Transforming Sequences using Threaded
Morphisms

A. N. Clark
Department of Computing, University of Bradford
Bradford, West Yorkshire, BD7 1DP
e-mail: a.n.clark@comp.brad.ac.uk, tel.: (0274) 385133

September 18, 1997

Abstract

Sequences are very useful structures in programming languages. Func-
tional programming languages allow the convenient definition of transfor-
mations between sequence algebras and other types of data algebra. Se-
quence homomorphisms are an important class of such transformations.
However, not all desired transformations can be expressed as homomor-
phisms. This paper describes a class of transformation which is a gen-
eralisation of homomorphisms: sequence morphisms with threads. This
class is shown to contain a number of interesting sub-classes of transfor-
mation. The morphisms are described using a simple functional program-
ming language and are applied to the design and implementation of a
simple object-oriented programming language feature.

1 Introduction

This paper describes a class of sequence transformations or morphisms. The
class is a generalisation of sequence homomorphisms and is shown to contain
various interesting sub-classes. In order to describe this class of morphisms,
we use a simple functional programming language. The aims of the paper are
described in §1.1 and a brief overview of the characteristics of the functional
programming language, used for exposition, is given in §1.2.

1.1 Overview

A sequence of values is either the empty sequence [| or is constructed from a
value v and a sequence [using the right associative infix constructor _ : _ to
produce v : [. A sequence of several values is represented as

IR R V|

vl
/ \
v2 ...
\
/ \
vn []

Figure 1: A typical sequence
as

or, for the purposes of this paper, as a tree in figure 1. Given such a sequence
we refer to the value v; as the it" sequence element.

The following sequence operators will be used: _-+# _ which appends se-
quences, _ — _ which subtracts the elements of one sequence from another, hd
which produces the head of a sequence, #/ which produces the tail of a sequence,
map which maps a function over a sequence, zip which maps a pair of sequences
of the same length to a sequence of pairs or corresponding elements. Sequences
of pairs are used as tables with the first component of each pair being the key
and the second component being the corresponding value. Values are looked
up in tables using the infix operator _e _ where [® k& looks the key k£ up in the
sequence of pairs ! returning either the first associated value or e. The infix
operator _7_is applied to the result of two lookup operations and returns the
right hand operand only when the left is € otherwise it returns the left hand
operand.

Sequences of values are very useful in programming and are often used as
the source of transformation to other data types. We seek general structure in
these transformations so that they may be defined as general abstractions and
talk of “mapping” a function over a list, of “folding” a list with respect to an
operator, etc. The higher order operators which have been devised for sequence
transformation are usually based upon the notion of homomorphisms between
the sequence algebra and a target algebra. This is covered in §2 and is one type
of general structure for sequence transformations which treats all the elements
of the sequence independently.

It is not always possible to describe a required transformation as a collection
of smaller independent transformations. Each component of such a transfor-
mation requires some context which it uses and modifies for use by the next

transformation. For such transformations, there is an order in which the ele-
ments of the sequence must be transformed. We have termed these threaded
morphisms and they are described in §3. §4 uses threaded morphisms to de-
scribe a non-trivial example, showing how classes are represented in a A-calculus
which has been enriched with environment reification. §5 describes related work
and indicates future directions.

1.2 A Functional Programming Language

A functional programming language is used to describe the sequence morphisms
in this paper. The language will not be given a precise semantics, but is intended
to hold no surprises for the reader familiar with the class of programming lan-
guages including Haskell [8] and that described in [2]. Briefly, the following
features are assumed to be part of the language, the reader is directed to [12]
and [6] for more details.

An expression is either an identifier, a constant, an (infix) application,
a AMfunction, an if-expression, a let-expression, a where-expression, a case-
expression, a tuple or a sequence. Both let- and where-expressions may define
(curried) functions by introducing their arguments on the left hand side of the
defining =. Programmer defined names are introduced in A-functions, case-
expressions, let-expressions and where-expressions. Wherever a programmer
defined name is allowed, a pattern may be used. A pattern is either a con-
stant, a name, a constructor applied to a tuple of patterns or simply a tuple of
patterns. A pattern is used to test a value and to deconstruct a value into its
components. The name _ is used as a pattern where we are not interested in the
corresponding value. Top level definitions are introduced using a let-expression
without a body; such definitions are recursive. Functions may be overloaded
by giving extra definitions for the same name. Infix operators may be partially
applied, as in (+1).

The following operators are used: tuple accessors 1st, 2nd and 3rd; the iden-
tity combinator I, the constant combinator K and the paradoxical combinator
Y; _o _is infix function composition.

We informally use e; — ey to mean: if we were to inspect a sequence
of snapshots of the execution regime for the functional programming language
applied to expression e; we might expect to encounter the (usually simpler)
expression es.

2 Sequence Homomorphisms

Suppose that we have a data type T' whose values are freely constructed as either
€ or a value z and a value t of type T composed using the infix constructor _® _,
then a typical value of type T' will be

1 RITI R ... 01, Ve

£1(:)

/ \ / \
vi : --> f2(v1) f1(:)
/ \ / \
v2 [] f2(v2) £3([1)

Figure 2: A typical homomorphism

Furthermore, suppose that given a typical sequence, as described in §1, for
any sequence element v; we can produce a value z;, then a systematic rule for
transforming sequences to T values is: replace all occurrences of : by ®; replace
the single occurrence of [| by ¢; transform each v; to a corresponding z;. Such
a general transformation is called a homomorphism.

Sequence homomorphisms can be represented as triples (f1, f2, f3) where f;
transforms the : constructor to a binary operator ®, fs transforms each sequence
element v; to a value z; and f3 transforms the empty sequence [] to an “empty”
value €. Given such a triple we can invent an application rule for it

let (f1, fo, f3)(s) =

case s of

] = fa(s)
z s = fi(:)(f2(2), (f1, f2, f3)(s"))

end

Figure 2 shows how a typical homomorphism transforms a two element sequence.
Homomorphisms compose using the infix operator _o _ defined below

let (fi,f2, f3) 0 (91.92.93) = (fro g1, f2092, f3 093)
The identity transformation m; is an example of a homomorphism
let m; = (I, L1I)

There are many different useful sequence homomorphisms, such as ms which
adds up all elements of a numeric sequence

let my = (K(+), I, K(0))
mg which adds up all the lengths of a sequence of sequences

let mg = (K(+), #, K(0))

and my4 which reverses a sequence
let my = (K(\(z, s).s #[z]),L,I)

In general, a homomorphism will “flatten out” some of the structure which is
present, in the sequence and it will not be possible to determine the original
value from the result of transforming it. An example of this is seen when we
transform a sequence of sequences using the homomorphism mg

let 21 = [[1,2,3],[4,5,6,7],[8,9, 10]]

ma(w1) — #([1,2,3]) + #(14,5,6,7]) + #([8,9,10]) + 0
—3+4+3+0
— 10

The result of the transformation, 10, is the sum of the component sequence
lengths but it does not reflect any structure as to how the final result arose.
Suppose that after transforming with ms we want to determine the maximum
length which contributed to the value 10 using the homomorphism my

let my = (K(maz),1,1)

Now if we use mg3 to transform a sequence, m4 can not be used since the structure
of the original sequence is lost. On the other hand, if we use the composition
my o m3 which produces the maximum length 4, we have lost the sum of the
lengths 10.

In order to preserve the inherited structure from a sequence s, which is trans-
formed m(s), we define an operator, F, to be applied to a sequence, producing
a new value Fi(s). The new value is essentially the same as s except it may be
transformed using homomorphisms m and the structure is preserved. In order
to use a homomorphism m to transform a new value, it must also be trans-
formed using F; to produce a new mapping Fi(m). The operator F; has the
properties of a functor [1].

let F1(s)(f1, f2, f3) =
case s of
= fs(s)
x:8' = f10)(fo(x), By () (f1, f2, f3))

end

let Fy(mq)(s)(ma) = s(mse omy)

The definition of F} has two parts. The first part defines what happens when
Fy is applied to a sequence s. The result, Fi(s), is referred to as a lifted se-
quence and is an operator which is applied to a morphism, m, and returns the
transformed sequence m(s). The second part defines what happens when F} is

applied to a sequence homomorphism, m;. The result, F}(m;), is referred to as
a lifted morphism and is an operator which is applied to a lifted sequence s and
returns a lifted sequence (an operator whose argument is a sequence homomor-
phism my).

Let F(«) represent the type of the values produced by applying the first
definition of F; above, to sequences of type a. Let a — 3 represent the type
of homomorphisms from sequences of type a to some type 3. The type of the
result of applying the second definition of F} above to a homomorphism of type
a— fis Fy(a) = Fi(5).

Now we can produce a lifted sequence

let Ty = F] (QZ])

the original sequence is recovered by applying the lifted sequence to the identity
morphism, z5(mq) — x1. The new value is produced by transforming x5 with
a lifted homomorphism

let I3 = F] (mg)(ZEQ)

The sum of the lengths is produced by applying z3 to the identity morphism
x3(my) — 10. The maximum sum of the lengths is produced by either ap-
plying z3 to the homomorphism ms, z3(m3) — 4 or by transforming z3 us-
ing a lifted homomorphism and then applying this to the identity morphism

3 Threaded Sequence Morphisms

Not all transformations which we wish to perform on sequences can be described
by a collection of independent transformations on the elements of the sequences.
More complex transformations require contextual information where the context
depends upon the position of an element of the sequence. Examples of this
type of transformation are: merging one sequence into another and producing
a sequence of the sums of prefixes or suffixes of a numeric sequence. In the first
case, it is necessary to know the position in the sequence in order to pair up
elements at the same positions. In the second case it is necessary to know the
position in the sequence in order to add up all of the previous or succeeding
elements.

We propose a generalisation of homomorphisms described in §2 which are
morphisms with threads. A thread is a value which is passed through a morphism
as a sequence is transformed and may be affected be individual components of
the transformation. §3.1 describes morphisms which have downward threads,
i.e. values which are passed through the transformation of successive elements
from the head of the sequence to the tail. §3.2 describes morphisms which
have upward threads, i.e. values which are passed through the transformation
of successive elements from the tail of the sequence to the head. Finally, §3.3
describes morphisms which have both downward and upward threads.

: v f1(:)
- \ -

/\ \ /N
vi : --> f2(v1,\) f1(:)
- \ - _
/ \ \ /N /|
v2 [] f2(v2,\) £3(0,/)
\ /
N /

Figure 3: A typical morphism with a downward thread

3.1 Downward Threads

A sequence morphism with a downward thread is a triple (fi, fo, f3) with the
following application rule

let (f1, f2, f3)(s,v) =

case s of
[] = fg(S, U)
z:s' = let (x',0) = fa(z,v)
!

in f1(:)(x ,?f1,f2,f3)(5177’/))

end

Compared with the application rule for sequence homomorphisms in §2, the rule
for downward threads has an extra parameter v which represents the thread.
Each component z of the sequence is transformed before the rest of the sequence
s" and the value of the thread is supplied to f; producing a new thread value
v' which is supplied to the transformation of the rest of the sequence s’. Figure
3 shows a typical morphism with a downward thread applied to a two element
sequence.
The following morphism

let ms = (I A(z1, 22 : 1).((z1,22), 1), A([J, [])-[])
will merge a sequence into another sequence, for example
let 4 =[1,2,3]
let x5 = [4,5,6]

ms(z4,25) — [(1,4),(2,5),(3,6)]

The following morphism
let mg = (I, \(z,v).(v,2 + v), A([],v).v : [])

will transform a sequence of numbers to a sequence of prefix sums and also add
the complete sum onto the end of the sequence, for example

mﬁ(m470) — [07 1/376]

mg (2135, 0) — [0, 4,9, 15]

Now, suppose that we define a sequence morphism with a downward thread,
which produces the sum of the prefix sums,

let m7; = (K(+), AM(z,v).(v,z + v), A([],v), v)

Applying this morphism to a sequence will lose the structure of the sequence, as
argued in §2. Furthermore, when morphisms are composed it is not possible to
separate different threads for each layer of morphism. We will deal with these
two problems by defining a functor F5 which lifts both sequences and morphisms
with downward fibers. A fiber is made up of multiple threads and is rotated
between the morphisms. A morphism with a single thread is transformed to
one with a rotating fiber using the operator fiber

let fiber(f1, fo. f3) = (f1. f3, f3)

where
fi(z,v:l)=1let (z',0") =
filz,v) =let (2'0") =

vv
|
oyl
-~
)%
<
=
-
=
—_
%\
"\‘
=N
=

Now the functor F, is defined below

let F5(s)((f1, f2, f3),1) =
case s of
[= fa(s,10)
x:8 = let (/1) = fa(x,1)
in f1 () (", Fo(s")((f1, f2, f3), 1))

end

let Fy(v)(mq)(s)(ma,l) = s(mgomy,v:l)

The functor F, has two parts to its definition. The first part defines what
happens when Fj is applied to a sequence s. The result, a lifted sequence, is an
operator which expects a pair (m,l) where m is a morphism with a downward
rotating fiber and [is the fiber. The second part defines what happens when Fy
is applied to a value v and a morphism m with a downward rotating fiber. The
result, a lifted morphism, is an operator which is applied to a lifted sequence s
and returns a lifted sequence.

F5 is used to compose m; and ms. Firstly, the sequence is lifted
let Trg = F2 (Tr;)

The original sequence is returned by supplying it with the identity morphism
which has been transformed for fibers

zg(fiber(my)) — x5
Then, zg is transformed using m; to the sum of all the prefixes
let x7 = F»(0)(m7)(zs)
The sum is returned by supplying 27 with the identity morphism
z7(fiber(my)) — 10
Finally, z7 is transformed using ms and merged with x5
let x5 = Fy(x5)(ms)(x7)
and the merged value released by supplying the identity morphism
s (fiber(ma)) — [(0,4), (1,5), (3, 6)]

This is just one variation on the theme of morphisms with downward threads,
other variations include: having a single thread which is shared between all
composed morphisms; having the f3 component of the morphism return an
output value for the thread which is passed back as the seed value for successive
morphisms (see §3.2); having indexable threads where a single morphism may
affect either no threads, a single thread or multiple threads as desired.

Sequence morphisms with downward threads can be viewed as a generalisa-
tion of sequence homomorphisms and the functor F3 can be made to implement
Fy. Given a sequence homomorphism m, a morphism with a downward thread
is produced using the operator down

let down(f1, fa, f2) = (f1, f2, f3)

where
fa(z,v) = (f2(2),v)
f:;(ﬂf{l)) = (fg(il?),’l))

Now m can be applied to a sequence using Fj
13H(Fy (s) (down(m), [})) = Fi (s)(m)

and similarly for the morphism component of F,, where any value may be
supplied as the first argument v.

: N £1(:)
; L

/\ \ /N
vi : --—> f2(v1,\) f1(:)
- \ - v
/ \ \ /N /
v2 [] f2(v2,\) £3(0,/)
\ /
N /

Figure 4: A typical morphism with an upward thread

3.2 Upward Threads

A sequence morphism with an upward thread is a triple (f1, fo, f3) with the
following application rule

let (f]7f2:f3z'(s=v) =
[l = fa(s,v)
z:s' = let (s",0") = (f1, f2, f3)(s',v) in
let (z',0") = fa(z,v")
in (f](:)($’78”)7’1)”)

end

The application rule is similar to that which is defined in §3.1 except that the
thread value v is passed to the end of the sequence where it is modified by f3
and returned. This way the thread value taked part in the transformation of
each element of the sequence from the tail to the head. Figure 4 shows a typical
morphism with an upward thread applied to a two element sequence.

The morphism myg, defined below, is an example of a morphism with an
upward thread. The result of applying mg to a sequence of numbers is the
sequence in which each element has been replaced by its suffix sum

let mg = (I, A\(z,v).(v,z +v),I)

3

note that these morphisms return a pair which is the transformed sequence and
the final value of the thread, e.g.

mg (.’174, O) - ([57 37 O]/ 6)
The morphism mg will merge the reverse of a sequence with another

let mg = (I, AN(x1, 22 : 1).((%1,22),1), 1)

3 3

10

for example
mg(.’IJ4,.’IJ5) — ([(1/ 6)7 (27 5)7 (3a 4)]) [])

Asis argued in §2 and §3.1, the application rule for a morphism with an upward
thread loses the structure of the original sequence and prevents further useful
transformations from being applied. We define a functor, F3, which gets around
this problem by retaining the structure in the transformations.

Before defining F3 we note that there are a number of variations which arise
when deciding how to deal with threads which are transformed by composed
morphisms. §3.1 describes some variations and defines a functor F, which uses
rotating fibers. This section defines a functor Fs which re-threads the final value
of a thread from one morphism as the seed value for the next morphism. An
example application is the morphism which takes a sequence of numbers, adds
them up and then replaces each element in the sequence with the sum. This is
achieved using two morphisms with upward threads. The first morphism acts
as identity on the sequence and produces the sum of the elements as the final
value of the thread. The second morphism is seeded with the sum and replaces
all the values in the sequence with the value of the thread.

The functor F3 is defined as follows

let F3(3)((f],f27f3);l) =
case s of
[= 1et (0. [) = f3([],s,1)m 0
z:s' = letly = F3(s)((f1,

(Fr, for o), 1) in
let (l27—7 []) f (

let I3 = map(1 (ll)
ls = map(1st)(l)
ls = map(?nd)(lz)
in zip(map((f1)(:)) (zip(ls, 1)), 15)

end

let F3(mq)(s)(ma,l) = s(maq omy,l)

The functor F3 has two parts to its definition. The first part defines what
happens when Fj3 is applied to a sequence s. The result, a lifted sequence, is
an operator which expects a pair (m,l) containing a morphism with upward
threads and a list of values [. Consider the case where the supplied morphism
is a composition m,. o my o m, and the list of values is [vg, v1, V2, v3]. The result
of the application is a sequence of pairs

[(s1,v1), (82,v2), (53, v3)]

The transformation of s proceeds as follows. Firstly, the sequence s is trans-
formed using the morphism m, with an initial value vy for the thread. This
produces a pair (s1,v1) which is the transformed sequence s; and the final

11

value of the thread v;. Although the value s; is not necessarily a sequence,
it has inherited the structure of the sequence s and may be transformed using
sequence morphisms. The next step is to transform the value s; (with its inher-
ited structure) using the morphism my using the final value of the thread from
the previous transformation, vy, as the initial value for the new thread. This
produces a pair (s2,v2) which is the transformed sequence, s», and the final
value of the thread, vs. Again, the value s is not necessarily a sequence, but it
will inherit the structure of s and therefore can be transformed using sequence
morphisms. Finally, the value ss is transformed using the sequence morphism
m,. and the final value of the thread produced by the previous transformation,
v2, as the initial value for the new thread. This produces a pair (s3,v3) which
is the final result of transforming s with the transformation m. o my o m, using
vo as the initial value of the thread.

The second part of the definition F3 is applied to sequence morphisms with
upward threads and produces a morphism for lifted sequences.

In order to use the functor F3, the morphisms must have a particular struc-
ture. Each morphism is a triple (f1, f2, f3) as before, but the fo and f3 com-
ponents must, be transition functions for state transition machines which are
defined as follows. Each machine has states which are of the form

(0,v,1)

where: o is a sequence of pairs (vi,vs) consisting of a transformed sequence
element v; and a transformed thread value vy, each pair in the sequence is
produced by successive morphisms; v is a sequence element, to be transformed
by the next morphism; 7 is a list of thread values to be consumed by successive
morphisms. A transition performed by a machine has the following format

(0,01,v7 7)) —— (0 H[(v],v))],v},4)

where (v}, v)}) is the pair of values produced by one step in the morphism using
the pair (vy,v2). The value v} becomes the value which is to be transformed by
the next morphism.

The list of seed values | which is supplied to the operator F3 is found using
a fixed point. The list is initially supplied as vy : — where — represents the rest
of the seed values which have yet to be calculated. Each transformation which
uses this list of initial values, produces a list where the initial element of the
list depends only on w9 and successive elements of the list each depend upon
their predecessor. Thus, the resulting list of pairs are produced as (si,v1) : —,
whereupon the next component of the input list is known vg : v; : —. By
applying this argument to successive pairs of the input and output we argue
that the result may be constructed using a fixed point.

Given a sequence s, a morphism with a downward thread m and an initial

12

value v, the transformed sequence is produced using the operator tie

let tie(s), (m,v)

let _7—|+[(s’,v’_)] =Y (Al.s(m,v : (map(2nd)(1))))

in (s',v")

Now we wish to define morphisms which add up all the values in a list and adds
this value to each element.

let mig = (I,9,h)
where
g(0,v1,v9 : 1) = (0 H#[(v1,v1 + v2)],v1,1)
h(o, [l,v = 1) = (o #[([l;)], 1. 1))
let mi1 = (I‘g‘h)
where

g9(0,v1,v9 : 1) = (0H#[(v1 + v2,v2)],v1,1)
h(o, [l,v = 1) = (o #[([l;)], 1. 1))

The sequence z4 is lifted using F3
let zg = F3(x4)
transformed with the morphism mq
let x19 = F3(m1g) ()

the sum of the elements in the sequence z4 is produced by supplying z1¢ with
the identity morphism

2nd(tie(x10)(m1,0)) — 6

x10 may be transformed using mq; which will add the sum of the elements on
to each element
let r11 = FQ(TI’L]])(ZU]O)

and the final result is produced by supplying the identity morphism
1st(tie(x11)(m1,0)) — [7,8,9]

Another example of the use of this morphism is to replace all the elements of a

13

sequence with the maximum element. This is achieved as follows

let mis = (I,9,h)
where
g(o,v1,v2 : 1) = (0 #[(v1, maz(v1,v2))], v1,1)
h(o,v1,09 : 1) = (0 #[(v1,v2)],v1,1)

let mi3 = (I,9,h)
where
g(o, v :1) = (o#][(v,v)],v,])
h(o,v1,v9 : 1) = (0 #[(v1,v2)],v1,1)

19)‘()‘76(ng (mlg)(Eq ([1/ 2, 3, 44, 5, 6, 7])))(77712, 0))
— [44, 44,44, 44, 44]

Sequence morphisms with upward threads can be viewed as generalisations of
sequence homomorphisms and the functor F3 can be made to implement the
functor F;. Given a sequence homomorphism m, a morphism with an upward
thread is produced using the operator up

let up(fi, f2, f3) = (f1, f3, f3)
where
fé(071)72') = (O-H'[(fQ(U):U)LfQ(U):i)
f§(071)72') = (0++—[(f3(v),v)]7f37(v)7i)

Now m can be applied to a sequence using Fj

5t(tie(Fy (s)) (up(m), —)) = Fi (s) (m)

3.3 Complete Threadings

§3.1 describes sequence morphisms with doward threads and §3.2 describes se-
quence morphisms with upward threads. Both of these types of morphism have
been shown to be generalisations of sequence homomorphisms. This section
merges the notions of upward and downward threaded morphisms into a single
bi-directional or completely threaded sequence morphism.

In §3.1 and §3.2 it has been noted that there are different variations on the
basic idea of a threaded morphism, for example fibers and successively threaded
morphisms. This section describes a simple type of completely threaded se-
quence morphism which is used in §4.

The definition of the functor F' for completely threaded sequence morphisms

14

: vl _ £1(:)
- AVAN -

/\ ARV
vi : -—> f2(v1i,\,\) f1(:)
- \ A\ - _
/ \ ANAVARN v2 /|
v2 [] £2(v2,\,\) £3(01,7,/)
ARAY //
N\ //
N /

Figure 5: A typical morphism with bi-directional threads

is defined below

let F(S)((flaf27f3)77}1:7)2) =
case s of
= fs(s,v1,02)
x:s8 =
let rec (x', v}, vY)
(s",v),vh)
in (fi(:)(2', s"), 07, vy

end

(x,v1,0h)

=f
= F(SI)((fh f27f3)77)47v2)

let F(m1)(s)(ma,v1,vs) = s(mg o my, vy, vs)

There are two parts to the definition of the functor F. The first part describes
what happens when F' is applied to a sequence s. The result, a lifted sequence,
is an operator which is applied to a completely threaded morphism and a pair
of values, v; and vy, which are the values of the downward and upward threads
respectively. F' does not implement any fancy thread mechanisms, such as
rotating fibers or successive threading. The downward thread value is supplied
to each successive element transformation in the sequence from the head to
the tail and the upward thread value is supplied to each successive element
transformation in the sequence from the tail to the head.

The second part of the definition of F' describes what happens when F
is applied to a completely threaded morphism. Figure 5 shows the result of
applying a typical completely threaded morphism to a two element sequence.

Completely threaded morphisms may be used to pass information down a
transformation as well as construct information which is passed back as a re-
sult of performing the transformation. The example which is given in §3.2 of
replacing all the elements of a numeric sequence with the maximum element

15

can be performed using a single completely threaded morphism as shown in the
definition of repmaz below

let repmax(s) = 1st(Y(A(_,v,.).F(s)((1,9,1),0,v)))

where g(v1,v2,0v3) = (v3, maz(vy, va), v3)

Completely threaded sequence morphisms represent a generalisation of sequence
homomorphisms, sequence morphisms with downward threads and sequence
morphism with upward threads. The following operator definitions, complete-
hom, completedown and completeup, show how the respective morphism types
are transformed to become complete

let Completehom(f17f27f3) = (fl:fé/f%)
where
fo(vr,v2,v3) = (f2(v1), v2,03)
.fé(1)177)277)3) = (f3(7)1)71)277)3)

let completedoum(fl,f2,f3) = (fl:fé:f?l)

where

fa(vi,v2,v3) = let (vi,vy) = fa(vi,v2) in (v, v5,v3)
f3(vi,v9,03) = let (vi,v5) = f3(vi,v2) in (v),v5,v3)

let completeup(fy. fo, fs) = (f1, £, f3)
where
fa(vi,va,v3) = let (vi,v5) = fo(vr,v3) In (v], va, v})
f3(vi,v2,03) =let (v1,v3) = f3(vi,03) in (v],v2,03)

In each case F' must be supplied with extra values for the threads which are
not used. Since these values take no part in the transformation, they may be
anything even —.

Suppose that the type of a sequence element, or a value which can inherit
the structure of a sequence, is represented as a and that a completely threaded
morphism from one type of sequence to another is represented as @; — as2. F(«)
represents the type of values which are constructed by applying F' to a sequence
of type a and F(a;) — F(as) represents the type of morphisms for values of
type F'(aq) to values of type F(ay). We are interested in the circumstances
under which the following diagram commutes

Fla)) —2™) o F(ay)

F‘(mg)l lF‘(mg)

F(as) F(ay)

F(TTI,4)

Theorem 3.1 The above diagram commutes when

ms3 011 = MMy O My

16

Proof 3.1

F(m3)(F(m1)(F(s)))
= F(ms)(A(m,v1,v2).F(s)(momi,vi,v2))
= A(m,v1,v2).(A(m,v1,v2).F(s)(m omi,vi,v2))(moms,vi,v2)
= A(m,v1,v2).F(s)(m omsomi,vi,v2)
= A(m,v1,v2).F(s)(m o my o ma,vi,v2)
= A(m,v1,v2).(A(m,v1,v2).F(s)(m o ma, v1,v2))(m o ma,vi,v2)
= F(ma)(A(m,v1,v2).F(s)(m oma,v1,v2))
— Fma) (F(ms)(F(5)))

4 An Example Using Threads

This section describes an application of the complete threads described in §3.3.
In §4.1 we specify a simple object-oriented language feature involving classes, ob-
jects, method lookup and inheritance. The feature is typical of object-oriented
programming languages such as Smalltalk [7] and C++ [5]. These features
are implemented in §4.2 using a functional programming language. Both the
specification and implementation can be expressed using completely threaded
sequence morphisms. We are interested in showing that the implementation is
consistent with the specification and in §4.3 we use the proof of consistency from
§3.3 to achieve this. Finally, §4.4 describes a number of variations which are
possible on the theme of object-oriented programming language features and
threaded morphisms.

4.1 Specification

A program binding environment is a sequence of pairs (i, v) where i is a program
identifier and v is a program value. An identifier is looked up in an environment
using the operator _e _ as described in §1.2. A class is a sequence of pairs of the
form (I,e) where [is a list of attribute names declared by the class and e is an
environment of methods. A method is a pair (i,b) where i is an identifier which
is the method argument and b is a program expression which is the method
body. The sequence [] is the empty class which all classes inherit from, the
sequence p : s is a class where s is a superclass and p is an extension which adds
attribute names and methods to s.

An object is a sequence of pairs of the form (e;,es) where ey is an environ-
ment of attribute names bound to attribute values and es is an environment of
methods. The process by which a class is transformed into an object is called in-
stantiation, each attribute name declared by the class is supplied with an initial
value during instantiation, otherwise the structure of the object (or instance)
reflects that of the class.

A message, consisting of a method name and an argument, is sent to an
object. The name is looked up in the object pairs from the head of the object to
the tail. The first method whose name matches the message name is activated

17

and the position of the method in the object sequence is important because it
defines which attribute names are visible. Given an object

PliDai-c.iPit...Dpt]]

if a method is selected and activated from the pair p; then the attribute names
and values which are available to the body of the method are the concatenation
of all the attribute names and values in the object p; : ... : py : []. The
activation of a method requires a method argument, an environment binding
attribute names and a method body. The result of method lookup is described
as a triple (i, e,b) which is a method argument i, attribute environment e and
method body b.
Instantation of a class is performed by morphism m;

let my = completedown(I, g, h)
where
9((l,e),v) = ((zip(l, hd(v)), €), ti(v))
h([l,) = (1,)

Given a class

let ¢ = [([i1], [(i2, (3, b1))]), ([ia], [(75, (i6, b2))])]

it is instantiated using
F(e)(ma, (11, (2], 0)))

A method whose name is i is looked up using the morphism ms

let my (i) = completeup(K(?), f. K(e, []))
where

fl(er,e2),e3) =
((i,e1 He3,b),e1 4 e3) when ey 07 = (i,b)
(e, €1 He3) otherwise

Given an object

let o = [([(i1, 1)], [(i2, (i3, 01))]), ([(ia 2)], [(i5, (i, 2))])]

the method named i, is looked up using the morphism m,

F(0)(m2(i2), [])

producing the triple
(i3: [(Zl) 1), (i4: 2)], b])

18

4.2 Implementation

§4.1 specifies a simple object-oriented language feature using sequence mor-
phisms. This section describes how this feature can be implemented in a simple
functional programming language using environment reification. We will use a
standard functional programming language with the following extensions:

e Lists of identifier/value pairs are used as programming language binding
environments.

e The operator R is applied to a function closure and produces its binding
environment.

e The operator I is applied to a pair (e, f) containing a binding environment
e and a function closure f. The result is a new function closure which is
the same as f except that the binding environment has been replaced with
e.

The primitive components necessary to provide environment reification are dis-
cussed at more length in [11], [9] and [3]. The infix operator _ — _ extends the

3

binding environment of a function closure
let e = f = I(e4(R(f)), f)

The operator class constructs classes from a superclass ¢ and an extension
which defines attribute names and methods

let class(c, z)(vi,v9) =
let (01,a1) =¢(vy) in
let (02,a2) = (a1 <= z)(v2)
in (02 # 01, a2 # a1)

When a class is instantiated, by applying it to a collection of initial values,
it returns a pair (o,a) which consists of a binding environment o of function
closures and a binding environment a of attribute values. The operator — is
used in class to cause the extension function z to inherit the attribute values a;
created when the superclass ¢ is instantiated.

A typical extension function is as follows

let = = YAf (i1, o, .. .in)-(E, RON).0) — R(f))

where the identifiers i, .. .4, are the attribute names, E is an expression which

constructs a binding environment for the methods and the expression R(A().())—

R(f) constructs just that binding environment containing the attribute names.
All classes ultimately inherit from the null class

let nullclass() = ([],[])

19

which returns the empty method and attribute environments when it is instan-
tiated.

When the functional programming language computes with the operators de-
scribed above, there will be computational occurrences of classes and extensions.
It is beyond the scope of this paper to fully describe what these computational
occurrences would look like, but we assume the following operators which are
described in terms of their arguments and return values. The operator classclo
is applied to a computational occurrence of an extension, x, and a class, ¢

classclo(z, c)

and returns a new computational occurence of a class, as described above by
the operator class. The operator zclo is applied to a list of attribute names, I,
and an environment of lambda function expressions, e

zclo(l, €)

and produces a computational occurence of an extension as described by the
operator x. The operator buildclass is defined as follows

let buildclass((l,¢e),c) = classclo(c, zclo(l, €))

Finally, the value nullcassclo is the computational occurrence of the nullclass
operator defined above.

Given a computational occurrence of a class, constructed with classclo, the
structure of the class will be complex, especially if the functional language has
desugared all values, for example by uncurrying function definitions and ex-
panding all patterns into pattern matching code. The instantiation of such a
value requires explanation of the evaluation rules for function application, test-
ing values against patterns, etc. However, if such a value is intended to be an
implementation of a class described in §4.1, then we can use F' to transform
the original class and the structure will be retained. The following morphism
transforms a class sequence to a computational occurrence

let m3 = completehom(K (buildclass), I, K(nullclassclo))

If the structure of the original class sequence is retained in the computational
occurrence then instantiation (by application) is described using the following
morphism

let my = (K(4), £, K([]))

where

f((l1=el)7 (l2= 7))7 62) = (map(g)(el),v, 63)

where

g(ih(i?: b)) = (ih (i27€3, b))
where ez = (zip(l1,12)) # €2

Finally lookup of a method named i is performed using the morphism ms

let ms(i) = completehom(K(?), (ei), K(€))

3 3

20

4.3 Consistency

We wish to show that the implementation of the simple object-oriented feature
is consistent with its specification. The theorem which is proved in §3.3 requires
only that we prove a simpler theorem about the individual morphisms for this
to be the case.

Theorem 4.1 The implementation of classes, instantiation and method lookup
is consistent with the specification, i.e.

Mo O0M1 = M5 © My ©M3
Proof 4.1

(1) 1st(ma omq) = K(7) = 1st(ms o mg o my)
(2) 2nd(msomy)((l1,e1), (I2,v),e2)
Let e = (zip(l1,12)) 4 €2

= 2nd(ms)((zip(li,12),€1), v, €2)
_ { (i,e,b),v,e) when ey ®i = (i,h)

7e7
€,€) otherwise

2nd(ms o myg om3)((l1,e1), (l2,v), e2)
= 2nd(ms omy)((l1,e1), (I2,v), ea)
= 2nd(ms) (map(g) (¢1),,€)

where g(i1, (ia, b)) = (i1, (i2, e, b))
[((i,e,b),v,e) when e; i = (i,b)
- { (€, €) otherwise

(3) S8rd(mg omy) =K(e,[]) = 3rd(ms o mg o mg)

4.4 Variations

§4.1 specifies a simple object-oriented programming language feature, §4.2 im-
plements the feature using a functional programming language with environ-
ment reification and §4.3 shows that the implementation is consistent with the
specification.

The specification and implementation depends upon downward sequence
morphisms for class instantation and upward sequence morphisms for attribute
value inheritance. The language feature is very simple and does not require
sophisticated threaded morphism techniques. There are a number of varia-
tions on this language feature which occur in currently available object-oriented
programming languages. These include multiple inheritance where each class
inherits from more than one parent, run-super where shadowed methods are

21

made available by passing the tail portion of an object to an activated method,
run-inner where the prefix portion of an object is passed to an activated method,
self reference where the entire object is passed to an activated method. These
mechanisms can be expressed using variations on the basic theme of threaded
sequence morphisms, see [4] for more details of these mechanisms and for the
application of threaded morphisms to the calculations performed by a program-
ming language.

5 Conclusion, Related and Future Work

82 describes sequence homomorphisms which are a useful sub-class of sequence
transformations. §3 describes threaded morphisms which are a generalisation
of sequence homomorphisms and which allow information to be threaded both
down and up a sequence as it is being transformed. Such morphisms provide
greater freedom to express transformations because they allow a sequence el-
ement to be transformed in context. It is useful to allow the transformed se-
quences to retain structure, providing scope for further sequence transformations
to be applied. The structure is retained by defining a functor which lifts both
sequences and threaded sequence morphisms. Threaded sequence morphisms
have been used to specify and prove the consistency of an implementation of a
simple object-oriented programming language feature.

This work is obviously related to monads [16] [15] where a monad is also
viewed as a mechanism for plumbing thread-like values through program con-
structions. The work on monads has tended to focus on control issues such
as state [15], input/output [13] and non-determinism [16], in which case the
threads are used to hide away values which are usually thought of as being part
of the language execution mechanism.

Both the work on monads and on the theory of lists [14] focus on the types
of values and the properties which transformations must preserve. Although the
work described in this paper focusses on the implementation of several different
types of threaded morphism, there is some indication that a more rigorous
treatment is possible from the declaration that the various F' functions are all
functors. This is an area for further work.

The completely threaded morphisms defined in §3.3 are similar to attribute
grammars in the sense that both can be used to pass information down a given
structure and construct information back up the same structure. Threaded
sequence morphisms are more general that attribute grammars since they are
not forced to pass information in any particular direction, see [10] for more
details.

The work described in this paper limits itself to defining transformations
on sequences. It is obvious that threaded morphisms can be defined for any
algebraic data type; the use of sequences greatly simplified the explanations (and
it is surprising what you can get away with just using sequences). The definition

22

of threaded morphisms for more complex data types should be straightforward
and it is likely that the extra structure provided by the data types will give rise
to more sophisticated general thread mechanisms.

References

[1]

2]

[12]

[13]

Barr, M. & Wells, C. (1990) Category Theory for Computing Science Pren-
tice Hall International Series in Computer Science.

Bird, R. & Wadler, P. (1988) Introduction to Functional Programming
Prentice Hall International Series in Computer Science.

Clark, A. N. (1994) “A Layered Object-Oriented programming Language”
The GEC Journal of Research. 11 3 173 180.

Clark, A. N. (1995) Semantic Primitives for OOPLs PhD Thesis, Queen
Mary and Westfield College, University of London.

Ellis, M. A & Stroustrup B. (1990) The Annotated C++ reference Manual
Addison Wesley.

Field, A. J. & Harrison, P. G. (1988) Functional Programming Addison
Wesley.

Goldberg, A. & Robson, D. (1983) Smalltalk-80 The Language and its Im-
plementation Addison-Wesley.

Hudak, P. et. al. (1992) “Report on the Functional Programming Language
Haskell, Version 1.2” SIGPLAN Notices 27.

Jagannathan, S. (1994) “Metalevel Building Blocks for Modular Systems”
ACM TOPLAS 16 3 456 492.

Johnsson, T. (1987) “Attribute Grammars as a Functional Programming
Paradigm.” in Conference on Functional Programming Languages and
Computer Architecture, Lecture Notes in Computer Science no. 274, pp.

154 173, Springer-Verlag

Miller, J. S & Rozas, G. J. (1991) “Free Variables and First-Class Environ-
ments” Lisp and Symbolic Computation: An International Journal 4, 107
— 141.

Peyton Jones, S. L. (1987) The Implementation of Functional Programming
Languages Prentice Hall International Series on Computer Science.

Peyton Jones, S. L. & Wadler, P. (1993) “Imperative functional pro-
gramming” in ACM Conference on Principles of Programming Languages,
Charleston 71~ 84.

23

[14] Spivey, M. “A Categorical Approach to the Theory of Lists” in Lecture
Notes in Computer Science no. 375, Springer-Verlag

[15] Wadler, P. (1990) “Comprehending Monads” in ACM Conference on Lisp

and Functional Programming, Nice.

[16] Wadler, P. (1992) “The Essence of Functional Programming” in ACM Con-
ference on the Principles of Programming Languages, 19

24

