
A Basic Model of KBS SoftwareA. N. Clark, Computer Systems Division, GEC-Marconi Research,Great Baddow, Chelmsford, Essex, CM2 8HN, Great Britaine-mail: anc@gec-mrc.co.uk, tel.: (0245) 473331This document will describe a simple model of conventional software development, show howKBS software development di�ers from the conventional and then de�ne a collection of termswhich are important with respect to the quality of the software under development. We willbe deliberately vague about the exact scope of the term software development; it will certainlycover the activity of implementation, but it is also intended to cover some aspects of softwarespeci�cation and design.The term KBS software is very di�cult to pin down, as certain features which are argued tobe characterising, such as knowledge bases, rules and symbolic representation, turn out to bedi�cult to de�ne in any meaningful sense or are not characterising at all. The de�nition whichis used in this document views the characterising feature of KBS software as being de�ned bya non-deterministic operator and its a�ect on the behaviour of the program which is beingdeveloped.In order to de�ne a model of software development, it will be necessary to keep the notion of aprogram simple and precise. The �-calculus has been chosen as the class of programs which willmotivate the discussion. This has the advantage of being small, can be given a simple semanticsand captures many classes of programming language.The rest of this document is divided into the following sections:� A simple model of program development is described in terms of the �-calculus and theSECD machine.� The characteristic feature of KBS software is described and its impact on software devel-opment is discussed.� A collection of terms which a�ect software quality are de�ned with respect to the modelof software development.The presentation will be kept informal but precise, we have in mind a formal underlying pre-sentation of these ideas which can be developed if the basic notions turn out to be useful.1 Software developmentA program will be de�ned to be an expression in the �-calculus whose concrete syntax is de�nedas follows: E ::= I j �I:E j E1E2where E is to be thought of as the set of all programs. Such a syntactic de�nition states nothingabout the meaning of each program. One way of giving the programs a meaning is by de�ninghow they will be performed using a transitionmachine. Di�erent machines will attribute di�erentmeanings to the programs by encoding speci�c builtin evaluation mechanisms and types of value.This will be the way in which the programs will be given a meaning in software development.1

Here is the basis for all machines which treat the �-calculus as being call-by-value:(s; b; i :: c; d) 7�! ((b � i) :: s; b; c; d)(s; b; (�i:e) :: c; d) 7�! (< i; b; e >:: s; b; c; d)(s; b; (e1e2) :: c; d) 7�! (s; b; e2 :: e1 :: @ :: c; d)(< i; b1; e >:: v :: s; b2;@ :: c; d) 7�! ([]; b1� (i 7! v); [e]; (s; b2; c; d))(v :: ; ; []; (s; b; c; d)) 7�! (v :: s; b; c; d)The SECD machine is described in detail elsewhere [9], the following is a brief description. sis a list of program outcomes called the stack, b is a collection of bindings between programidenti�ers and outcomes called the environment, c is a list of programs, e 2 E, and machineinstructions @ called the control and d is a machine state called the dump. Program identi�ers,i 2 I , are looked up in the environment b using b � i, when a �-expression, �i:e, is performed theresult is a closure < i; b; e > which may be applied to a value v in which case the body of theclosure is evaluated with respect to an environment which is b extended with a binding betweeni and v. During an application the current state is saved on the dump as a resumption pointand will be resumed when the application is complete.All manner of di�erent machines can be de�ned by� Changing some of the transition rules. For example we could produce a radically di�erentlanguage by changing how function calls are performed.� Introducing some new data types. An outcome of the machine is a value which can occurat the head of the stack when the machine reaches a terminal state (one in which there isno control left). As it stands, the machine given above de�nes closures (written < ; ; >)as the only outcomes. New types of outcome may be added and some builtin operatorswhich create and manipulate them. For example the machine can be enriched with integersand some builtin operators such as + and �.� Introducing some new transition rules. A new transition rule will perform some computa-tion which is not possible with the current facilities. For example a builtin operator haltcould be added which will cause the current computation to be aborted.Some of these machines will correspond to concrete programming languages such as C or Adabut others will represent entirely new languages. The intention is that the machines are notexclusively restricted to describing a concrete implementation, but may be also used to describeaspects of a design and even aspects of a speci�cation. This is possible because there are norestrictions on the type of computation which can occur due to the machine transitions. Suchcomputations can be designed speci�cally for the job in hand and may be as abstract and highlevel or as concrete and low level as desired.It is important to note that the machine computes by proceeding from state to state. Eachstate is a self contained unit and represents a snapshot of the computation at some time andeach state proceeds from the previous state using the same type of indivisible transition. Theentire evaluation which a machine will produce when a program is performed is represented asa complete sequence of the states which the machine will pass through from the initial state tothe �nal state. Such a sequence will be termed a calculation.The set E contains all the possible programs which can be written. The development processcan proceed in one of two ways 2

� Starting with an idealised representation of the desired system, changes are applied tothe system in terms of modi�cations and extensions to the program or changes to thesemantics of the program, until a concrete (i.e. implementable) program is produced. Ateach stage any change is carefully controlled so that it is possible to state how the resultdi�ers from the initial ideal.� Starting with an approximation to the desired system and a collection of criteria for success,changes are applied until the system meets the criteria. It is understood exactly why theinitial system does not meet the success criteria which will guide the changes which arenecessary to meet them.Both of the approaches rely on a clear understanding of what it means to change a program.We will de�ne a change to a program to be one of the following:� A modi�cation which textually replaces part of a program whilst the language semanticsremains the same.� An extension which wraps some new program around an existing program whilst thelanguage semantics remains the same.� A port which involves translating from one program to another and changing the underlyingsemantics of the programming language.Program modi�cation will be referred to as intra-language changes whilst a port is an inter-language change.The intra-language changes must respect the structure of the programs as de�ned by E. Eachprogram is de�ned to be a term with 0 or more subterms. For example the following diagramrepresents a �-function as a term where the triangle marked e represents a complete subterm.
i

λ

eThe following diagram represents an application with two subterms marked e1 and e2 respec-tively.
.

e1 e2The other type of term de�ned by E is the single identi�er i which contains no subterms. Amodi�cation involves taking a single program, such as the application term above, and replacinga single subterm, such as that marked e2 with a new program, such as the �-term. The result3

of such a modi�cation is shown in the following diagram.
i

λ

e

i

λ

e

.

e1In order to make the idea of intra-program modi�cations more precise, the term parameterisedprogram will be introduced with respect to E and used to de�ne a modi�cation and an extension.A parameterised program p 2 P is a term, as de�ned by E, which contains one or more holesare denoted by . P ::= I j �I:P j P1P2 jp(e) will mean replacement of all holes in p with the program e. A modi�cation to the programe which replaces a subterm e1 with a program e2 is de�ned with respect to a parameterisedprogram p for which p(e1) = e and the result is de�ned as p(e2). An extension to the programe with respect to the parameterised program p is de�ned as p(e).By repeatedly applying modi�cations and extensions to a program, any new program can beproduced. The intra-language changes are not necessarily intended to preserve the meaning ofa program, i.e. the evaluation of the program before and after the change will not necessar-ily produce the same results. Such a change will not a�ect the underlying semantics of theprogramming language, i.e. the machine which de�nes the meaning of the programs will notchange as a result of a modi�cation or an extension. The intra-language changes are intendedto reect the activities which occur at the same level of abstraction, before working out howcertain components might be \implemented" in more concrete terms.Before de�ning what it means to perform a port, it will be necessary to de�ne what it means fora programming language to be consistent and complete with respect to another.1. Consistency1 between programming languages captures the notion that the two languageswill produce similar outcomes from similar programs. The notion of similarity must bemade precise and this is usually done by de�ning it to be a translation from the programsand outcomes of one language to those of the other. Consistency will be de�ned so that oneprogramming language is consistent with respect to another. If language P1 is consistentwith respect to P2 then for some collection of P2 programs there will be a similar collectionof P1 programs which produce similar outcomes.2. Completenesswith respect to programming languages will be used to mean that consistencyfollows for all P2 programs.Di�erent programming languages in the model will all have the same format, i.e. E, but willdi�er with respect to the machines which give the languages their di�erent semantics. Eachmachine will de�ne how to evaluate all programs (although the meaning of some programswith respect to some machines may be unde�ned) by loading the program onto the machine,performing all possible transitions and then unloading the result. Given a machine M thisprocess will be represented as a function eval(M) : E ! V for some collection of program1In this document, when the terms consistency and completeness are used without quali�cation, they will bede�ned to be ... of machines with respect to a translation.4

E @@@@R?����	E? E E?E EFigure 1: A software development graphoutcomes V . Two machines M1 and M2 are equivalent, and therefore consistent with eachother, when eval(M1) ' eval(M2)where ' means equal when one or other is de�ned otherwise unde�ned. Equivalence is a verystrong property between two machines which is not particularly interesting when dealing withports. More interesting is when some part of the program or the outcome has to be translated inorder to guarantee some equivalence. Suppose that there are two possible collections of outcomesV1 and V2 for machinesM1 andM2 respectively. Then we can de�ne that the outcomes of machineM2 are consistent with the outcomes of machine M1 if there exists a way of transforming theoutcomes of the �rst into the outcomes of the second, i.e. iftranslateoutcome � eval(M1) ' eval(M2)If the function translateoutcome is a total function then we can say that M2 is consistent andcomplete with respect toM1. The same argument holds for translating the programs before theyare evaluated in order to guarantee some sort of equivalence. Suppose that translateprogramis a function which translates from E programs to E programs (this might sound a bit silly,but consider translating a C program with builtin operators for real arithmetic to a C programwhich inserts all the machinery to do real arithmetic in terms of integer arithmetic), then theevaluation on the machine M2 is consistent with respect to that on machine M1 wheneval(M1) ' eval(M2) � translateprogramIf the function translateprogram is total then the evaluation is both consistent and complete. Ingeneral, to show consistency and completeness between two machines it will be necessary to useboth types of translationtranslateoutcome � eval(M1) ' eval(M2) � translateprogramA port will be a pair of translations between machines for which the target machine is consistentand complete with respect to the source machine such that the translations are homomorphisms.This issue is a technical point which guarantees that the translations are de�ned to be modularand that subterms in source programs are translated to consistent subterms in target programs.The de�nitions of program, machine, calculation, modi�cation, extension, consistency, complete-ness and port conclude the model of software development. The entire process of softwaredevelopment is represented as a graph, an example of which is shown in �gure 1. The nodesof the graph are programs (a.k.a designs and speci�cations) and the arrows represent changesin terms of modi�cations, extensions and ports. Where more than one edge leads from a node,this corresponds to alternative possible development paths. Figure 2 shows a single path fromthe root of the development graph to a current state. The path is a cascade of interchangeablesoftware changes starting with a high level of abstraction and ending up with a more concreteprogram. 5

E?inter E?inter-intraE E?inter E?inter-intra -intraE E?inter E?inter-intra -intraE E-intraFigure 2: A cascade of software development2 KBS softwareAI and KBS software are very di�cult to de�ne in any precise manner. The following quotesare taken from a collection of sources which deal with AI and KBS software:\[knowledge] goes beyond the notion of information, since it employs a complex struc-ture including, integrating, multiplying and valorizing a great number of informationunits existing in the brain of an expert or specialist. [...] or whether it is to usethis knowledge to accomplish a number of tasks requiring an intellectual endeavour(KBS and expert systems), it is clear that it is necessary to adopt, and may be torethink, the methodological framework which is dominant in classical software." [1]\By AI software we mean software that uses techniques in the �eld of Arti�cialIntelligence." [2]\We face an initial di�culty in that the notion of AI software is fuzzy { indeedpractitioners of AI do not even agree among themselves on what constitutes AI." [2]\The class of AI software that we have identi�ed for consideration is often charac-terised as \knowledge based" meaning that it contains an explicit representation ofknowledge about some aspects of the external world." [2]\[...]a KBS can generally be described as consisting of 3 major components:� a knowledge base.� an inference engine.� a user interface.The knowledge base, which contains all the relevant domain knowledge, is a complexentity that must be uniquely developed for each application. However, the inferenceengine, which navigates the system [...] is a fairly standard mechanism." [3]6

\AI is� a natural extension of computer science and technology.� a way of producing systems which are more autonomous and resilient thanconventional software techniques will allow.� automated knowledge processing." [4]\The principal AI languages, Prolog and Lisp, are declarative languages. Note thatit is the language design and implementation that determine the ow of control inthe program. In this sense AI languages are not essentially sequential in the waythat conventional procedural languages are." [4]\search forms the core of AI based software. Intelligent programs must use e�cientsearch methods." [5]\We use the term "knowledge based" as a temporary expedient, just as it was oncecommon to talk of digital computers". The term "digital" was later dropped fromcommon speech as the distinction between analog and digital computers became lessimportant. (The same applies to \motor" cars.) \Knowledge based" is simply atransitional term, emphasizing obvious di�erences between this view [of design] andwhat has gone on before." [6]The quotes which are given are typical of the AI and KBS literature when giving overall de�ni-tions of these terms. We are interested in any features which characterise KBS software but mustbe wary of any implementation techniques which are \passing fads" and will be here today andgone tomorrow. We wish to uncover the underlying principles which may be used to constructany of the techniques which are currently used for KBS. We believe that the following is a listof relevant points:� Stating that AI systems are those which use AI techniques is not very helpful.� Domain knowledge is generally accepted as essential to KBS but is never really de�ned.Are text editors knowledge based because they know about ASCII character codes?� A KBS is often described as consisting of a knowledge base, an inference engine and auser interface. The fact that a system has a user interface is not particularly surprisingand certainly not true in all cases (embedded KBS for example). The inference engine isoften a form of interpreter for the data values in the knowledge base. Unfortunately, notall KBS have such a construction and therefore knowledge bases and inference engines arenot viewed as a characterising feature.� KBS software is generally called \declarative" which is taken to mean that the programsare less involved with specifying what the individual steps in the computation do, asin specifying what large collections of steps will achieve. This is a laudable aim and itis certainly not restricted to the area of KBS software. So-called declarative languagesrepresent the leading edge of programming language technology and the fact the KBSsoftware is implemented using such languages is a result of KBS practitioners choosing themost up-to-date tools.� So-called conventional software is said to use information whereas KBS software usesknowledge and the di�erence is that knowledge tends to be more complex and requiremore involved processing. This is a subjective viewpoint, parsers and compilers were onceviewed as being the height of sophistication.7

� Search is often given as a characterising feature of KBS software. This is a concretedistinction between conventional and KBS software. A search space is a collection of statesand transitions between them. A program will search a space until one of a collection ofacceptable states is found. Such a program is viewed as being non-deterministic whenthere is no ordering placed on the development of the search space. Conventional softwaredoes not involve search spaces; they are often viewed as a sequenced collection of actionswhich processes some input to produce some output.� The search space for a KBS program may be far too large to be fully developed. Evenwhen clever techniques are employed to predict which of a collection of alternative statesshould be developed next, it is often impossible to guarantee that an acceptable state willbe reached given constraints on the program's resources. This will mean that the outcomeof a KBS program may be less than optimal. A conventional program will either succeedor fail on a given input; if it succeeds then the answer will be wholly acceptable otherwisethe program will completely fail.From the points given above, we take the two characterising features of KBS software as non-determinism which arises due to the search space and incompleteness which produces less thanoptimal outcomes for given inputs due to time and space constraints. These features are fun-damental to characterising a KBS system: there may be other features which KBS softwaretypically exhibits, but it is possible for non-KBS software to also have these features.A KBS program will be de�ned to be an expression in the �-calculus which has been extendedwith a non-deterministic operator, or , and a construct fail which kills o� the current compu-tation. The concrete syntax is de�ned as follows:K ::= I j �I:K j K1K2 j K1 orK2 j failWhen an expression K1 orK2 is performed, the result will be produced by either K1 or K2. Wecan view a KBS program as producing all the possible answers and then selecting one of thesenon-deterministically; in this case, when an or expression is performed, both K1 and K2 areperformed independently and both produce a result for the or expression. If or expressions areviewed as branching points in the computation then an entire calculation for a KBS programwill look like a tree. When a fail construct is performed, the current computation is killed o�which will mean that the edge on which the fail construct lies in the calculation tree will bepruned back to the last branching point.KBS program semantics will be given semantics in terms of di�erent machines, just as in x1.However, the machines will all have a new distinctive feature which is that the transition relation,7�!, will hold between a single machine state and a set of machines states. This captures thenon-determinism of KBS programs. As an example, the following is a variation of the SECD
8

let inferenceengine (rules; terminated) data =if terminated(data)then dataelse lhr (or) (inferenceengine(rules; terminated)) (� :fail) (map f apprules)whereapprules = applicablerules(rules; data)f(r) = r(data) Figure 3: An inference enginemachine which was de�ned in x1.(s; b; i :: c; d) 7�! f((b � i) :: s; b; c; d)g(s; b; (�i:k) :: c; d) 7�! f(< i; b; k >:: s; b; c; d)g(s; b; (k1k2) :: c; d) 7�! f(s; b; k2 :: k1 :: @ :: c; d)g(< i; b1; k >:: v :: s; b2;@ :: c; d) 7�! f([]; b1� (i 7! v); [k]; (s; b2; c; d))g(v :: ; ; []; (s; b; c; d)) 7�! f(v :: s; b; c; d)g(s; b; (k1ork2) :: c; d) 7�! f(s; b; k1 :: c; d); (s; b; k2 :: c; d)g(; ; fail :: ;) 7�! fgThere are also other features which characterise a subclass of KBS software, for example knowl-edge bases and inference engines. Figure 3 shows a skeleton inference engine (based on [7] pp. 20{ 21) which is constructed from the underlying non-determinism primitive. The inference engineis a program whose inputs are the rules, a predicate which determines when the program hascompleted and some data. If the program has completed then the data is produced as the out-come. Otherwise there will be a collection of applicable rules. Since only one rule may be appliedto the data at any given time, the inference engine will apply all the rules non-deterministically.KBS software development will be de�ned using the same terms which were described in x1.The essential di�erence between conventional software development and KBS development isthat the ports are not guaranteed to be complete, i.e. when a program is translated from onemachine to another in order to make the representation more concrete, some of the possibleoutcomes of the program may be lost. This is not a problem if all of the possible outcomes froma program are acceptable, however in general some of the outcomes from a KBS program willbe more acceptable than others. This will mean that after a port, the resulting program mayproduce less than optimal results. This feature will have a major impact on the quality of KBSsoftware and it is important that the developer has a good idea of the characteristics of theincompleteness so that it is well understood whether or not a change to a program will a�ectthe acceptibility of its outcomes.Given a machine M and a set of possible outcomes V for a KBS language, the evaluator forM is eval(M) : K ! setof(V) where the expression setof(V) represents the set of all subsetsof V . So the evaluator for a KBS programming language di�ers from that for a conventionallanguage in that the outcome is a set of values rather than just a single value. As before, giventwo machines M1 and M2 they are equivalent if they produce the same (sets of) outcomes whenthey evaluate the same programs, eval(M1) ' eval(M2)9

Given two sets of outcomes from the machines, V1 and V2 then M2 is consistent with respect toM1 when there is a mapping translateoutcome : V1 ! V2 which will translate from M1 outcomesto M2 outcomes such that the set of outcomes produced by the machine M2 is a subset of thetranslated set of outcomes from M1 for the same program. This is expressed by the followinginequality: eval(M2) � map(translateoutcome) � eval(M1)Notice that this di�ers from the notion of conventional software consistency in that M2 needonly produce a subset after a translation. Alternatively, a program may be translated beforebeing evaluated. Suppose that translateprogram : K ! K is a program translation, then M2 isconsistent with M1 when the set of outcomes produced by M1 is a superset of that produced byM2 after a translation, eval(M2) � translateprogram � eval(M1)Finally, KBS language consistency is de�ned in terms of both an outcome and a program trans-lation, eval(M2) � translateprogram � map(translateoutcome) � eval(M1)In general, a port will be used in software development to translate from an idealised pro-gramming language to a more concrete language. The idealised language may be unfetteredby resource constraints such as memory usage and execution duration. When conventional lan-guages are ported, the program is intended to do exactly the same thing before and after theport; the di�erence is that the calculation which is performed after the port will be in terms ofelements which have more \implementation detail". When KBS languages are ported, the e�ectof �lling in \implementation detail" goes hand in hand with the problems of �nite resourceswhich is why the collection of outcomes produced by the program after the port will be a subsetof those before the port. This is a characteristic feature of KBS software development and isa genuine di�erence between KBS and conventional software. The impact of this feature onsoftware quality is that the loss of completeness due to design and implementation decisions canlead to programs which produce unacceptable outcomes, take too long to produce outcomes andhave memory useage problems. By understanding the nature of KBS evaluation it is possibleto take these issues into account early on in the speci�cation, design and implementation of thesystem and thereby reduce the risk of producing an unacceptable product.The view of KBS software which is given in this section can be used as a basis for KBS analysis.The MOSES project intends to produce recommendations for KBS development which willguarantee a level of quality in military systems. A suggested workplan is to identify all of thetechniques which are involved in military KBS (eg. data fusion, planning, classi�cation, patternmatching etc.) and to give an idealised representation for each technique (by modifying andextending the KBS language given here). By analysing each feature, the elements which a�ectthe quality of a product which employs the feature can be identi�ed. These activities will leadto a precise description of the issues which a�ect the quality in military systems which employKBS techniques. This will provide the project with the required information in order to producea list of guidelines with respect to the procurement, speci�cation, design and implementation ofmilitary KBS systems.3 Quality termsThis section will take quality terms which have been used in the milestone report [8] and re-late them to the models of conventional and KBS software which have been described in thisdocument. Each term is given a brief description which places it in the context of this document.10

Integration Integration is de�ned to be the process of composing two di�erent software systemstogether to form a new software system. In the extreme case, both software systems willhave di�erent semantics and will be parameterised programs where the other program issupplied as the parameter. Quality will be a�ected by the compatibilty of the two softwaresystems i.e. by the existence and completeness of a translation from one of the languagesystems to the other. In addition to performing computations with respect to an interface,the resulting system may involve merging the two original systems in which case qualitywill be a�ected by the consistency of the merge (i.e. whether or not the merge leaves theresulting system in a sensible state).Porting Porting has already been de�ned for both conventional and KBS software. KBS qualityis a�ected by the completeness of the port. In general, the quality of a port will be a�ectedby the modularity of the translation from one language to another. An idealised port willbe a homomorphism from the syntactic constructs of one language to those of another.The more languages di�er, the less likely the translation will be a homomorphism and thegreater the di�culty of ensuring that the port is a success.Completeness Completeness must be de�ned with respect to something which is de�ned to becomplete. For example a \knowledge base" K may be de�ned to be complete with respectto all the known facts F if there exists a mapping which generates all the elements of Fusing just the elements of K. A translation from one programming language to anotheris complete if it is total. KBS software has incompleteness built in as a characterisingfeature. It is important that the nature of the incompleteness is understood in order thatquality is maintained.Consistency Consistency is a relation between two or more things. The consistency of asoftware modi�cation is measured by showing that the software can be shown to do roughlythe same things after the modi�cation (where roughly is captured as a mapping on outcomesand programs) as it did before. A \knowledge base" K may be said to be consistent withrespect to the set of all known facts F if all of the deductions which can be made fromthe data in K are true facts in F (i.e. no incorrect deductions can be made). Themore inconsistencies which creep into a system (development or execution) the more likelythe system will be to fail; quality is maintained by ensuring some degree of consistency.Typically a quality check will be \Given a modi�cation of type X the system will beconsistent with respect to Y " which shows that nothing has gone wrong due to X .Testability Testability refers to the property of a system which enables its behaviour to becompared against expected results. This is a quality issue because the higher the degreeof testability (and number of tests performed) the greater the likelihood of the systemperforming as expected. There are three things which will a�ect the degree of testabilitywhich a system exhibits:1. A description of all possible input data.2. A description of the calculations which a system performs on all inputs.3. A description of the required results from all possible inputs.Using these descriptions, it will be possible to show (to the desired level of detail) that thecorrect behaviour is achieved by the system. KBS programs are often described as beingdi�cult to test because their behaviour is unpredictable, eg\The problems addressed by AI-software are generally somewhat ill-de�ned, anda clear statement of requirements for the task the software is to perform isoften lacking. This means that the notions of success and failure are vague,11

and evaluation is correspondingly di�cult. In addition, the heuristic techniquesemployed in AI software tend to render it fragile, or unstable: very similar inputsmay produce wildly di�erent outputs. This makes extrapolation from behavioron test cases very risky."[2]There are two issues here. The �rst, and most important, is that AI-software is \some-what ill-de�ned". Whilst this may be true of many AI artifacts, there seems no intrinsicproperty of AI-related problems which makes them impossible to specify precisely. Theill-de�ned nature may be related to the incompleteness of the KBS (or AI) system, wherethe desired solution is the complete one and the problem speci�cation is along the linesof \The software will perform task X and squeeze as much completeness out of the imple-mentation as possible using the resources available." It may be this open ended type ofspeci�cation which leads to ill-de�ned speci�cations because it tends to say nothing aboutwhat the system will do eg \Advise on the deployment of countermeasures in an air to seaattack scenario and produce the best advice possible." This is a serious problem, but it isof primary importance with respect to achieving desired quality standards and deservesfurther consideration within the MOSES project.The second issue is related to incompleteness but cannot really be taken seriously, eithera collection of rules (heuristic usually means rules of some kind) means something or theymean nothing, there are no half measures!Modi�ability The term modify with respect to software has been de�ned in this document. Itrefers to the activity of replacing a subterm of the abstract syntax tree. Modi�ability isan ill-de�ned software property which relates in some way to the act of modi�cation. Onedesirable property of software is that it is modular; the software can be modi�ed locallyto achieve some change in behaviour, without having to a�ect other areas. A programdevelopment is completely modular when all intra-language changes lead to legal programs.Modi�ability is a measure of the modularity of the program development. (Hmm { notsure about that)Extensibility The term extension with respect to software has been de�ned in this document.It refers to the activity of wrapping a parameterised program around an existing program.Maintainability Maintenance refers to the activity by which a system is modi�ed in orderto change some undesirable feature of its behaviour. The change may be because thesystem does not achieve the correct results or because the correct results are achieved inan unacceptable way. A software system is maintainable when it is both modi�able andextensible.Robustness The robustness of a software system is a measure of how well it deals with illegalinput data. Input data is illegal when it does not conform to the description given in thespeci�cation (see testability above). Because of incompleteness, KBS software must beshown to be robust in the absence of acceptable results.These descriptions have been given in very broad terms because of the generality of the de�nitionsof conventional and KBS software. If the model of KBS software is made more speci�c byanalysing a particular KBS technique, then the descriptions will be tailored to the techniqueand the issues involved can be given in more detail. For example, nothing has been said aboutmemory usage vs. execution time vs. quality; however the KBS software model can be extendedwith information about time and space and various KBS techniques analysed with respect tothe new model and whether or not quality standards can be achieved.12

References[1] Software Quality and AI. Bourgeade & Allard. ESA Report.[2] Quality measures and Assurance for AI software. Rushby.[3] AI software acquisition program. Bardawil et. al. Rom Air Development Center.[4] The testing of AI products and the use of AI methods in testing. EEA Report.[5] Designing Arti�cial Intelligence Based software. Bahrami. Halstead Press.[6] Knowledge based design systems. Coyne et. al. Addison Wesley.[7] Principles of Arti�cial Intelligence. Nilsson. Springer-Verlag.[8] MOSES Milestone Report No. 1 A. G. Hill.[9] The mechanical evaluation of expressions. Landin. Computer J. (6) 1964.

13

