
Proving Properties About Programs Which ShareTony ClarkFormal Methods GroupPhoenix BuildingUniversity of BradfordWest YorkshireBD7 1DPUKa.n.clark@comp.brad.ac.ukSeptember 30, 1997Keywords: alias analysis, abstract interpretation, operational semantics, veri�cation.AbstractThe analysis of program properties is essential to the production ofhigh quality systems. Unfortunately, the analysis of imperative programsis di�cult because they are not referentially transparent. This papermakes a contribution to the analysis of imperative programs by proposinga general semantic model for expressing programs which involve aliasingand using this to develop a deductive system for establishing programproperties. The approach is not limited to �rst order languages sincea �-calculus is used as a universal model of imperative programming.The approach is parameterised with respect to the semantics of aliasingand can therefore be instantiated with respect to the semantics of anyparticular imperative language.

1

1 IntroductionThe analysis of program properties is essential to the production of high qualitysystems. The category of programming languages which are referentially trans-parent (for example the so-called pure functional languages) are amenable toanalysis techniques mainly because they are free from side-e�ects. However themajority of languages which are used today are imperative, for example the Cfamily. Such languages permit values to be modi�ed by side-e�ect and are muchmore di�cult to analyse.In order to facilitate the analysis of imperative programs we require a generalmodel of the sharing (or aliasing) and update which occurs during programexecution. Such a model must be highly exible since nearly all imperativeprogramming languages exhibit varying sharing and update characteristics.The �-calculus is a universal model of programming languages. Its simplicitymakes it highly appealing as an analysis tool. The calculus is higher-orderwhich enables it to elegantly model both data and control abstractions. Thispaper addresses the problem of using a �-calculus to perform alias analysis.Given the hypothesis that �-calculi represent a universal model of (sequential)computation then the result is a general framework for performing alias analysiswith respect to any (sequential) programming language.The initial point of departure is Landin's sharing machine [5] which enrichesa �-calculus with sharing and update features and presents a semantics in termsof a state transition machine. Although the sharing machine is suitable asa general model of imperative computation, it is unwieldy when used to proveprogram properties. We show that a transformation can be applied which resultsin programs whose imperative semantics can be expressed as a deductive systemand then give examples of how this system can be used to prove some propertiesof imperative programs. We conclude with an analysis of the work and compareit with related research.2 De�nitionsThe sharing machine is de�ned as a state transition system. The states arede�ned as terms in addition to information which describes the sharing of sub-structures within terms. This section gives the de�nitions which are necessaryto de�ne the sharing machine.2.1 TermsLet V be a set of variables and disjointly let F be a set of function symbols.Each function symbol has an arity which is a positive integer or zero. A termis either a variable v 2 V or a function symbol f 2 F applied to a sequence ofterms (t1; : : : ; tn) where n is the arity of f . If a term contains no variables thenit is called a ground term and if n = 0 then the term is called an atom. The setof variables in a term is vars(t). 2

A variable substitution � is a partial function from variables to ground terms.A variable substitution can be uniquely extended to a homomorphism whichmay be applied to any term:�(f(t1; : : : ; tn)) = f(�(t1); : : : ; �(tn))Given a term f(t1; : : : ; tn) each of the sub-terms ti is at position i. A termaccessor is a function which is applied to a term to yield one of its sub-terms.There is a distinct accessor for each possible sub-term position. For example:1(f(t1; t2; t3)) = t12(f(t1; t2; t3)) = t23(f(t1; t2; t3)) = t3A path p is one of the following:� the identity path � for which �(t) = t.� a term accessor.� the composition of two paths: p1 � p2 whose application is de�ned asfollows: (p1 � p2)(t) = p1(p2(t))Given a term t, a location in t is a set of paths L such that there is a singleterm t0 such that for each path p 2 L: p(t) = t0. Intuitively, a location containsa single data item which is accessible via di�erent paths through the term.It will be useful to develop a method for graphically displaying a term.A term may be represented as a directed graph whose vertices are labelledwith function symbols. A term f(t1; : : : ; tn) is represented as a directed graphcontaining a root vertex v labelled with f and edges ei leading from v to theroot vertices of the graph of each sub-term ti. Such a graph is easily drawn onpaper or a computer screen.2.2 SharingA sharing S on a term t is a set of locations in t. Let T be the complete setof sub-terms in t then a sharing on t contains a path p if and only if p(t) 2 T .A sharing S on a term t is well formed when for each pair of paths p � p1 andp � p2 in t, if p1 shares with p2 in S then p � p1 shares with p � p2 in S.A sharing is to be used to describe the operational semantics of an imper-ative language and to prove sharing properties of programs. The operationalsemantics is de�ned as a state transition system given as a collection of rules.The system states are ground terms and the rules de�ne how the states aretransformed as the program evaluates.A sharing in the display of a term allows two or more edges to be incident onthe same vertex. A special case occurs when an entire term shares with itself.This is to be drawn as a cycle leading to the root vertex of the term.3

2.3 RulesA rule is t1 7�! t2 with a possible side condition de�ning how the rule a�ectsthe current sharing. The term t1 is called the antecedent and t2 is called theconsequent.A rule is used to rewrite ground terms. A ground term t matches a term t0if there is a variable substitution � such that �(t0) = t. A rule t1 7�! t2 matchesa ground term t if its antecedent matches t. The rule then rewrites t to theground term �(t2).A rule also a�ects a sharing on a ground term as follows. Let S1 be a wellformed sharing on a ground term t and let t1 7�! t2 be a matching rule giventhe variable substitution �. For each variable v 2 vars(t1) there is a unique pathpv such that pv(t1) = v. For each variable v 2 vars(t1) there is a set of pathsPv such that for each path p 2 Pv : p(t2) = v. Let S2 be a well formed sharingon �(t2). Two paths p1 and p2 share in S2 if and only if:� the side condition does not explicitly prevent it; and1. p1 = p � p01 and p2 = p � p02 such that p01(t2) = p02(t2) = v for somevariable v; or2. p1 = p � px � py and p2 = p � pa � pb such that there exist paths pv1and pv2 in t1 where py 2 Pv1 and pb 2 Pv2 and the paths p � pa � pv1and p � px � pv2 share in S1; or3. the side condition explicitly demands it.Consider the rule f(v1; v2) 7�! g(v1; v2; v1). When this rule is used to rewriteany ground term which matches the antecedent the resulting sharing will containthe following location f1; 3g due to the repeated use of the variable v1 in theconsequent.Consider the rule f(v1; v2) 7�! g(v2; v1). When this rule is used to rewritethe following ground term: f(h(k1; k2); i(k3; k1)) and the sharing:ff1; 2g; f2 � 1; 2 � 2g; f2 � 1g; f1 � 2ggthen the resulting term is g(i(k3; k1); h(k1; k2)) with the following sharing:ff1g; f2g; f2 � 1; 1 � 2g; f1 � 2g; f2 � 2ggRules describe modi�cations to the display of a term. In such cases it is conve-nient to think of the display as being achieved using pegs labelled with functionsymbols (vertices) and elastic string, coloured at the target end, tied betweenthe pegs (edges).A rule modi�es a display in place by introducing new pegs and string and byuntying the coloured end of existing strings and re-tying the string to a di�erentpeg.The application of a rule to a display d is as follows. Each variable in the an-tecedent identi�es a distinct peg. The display of the consequent is constructed,starting at the root of d and the root of the consequent term. Where the pegs4

match they are left unaltered and construction proceeds with the correspondingsub-terms. Where the consequent introduces a new function symbol, the displayis modi�ed to add a new appropriately labelled peg and the edge leading fromthe parent peg is untied and re-tied to the new peg. Where the consequentrefers to a variable, the display string is untied and re-tied to the peg associatedwith the variable. When the application of a rule to a display is complete, anypegs and string which are unreachable from the root are removed.2.4 UpdateGiven a term and two locations in the term we can update the �rst locationwith the value in the second by replacing all occurrences of the value in the�rst location with the value in the second location and arrange so that the twolocations are left sharing.Consider the display of a term. Locations in the term are pegs. Given twolocations, if the �rst is to be updated to contain the value in the second thenall strings tied to the �rst peg are untied and then re-tied to the second peg.3 A Sharing SECD MachineThe SECD machine is a exible system for providing an operational semanticsfor a �-calculus. The machine is de�ned in terms of a collection of states andrules which perform calculations by rewriting the states.In order to provide a model for an imperative language, an SECD machinemust support sharing and update. This section describes such an SECD ma-chine.3.1 Machine StatesThe SECD machine consists of a set of states and a collection of rules. Thestates are terms which are constructed from the following term classes:� a dit is an integer, a boolean, a tuple, or a closure.� integers which are treated as term constants.� booleans which are treated as term constants.� tuples. Tuples of arity n are constructed using a function symbol tuple-nwhere each sub-term is a dit. When writing tuples we drop the functionsymbol, for example tuple-3(1; 2; 3) becomes (1; 2; 3).� sequences which are either the constant nil(), written [], or a term cons(t; l)where t is a dit and l is a sequence. When writing non empty sequenceswe use in�x notation, for example 1 : 2 : [] instead of cons(1; cons(2; [])),and [t] instead of 1 : []. A sequence t1 : t2 : : : : : tn : [] can also be written[t1; t2; : : : ; tn]. 5

� environments which are sequences of tuples of arity 2 where the �rst com-ponent of each tuple is an identi�er and the second is a dit.� program expressions which are drawn from the following syntax de�nition:E ::= I j �I:E j EE j E ! E;E j (E; : : : ; E) j (E)where I is the syntactic category of program identi�ers, �I:E is thesyntactic category of functions, EE is the syntactic category of appli-cations, E ! E;E is the syntactic category of conditional expressions,and (E; : : : ; E) is the syntactic category of tuples. Each non-atomicsyntactic category has its own term constructor. For example the termlambda(i; apply(f; i)) is written �i:f(i).� machine instructions which are: @; choose(e1; e2) where e1 and e2 areprogram expressions, written e1 ! e2; constuple(n) where n is an integer,written [n]; and, update() written :=.� closures which are terms closure(i; �; e) where i is an identi�er, � is anenvironment and e is a program expression. A closure is written <i; �; e>.� machine states which are either the constant tuple () or a tuple of arity 4:(s; e; c; d) where s is a sequence of dits called the stack, e is an environment,c is a sequence of program expressions and machine instructions called thecontrol and d is a machine state called the dump.3.2 Transition RulesThe transition rules for the SECD machine with sharing are de�ned in �gure1. Each time a rule is used to transform the current machine state, the currentsharing is modi�ed using the de�nition given in x2.3.Side conditions are required in order to de�ne sharing issues which di�er fromthe default mechanisms which are de�ned in x2.3. The following side conditionsapply to the rules in �gure 1:� rule 2 must arrange for the location which contains the value of the iden-ti�er i in the environment to share with the top of the stack.� rule 5 must arrange for the value of the identi�er i in the consequent toshare with the argument v in the antecedent1� rule 13 must arrange for the dit v1 to be updated with the dit v2. Therule shows that all machine components can potentially be a�ected by theupdate; otherwise this rule behaves as normal.1Note that in practice the degree of sharing depends upon the particular imperative lan-guage which we are modelling. For example we may have call-by-value or call-by-referenceparameter passing. 6

(s; e; k : c; d) 7�! (k : s; e; c; d) (1)(s; e; i : c; d) 7�! (e(i) : s; e; c; d) (2)(s; e; (�i:b) : c; d) 7�! (<i; e; b> : s; e; c; d) (3)(s; e; (e1e2) : c; d) 7�! (s; e; e2 : e1 : @ : c; d) (4)(<i; e1; b> : v : s; e2;@ : c; d) 7�! ([]; (i; v) : e1; [b]; (s; e; c; d)) (5)(v : ; ; []; (s; e; c; d)) 7�! (v : s; e; c; d) (6)(s; e; (e1; e2 ! e3) : c; d) 7�! (s; e; e1 : (e2 ! e3) : c; d) (7)(true : s; e; (e1 ! e2) : c; d) 7�! (s; e; e1 : c; d) (8)(false : s; e; (e1 ! e2) : c; d) 7�! (s; e; e2 : c; d) (9)(s; e; (e1; : : : ; en) : c; d) 7�! (s; e; en : : : : : e1 : [n] : c; d) (10)(v1 : : : : : vn : s; e; [n] : c; d) 7�! ((v1; : : : ; vn) : s; e; c; d) (11)(s; e; (e1 := e2) : c; d) 7�! (s; e; e1 : e2 : (:=) : c; d) (12)(v2 : v1 : s; e; (:=) : c; d) 7�! (v2 : s0; e0; c0; d0) (13)Figure 1: SECD Transition RulesGiven a program expression x and an environment e, an initial machine state forprogram execution is ([]; e; [x]; ()). By repeatedly applying the sharing machinetransition rules (assuming no coding errors in x), the result will be a terminalstate ([v]; e; []; ()) where v is the outcome delivered by performing program x. If�1 { �n are the intermediate states then a calculation describes all the steps:([]; e; [x]; ()) 7�! �1 7�! : : : 7�! �n 7�! ([v]; e; []; ())or equivalently ([]; e; [x]; ()) 7�!� ([v]; e; []; ()). The following example shows acalculation which performs an update:(s; (i; 1) : e; (i := 0) : c; d) 7�!(s; (i; 1) : e; 0 : i : (:=) : c; d) 7�!�(1 : 0 : s; (i; 1) : e; (:=) : c; d) 7�!(0 : s; (i; 0) : e; c; d)when the value of the identi�er i is pushed, the head of the stack shares with thevalue in the environment. When the value at the head of the stack is updatedthen all sharing values must be updated to produce a consistent state. Thecalculation shows that the update will modify the value of i in the environment.
7

4 A Simpli�ed SemanticsWe claim that the SECD machine with sharing is a universal tool in the analysisof imperative programming languages. However, it can prove unwieldy if usedto prove program properties. In particular, the machine has a number of compo-nents each of which may share with any of the other components. A consequenceis that program proofs potentially involve a large amount of book-keeping dueto the number of machine components which can share.In order to facilitate the proof of imperative program properties, we wouldlike the proofs to be as simple as possible. This section describes the key featureswhich complicate the sharing machine and the restrictions which can be imposedin order to de�ne a simple deductive system for program proof.4.1 Program TransformationThe SECD machine uses a stack in order to hold the results from intermediatecalculations. For example, in order to construct a tuple, each tuple componentis produced by performing an expression and leaving the result on the stack.When all components have been pushed on the stack then they are popped andthe tuple is pushed.A consequence of using a stack for intermediate results is that the stack maybe modi�ed by an update to a data item while it shares with a stack component.The following expression gives a simple example:(x; 1(x) := 3)where the value of x (a tuple) is pushed onto the stack and then modi�ed as aside e�ect of evaluating 1(x) := 3.The use of a stack to hold intermediate calculations can be avoided if we forceall values to be named. This has the e�ect of transferring sharing which wouldotherwise occur through the stack to occur through the environment. If we alsode�ne that control items are not shared (i.e. we cannot update code duringexecution) then the result is that all sharing occurs through the environmentand the dump. Since the stack and the control are not used for sharing thenthe dump (with respect to sharing) becomes a stack of environments.In order to ensure that all data items are named, an arbitrary �-calculusexpression must be transformed. The transformation ensures that an expressionis evaluated as a single thread and that each dit produced by a sub-expressionis named. A function which performs the transformation is de�ned in �gure2. Note that we assume that all program constants are named and occur atparticular environment locations.Given a �-calculus expression e, the transformed expression is trans(e; I),where I is the identity function. The �rst argument to trans is a �-calculusexpression and the second is a continuation mapping identi�ers to expressions.Consider the following �-calculus expression (f((1; 2); �x:x + 3); 4) which8

trans(i; s) = s(i)trans([[�i:e]]; s) = [[let v(i) = e1 in e2]]wheree1 = trans(e1; I)v = newvare2 = s(v)trans([[e1e2]]; s) = trans(e1; �f:trans(e2; �v:[[let v0 = f(v) in e]]))wherev0 = newvare = s(v0)trans([[e1 ! e2; e3]]; s) = trans(e1; �v:[[v ! e4; e5]])wheree4 = trans(e2; s)e5 = trans(e3; s)trans([[(e1; : : : ; en)]]; s) = trans(e1; �v1: : : : trans(en; �vn:[[let v = (v1; : : : ; vn) in e]]) : : :)wherev = newvare = s(v)trans([[e1 := e2]]; s) = trans(e1; �v1:trans(e2; �v2:[[let v = v1 := v2 in e]]))wherev = newvare = s(v)trans([[e1; e2]]; s) = trans(e1; � :trans(e2; s))Figure 2: Single Threading Transformation
9

produces the following single threaded expression:let v1 = (1; 2) inlet v2(x) = x+ 3 inlet v3 = (v1; v2) inlet v4 = f(v3) inlet v5 = (v4; 4) in v5Given an expression produced by trans, its evaluation on the sharing machinewill only use the head stack location. Furthermore, immediately after a value isconstructed at the head of the stack it is popped and added to the environment.As a result, we can dispense with the machine stack and need only pay attentionto the environment during program execution.4.2 A Natural Semantics with SharingThe operational semantics of program execution can be simpli�ed by droppingthe stack. There is still a requirement for serialising certain aspects of programevaluation, but rather than de�ne the semantics in terms of a machine, it isgiven as a deductive system which de�nes a relation:�; S ` e) v; L; �0; S0where e is a transformed �-expression which is performed relative to a stack ofidenti�er binding environments � and the sharing S to produce the data itemv whose program location is L. The environment �0 and sharing S0 are derivedfrom � and S after any updates in e have been performed.The deductive system is given as a collection of rules which use the followingde�nitions. Let S be a sharing, � be a sequence of environments, p be a pathand L be a location.Def 1 The sharing �S represents pushing a new location onto S. All paths p inS become p � 2 in �S. The new location may have structure and the context of �Swill determine any new paths which must be present. For example, if the pair(i; 2) is pushed then paths 1, 1 � 1 and 2 � 1 are present in �S.Def 2 The sharing ��S represent popping the head location in S. All paths p � 1are removed from S and all paths p � 2 in S become p in ��S.Def 3 The expression S(�; i) is the location of the value of the identi�er i inthe environment sequence �.Def 4 The expression S[p1 = p2] is a sharing which is the same as S exceptthat the path p1 has been modi�ed to share with the path p2. Note that the pathp1 is added to the sharing if it is not already present. In order to produce a wellformed sharing, for any path p3 � p2 in S the expression S[p1 = p2] implies thatS[p3 � p1 = p3 � p2]. 10

Def 5 S[e1; : : : ; en] = ((S[e1]) : : :)[en]Def 6 The expression S[p = L] is de�ned as follows:S[p = L] = � S[p = p1; : : : ; p = pn] when L 6= ; ^ pi 2 LS [ffpgg otherwiseDef 7 The expression �(i) produces the data item which is bound to the identi-�er i in the �rst environment in the sequence �. The expression �(S(�; i1); �(i2))is a new environment sequence which is the same as � except that all paths inthe location S(�; i1) contain the data item �(i2).Def 8 The expression S[L1 = L2] is a sharing which is de�ned as follows:S[L1 = L2] = � S[p1 = L2; : : : ; pn = L2] when L1 6= ; ^ pi 2 L1S otherwiseDef 9 �L = v such that v 2 �fLgDef 10 ��L = v such that v 2 ��fLgDef 11 The path to the data item at the head of the environment is h = 2�1�1.The deduction rules for performing transformed �-expressions are de�ned in�gure 3. In addition to providing a means to perform a program, these rulesmay also be used to test theorems about programs which share. The ability tode�ne the context of expression evaluation via the environment � and the sharingS allows the same program expression to be tested in a variety of contexts. Therest of this section shows some examples of how the rules are used to provesharing theorems about imperative programs.5 Examples of Program ProofThe natural semantics can be used as a deductive system for proving propertiesabout programs which share. This section gives a number of examples of suchproofs. Note that some of the proofs omit the program transformation when it isnot required. For example, the expression: let i = f(x) in i is equivalent to theexpression f(x). Note also that locations which are unimportant to the proof,for example which do not share, are omitted. Since the calculus is intended tobe the target of a program transformation from an imperative language, eachexample is given as a program fragment in a C-like language.Theorem 1 The result of performing the following program is to print the value20:{ int i = 20;print(i);} 11

�; S ` i) �(i); S(�; i); �; S (14)[(i1; <i2; �; e1>)] : �; �S[2 � h = 2] ` e2) v; L; : �0; S0�; S ` let i1(i2) = e1 in e2) v; ��L; �0; ��S0 (15)[(i1; �(i2))] : �; �S[2 � 1 = S(�; i1) � 2] ` e); v; L; : �0; S0�; S ` let i1 = i2 in e) v; ��L; �0; ��S0 (16)[(i; (�(i1); : : : ; �(in)))] : �; �S[k � h = S(�; ik) � 2] ` e) v; L; : �0; S0�; S ` let i = (i1; : : : ; in) in e) v; ��L; �0; ��S0 (17)�1(i2) = <i4; �2; e2>S4 = �S1[2 � 1 � 1 = 2 � (S1(�1; i2)) � 2; 2 � 1 = S1(�1; i3) � 2]((i4; �1(i3)) : �2) : �1; S4 ` e2) v1; L1; : �3; S2[(i1; v1)] : �3; ��S2[h = ��L1 � 2] ` e1) v2; L2; : �4; S3�1; S1 ` let i1 = i2(i3) in e1) v2; ��L2; �4; ��S3 (18)�(i2) = p[(i; p(�(i3)))] : �; �S[h = p � (S(�; i3)) � 2] ` e) v; L; : �0; S0�; S ` let i1 = i2(i3) in e) v; ��L; �0; ��S0 (19)�(i) = true�; S ` e1) v; L; �0; S0�; S ` i! e1; e2) v; L; �0; S0 (20)�(i) = false�; S ` e2) v; L; �0; S0�; S ` i! e1; e2) v; L; �0; S0 (21)S0 = S[h = S(�; i3) � 2; S(�; i2) � 2 = S(�; i3) � 2][(i1; �(i3))] : (�(S(�; i2); �(i3))); S0 ` e) v; L; : �0; S00�; S ` let i1 = i2 := i3 in e) v; ��L; �0; ��S00 (22)Figure 3: Natural Semantics of Transformed Expressions
12

or equivalently:[[(i; 10)]]; ffhgg ` i := 20) 20; ffhgg; [[(i; 20)]]; ffhggThe proof of this theorem is a single application of rule 22, QED.The following theorem shows how sharing is introduced between componentsof the environment and the result of updating an environment component whichshares.Theorem 2 The result of performing this program is 20:{ int i1 = 10;int *i2 = &i1;*i2=20;print(i1);}or equivalently:[[(i1; 10)]]; ffhgg ` let i2 = i1 in i2 := 20) 20; ffhgg; [[(i1; 20)]]; ffhggTo prove this theorem we apply rule 16 and then prove the following:[(i2; 10)] : [[(i1; 10)]]; ffh; h � 2gg `i2 := 20) 20;fh; h � 2g; [(i2; 20)] : [[(i1; 20)]]; ffh; h � 2ggwhich is true by rule 22, QED.The following theorem shows how sharing arises in structures and how ac-cessor functions can be used to side e�ect a structure component.Theorem 3 The result of performing the following theorem is 20:{ int i1 = 10;struct {int *fst;int *snd;} i2 = { &i1, &i1 };int *i3 = i2.fst;*i3 = 20;print(i1);}or equivalently: []; ; `let i1 = 10 inlet i2 = (i1; i1) inlet i3 = 1(i2) inlet = i3 := 20 in i2) (20; 20);;; []; ; 13

To prove this theorem we �rstly apply rule 16 to produce the following theorem:[[(i1; 10)]]; ffhgg `let i2 = (i1; i1) inlet i3 = 1(i2) inlet = i3 := 20 in i2) (20; 20);;; [[(i1; 20)]]; fhgthen apply the rule 17 to produce the following theorem:[(i2; (10; 10))] : [[(i1; 10)]]; ff1 � h; h � 2; 2 � hgg `let i3 = 1(i2) in let = i3 := 20 in i2) (20; 20);fhg; [(i2; (20; 20))] : [[(i1; 20)]]; ff1 � h; 2 � h; h � 2ggthen apply rule 19 to produce the following theorem:[[(i3; 10)]; [(i2; (10; 10))]; [(i1; 10)]]; ffh; 2 � h � 2; 1 � h � 2; h � 2 � 2gg `let = i3 := 20 in i2) (20; 20);fh � 2g; [[(i3; 20)]; [(i2; (20; 20))]; [(i1; 20)]]; ffh; 2 � h � 2; 1 � h � 2; h � 2 � 2ggwhich is true by an application of rule 22 and then rule 14, QED.The following theorem shows how induction can be used to prove an invariantwhich involves sharing within a structure. Consider a table represented as a pair(l1; l2). Both l1 and l2 are sequences of pairs. Each pair in both sequences is ofthe form (k; v) where k is a key and v is an entry.An invariant on a table is that every entry in the list l2 shares with someentry in the list l1. We require an operation which inserts a new pair into l1 giventhe key of the l2 entry which is to share. The implementation shown in �gure 4is proposed. This is equivalent to the following functional implementation usingthe proposed calculus:let insert(k1; k2; t) =letrec �nd(k; l) = null(l)! �; (1 � 1(l) = k ! 2 � 1(l);�nd(k; 2(l)))in let v = �nd(k2; 1(t))in 2(t) := (k1; v) : 2(t); tTheorem 4 Given a table v1 for which the invariant condition is true thenafter insert(v1; v2; t) the condition is still true. This theorem can be stated interms of the performance relation as:[(t; v1); (k1; v2); (k2; v3)] : �; S `e) (1(v1); ((v2; z) : 2(v1)));f2 � 1 � 2 � h; 2 � 1 � p � 1 � hg;[(t; (1(v1); ((v2; z) : 2(v1)))); (k1; v2); (k2; v3)] : �;S[2 � 1 � 2 � h = 2 � 1 � p � 1 � h]where e is the body of the function insert, z is the entry in the �rst componentof the table v1 associated with key v3, and p is an accessor.14

struct Rec { Key k; Entry *e };struct List { Rec hd; List *tl; };struct Table { List *l1; List *l2; };Entry *find(Key k, List *l){ if(l == NULL)error("cannot find key.");else if(l->hd.k == k)return l->hd.e;elsereturn find(k,l->tl);}Table insert(Key k1, Key k2, Table t){ Entry *v = find(k2,t.l1);t.l2 = new List(Rec(k1,v),t.l2);return t;} Figure 4: A Program for Inserting an Entry in a TableThe following lemma is used to prove this theorem:Lemma 1 Given a key v1 and a list of pairs v2 which contains v1 as a key thenthe following theorem is true:[(k; v1); (l; v2)] : �; S `null(l)! �; (1 � 1(l) = k ! 2 � 1(l);�nd(k; 2(l)))) z;f2 � 1 � p � 2 � 1 � 2 � 1g; [(k; v1); (l; v2)]; SThe proof is by induction on the length of the list l. Since we know that listv2 contains key v1 then the list is not empty; by applying rule 21 we get thefollowing theorem:[(k; v1); (l; v2)] : �; S `1 � 1(l) = k ! 2 � 1(l);�nd(k; 2(l))) z;f2 � 1 � p � 2 � 1 � 2 � 1g; [(k; v1); (l; v2)]; SNow since either 1 � 1(v2) = v1 or 1 � 1(v1) 6= v1 we proceed by case analysis:� if 1 � 1(v2) = v1 then by applying rule 20 we get the following theorem:[(k; v1); (l; v2)] : �; S `2 � 1(l)) z;f2 � 1 � p � 2 � 1 � 2 � 1g; [(k; v1); (l; v2)]; Swhere z = 2 � 1(v2) and p = �. 15

� if 1 � 1(v2) 6= v1 then by applying rule 21 we get the following theorem:[(k; v1); (l; v2)] : �; S `�nd(k; 2(l))) z;f2 � 1 � p � 2 � 1 � 2 � 1g; [(k; v1); (l; v2)]; Sand then by rule 19 we get the following theorem:[(k; v1); (l; 2(v2))] : [(k; v1); (l; v2)] : �; �S[2 � 1 � 2 � 1 = 2 � 1 � 2 � 1 � 2] `null(l)! �; (1 � 1(l) = k ! 2 � 1(l);�nd(k; 2(l)))) z;f2 � 1 � p � 2 � 1 � 2 � 1; 2 � 1 � p � 2 � 1 � 2 � 1 � 2g;[(k; v1); (l; 2(v2))] : [(k; v1); (l; v2)]; �S[2 � 1 � 2 � 1 = 2 � 1 � 2 � 1 � 2]which is true by induction for some p and z, QED.The proof of theorem 4 is as follows. We ignore the binding of the function �ndin the body of insert since the function is closed and does a�ect the sharing inthe table. By applying 19 and using lemma 1 we get the following theorem:[(v; z)] : [(t; v1); (k1; v2); (k2; v3)] : �; �S[h = 2 � 1 � p � 1 � h � 2] `let = 2(t) := (k1; v) : 2(t) in t) 1(v1) : ((v2; z) : 2(v1));f1 � h; 2 � 1 � 2 � h � 2; 2 � 1 � p � 1 � h � 2g;(�S[1 � h = 2 � 1 � p � 1 � h � 2])[2 � 1 � 2 � h � 2 = 2 � 1 � p � 1 � h � 2]Since the expression binds the identi�er and then ignores it, we can use rule 22without adding a binding to the environment, producing the following theorem:[(v; z)] : [(t; (1(v1); (v2; z) : 2(v1)))); (k1; v2); (k2; v3)] : �; �S[h = 2 � 1 � p � 1 � h � 2] `t) 1(v1) : ((v2; z) : 2(v1));f1 � h; 2 � 1 � 2 � h � 2; 2 � 1 � p � 1 � h � 2g;(�S[1 � h = 2 � 1 � p � 1 � h � 2])[2 � 1 � 2 � h � 2 = 2 � 1 � p � 1 � h � 2]which is true by rule 14, QED.The theorems in this section show that the use of a �-calculus de�ned usingnatural semantics with sharing is a exible way of analysing imperative pro-grams. In particular we have shown that the approach can handle both openand closed programs (i.e. with and without the concrete dits).The approach is exible with respect to the semantics of sharing. In orderto tailor the calculus to a particular programming language, the de�nition ofparameter passing, identi�er binding and builtin function calling are readilymodi�ed.6 ConclusionThis paper has proposed a general model for the analysis of imperative pro-grams in terms of a �-calculus. Since �-calculi are claimed to be a universalmodel of computation we claim that the model is suitable for analysing any16

concrete imperative programming language given a suitable transformation tothe calculus.The operational semantics of a sharing �-calculus expression is convenientlyexpressed using a sharing SECD machine and we have shown that the seman-tics can be greatly simpli�ed (with respect to a collection of assumptions) byperforming a source-to-source transformation on the expression.The resulting semantics can be used as a deductive system in order to provesharing theorems about programs. A number of examples of proof have beengiven including both open and closed programs. The �nal example has shownhow induction can be used with respect to arbitrary sized data items.This work is closely related to the abstract interpretation of programs inorder to analyse aliasing properties, for example see [2] for a general overviewof this area. The semantic models used to analyse programs are essentially�rst order, for example see [8] and [3]. Higher-order languages, such as �-calculi, can be used to encode a wide variety of data and control abstractionswithout requiring extra programming constructs. In this sense we claim that themodel presented in this paper is a universal framework for analysing imperativeprograms.One of the main reasons for performing alias analysis is to establish may-alias and must-alias properties. We have given an example of establishing amust-alias property (theorem 4). See [7] and [4] for more details.Another approach to modelling programming languages with sharing is de-notational semantics. Here a program is viewed as a function over a semanticdomain. The domain includes a store which associates memory addresses withdits. We believe the approach adopted here is more amenable to program proof.See [9] and [1] for more details about denotational semantics.We have used a natural semantics approach which is derived from a transitionmachine approach. ML is a higher-order language with sharing which uses anatural semantics, see [6] for more details.References[1] Allison, L. 1986 A Practical Introduction to Denotational Semantics. Cam-bridge Computer Science Texts, 23.[2] Deutsch, A. 1994 Interprocedural May-Alias Analysis for Pointers: Beyondk-Limiting. ACM SIGPLAN 1994 Conference on Programming LanguageDesign and Implementation, Orlando FL, June 20 {24, pp 230 { 241.[3] Deutch, A. 1992 A Storeless Model of Aliasing using Finite Representationsof Right Regular Equivalence Relations. Proceedings of the IEEE 1992 In-ternational Conference on Computer Languages, Oakland California, pp 2{ 13.[4] Landi, W. 1992 Undecidability of Static Analysis. Letters on ProgrammingLanguages and Systems, 1(4). 17

[5] Landin, P. J. 1965 A Correspondence Between Algol 60 and Church'sLambda-Notation. Communications of the ACM, 8, pp 89 { 101.[6] Milner, R., Tofte, M., Harper, R. 1990 The De�nition of Standard ML.The MIT Press.[7] Ramalingam G. 1994 The Undecidability of Aliasing. ACM Transactionson Programming Languages and Systems, 16(5), pp 1467 { 1471.[8] Ruf, E. 1995 Context Insensitive Alias Analysis Reconsidered. ACM SIG-PLAN 1995 Conference on Programming Language Design and Implemen-tation, La Jolla CA, June 18 { 21, pp 13 { 22.[9] Stoy, J. 1977 Denotational Semantics: The Scott-Stratchey Approach toProgramming Language Theory. The MIT Press.

18

