
Transforming Sequences using ThreadedMorphismsA. N. ClarkDepartment of Computing, University of BradfordBradford, West Yorkshire, BD7 1DPe-mail: a.n.clark@comp.brad.ac.uk, tel.: (0274) 385133September 18, 1997AbstractSequences are very useful structures in programming languages. Func-tional programming languages allow the convenient de�nition of transfor-mations between sequence algebras and other types of data algebra. Se-quence homomorphisms are an important class of such transformations.However, not all desired transformations can be expressed as homomor-phisms. This paper describes a class of transformation which is a gen-eralisation of homomorphisms: sequence morphisms with threads. Thisclass is shown to contain a number of interesting sub-classes of transfor-mation. The morphisms are described using a simple functional program-ming language and are applied to the design and implementation of asimple object-oriented programming language feature.1 IntroductionThis paper describes a class of sequence transformations or morphisms. Theclass is a generalisation of sequence homomorphisms and is shown to containvarious interesting sub-classes. In order to describe this class of morphisms,we use a simple functional programming language. The aims of the paper aredescribed in x1.1 and a brief overview of the characteristics of the functionalprogramming language, used for exposition, is given in x1.2.1.1 OverviewA sequence of values is either the empty sequence [] or is constructed from avalue v and a sequence l using the right associative in�x constructor : toproduce v : l. A sequence of several values is represented asv1 : v2 : : : : : vn : []1

:̂/ \v1 :̂/ \v2 ...\:̂/ \vn []Figure 1: A typical sequenceas [v1; v2; : : : ; vn]or, for the purposes of this paper, as a tree in �gure 1. Given such a sequencewe refer to the value vi as the ith sequence element.The following sequence operators will be used: ++ which appends se-quences, � which subtracts the elements of one sequence from another, hdwhich produces the head of a sequence, tl which produces the tail of a sequence,map which maps a function over a sequence, zip which maps a pair of sequencesof the same length to a sequence of pairs or corresponding elements. Sequencesof pairs are used as tables with the �rst component of each pair being the keyand the second component being the corresponding value. Values are lookedup in tables using the in�x operator � where l � k looks the key k up in thesequence of pairs l returning either the �rst associated value or �. The in�xoperator ? is applied to the result of two lookup operations and returns theright hand operand only when the left is � otherwise it returns the left handoperand.Sequences of values are very useful in programming and are often used asthe source of transformation to other data types. We seek general structure inthese transformations so that they may be de�ned as general abstractions andtalk of \mapping" a function over a list, of \folding" a list with respect to anoperator, etc. The higher order operators which have been devised for sequencetransformation are usually based upon the notion of homomorphisms betweenthe sequence algebra and a target algebra. This is covered in x2 and is one typeof general structure for sequence transformations which treats all the elementsof the sequence independently.It is not always possible to describe a required transformation as a collectionof smaller independent transformations. Each component of such a transfor-mation requires some context which it uses and modi�es for use by the next2

transformation. For such transformations, there is an order in which the ele-ments of the sequence must be transformed. We have termed these threadedmorphisms and they are described in x3. x4 uses threaded morphisms to de-scribe a non-trivial example, showing how classes are represented in a �-calculuswhich has been enriched with environment rei�cation. x5 describes related workand indicates future directions.1.2 A Functional Programming LanguageA functional programming language is used to describe the sequence morphismsin this paper. The language will not be given a precise semantics, but is intendedto hold no surprises for the reader familiar with the class of programming lan-guages including Haskell [8] and that described in [2]. Briey, the followingfeatures are assumed to be part of the language, the reader is directed to [12]and [6] for more details.An expression is either an identi�er, a constant, an (in�x) application,a �-function, an if-expression, a let-expression, a where-expression, a case-expression, a tuple or a sequence. Both let- and where-expressions may de�ne(curried) functions by introducing their arguments on the left hand side of thede�ning =. Programmer de�ned names are introduced in �-functions, case-expressions, let-expressions and where-expressions. Wherever a programmerde�ned name is allowed, a pattern may be used. A pattern is either a con-stant, a name, a constructor applied to a tuple of patterns or simply a tuple ofpatterns. A pattern is used to test a value and to deconstruct a value into itscomponents. The name is used as a pattern where we are not interested in thecorresponding value. Top level de�nitions are introduced using a let-expressionwithout a body; such de�nitions are recursive. Functions may be overloadedby giving extra de�nitions for the same name. In�x operators may be partiallyapplied, as in (+1).The following operators are used: tuple accessors 1st, 2nd and 3rd; the iden-tity combinator I, the constant combinator K and the paradoxical combinatorY; � is in�x function composition.We informally use e1 �! e2 to mean: if we were to inspect a sequenceof snapshots of the execution regime for the functional programming languageapplied to expression e1 we might expect to encounter the (usually simpler)expression e2.2 Sequence HomomorphismsSuppose that we have a data type T whose values are freely constructed as either� or a value x and a value t of type T composed using the in�x constructor
 ,then a typical value of type T will bex1
 x2
 : : :
 xn
 �3

: f1(:)^ ^/ \ / \v1 : --> f2(v1) f1(:)^ ^/ \ / \v2 [] f2(v2) f3([])Figure 2: A typical homomorphismFurthermore, suppose that given a typical sequence, as described in x1, forany sequence element vi we can produce a value xi, then a systematic rule fortransforming sequences to T values is: replace all occurrences of : by
; replacethe single occurrence of [] by �; transform each vi to a corresponding xi. Sucha general transformation is called a homomorphism.Sequence homomorphisms can be represented as triples (f1; f2; f3) where f1transforms the : constructor to a binary operator
, f2 transforms each sequenceelement vi to a value xi and f3 transforms the empty sequence [] to an \empty"value �. Given such a triple we can invent an application rule for itlet (f1; f2; f3)(s) =case sof[]) f3(s)x : s0) f1(:)(f2(x); (f1; f2; f3)(s0))endFigure 2 shows how a typical homomorphism transforms a two element sequence.Homomorphisms compose using the in�x operator � de�ned belowlet (f1; f2; f3) � (g1; g2; g3) = (f1 � g1; f2 � g2; f3 � g3)The identity transformation m1 is an example of a homomorphismlet m1 = (I; I; I)There are many di�erent useful sequence homomorphisms, such as m2 whichadds up all elements of a numeric sequencelet m2 = (K(+); I;K(0))m3 which adds up all the lengths of a sequence of sequenceslet m3 = (K(+);#;K(0))4

and m4 which reverses a sequencelet m4 = (K(�(x; s):s++[x]); I; I)In general, a homomorphism will \atten out" some of the structure which ispresent in the sequence and it will not be possible to determine the originalvalue from the result of transforming it. An example of this is seen when wetransform a sequence of sequences using the homomorphism m3let x1 = [[1; 2; 3]; [4; 5; 6; 7]; [8; 9; 10]]m3(x1) �! #([1; 2; 3]) + #([4; 5; 6; 7]) + #([8; 9; 10]) + 0�! 3 + 4 + 3+ 0�! 10The result of the transformation, 10, is the sum of the component sequencelengths but it does not reect any structure as to how the �nal result arose.Suppose that after transforming with m3 we want to determine the maximumlength which contributed to the value 10 using the homomorphism m4let m4 = (K(max); I; I)Now if we usem3 to transform a sequence,m4 can not be used since the structureof the original sequence is lost. On the other hand, if we use the compositionm4 �m3 which produces the maximum length 4, we have lost the sum of thelengths 10.In order to preserve the inherited structure from a sequence s, which is trans-formed m(s), we de�ne an operator, F1, to be applied to a sequence, producinga new value F1(s). The new value is essentially the same as s except it may betransformed using homomorphisms m and the structure is preserved. In orderto use a homomorphism m to transform a new value, it must also be trans-formed using F1 to produce a new mapping F1(m). The operator F1 has theproperties of a functor [1].let F1(s)(f1; f2; f3) =case s of[]) f3(s)x : s0) f1(:)(f2(x); F1(s0)(f1; f2; f3))endlet F1(m1)(s)(m2) = s(m2 �m1)The de�nition of F1 has two parts. The �rst part de�nes what happens whenF1 is applied to a sequence s. The result, F1(s), is referred to as a lifted se-quence and is an operator which is applied to a morphism, m, and returns thetransformed sequence m(s). The second part de�nes what happens when F1 is5

applied to a sequence homomorphism, m1. The result, F1(m1), is referred to asa lifted morphism and is an operator which is applied to a lifted sequence s andreturns a lifted sequence (an operator whose argument is a sequence homomor-phism m2).Let F1(�) represent the type of the values produced by applying the �rstde�nition of F1 above, to sequences of type �. Let � ! � represent the typeof homomorphisms from sequences of type � to some type �. The type of theresult of applying the second de�nition of F1 above to a homomorphism of type�! � is F1(�)! F1(�).Now we can produce a lifted sequencelet x2 = F1(x1)the original sequence is recovered by applying the lifted sequence to the identitymorphism, x2(m1) �! x1. The new value is produced by transforming x2 witha lifted homomorphism let x3 = F1(m2)(x2)The sum of the lengths is produced by applying x3 to the identity morphismx3(m1) �! 10. The maximum sum of the lengths is produced by either ap-plying x3 to the homomorphism m3, x3(m3) �! 4 or by transforming x3 us-ing a lifted homomorphism and then applying this to the identity morphismF1(m3)(x3)(m1) �! 4.3 Threaded Sequence MorphismsNot all transformations which we wish to perform on sequences can be describedby a collection of independent transformations on the elements of the sequences.More complex transformations require contextual information where the contextdepends upon the position of an element of the sequence. Examples of thistype of transformation are: merging one sequence into another and producinga sequence of the sums of pre�xes or su�xes of a numeric sequence. In the �rstcase, it is necessary to know the position in the sequence in order to pair upelements at the same positions. In the second case it is necessary to know theposition in the sequence in order to add up all of the previous or succeedingelements.We propose a generalisation of homomorphisms described in x2 which aremorphisms with threads. A thread is a value which is passed through a morphismas a sequence is transformed and may be a�ected be individual components ofthe transformation. x3.1 describes morphisms which have downward threads,i.e. values which are passed through the transformation of successive elementsfrom the head of the sequence to the tail. x3.2 describes morphisms whichhave upward threads, i.e. values which are passed through the transformationof successive elements from the tail of the sequence to the head. Finally, x3.3describes morphisms which have both downward and upward threads.6

: v f1(:)^ \ ^/ \ \ / \v1 : --> f2(v1,\) f1(:)^ \ ^ _/ \ \ / \ /|v2 [] f2(v2,\) f3([],/)\ /______/Figure 3: A typical morphism with a downward thread3.1 Downward ThreadsA sequence morphism with a downward thread is a triple (f1; f2; f3) with thefollowing application rulelet (f1; f2; f3)(s; v) =case s of[]) f3(s; v)x : s0) let (x0; v0) = f2(x; v)in f1(:)(x0; (f1; f2; f3)(s0; v0))endCompared with the application rule for sequence homomorphisms in x2, the rulefor downward threads has an extra parameter v which represents the thread.Each component x of the sequence is transformed before the rest of the sequences0 and the value of the thread is supplied to f2 producing a new thread valuev0 which is supplied to the transformation of the rest of the sequence s0. Figure3 shows a typical morphism with a downward thread applied to a two elementsequence.The following morphismlet m5 = (I; �(x1; x2 : l):((x1; x2); l); �([]; []):[])will merge a sequence into another sequence, for examplelet x4 = [1; 2; 3]let x5 = [4; 5; 6]m5(x4; x5) �! [(1; 4); (2; 5); (3; 6)]7

The following morphismlet m6 = (I; �(x; v):(v; x + v); �([]; v):v : [])will transform a sequence of numbers to a sequence of pre�x sums and also addthe complete sum onto the end of the sequence, for examplem6(x4; 0) �! [0; 1; 3; 6]m6(x5; 0) �! [0; 4; 9; 15]Now, suppose that we de�ne a sequence morphism with a downward thread,which produces the sum of the pre�x sums,let m7 = (K(+); �(x; v):(v; x + v); �([]; v); v)Applying this morphism to a sequence will lose the structure of the sequence, asargued in x2. Furthermore, when morphisms are composed it is not possible toseparate di�erent threads for each layer of morphism. We will deal with thesetwo problems by de�ning a functor F2 which lifts both sequences and morphismswith downward �bers. A �ber is made up of multiple threads and is rotatedbetween the morphisms. A morphism with a single thread is transformed toone with a rotating �ber using the operator �berlet �ber(f1; f2; f3) = (f1; f 02; f 03)wheref 02(x; v : l) = let (x0; v0) = f2(x; v) in (x0; l++[v0])f 03(x; v : l) = let (x0; v0) = f3(x; v) in (x0; l++[v0])Now the functor F2 is de�ned belowlet F2(s)((f1; f2; f3); l) =case s of[]) f3(s; l)x : s0) let (x0; l0) = f2(x; l)in f1(:)(x0; F2(s0)((f1; f2; f3); l0))endlet F2(v)(m1)(s)(m2; l) = s(m2 �m1; v : l)The functor F2 has two parts to its de�nition. The �rst part de�nes whathappens when F2 is applied to a sequence s. The result, a lifted sequence, is anoperator which expects a pair (m; l) where m is a morphism with a downwardrotating �ber and l is the �ber. The second part de�nes what happens when F2is applied to a value v and a morphism m with a downward rotating �ber. Theresult, a lifted morphism, is an operator which is applied to a lifted sequence sand returns a lifted sequence. 8

F2 is used to compose m7 and m5. Firstly, the sequence is liftedlet x6 = F2(x5)The original sequence is returned by supplying it with the identity morphismwhich has been transformed for �bersx6(�ber(m1)) �! x5Then, x6 is transformed using m7 to the sum of all the pre�xeslet x7 = F2(0)(m7)(x6)The sum is returned by supplying x7 with the identity morphismx7(�ber(m1)) �! 10Finally, x7 is transformed using m5 and merged with x5let x8 = F2(x5)(m5)(x7)and the merged value released by supplying the identity morphismx8(�ber(m1)) �! [(0; 4); (1; 5); (3; 6)]This is just one variation on the theme of morphisms with downward threads,other variations include: having a single thread which is shared between allcomposed morphisms; having the f3 component of the morphism return anoutput value for the thread which is passed back as the seed value for successivemorphisms (see x3.2); having indexable threads where a single morphism maya�ect either no threads, a single thread or multiple threads as desired.Sequence morphisms with downward threads can be viewed as a generalisa-tion of sequence homomorphisms and the functor F2 can be made to implementF1. Given a sequence homomorphism m, a morphism with a downward threadis produced using the operator downlet down(f1; f2; f3) = (f1; f 02; f 03)wheref 02(x; v) = (f2(x); v)f 03(x; v) = (f3(x); v)Now m can be applied to a sequence using F21st(F2(s)(down(m); [])) = F1(s)(m)and similarly for the morphism component of F2, where any value may besupplied as the �rst argument v. 9

_: |\ f1(:)^ \ ^/ \ \ / \v1 : --> f2(v1,\) f1(:)^ \ ^ v/ \ \ / \ /v2 [] f2(v2,\) f3([],/)\ /______/Figure 4: A typical morphism with an upward thread3.2 Upward ThreadsA sequence morphism with an upward thread is a triple (f1; f2; f3) with thefollowing application rulelet (f1; f2; f3)(s; v) =case s of[]) f3(s; v)x : s0) let (s00; v0) = (f1; f2; f3)(s0; v) inlet (x0; v00) = f2(x; v0)in (f1(:)(x0; s00); v00)endThe application rule is similar to that which is de�ned in x3.1 except that thethread value v is passed to the end of the sequence where it is modi�ed by f3and returned. This way the thread value taked part in the transformation ofeach element of the sequence from the tail to the head. Figure 4 shows a typicalmorphism with an upward thread applied to a two element sequence.The morphism m8, de�ned below, is an example of a morphism with anupward thread. The result of applying m8 to a sequence of numbers is thesequence in which each element has been replaced by its su�x sumlet m8 = (I; �(x; v):(v; x + v); I)note that these morphisms return a pair which is the transformed sequence andthe �nal value of the thread, e.g.m8(x4; 0) �! ([5; 3; 0]; 6)The morphism m9 will merge the reverse of a sequence with anotherlet m9 = (I; �(x1; x2 : l):((x1; x2); l); I)10

for example m9(x4; x5) �! ([(1; 6); (2; 5); (3; 4)]; [])As is argued in x2 and x3.1, the application rule for a morphism with an upwardthread loses the structure of the original sequence and prevents further usefultransformations from being applied. We de�ne a functor, F3, which gets aroundthis problem by retaining the structure in the transformations.Before de�ning F3 we note that there are a number of variations which arisewhen deciding how to deal with threads which are transformed by composedmorphisms. x3.1 describes some variations and de�nes a functor F2 which usesrotating �bers. This section de�nes a functor F3 which re-threads the �nal valueof a thread from one morphism as the seed value for the next morphism. Anexample application is the morphism which takes a sequence of numbers, addsthem up and then replaces each element in the sequence with the sum. This isachieved using two morphisms with upward threads. The �rst morphism actsas identity on the sequence and produces the sum of the elements as the �nalvalue of the thread. The second morphism is seeded with the sum and replacesall the values in the sequence with the value of the thread.The functor F3 is de�ned as followslet F3(s)((f1; f2; f3); l) =case s of[]) let (o; ; []) = f3([]; s; l) in ox : s0) let l1 = F3(s)((f1; f2; f3); l) inlet (l2; ; []) = f2([]; x;map(tl)(l1)) inlet l3 = map(1st)(l1)l4 = map(1st)(l2)l5 = map(2nd)(l2)in zip(map((f1)(:))(zip(l3; l4)); l5)endlet F3(m1)(s)(m2; l) = s(m2 �m1; l)The functor F3 has two parts to its de�nition. The �rst part de�nes whathappens when F3 is applied to a sequence s. The result, a lifted sequence, isan operator which expects a pair (m; l) containing a morphism with upwardthreads and a list of values l. Consider the case where the supplied morphismis a composition mc �mb �ma and the list of values is [v0; v1; v2; v3]. The resultof the application is a sequence of pairs[(s1; v1); (s2; v2); (s3; v3)]The transformation of s proceeds as follows. Firstly, the sequence s is trans-formed using the morphism ma with an initial value v0 for the thread. Thisproduces a pair (s1; v1) which is the transformed sequence s1 and the �nal11

value of the thread v1. Although the value s1 is not necessarily a sequence,it has inherited the structure of the sequence s and may be transformed usingsequence morphisms. The next step is to transform the value s1 (with its inher-ited structure) using the morphism mb using the �nal value of the thread fromthe previous transformation, v1, as the initial value for the new thread. Thisproduces a pair (s2; v2) which is the transformed sequence, s2, and the �nalvalue of the thread, v2. Again, the value s2 is not necessarily a sequence, but itwill inherit the structure of s and therefore can be transformed using sequencemorphisms. Finally, the value s2 is transformed using the sequence morphismmc and the �nal value of the thread produced by the previous transformation,v2, as the initial value for the new thread. This produces a pair (s3; v3) whichis the �nal result of transforming s with the transformation mc �mb �ma usingv0 as the initial value of the thread.The second part of the de�nition F3 is applied to sequence morphisms withupward threads and produces a morphism for lifted sequences.In order to use the functor F3, the morphisms must have a particular struc-ture. Each morphism is a triple (f1; f2; f3) as before, but the f2 and f3 com-ponents must be transition functions for state transition machines which arede�ned as follows. Each machine has states which are of the form(o; v; i)where: o is a sequence of pairs (v1; v2) consisting of a transformed sequenceelement v1 and a transformed thread value v2, each pair in the sequence isproduced by successive morphisms; v is a sequence element, to be transformedby the next morphism; i is a list of thread values to be consumed by successivemorphisms. A transition performed by a machine has the following format(o; v1; v2 :: i) 7�! (o++[(v01; v02)]; v01; i)where (v01; v02) is the pair of values produced by one step in the morphism usingthe pair (v1; v2). The value v01 becomes the value which is to be transformed bythe next morphism.The list of seed values l which is supplied to the operator F3 is found usinga �xed point. The list is initially supplied as v0 : ? where ? represents the restof the seed values which have yet to be calculated. Each transformation whichuses this list of initial values, produces a list where the initial element of thelist depends only on v0 and successive elements of the list each depend upontheir predecessor. Thus, the resulting list of pairs are produced as (s1; v1) : ?,whereupon the next component of the input list is known v0 : v1 : ?. Byapplying this argument to successive pairs of the input and output we arguethat the result may be constructed using a �xed point.Given a sequence s, a morphism with a downward thread m and an initial12

value v, the transformed sequence is produced using the operator tielet tie(s); (m; v) =let ++[(s0; v0)] = Y(�l:s(m; v : (map(2nd)(l))))in (s0; v0)Now we wish to de�ne morphisms which add up all the values in a list and addsthis value to each element.let m10 = (I; g; h)whereg(o; v1; v2 : l) = (o++[(v1; v1 + v2)]; v1; l)h(o; []; v : l) = (o++[([]; v)]; []; l))let m11 = (I; g; h)whereg(o; v1; v2 : l) = (o++[(v1 + v2; v2)]; v1; l)h(o; []; v : l) = (o++[([]; v)]; []; l))The sequence x4 is lifted using F3let x9 = F3(x4)transformed with the morphism m10let x10 = F3(m10)(x9)the sum of the elements in the sequence x4 is produced by supplying x10 withthe identity morphism 2nd(tie(x10)(m1; 0)) �! 6x10 may be transformed using m11 which will add the sum of the elements onto each element let x11 = F2(m11)(x10)and the �nal result is produced by supplying the identity morphism1st(tie(x11)(m1; 0)) �! [7; 8; 9]Another example of the use of this morphism is to replace all the elements of a
13

sequence with the maximum element. This is achieved as followslet m12 = (I; g; h)whereg(o; v1; v2 : l) = (o++[(v1;max(v1; v2))]; v1; l)h(o; v1; v2 : l) = (o++[(v1; v2)]; v1; l)let m13 = (I; g; h)whereg(o; ; v : l) = (o++[(v; v)]; v; l)h(o; v1; v2 : l) = (o++[(v1; v2)]; v1; l)1st(tie(F3(m12)(F3([1; 2; 3; 44; 5; 6; 7])))(m13; 0))�! [44; 44; 44; 44; 44]Sequence morphisms with upward threads can be viewed as generalisations ofsequence homomorphisms and the functor F3 can be made to implement thefunctor F1. Given a sequence homomorphism m, a morphism with an upwardthread is produced using the operator uplet up(f1; f2; f3) = (f1; f 02; f 03)wheref 02(o; v; i) = (o++[(f2(v); v)]; f2(v); i)f 03(o; v; i) = (o++[(f3(v); v)]; f3; (v); i)Now m can be applied to a sequence using F31st(tie(F3(s))(up(m);?)) = F1(s)(m)3.3 Complete Threadingsx3.1 describes sequence morphisms with doward threads and x3.2 describes se-quence morphisms with upward threads. Both of these types of morphism havebeen shown to be generalisations of sequence homomorphisms. This sectionmerges the notions of upward and downward threaded morphisms into a singlebi-directional or completely threaded sequence morphism.In x3.1 and x3.2 it has been noted that there are di�erent variations on thebasic idea of a threaded morphism, for example �bers and successively threadedmorphisms. This section describes a simple type of completely threaded se-quence morphism which is used in x4.The de�nition of the functor F for completely threaded sequence morphisms
14

: v1 _ f1(:)^ \|\ ^/ \ \ \ / \v1 : --> f2(v1,\,\) f1(:)^ \ \ ^ _/ \ \ \ / \ v2 /|v2 [] f2(v2,\,\) f3([],/,/)\ \ / /\ ______/ /________/Figure 5: A typical morphism with bi-directional threadsis de�ned belowlet F (s)((f1; f2; f3); v1; v2) =case s of[]) f3(s; v1; v2)x : s0)let rec (x0; v01; v002) = f2(x; v1; v02)(s00; v001 ; v02) = F (s0)((f1; f2; f3); v01; v2)in (f1(:)(x0; s00); v001 ; v002)endlet F (m1)(s)(m2; v1; v2) = s(m2 �m1; v1; v2)There are two parts to the de�nition of the functor F . The �rst part describeswhat happens when F is applied to a sequence s. The result, a lifted sequence,is an operator which is applied to a completely threaded morphism and a pairof values, v1 and v2, which are the values of the downward and upward threadsrespectively. F does not implement any fancy thread mechanisms, such asrotating �bers or successive threading. The downward thread value is suppliedto each successive element transformation in the sequence from the head tothe tail and the upward thread value is supplied to each successive elementtransformation in the sequence from the tail to the head.The second part of the de�nition of F describes what happens when Fis applied to a completely threaded morphism. Figure 5 shows the result ofapplying a typical completely threaded morphism to a two element sequence.Completely threaded morphisms may be used to pass information down atransformation as well as construct information which is passed back as a re-sult of performing the transformation. The example which is given in x3.2 ofreplacing all the elements of a numeric sequence with the maximum element15

can be performed using a single completely threaded morphism as shown in thede�nition of repmax belowlet repmax(s) = 1st(Y(�(; v;):F (s)((I; g; I); 0; v)))where g(v1; v2; v3) = (v3;max(v1; v2); v3)Completely threaded sequence morphisms represent a generalisation of sequencehomomorphisms, sequence morphisms with downward threads and sequencemorphism with upward threads. The following operator de�nitions, complete-hom, completedown and completeup, show how the respective morphism typesare transformed to become completelet completehom(f1; f2; f3) = (f1; f 02; f 03)wheref 02(v1; v2; v3) = (f2(v1); v2; v3)f 03(v1; v2; v3) = (f3(v1); v2; v3)let completedown(f1; f2; f3) = (f1; f 02; f 03)wheref 02(v1; v2; v3) = let (v01; v02) = f2(v1; v2) in (v01; v02; v3)f 03(v1; v2; v3) = let (v01; v02) = f3(v1; v2) in (v01; v02; v3)let completeup(f1; f2; f3) = (f1; f 02; f 03)wheref 02(v1; v2; v3) = let (v01; v03) = f2(v1; v3) in (v01; v2; v03)f 03(v1; v2; v3) = let (v01; v03) = f3(v1; v3) in (v01; v2; v03)In each case F must be supplied with extra values for the threads which arenot used. Since these values take no part in the transformation, they may beanything { even ?.Suppose that the type of a sequence element, or a value which can inheritthe structure of a sequence, is represented as � and that a completely threadedmorphism from one type of sequence to another is represented as �1 ! �2. F (�)represents the type of values which are constructed by applying F to a sequenceof type � and F (�1) ! F (�2) represents the type of morphisms for values oftype F (�1) to values of type F (�2). We are interested in the circumstancesunder which the following diagram commutesF (�1)?F (m2) F (�2)?F (m3)-F (m1)F (�3) F (�4)-F (m4)Theorem 3.1 The above diagram commutes whenm3 �m1 = m4 �m216

Proof 3.1F (m3)(F (m1)(F (s)))= F (m3)(�(m;v1; v2):F (s)(m �m1; v1; v2))= �(m;v1; v2):(�(m; v1; v2):F (s)(m �m1; v1; v2))(m �m3; v1; v2)= �(m;v1; v2):F (s)(m �m3 �m1; v1; v2)= �(m;v1; v2):F (s)(m �m4 �m2; v1; v2)= �(m;v1; v2):(�(m; v1; v2):F (s)(m �m2; v1; v2))(m �m4; v1; v2)= F (m4)(�(m;v1; v2):F (s)(m �m2; v1; v2))= F (m4)(F (m2)(F (s)))4 An Example Using ThreadsThis section describes an application of the complete threads described in x3.3.In x4.1 we specify a simple object-oriented language feature involving classes, ob-jects, method lookup and inheritance. The feature is typical of object-orientedprogramming languages such as Smalltalk [7] and C++ [5]. These featuresare implemented in x4.2 using a functional programming language. Both thespeci�cation and implementation can be expressed using completely threadedsequence morphisms. We are interested in showing that the implementation isconsistent with the speci�cation and in x4.3 we use the proof of consistency fromx3.3 to achieve this. Finally, x4.4 describes a number of variations which arepossible on the theme of object-oriented programming language features andthreaded morphisms.4.1 Speci�cationA program binding environment is a sequence of pairs (i; v) where i is a programidenti�er and v is a program value. An identi�er is looked up in an environmentusing the operator � as described in x1.2. A class is a sequence of pairs of theform (l; e) where l is a list of attribute names declared by the class and e is anenvironment of methods. A method is a pair (i; b) where i is an identi�er whichis the method argument and b is a program expression which is the methodbody. The sequence [] is the empty class which all classes inherit from, thesequence p : s is a class where s is a superclass and p is an extension which addsattribute names and methods to s.An object is a sequence of pairs of the form (e1; e2) where e1 is an environ-ment of attribute names bound to attribute values and e2 is an environment ofmethods. The process by which a class is transformed into an object is called in-stantiation, each attribute name declared by the class is supplied with an initialvalue during instantiation, otherwise the structure of the object (or instance)reects that of the class.A message, consisting of a method name and an argument, is sent to anobject. The name is looked up in the object pairs from the head of the object tothe tail. The �rst method whose name matches the message name is activated17

and the position of the method in the object sequence is important because itde�nes which attribute names are visible. Given an objectp1 : p2 : : : : : pi : : : : pn : []if a method is selected and activated from the pair pi then the attribute namesand values which are available to the body of the method are the concatenationof all the attribute names and values in the object pi : : : : : pn : []. Theactivation of a method requires a method argument, an environment bindingattribute names and a method body. The result of method lookup is describedas a triple (i; e; b) which is a method argument i, attribute environment e andmethod body b.Instantation of a class is performed by morphism m1let m1 = completedown(I; g; h)whereg((l; e); v) = ((zip(l; hd(v)); e); tl(v))h([]; ()) = ([]; ())Given a class let c = [([i1]; [(i2; (i3; b1))]); ([i4]; [(i5; (i6; b2))])]it is instantiated using F (c)(m1; ([1]; ([2]; ())))A method whose name is i is looked up using the morphism m2let m2(i) = completeup(K(?); f;K(�; []))wheref((e1; e2); e3) =� ((i; e1++ e3; b); e1++ e3) when e2 � i = (i; b)(�; e1++ e3) otherwiseGiven an objectlet o = [([(i1; 1)]; [(i2; (i3; b1))]); ([(i4; 2)]; [(i5; (i6; b2))])]the method named i2 is looked up using the morphism m2F (o)(m2(i2); [])producing the triple (i3; [(i1; 1); (i4; 2)]; b1)
18

4.2 Implementationx4.1 speci�es a simple object-oriented language feature using sequence mor-phisms. This section describes how this feature can be implemented in a simplefunctional programming language using environment rei�cation. We will use astandard functional programming language with the following extensions:� Lists of identi�er/value pairs are used as programming language bindingenvironments.� The operator R is applied to a function closure and produces its bindingenvironment.� The operator I is applied to a pair (e; f) containing a binding environmente and a function closure f . The result is a new function closure which isthe same as f except that the binding environment has been replaced withe.The primitive components necessary to provide environment rei�cation are dis-cussed at more length in [11], [9] and [3]. The in�x operator ,! extends thebinding environment of a function closurelet e ,! f = I(e++(R(f)); f)The operator class constructs classes from a superclass c and an extension xwhich de�nes attribute names and methodslet class(c; x)(v1; v2) =let (o1; a1) = c(v1) inlet (o2; a2) = (a1 ,! x)(v2)in (o2++ o1; a2++a1)When a class is instantiated, by applying it to a collection of initial values,it returns a pair (o; a) which consists of a binding environment o of functionclosures and a binding environment a of attribute values. The operator ,! isused in class to cause the extension function x to inherit the attribute values a1created when the superclass c is instantiated.A typical extension function is as followslet x = Y�f:�(i1; i2; : : : in):(E;R(�():()) �R(f))where the identi�ers i1 : : : in are the attribute names, E is an expression whichconstructs a binding environment for the methods and the expressionR(�():())�R(f) constructs just that binding environment containing the attribute names.All classes ultimately inherit from the null classlet nullclass() = ([]; [])19

which returns the empty method and attribute environments when it is instan-tiated.When the functional programming language computes with the operators de-scribed above, there will be computational occurrences of classes and extensions.It is beyond the scope of this paper to fully describe what these computationaloccurrences would look like, but we assume the following operators which aredescribed in terms of their arguments and return values. The operator classclois applied to a computational occurrence of an extension, x, and a class, cclassclo(x; c)and returns a new computational occurence of a class, as described above bythe operator class. The operator xclo is applied to a list of attribute names, l,and an environment of lambda function expressions, exclo(l; e)and produces a computational occurence of an extension as described by theoperator x. The operator buildclass is de�ned as followslet buildclass((l; e); c) = classclo(c; xclo(l; e))Finally, the value nullcassclo is the computational occurrence of the nullclassoperator de�ned above.Given a computational occurrence of a class, constructed with classclo, thestructure of the class will be complex, especially if the functional language hasdesugared all values, for example by uncurrying function de�nitions and ex-panding all patterns into pattern matching code. The instantiation of such avalue requires explanation of the evaluation rules for function application, test-ing values against patterns, etc. However, if such a value is intended to be animplementation of a class described in x4.1, then we can use F to transformthe original class and the structure will be retained. The following morphismtransforms a class sequence to a computational occurrencelet m3 = completehom(K(buildclass); I;K(nullclassclo))If the structure of the original class sequence is retained in the computationaloccurrence then instantiation (by application) is described using the followingmorphism let m4 = (K(++); f;K([]))wheref((l1; e1); (l2; v); e2) = (map(g)(e1); v; e3)whereg(i1; (i2; b)) = (i1; (i2; e3; b))where e3 = (zip(l1; l2))++ e2Finally lookup of a method named i is performed using the morphism m5let m5(i) = completehom(K(?); (�i);K(�))20

4.3 ConsistencyWe wish to show that the implementation of the simple object-oriented featureis consistent with its speci�cation. The theorem which is proved in x3.3 requiresonly that we prove a simpler theorem about the individual morphisms for thisto be the case.Theorem 4.1 The implementation of classes, instantiation and method lookupis consistent with the speci�cation, i.e.m2 �m1 = m5 �m4 �m3Proof 4.1 (1) 1st(m2 �m1) = K(?) = 1st(m5 �m4 �m3)(2) 2nd(m2 �m1)((l1; e1); (l2; v); e2)Let e = (zip(l1; l2))++ e2= 2nd(m2)((zip(l1; l2); e1); v; e2)= � ((i; e; b); v; e) when e1 � i = (i; b)(�; e) otherwise2nd(m5 �m4 �m3)((l1; e1); (l2; v); e2)= 2nd(m5 �m4)((l1; e1); (l2; v); e2)= 2nd(m5)(map(g)(e1); v; e)where g(i1; (i2; b)) = (i1; (i2; e; b))= � ((i; e; b); v; e) when e1 � i = (i; b)(�; e) otherwise(3) 3rd(m2 �m1) =K(�; []) = 3rd(m5 �m4 �m3)4.4 Variationsx4.1 speci�es a simple object-oriented programming language feature, x4.2 im-plements the feature using a functional programming language with environ-ment rei�cation and x4.3 shows that the implementation is consistent with thespeci�cation.The speci�cation and implementation depends upon downward sequencemorphisms for class instantation and upward sequence morphisms for attributevalue inheritance. The language feature is very simple and does not requiresophisticated threaded morphism techniques. There are a number of varia-tions on this language feature which occur in currently available object-orientedprogramming languages. These include multiple inheritance where each classinherits from more than one parent, run-super where shadowed methods are21

made available by passing the tail portion of an object to an activated method,run-inner where the pre�x portion of an object is passed to an activated method,self reference where the entire object is passed to an activated method. Thesemechanisms can be expressed using variations on the basic theme of threadedsequence morphisms, see [4] for more details of these mechanisms and for theapplication of threaded morphisms to the calculations performed by a program-ming language.5 Conclusion, Related and Future Workx2 describes sequence homomorphisms which are a useful sub-class of sequencetransformations. x3 describes threaded morphisms which are a generalisationof sequence homomorphisms and which allow information to be threaded bothdown and up a sequence as it is being transformed. Such morphisms providegreater freedom to express transformations because they allow a sequence el-ement to be transformed in context. It is useful to allow the transformed se-quences to retain structure, providing scope for further sequence transformationsto be applied. The structure is retained by de�ning a functor which lifts bothsequences and threaded sequence morphisms. Threaded sequence morphismshave been used to specify and prove the consistency of an implementation of asimple object-oriented programming language feature.This work is obviously related to monads [16] [15] where a monad is alsoviewed as a mechanism for plumbing thread-like values through program con-structions. The work on monads has tended to focus on control issues suchas state [15], input/output [13] and non-determinism [16], in which case thethreads are used to hide away values which are usually thought of as being partof the language execution mechanism.Both the work on monads and on the theory of lists [14] focus on the typesof values and the properties which transformations must preserve. Although thework described in this paper focusses on the implementation of several di�erenttypes of threaded morphism, there is some indication that a more rigoroustreatment is possible from the declaration that the various F functions are allfunctors. This is an area for further work.The completely threaded morphisms de�ned in x3.3 are similar to attributegrammars in the sense that both can be used to pass information down a givenstructure and construct information back up the same structure. Threadedsequence morphisms are more general that attribute grammars since they arenot forced to pass information in any particular direction, see [10] for moredetails.The work described in this paper limits itself to de�ning transformationson sequences. It is obvious that threaded morphisms can be de�ned for anyalgebraic data type; the use of sequences greatly simpli�ed the explanations (andit is surprising what you can get away with just using sequences). The de�nition22

of threaded morphisms for more complex data types should be straightforwardand it is likely that the extra structure provided by the data types will give riseto more sophisticated general thread mechanisms.References[1] Barr, M. & Wells, C. (1990) Category Theory for Computing Science Pren-tice Hall International Series in Computer Science.[2] Bird, R. & Wadler, P. (1988) Introduction to Functional ProgrammingPrentice Hall International Series in Computer Science.[3] Clark, A. N. (1994) \A Layered Object-Oriented programming Language"The GEC Journal of Research. 11 3 173 { 180.[4] Clark, A. N. (1995) Semantic Primitives for OOPLs PhD Thesis, QueenMary and West�eld College, University of London.[5] Ellis, M. A & Stroustrup B. (1990) The Annotated C++ reference ManualAddison Wesley.[6] Field, A. J. & Harrison, P. G. (1988) Functional Programming AddisonWesley.[7] Goldberg, A. & Robson, D. (1983) Smalltalk-80 The Language and its Im-plementation Addison-Wesley.[8] Hudak, P. et. al. (1992) \Report on the Functional Programming LanguageHaskell, Version 1.2" SIGPLAN Notices 27.[9] Jagannathan, S. (1994) \Metalevel Building Blocks for Modular Systems"ACM TOPLAS 16 3 456 { 492.[10] Johnsson, T. (1987) \Attribute Grammars as a Functional ProgrammingParadigm." in Conference on Functional Programming Languages andComputer Architecture, Lecture Notes in Computer Science no. 274, pp.154 { 173, Springer-Verlag[11] Miller, J. S & Rozas, G. J. (1991) \Free Variables and First-Class Environ-ments" Lisp and Symbolic Computation: An International Journal 4, 107{ 141.[12] Peyton Jones, S. L. (1987) The Implementation of Functional ProgrammingLanguages Prentice Hall International Series on Computer Science.[13] Peyton Jones, S. L. & Wadler, P. (1993) \Imperative functional pro-gramming" in ACM Conference on Principles of Programming Languages,Charleston 71 { 84. 23

[14] Spivey, M. \A Categorical Approach to the Theory of Lists" in LectureNotes in Computer Science no. 375, Springer-Verlag[15] Wadler, P. (1990) \Comprehending Monads" in ACM Conference on Lispand Functional Programming, Nice.[16] Wadler, P. (1992) \The Essence of Functional Programming" in ACM Con-ference on the Principles of Programming Languages, 19

24

