A Basic Model of KBS Software
A. N. Clark, Computer Systems Division, GEC-Marconi Research,
Great Baddow, Chelmsford, Essex, CM2 8HN, Great Britain
e-mail: anc@gec-mrec.co.uk, tel.: (0245) 473331

This document will describe a simple model of conventional software development, show how
KBS software development differs from the conventional and then define a collection of terms
which are important with respect to the quality of the software under development. We will
be deliberately vague about the exact scope of the term software development; it will certainly
cover the activity of implementation, but it is also intended to cover some aspects of software
specification and design.

The term KBS software is very difficult to pin down, as certain features which are argued to
be characterising, such as knowledge bases, rules and symbolic representation, turn out to be
difficult to define in any meaningful sense or are not characterising at all. The definition which
is used in this document views the characterising feature of KBS software as being defined by
a non-deterministic operator and its affect on the behaviour of the program which is being
developed.

In order to define a model of software development, it will be necessary to keep the notion of a
program simple and precise. The A-calculus has been chosen as the class of programs which will
motivate the discussion. This has the advantage of being small, can be given a simple semantics
and captures many classes of programming language.

The rest of this document is divided into the following sections:

¢ A simple model of program development is described in terms of the A-calculus and the
SECD machine.

o The characteristic feature of KBS software is described and its impact on software devel-
opment is discussed.

e A collection of terms which affect software quality are defined with respect to the model
of software development.

The presentation will be kept informal but precise, we have in mind a formal underlying pre-
sentation of these ideas which can be developed if the basic notions turn out to be useful.

1 Software development

A program will be defined to be an expression in the A-calculus whose concrete syntax is defined
as follows:

Eu=1| M.E | E\E,

where I is to be thought of as the set of all programs. Such a syntactic definition states nothing
about the meaning of each program. One way of giving the programs a meaning is by defining
how they will be performed using a transition machine. Different machines will attribute different
meanings to the programs by encoding specific builtin evaluation mechanisms and types of value.
This will be the way in which the programs will be given a meaning in software development.

Here is the basis for all machines which treat the A-calculus as being call-by-value:

(s,b,i::¢,d) — ((bei):s,b,c,d)
(s,b,(Ni.e):e,d) — (< i,b,e>8,b,c,d)
(s,b,(e1€2) 1 ¢, d) — (8,065 @ e, d)

(<i,b,e>nvis,by,@ue,d) — ([l,b0F (1 —v),[e],(s,bs,¢,d))

(v, L0 (s,0,¢,d)) — (v:s,b,e,d)

The SECD machine is described in detail elsewhere [9], the following is a brief description. s
is a list of program outcomes called the stack, b is a collection of bindings between program
identifiers and outcomes called the environment, ¢ is a list of programs, e € F, and machine
instructions @ called the control and d is a machine state called the dump. Program identifiers,
1 € I, are looked up in the environment b using b e 7, when a A-expression, At.e, is performed the
result is a closure < 1,b,e > which may be applied to a value » in which case the body of the
closure is evaluated with respect to an environment which is b extended with a binding between
¢ and v. During an application the current state is saved on the dump as a resumption point
and will be resumed when the application is complete.

All manner of different machines can be defined by

¢ Changing some of the transition rules. For example we could produce a radically different
language by changing how function calls are performed.

¢ Introducing some new data types. An outcome of the machine is a value which can occur
at the head of the stack when the machine reaches a terminal state (one in which there is
no control left). As it stands, the machine given above defines closures (written < _, _,_ >)
as the only outcomes. New types of outcome may be added and some builtin operators
which create and manipulate them. For example the machine can be enriched with integers
and some builtin operators such as + and .

¢ Introducing some new transition rules. A new transition rule will perform some computa-
tion which is not possible with the current facilities. For example a builtin operator halt
could be added which will cause the current computation to be aborted.

Some of these machines will correspond to concrete programming languages such as C or Ada
but others will represent entirely new languages. The intention is that the machines are not
exclusively restricted to describing a concrete implementation, but may be also used to describe
aspects of a design and even aspects of a specification. This is possible because there are no
restrictions on the type of computation which can occur due to the machine transitions. Such
computations can be designed specifically for the job in hand and may be as abstract and high
level or as concrete and low level as desired.

It is important to note that the machine computes by proceeding from state to state. Fach
state is a self contained unit and represents a snapshot of the computation at some time and
each state proceeds from the previous state using the same type of indivisible transition. The
entire evaluation which a machine will produce when a program is performed is represented as
a complete sequence of the states which the machine will pass through from the initial state to
the final state. Such a sequence will be termed a calculation.

The set F contains all the possible programs which can be written. The development process
can proceed in one of two ways

o Starting with an idealised representation of the desired system, changes are applied to
the system in terms of modifications and extensions to the program or changes to the
semantics of the program, until a concrete (i.e. implementable) program is produced. At
each stage any change is carefully controlled so that it is possible to state how the result
differs from the initial ideal.

e Starting with an approximation to the desired system and a collection of criteria for success,
changes are applied until the system meets the criteria. It is understood exactly why the
initial system does not meet the success criteria which will guide the changes which are
necessary to meet them.

Both of the approaches rely on a clear understanding of what it means to change a program.
We will define a change to a program to be one of the following;:

o A modification which textually replaces part of a program whilst the language semantics
remains the same.

o An extension which wraps some new program around an existing program whilst the
language semantics remains the same.

o A port which involves translating from one program to another and changing the underlying
semantics of the programming language.

Program modification will be referred to as intra-language changes whilst a port is an inter-
language change.

The intra-language changes must respect the structure of the programs as defined by F. Each
program is defined to be a term with 0 or more subterms. For example the following diagram
represents a A-function as a term where the triangle marked e represents a complete subterm.

/

The following diagram represents an application with two subterms marked e; and e, respec-
tively.

el e2

The other type of term defined by F is the single identifier ¢ which contains no subterms. A
modification involves taking a single program, such as the application term above, and replacing
a single subterm, such as that marked e, with a new program, such as the A-term. The result

of such a modification is shown in the following diagram.

/o

In order to make the idea of intra-program modifications more precise, the term parameterised
program will be introduced with respect to £ and used to define a modification and an extension.
A parameterised program p € P is a term, as defined by F, which contains one or more holes
are denoted by _.

Pu=1| MNM.P| PP | _

p(e) will mean replacement of all holes in p with the program e. A modification to the program
e which replaces a subterm e; with a program e, is defined with respect to a parameterised
program p for which p(e;) = e and the result is defined as p(e;). An extension to the program
e with respect to the parameterised program p is defined as p(e).

By repeatedly applying modifications and extensions to a program, any new program can be
produced. The intra-language changes are not necessarily intended to preserve the meaning of
a program, i.e. the evaluation of the program before and after the change will not necessar-
ily produce the same results. Such a change will not affect the underlying semantics of the
programming language, i.e. the machine which defines the meaning of the programs will not
change as a result of a modification or an extension. The intra-language changes are intended
to reflect the activities which occur at the same level of abstraction, before working out how
certain components might be “implemented” in more concrete terms.

Before defining what it means to perform a port, it will be necessary to define what it means for
a programming language to be consistent and complete with respect to another.

1. Consistency' between programming languages captures the notion that the two languages
will produce similar outcomes from similar programs. The notion of similarity must be
made precise and this is usually done by defining it to be a translation from the programs
and outcomes of one language to those of the other. Consistency will be defined so that one
programming language is consistent with respect to another. If language P, is consistent
with respect to P, then for some collection of P, programs there will be a similar collection
of P, programs which produce similar outcomes.

2. Completenesswith respect to programming languages will be used to mean that consistency
follows for all P, programs.

Different programming languages in the model will all have the same format, i.e. F, but will
differ with respect to the machines which give the languages their different semantics. Fach
machine will define how to evaluate all programs (although the meaning of some programs
with respect to some machines may be undefined) by loading the program onto the machine,
performing all possible transitions and then unloading the result. Given a machine M this
process will be represented as a function eval(M) : £ — V for some collection of program

'In this document, when the terms consistency and completeness are used without qualification, they will be
defined to be ... of machines with respect to a translation.

||

Figure 1: A software development graph

outcomes V. Two machines M; and M, are equivalent, and therefore consistent with each
other, when
eval(M) ~ eval(M)

where ~ means equal when one or other is defined otherwise undefined. Equivalence is a very
strong property between two machines which is not particularly interesting when dealing with
ports. More interesting is when some part of the program or the outcome has to be translated in
order to guarantee some equivalence. Suppose that there are two possible collections of outcomes
Vi and V, for machines M; and M, respectively. Then we can define that the outcomes of machine
M, are consistent with the outcomes of machine M, if there exists a way of transforming the
outcomes of the first into the outcomes of the second, i.e. if

translateoutcome o eval(M,) ~ eval(M)

If the function translateoutcome is a total function then we can say that M, is consistent and
complete with respect to M. The same argument holds for translating the programs before they
are evaluated in order to guarantee some sort of equivalence. Suppose that translateprogram
is a function which translates from E programs to F programs (this might sound a bit silly,
but consider translating a C program with builtin operators for real arithmetic to a C program
which inserts all the machinery to do real arithmetic in terms of integer arithmetic), then the
evaluation on the machine M, is consistent with respect to that on machine M; when

eval(M,) ~ eval(M) o translateprogram

If the function translateprogram is total then the evaluation is both consistent and complete. In
general, to show consistency and completeness between two machines it will be necessary to use
both types of translation

translateoutcome o eval(M,) ~ eval(M) o translateprogram

A port will be a pair of translations between machines for which the target machine is consistent
and complete with respect to the source machine such that the translations are homomorphisms.
This issue is a technical point which guarantees that the translations are defined to be modular
and that subterms in source programs are translated to consistent subterms in target programs.

The definitions of program, machine, calculation, modification, extension, consistency, complete-
ness and port conclude the model of software development. The entire process of software
development is represented as a graph, an example of which is shown in figure 1. The nodes
of the graph are programs (a.k.a designs and specifications) and the arrows represent changes
in terms of modifications, extensions and ports. Where more than one edge leads from a node,
this corresponds to alternative possible development paths. Figure 2 shows a single path from
the root of the development graph to a current state. The path is a cascade of interchangeable
software changes starting with a high level of abstraction and ending up with a more concrete
program.

intra
F F
inter inter
intra
- F
intra
inter inter
intra
- F
intra
inter inter
_—
intra

Figure 2: A cascade of software development

2 KBS software

AT and KBS software are very difficult to define in any precise manner. The following quotes
are taken from a collection of sources which deal with Al and KBS software:

“[knowledge] goes beyond the notion of information, since it employs a complex struc-
ture including, integrating, multiplying and valorizing a great number of information
units existing in the brain of an expert or specialist. [... | or whether it is to use
this knowledge to accomplish a number of tasks requiring an intellectual endeavour
(KBS and expert systems), it is clear that it is necessary to adopt, and may be to
rethink, the methodological framework which is dominant in classical software.” [1]

“By Al software we mean software that uses techniques in the field of Artificial
Intelligence.” [2]

“We face an initial difficulty in that the notion of Al software is fuzzy — indeed
practitioners of Al do not even agree among themselves on what constitutes AL” [2]

“The class of Al software that we have identified for consideration is often charac-
terised as “knowledge based” meaning that it contains an explicit representation of
knowledge about some aspects of the external world.” [2]

“[...]a KBS can generally be described as consisting of 3 major components:

¢ a knowledge base.
e an inference engine.
e a user interface.
The knowledge base, which contains all the relevant domain knowledge, is a complex

entity that must be uniquely developed for each application. However, the inference
engine, which navigates the system [...] is a fairly standard mechanism.” [3]

“Al is

e a natural extension of computer science and technology.

e a way of producing systems which are more autonomous and resilient than
conventional software techniques will allow.

e automated knowledge processing.” [4]

“The principal Al languages, Prolog and Lisp, are declarative languages. Note that
it is the language design and implementation that determine the flow of control in
the program. In this sense Al languages are not essentially sequential in the way
that conventional procedural languages are.” [4]

“search forms the core of Al based software. Intelligent programs must use efficient
search methods.” [5]

“We use the term "knowledge based” as a temporary expedient, just as it was once
common to talk of digital computers”. The term ”digital” was later dropped from
common speech as the distinction between analog and digital computers became less
important. (The same applies to “motor” cars.) “Knowledge based” is simply a
transitional term, emphasizing obvious differences between this view [of design] and
what has gone on before.” [6]

The quotes which are given are typical of the Al and KBS literature when giving overall defini-
tions of these terms. We are interested in any features which characterise KBS software but must
be wary of any implementation techniques which are “passing fads” and will be here today and
gone tomorrow. We wish to uncover the underlying principles which may be used to construct
any of the techniques which are currently used for KBS. We believe that the following is a list
of relevant points:

o Stating that Al systems are those which use Al techniques is not very helpful.

e Domain knowledge is generally accepted as essential to KBS but is never really defined.
Are text editors knowledge based because they know about ASCII character codes?

o A KBS is often described as consisting of a knowledge base, an inference engine and a
user interface. The fact that a system has a user interface is not particularly surprising
and certainly not true in all cases (embedded KBS for example). The inference engine is
often a form of interpreter for the data values in the knowledge base. Unfortunately, not
all KBS have such a construction and therefore knowledge bases and inference engines are
not viewed as a characterising feature.

o KBS software is generally called “declarative” which is taken to mean that the programs
are less involved with specifying what the individual steps in the computation do, as
in specifying what large collections of steps will achieve. This is a laudable aim and it
is certainly not restricted to the area of KBS software. So-called declarative languages
represent the leading edge of programming language technology and the fact the KBS
software is implemented using such languages is a result of KBS practitioners choosing the
most up-to-date tools.

e So-called conventional software is said to use information whereas KBS software uses
knowledge and the difference is that knowledge tends to be more complex and require
more involved processing. This is a subjective viewpoint, parsers and compilers were once
viewed as being the height of sophistication.

o Search is often given as a characterising feature of KBS software. This is a concrete
distinction between conventional and KBS software. A search space is a collection of states
and transitions between them. A program will search a space until one of a collection of
acceptable states is found. Such a program is viewed as being non-deterministic when
there is no ordering placed on the development of the search space. Conventional software
does not involve search spaces; they are often viewed as a sequenced collection of actions
which processes some input to produce some output.

e The search space for a KBS program may be far too large to be fully developed. FEven
when clever techniques are employed to predict which of a collection of alternative states
should be developed next, it is often impossible to guarantee that an acceptable state will
be reached given constraints on the program’s resources. This will mean that the outcome
of a KBS program may be less than optimal. A conventional program will either succeed
or fail on a given input; if it succeeds then the answer will be wholly acceptable otherwise
the program will completely fail.

From the points given above, we take the two characterising features of KBS software as non-
determinism which arises due to the search space and incompleteness which produces less than
optimal outcomes for given inputs due to time and space constraints. These features are fun-
damental to characterising a KBS system: there may be other features which KBS software
typically exhibits, but it is possible for non-KBS software to also have these features.

A KBS program will be defined to be an expression in the A-calculus which has been extended
with a non-deterministic operator, _or _, and a construct fail which kills off the current compu-
tation. The concrete syntax is defined as follows:

K:u=1| MK | KiK, | Kjor K, | fail

When an expression K, or K5 is performed, the result will be produced by either K, or K,. We
can view a KBS program as producing all the possible answers and then selecting one of these
non-deterministically; in this case, when an or expression is performed, both K; and K, are
performed independently and both produce a result for the or expression. If or expressions are
viewed as branching points in the computation then an entire calculation for a KBS program
will look like a tree. When a fail construct is performed, the current computation is killed off
which will mean that the edge on which the fail construct lies in the calculation tree will be
pruned back to the last branching point.

KBS program semantics will be given semantics in terms of different machines, just as in §1.
However, the machines will all have a new distinctive feature which is that the transition relation,
——, will hold between a single machine state and a set of machines states. This captures the
non-determinism of KBS programs. As an example, the following is a variation of the SECD

let inferenceengine (rules, terminated) data =
if terminated(data)
then data
else [hr (or) (inferenceengine(rules, terminated)) (A_fail) (map f apprules)
where
apprules = applicablerules(rules, data)

f(r) = r(data)

Figure 3: An inference engine

machine which was defined in §1.

(s,b,i::¢,d) — {((bei)::s,b,c,d)}
(s,b,(Ai.k) e, d) — {(<i,b,k > 8,b,c,d)}
(s,b,(kiks) ¢, d) — {(s,b,kyi k) 1@ e d)}

(<i,01,k >0 8,00,@c,d) — {([],b1® (i v),[k],(s,bs,c,d))}

(v, 5[] (s,0,¢,d)) — {(v:s,bye,d)}
(s,b,(kiorks) :c,d) — {(s,b, ki e,d), (8,0, ks e,d)}
(o, fail ::) — {}

There are also other features which characterise a subclass of KBS software, for example knowl-
edge bases and inference engines. Figure 3 shows a skeleton inference engine (based on [7] pp. 20
—21) which is constructed from the underlying non-determinism primitive. The inference engine
is a program whose inputs are the rules, a predicate which determines when the program has
completed and some data. If the program has completed then the data is produced as the out-
come. Otherwise there will be a collection of applicable rules. Since only one rule may be applied
to the data at any given time, the inference engine will apply all the rules non-deterministically.

KBS software development will be defined using the same terms which were described in §1.
The essential difference between conventional software development and KBS development is
that the ports are not guaranteed to be complete, i.e. when a program is translated from one
machine to another in order to make the representation more concrete, some of the possible
outcomes of the program may be lost. This is not a problem if all of the possible outcomes from
a program are acceptable, however in general some of the outcomes from a KBS program will
be more acceptable than others. This will mean that after a port, the resulting program may
produce less than optimal results. This feature will have a major impact on the quality of KBS
software and it is important that the developer has a good idea of the characteristics of the
incompleteness so that it is well understood whether or not a change to a program will affect
the acceptibility of its outcomes.

Given a machine M and a set of possible outcomes V' for a KBS language, the evaluator for
M is eval(M) : K — setof(V) where the expression setof(V') represents the set of all subsets
of V. So the evaluator for a KBS programming language differs from that for a conventional
language in that the outcome is a set of values rather than just a single value. As before, given
two machines M; and M, they are equivalent if they produce the same (sets of) outcomes when
they evaluate the same programs,

eval(M) ~ eval(M)

Given two sets of outcomes from the machines, V; and V, then M, is consistent with respect to
M, when there is a mapping translateoutcome : Vi — V5 which will translate from M; outcomes
to M, outcomes such that the set of outcomes produced by the machine M, is a subset of the
translated set of outcomes from M, for the same program. This is expressed by the following
inequality:

eval(My) C map(translateoutcome) o eval(M)

Notice that this differs from the notion of conventional software consistency in that M, need
only produce a subset after a translation. Alternatively, a program may be translated before
being evaluated. Suppose that translateprogram : K — K is a program translation, then M, is
consistent with M; when the set of outcomes produced by M, is a superset of that produced by
M, after a translation,

eval(Ms) o translateprogram C eval(M)

Finally, KBS language consistency is defined in terms of both an outcome and a program trans-
lation,
eval(Ms) o translateprogram C map(translateoutcome) o eval(M)

In general, a port will be used in software development to translate from an idealised pro-
gramming language to a more concrete language. The idealised language may be unfettered
by resource constraints such as memory usage and execution duration. When conventional lan-
guages are ported, the program is intended to do exactly the same thing before and after the
port; the difference is that the calculation which is performed after the port will be in terms of
elements which have more “implementation detail”. When KBS languages are ported, the effect
of filling in “implementation detail” goes hand in hand with the problems of finite resources
which is why the collection of outcomes produced by the program after the port will be a subset
of those before the port. This is a characteristic feature of KBS software development and is
a genuine difference between KBS and conventional software. The impact of this feature on
software quality is that the loss of completeness due to design and implementation decisions can
lead to programs which produce unacceptable outcomes, take too long to produce outcomes and
have memory useage problems. By understanding the nature of KBS evaluation it is possible
to take these issues into account early on in the specification, design and implementation of the
system and thereby reduce the risk of producing an unacceptable product.

The view of KBS software which is given in this section can be used as a basis for KBS analysis.
The MOSES project intends to produce recommendations for KBS development which will
guarantee a level of quality in military systems. A suggested workplan is to identify all of the
techniques which are involved in military KBS (eg. data fusion, planning, classification, pattern
matching efc.) and to give an idealised representation for each technique (by modifying and
extending the KBS language given here). By analysing each feature, the elements which affect
the quality of a product which employs the feature can be identified. These activities will lead
to a precise description of the issues which affect the quality in military systems which employ
KBS techniques. This will provide the project with the required information in order to produce
a list of guidelines with respect to the procurement, specification, design and implementation of
military KBS systems.

3 Quality terms

This section will take quality terms which have been used in the milestone report [8] and re-
late them to the models of conventional and KBS software which have been described in this
document. Fach term is given a brief description which places it in the context of this document.

10

Integration Integration is defined to be the process of composing two different software systems
together to form a new software system. In the extreme case, both software systems will
have different semantics and will be parameterised programs where the other program is
supplied as the parameter. Quality will be affected by the compatibilty of the two software
systems i.e. by the existence and completeness of a translation from one of the language
systems to the other. In addition to performing computations with respect to an interface,
the resulting system may involve merging the two original systems in which case quality
will be affected by the consistency of the merge (i.e. whether or not the merge leaves the
resulting system in a sensible state).

Porting Porting has already been defined for both conventional and KBS software. KBS quality
is affected by the completeness of the port. In general, the quality of a port will be affected
by the modularity of the translation from one language to another. An idealised port will
be a homomorphism from the syntactic constructs of one language to those of another.
The more languages differ, the less likely the translation will be a homomorphism and the
greater the difficulty of ensuring that the port is a success.

Completeness Completeness must be defined with respect to something which is defined to be
complete. For example a “knowledge base” K may be defined to be complete with respect
to all the known facts F if there exists a mapping which generates all the elements of F’
using just the elements of K. A translation from one programming language to another
is complete if it is total. KBS software has incompleteness built in as a characterising
feature. It is important that the nature of the incompleteness is understood in order that
quality is maintained.

Consistency Consistency is a relation between two or more things. The consistency of a
software modification is measured by showing that the software can be shown to do roughly
the same things after the modification (where roughly is captured as a mapping on outcomes
and programs) as it did before. A “knowledge base” K may be said to be consistent with
respect to the set of all known facts F' if all of the deductions which can be made from
the data in K are true facts in F' (i.e. no incorrect deductions can be made). The
more inconsistencies which creep into a system (development or execution) the more likely
the system will be to fail; quality is maintained by ensuring some degree of consistency.
Typically a quality check will be “Given a modification of type X the system will be
consistent with respect to Y7 which shows that nothing has gone wrong due to X.

Testability Testability refers to the property of a system which enables its behaviour to be
compared against expected results. This is a quality issue because the higher the degree
of testability (and number of tests performed) the greater the likelihood of the system
performing as expected. There are three things which will affect the degree of testability
which a system exhibits:

1. A description of all possible input data.
2. A description of the calculations which a system performs on all inputs.
3. A description of the required results from all possible inputs.
Using these descriptions, it will be possible to show (to the desired level of detail) that the

correct behaviour is achieved by the system. KBS programs are often described as being
difficult to test because their behaviour is unpredictable, eg

“The problems addressed by Al-software are generally somewhat ill-defined, and
a clear statement of requirements for the task the software is to perform is
often lacking. This means that the notions of success and failure are vague,

11

and evaluation is correspondingly difficult. In addition, the heuristic techniques
employed in Al software tend to render it fragile, or unstable: very similar inputs
may produce wildly different outputs. This makes extrapolation from behavior
on test cases very risky.”[2]

There are two issues here. The first, and most important, is that Al-software is “some-
what ill-defined”. Whilst this may be true of many Al artifacts, there seems no intrinsic
property of Al-related problems which makes them impossible to specify precisely. The
ill-defined nature may be related to the incompleteness of the KBS (or Al) system, where
the desired solution is the complete one and the problem specification is along the lines
of “The software will perform task X and squeeze as much completeness out of the imple-
mentation as possible using the resources available.” It may be this open ended type of
specification which leads to ill-defined specifications because it tends to say nothing about
what the system will do eg “Advise on the deployment of countermeasures in an air to sea
attack scenario and produce the best advice possible.” This is a serious problem, but it is
of primary importance with respect to achieving desired quality standards and deserves
further consideration within the MOSES project.

The second issue is related to incompleteness but cannot really be taken seriously, either
a collection of rules (heuristic usually means rules of some kind) means something or they
mean nothing, there are no half measures!

Modifiability The term modify with respect to software has been defined in this document. It
refers to the activity of replacing a subterm of the abstract syntax tree. Modifiability is
an ill-defined software property which relates in some way to the act of modification. One
desirable property of software is that it is modular; the software can be modified locally
to achieve some change in behaviour, without having to affect other areas. A program
development is completely modular when all intra-language changes lead to legal programs.
Modifiability is a measure of the modularity of the program development. (Hmm - not
sure about that)

Extensibility The term extension with respect to software has been defined in this document.
It refers to the activity of wrapping a parameterised program around an existing program.

Maintainability Maintenance refers to the activity by which a system is modified in order
to change some undesirable feature of its behaviour. The change may be because the
system does not achieve the correct results or because the correct results are achieved in
an unacceptable way. A software system is maintainable when it is both modifiable and
extensible.

Robustness The robustness of a software system is a measure of how well it deals with illegal
input data. Input data is illegal when it does not conform to the description given in the
specification (see testability above). Because of incompleteness, KBS software must be
shown to be robust in the absence of acceptable results.

These descriptions have been given in very broad terms because of the generality of the definitions
of conventional and KBS software. If the model of KBS software is made more specific by
analysing a particular KBS technique, then the descriptions will be tailored to the technique
and the issues involved can be given in more detail. For example, nothing has been said about
memory usage vs. execution time vs. quality; however the KBS software model can be extended
with information about time and space and various KBS techniques analysed with respect to
the new model and whether or not quality standards can be achieved.

12

References

Software Quality and Al. Bourgeade & Allard. ESA Report.

Quality measures and Assurance for Al software. Rushby.

Al software acquisition program. Bardawil et. al. Rom Air Development Center.
The testing of Al products and the use of AI methods in testing. EEA Report.
Designing Artificial Intelligence Based software. Bahrami. Halstead Press.
Knowledge based design systems. Coyne et. al. Addison Wesley.

Principles of Artificial Intelligence. Nilsson. Springer- Verlag.

MOSES Milestone Report No. 1 A. G. Hill.

The mechanical evaluation of expressions. Landin. Computer J. (6) 1964.

13

