�! �2g j � : �1 7�! �2 2 �gThe splitop transformation involves an existing operation �1 and two new operations�2 and �3. The e�ect is to replace the existing operation �1 by both �2 and �3 ina given software component. To do this, the existing operator is removed from �and the two new operators are added. Then each transition in � which is labelledwith the �1 is replaced with two new transitions which are labelled with �2 and �3respectively. re�neop(�; �1; �2;�)(�;�;�) =� (�; (�� f� : �1g) [f� : �2g;�) when �1 � �2? otherwiseThe re�neop transformation involves an existing operator � whose type is �1 and anew type �2. The e�ect is to replace the existing operator type with the new operatortype only when the types are consistent with respect to the supplied relation �.Transformations may be constructed without reference to a speci�c softwarecomponent. Such transformations are combined using the in�x operator ? which isde�ned as follows: (t1 ? t2)(�;�;�) = t2(t1(�;�;�))As an example of a composite transformation the following corresponds to thetransformation used in the development in x5:t1 ? t2a ? t2b ? t3 ? : : : ? t4 : : :wheret1 = splitstate(s; empty;nonempty)t2a = splitop(f; push; g)t2b = splitop(g; pop; top)t3 = deltrans(push : empty 7�! empty)t4 = re�neop(push; 7! 7; 10! 10;�)where : : : represents a repetition of the preceding type of transformation and � isa simulation relation as explained in x4.3.4.3 SimulationMatching software components is based on the notion of simulation [5]. One tran-sition machine simulates another when some or all of the states and transitions10

which are performed by one machine can be embedded in the other. Simulation istotal when all of the states and transitions can be embedded and is partial other-wise. During system development, the program associated with an l-component isa candidate for reuse when the l-component simulates the current d-component.Simulation is formally de�ned using a family of relations. Each relation has theform (s; o) where s is t when the simulation is total and is p when the simulation ispartial and where o is f when the operator names must be �xed and is l when theoperator names may be di�erent. Given two components c1 and c2, c1 is said tobe simulated by c2, with respect to s and o when the corresponding relation holds.Each relation is de�ned in turn and then explained. The relation (p; l) is equivalentto 3 in x3.2 and is de�ned as follows:(�1;�1;�1) (p; l) (�2;�2;�2) i�9� � �1 ��2 � dom(�) = �1^9
 � �1 ��2 � dom(
) = �1^((�1 : �1 ! �2)
 (�2 : �3 ! �4)) (�1 (p; l) �3) ^ (�2 (p; l) �4))^8�1 : �1 7�! �2 2 �1�9�2 : �3 7�! �4 2 �2�(�1
 �2) ^ (�1 � �3) ^ (�2 � �4)The relation (p; l) holds between two components when the �rst is partially sim-ulated by the second, i.e. every operation which is possible in state of the �rstcomponent must be possible in some corresponding state of the second component.The names of the operations which are involved in the simulation need not be thesame in both components. The relation � holds between the states of the two com-ponents and the relation
 holds between the operations. For each transition whichcan be performed by the simulated component, the simulating component must con-tain a transition which is consistent given the state and operation relations. Thisis described by the following diagram:�1 :?
�2 : �1?� �2?�-�3 �4-The relation (p; f) is equivalent to 4 in x3.2 and is de�ned as follows:(�1;�1;�1) (p; f) (�2;�2;�2) i�9� � �1 ��2 � dom(�) = �1^9
 � �1 ��2 � dom(
) = �1^((�1 : �1 ! �2)
 (�2 : �3 ! �4)) (�1 (p; f) �3) ^ (�2 (p; f) �4))^8�1 : �1 7�! �2 2 �1�9�2 : �3 7�! �4 2 �2�(�1
 �2) ^ (�1 � �3) ^ (�2 � �4) ^ (�1 = �2)The relation (p; f) holds between two components under almost exactly the sameconditions as (p; l) except that the names of the corresponding operations �1 and�2 are forced to be the same; note that the types may be di�erent in respective
11

components. The relation (t; l) is equivalent to 5 in x3.2 and is de�ned as follows:(�1;�1;�1) (t; l) (�2;�2;�2) i�9� � �1 ��2 � dom(�) = �1^9
 � �1 ��2 � dom(
) = �1^((�1 : �1 ! �2)
 (�2 : �3 ! �4)) (�1 (t; l) �3) ^ (�2 (t; l) �4))^8�1 2 �1 � 8�2 2 �2 � �1 � �2)8�1 : �01 7�! �3 2 �1 � �01 = �1)9�2 : �02 7�! �4 2 �2 � �02 = �2)(�1
 �2) ^ (�3 � �4)The relation (t; l) holds between two components when the �rst is totally simulatedby the second, i.e. every operation which is possible in a state of the �rst componentmust be possible in every corresponding state of the second component. The namesof the operations need not be the same in the two components. The relation (t; f)is equivalent to 6 in x3.2 and is de�ned:(�1;�1;�1) (t; f) (�2;�2;�2) i�9� � �1 ��2 � dom(�) = �1^9
 � �1 ��2 � dom(
) = �1^((�1 : �1 ! �2)
 (�2 : �3 ! �4)) (�1 (t; f) �3) ^ (�2 (t; f) �4))^8�1 2 �1 � 8�2 2 �2 � �1 � �2)8�1 : �01 7�! �3 2 �1 � �01 = �1)9�2 : �02 7�! �4 2 �2 � �02 = �2)(�1
 �2) ^ (�3 � �4) ^ (�1 = �2)is similar to (t; l) except that the names of the operations must be the same in bothcomponents.5 Example development and reuseThis section gives an example development of a factory component and shows howmatching supports its subsequent reuse. The required factory may be idle, makingchemical x or making chemical y. Both manufacturing processes are mutually exclu-sive and are supplied with raw chemicals and produce re�ned chemicals as output.The de�nition of a chemical is not particularly important, but to be concrete thefollowing is su�cient: � = fhot; coldg� = fheat : 7! 7; cool : 7! 7g� = fheat : cold 7�! hot;heat : hot 7�! hot;cool : cold 7�! cold;cool : hot 7�! coldg (14)We assume that 14 is re�ned into two distinct component descriptions correspondingto two di�erent types of chemical, these will be referred to as 14x and 14y.The development of the factory component is presented below. We give thetransformations which are used, but skip steps which are repetitive. Starting with7, the following transformation is applied:splitstate(s; busy; idle) ? deltrans(f : idle 7�! idle)to produce a basic process component:� = fidle; busyg� = ff : 7! 7g� = ff : idle 7�! busy; f : busy 7�! busy; f : busy 7�! idleg (15)12

Next, the state busy is split into two states which represent manufacturing the twochemicals: splitstate(busy;makex;makey)and the unrequired transitions between manufacturing processes are deleted:deltrans(f : makex 7�! makey) ? deltrans(f : makey 7�! makex)producing the following component:� = fidle;makex;makeyg� = ff : 7! 7g� = ff : idle 7�! makex;f : idle 7�! makey;f : makex 7�! makex;f : makex 7�! idle;f : makey 7�! makey;f : makey 7�! idleg (16)
Next, a vertical transformation is applied to the single operator f , identifying threeoperators at a lower level of abstraction:splitop(f; process; startstop) ? splitop(startstop; start; stop)producing many unrequired transitions which are deleted:deltrans(start : makex 7�! idle) ? deltrans(stop : idle 7�! makex) ? : : :the result is as follows:� = fidle;makex;makeyg� = fstart : 7! 7; process : 7! 7; stop : 7! 7g� = fstart : idle 7�! makex;start : idle 7�! makey;stop : makex 7�! idle;stop : makey 7�! idle;process : makex 7�! makex;process : makey 7�! makeyg (17)
Next, the manufacturing process states are split to identify start and end states:splitstate(makex; initx; termx) ? splitstate(makey; inity; termy)the starting and stopping operators are restricted to apply to the appropriate states:deltrans(start : idle 7�! termx) ? deltrans(stop : initx 7�! idle) ? : : :and the processing operator is restricted:deltrans(process : initx 7�! termx) ? deltrans(process : termx 7�! initx) ? : : :producing the following component:� = fidle; initx; termx; inity; termyg� = fstart : 7! 7; process : 7! 7; stop : 7! 7g� = fstart : idle 7�! initx;start : idle 7�! inity;stop : termx 7�! idle;stop : termy 7�! idle;process : initx 7�! termx;process : inity 7�! termyg (18)

13

Both the start and stop operators are re�ned in order to restrict their respectivedomain and range to 14:re�neop(start; 7! 7; 14! 7) ? re�neop(stop; 7! 7; 7! 14)producing the component: description for a factory:� = fidle; initx; termx; inity; termyg� = fstart : 14! 7; process : 7! 7; stop : 7! 14g� = fstart : idle 7�! initx;start : idle 7�! inity;stop : termx 7�! idle;stop : termy 7�! idle;process : initx 7�! termx;process : inity 7�! termyg (19)
After further re�nement, the following factory component description is produced:� = fidle; initx; termx; inity; termyg� = fstartx : 14x! 7;starty : 14y ! 7;processx : 7! 7;processy : 7! 7;stopx : 7! 14x;stopy : 7! 14yg� = fstartx : idle 7�! initx;starty : idle 7�! inity;stopx : termx 7�! idle;stopy : termy 7�! idle;processx : initx 7�! termx;processy : inity 7�! termyg

(20)
To complete the software development process, the component would be imple-mented in a programming language, perhaps C++ [19] or Java [20], and the com-ponent would be associated with its program in a software library.To show how reuse can be achieved using the simulation relations described inx4.3, the factory component is re-developed. We will use the relation (p; l) to searcha library of component descriptions which contains 15 { 19.The development starts with 7. The following transformation is applied toproduce an initial factory description:splitstate(s; on; o�) ? deltrans(f : o� 7�! o�)which is � = fon; o�g� = ff : 7! 7g� = ff : o� 7�! on; f : on 7�! on; f : on 7�! o�g (21)Notice that this is essentially the same as 15 except that the names of the stateshave been changed. If the library is searched using this component description thenmany library components will match, so it is necessary to develop the componentfurther. The operator f is split into two operators:splitop(f; start; stop)and the unrequired transitions are removed:deltrans(start : on 7�! o�) ? : : :14

producing: � = fon; o�g� = fstart : 7! 7; stop : 7! 7g� = fstart : o� 7�! on; o� : on! o�g (22)Finally, the types of the operators are re�ned:re�neop(start; 7! 7; 14! 7) ? re�neop(stop; 7! 7; 7! 14)which produces: � = fon; o�g� = fstart : 14! 7; stop : 7! 14g� = fstart : o� 7�! on; o� : on! o�g (23)Two components match the component 23, these are 19 and 20. The relations whichmatch 20 are:
 = f(start : 14! 7; startx : 14x! 7);(start : chemical ! 7; starty : 14y ! 7);(stop : 7! 14; stopx : 7! 14x);(stop : 7! 14; stopy : 7! 14y)g� = f(o�; idle); (on; initx); (on; termx); (on; inity); (on; termy)gThe development of a factory software component has been shown to take advan-tage reuse with respect to the proposed ROO model of development and reuse. Thenumber of steps which are taken to e�ectively reuse a component, 21 { 23, is sig-ni�cantly shorter that the number of steps taken to develop the component in the�rst place, 15 { 20 (which includes many steps which were elided, including writingthe code!).6 Analysis and conclusionsThe aims of this work were to produce a model of software development whichsupported the object-oriented programming model, was executable, had a formalsemantics and supported reuse. The work which is described in this paper has setthe foundations of such a model. The model has been implemented as a prototypetool, called ROOT, in the programming language Scheme [10]. ROOT is text basedand supports the development and simulations of component descriptions througha menu driven interface.The work is novel since it attempts to provide a formal model for object-orientedsystems which encompasses both development and reuse. However, the model isvery simple are will require further re�nement before it can achieve its aim of sup-porting object-oriented development and reuse in Java with respect to the Internet.A particular area for re�nement is that of simulation and matching. The rela-tions in 4.3 and the ROOT algorithms which test them are satisfactory for simplecomponent descriptions, but are unlikely to be e�ective when dealing with largecomplex components. They do not prioritize possible matches, for example in termsof component coverage. The matching mechanisms are likely to require human inputto help them navigate through a space of possible matches. The distinction betweenexact operator name matching and arbitrary operator matching is an example ofhuman control. This is likely to be a fruitful area of research.This paper deals only with machine simulation where machines must execute instep. If we allow a single step in one machine to be simulated by a sequence of stepsin another machine then this allows greater exibility when matching component15

descriptions. However, this introduces a collection of problems in deciding whetheror not one machine simulates another. This is an area for further research.Another area for re�nement is the expressivity of the language used to representcomponents. Conditional transitions are likely to be necessary and a distinctionmade between deterministic and non-deterministic components. Currently, statesare atomic and have no internal structure; it is likely that, at lower levels of ab-straction, some form of record structure for states is desirable.The language should support object-oriented features such a self reference andinheritance. Inheritance may be modelled by merging two or more machines to-gether. A problem which is encountered in object-oriented type systems is the dif-ference between co- and contra-variance. This also occurs in ROO where the typeof one operator is compared to another. This is an area for further investigation.Ideally, the component development process should lead to programs writtenin a particular language. We intend to extend the translation operations to allowcomponents to be re�ned Java code.The work in this paper is part of ongoing collaborative research, see [8] for moredetails.References[1] \Formal Speci�cation of Reusable Interface Objects", P. Alencar, D. Cowan,C. Lucena and L. Nova, in Proc. ACM SIGSOFT Symposium on SoftwareReusability, April 1995.[2] \Designing an Object-Oriented Programming Language with Behavioural Sub-typing.", P. America, LNCS 489 Proc. Rex/Fool Conf. May/June 1990.[3] \Web crawlers to index Java", D. Andrews, Byte 21(4), April 1996, p26.[4] \Software Reusability and the Internet", G. Arango, in Proc. ACM SIGSOFTSymposium on Software Reusability, April 1995.[5] Finite Transition Systems, A. Arnold, Prentice Hall International Series inComputer Science, 1994.[6] Essays on Object-Oriented Software Engineering, Vol. 1, E. Berard, PrenticeHall International, Englewood Cli�s, NJ, 1993.[7] Object-Oriented Analysis and Design with Applications, G. Booch, 2nd ed.,The Benjamin/Cummings Publishing Company Inc., 1994.[8] \Using Behavioural Object Descriptions to Reuse Java Code Over the Inter-net", A. Clark and I. Palmer, submitted to 3rd International Conference onObject-Oriented Information Systems, OOIS96.[9] \A Formal Basis for the Re�nement of Rule Based Transition Systems.",A. Clark. The Journal of Functional Programming 6(2), 1996.[10] Revised Report on the Algorithmic Language Scheme, W. Clinger and J. Rees(eds), November 1991.[11] Object-Oriented Development { The Fusion Method, D. Coleman, P. Arnold,S. Bodo�, C. Dollin, H. Gilchrist, F. Hayes and P. Jeremaes, Prentice HallInternational, Englewood Cli�s, NJ, 1994.[12] \Research Directions in Software Reuse", H. Gall, M. Jazayeri and R. Klosch,in Proc. ACM SIGSOFT Symposium on Software Reusability, April 1995.16

[13] \Reusing and Interconnecting Software Components", J. Goguen, IEEE Com-puter, February, 1986.[14] \Melding Software Systems for Reusable Building Blocks", G. Kaiser andD. Garlan, IEEE Software 4(4), 1987.[15] Object-Oriented Methods { A Foundation, J. Martin and J. Odell, PrenticeHall International, Englewood Cli�s, NJ, 1995.[16] \Reusing Software: Issues and Research Directions", H. Mili, F. Mili andA. Mili, IEEE Trans. on Software Engineering, 21(6), June 1995.[17] Object-Oriented Modelling and Design, J. Runbaugh, M. Blaha, W. Premerlani,F. Eddy and W. Lorensen, Prentice Hall International, Englewood Cli�s, NJ,1991.[18] Object Lifecycles: Modeling the World in States, S. Shlaer and S. Mellor, Your-don Press: Prentice Hall International, Englewood Cli�s, NJ, 1992.[19] The Annotated C++ Reference Manual, B. Stroustroup and M. Ellis, AddisonWesley. 1990.[20] The Java Language Speci�cation, Sun Microsystems Inc., 1995.[21] \Software Component Interface Description for Reuse", B. Whittle and M. Rat-cli�e, IEE BCS Software Engineering Journal, 8(6), November 1993.[22] \Models and Languages for Component Description and Reuse", B. Whittle,ACM SIGSOFT Software Engineering Notes, 20(2), April 1995.[23] \Speci�cation Matching of Software Components", A. Zaremski and J. Wing,in Proc. Third ACM SIGSOFT Symposium on the Foundations of SoftwareEngineering.[24] \Signature Matching: A Tool for Using Software Libraries", A. Zaremski andJ. Wing, ACM Trans. on Software Engineering and Methodology, 4(2), 1995.

17

